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Abstract

Policy search methods provide a heuristic mapping between observations and decisions and have been widely used in reservoir

control studies. However, recent studies have observed a tendency for policy search methods to overfit to the hydrologic data

used in training, particularly the sequence of flood and drought events. This technical note develops an extension of bootstrap

aggregation (bagging) and cross-validation techniques, inspired by the machine learning literature, to improve control policy

performance on out-of-sample hydrology. We explore these methods using a case study of Folsom Reservoir, California using

control policies structured as binary trees and daily streamflow resampling based on the paleo-inflow record. Results show

that calibration-validation strategies for policy selection and certain ensemble aggregation methods can improve out-of-sample

tradeoffs between water supply and flood risk objectives over baseline performance given fixed computational costs. These

results highlight the potential to improve policy search methodologies by leveraging well-established model training strategies

from machine learning.
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Abstract: Policy search methods provide a heuristic mapping between observations and 47 

decisions and have been widely used in reservoir control studies. However, recent studies have 48 

observed a tendency for policy search methods to overfit to the hydrologic data used in training, 49 

particularly the sequence of flood and drought events. This technical note develops an extension 50 

of bootstrap aggregation (bagging) and cross-validation techniques, inspired by the machine 51 

learning literature, to improve control policy performance on out-of-sample hydrology. We 52 

explore these methods using a case study of Folsom Reservoir, California using control policies 53 

structured as binary trees and daily streamflow resampling based on the paleo-inflow record. 54 

Results show that calibration-validation strategies for policy selection and certain ensemble 55 

aggregation methods can improve out-of-sample tradeoffs between water supply and flood risk 56 

objectives over baseline performance given fixed computational costs. These results highlight the 57 

potential to improve policy search methodologies by leveraging well-established model training 58 

strategies from machine learning. 59 
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 70 

1. Introduction 71 

Efficient policy search methods are becoming increasingly important to identify water system 72 

management strategies that provide satisfactory performance across a range of objectives and 73 

plausible climate, hydrologic, and regulatory scenarios. Heuristic optimization algorithms have 74 

grown in popularity for this purpose (e.g., Nicklow et al., 2010; Reed et al., 2013; Maier et al., 75 

2014), using parameterized functions such as neural networks, binary trees, or radial basis 76 

functions to map observed and projected information directly to actions (Raman & 77 

Chandramouli, 1996; Koutsoyiannis and Economou, 2003; Giuliani et al., 2014). The parameters 78 

and structure of these functions are the decision variables to be optimized, given a training 79 

sequence of hydrologic data. A key challenge in this process is the tendency for optimized 80 

policies to overfit to the training data, particularly when system performance is driven by 81 

infrequent extreme events (e.g., Herman and Giuliani, 2018). In this case, policies may fail to 82 

generalize to out-of-sample hydrology even assuming a stationary climate, let alone a 83 

nonstationary one. 84 

 85 

Several approaches have been explored to address this issue. One common approach is to 86 

optimize policies based on several random initializations (seeds) of the heuristic search, and 87 

select or combine solutions from those with the highest within-sample performance either over 88 

the historical hydrologic record (Salazar et al. 2016; Herman and Giuliani, 2018; Nayak et al., 89 

2018) or a synthetically generated scenario ensemble (Giuliani et al. 2014; Salazar et al. 2017; 90 

Giuliani et al. 2018). Other work has re-evaluated policy performance over other synthetic traces 91 

not used in training, but sampled from the same uncertainty characterization (Quinn et al., 2017), 92 



or over other traces modified by additional uncertain scenario factors not considered during 93 

training (Quinn et al., 2019). These strategies help to reduce policy overfitting to a single trace or 94 

synthetic ensemble, though both cases are constrained by the variability observed in the 95 

historical record. There remains an opportunity to extend policy search experiments to reduce 96 

overfitting by making best use of limited hydrologic data. The machine learning literature offers 97 

several promising approaches: namely, bootstrap aggregation (bagging) techniques and 98 

calibration-validation-testing frameworks. 99 

 100 

Bootstrap aggregation (bagging) is an ensemble method that consists of two primary steps. First, 101 

samples are bootstrapped from the training data and used to train an ensemble of models, each fit 102 

to a different sample. Second, the model ensemble is applied to out-of-sample data and the 103 

classification/prediction of each model is aggregated into a single output (Breiman, 1996a). The 104 

bootstrapping scheme is a simple way to approximate independent and identically distributed 105 

samples from the underlying population, which increases the diversity of models within the 106 

ensemble and significantly reduces classification/prediction variance and overfitting in the final 107 

aggregated output. A number of modifications and competitors to this approach have been 108 

devised, such as boosting (Freund & Schapire, 1996; Breiman, 1996b); stacking (Wolpert, 1993); 109 

and random forests (Breiman, 2001). Each of these leverages ensemble training to improve 110 

overall performance, and several aim to achieve both diversity and strength (i.e., low bias) in the 111 

ensemble of fitted models. 112 

 113 

In calibration-validation-testing frameworks, some portion of the data is used for model fitting, 114 

while the remainder is withheld for testing to assess out-of-sample performance. The data that is 115 



retained for model fitting is further divided into training and validation sets. While the training 116 

data is used directly to fit the model (i.e., used to calculate objective function values that drive 117 

the optimization of parameters), the validation data is used to approximate out-of-sample 118 

behavior and guide the training process. For instance, in training Artificial Neural Networks 119 

(ANN) it is common to periodically assess network performance on the validation set to initiate a 120 

stopping rule to avoid overfitting (Shalev-Shwartz & Ben-David, 2014). Bagging is inherently an 121 

efficient validation method, as each model trained on a randomly selected portion of the data can 122 

be evaluated against the remainder of the data that it did not see. This allows for a reasonably 123 

accurate characterization of out-of-sample performance with no additional cost (Breiman, 1996a) 124 

and can be used to weight outputs in the final model aggregation.  125 

 126 

In this technical note, we extend bagging techniques and calibration-validation-testing 127 

frameworks to reservoir policy design in a case study of the Folsom Reservoir in Northern 128 

California. We build upon the previous work of Nayak et al. (2018) and Herman and Giuliani 129 

(2018), in which an evolutionary algorithm was used to train binary policy trees that determine 130 

reservoir releases balancing water supply and flood control objectives. This work contributes to a 131 

developing set of methods to reduce policy overfitting (Giuliani et al. 2014; Salazar et al. 2017; 132 

Quinn et al., 2017; Giuliani et al. 2018) by forwarding an experimental design to systematically 133 

test how out-of-sample policy performance varies using different combinations of bagging and 134 

calibration-validation techniques, which could be applied to the design and testing of any policy 135 

structure. These methods are adapted for the highly auto-correlated nature of hydrologic flows 136 

using a simple block bootstrapping approach based on a paleo-reconstruction of reservoir 137 

inflows, similar to methods in Prairie et al. (2008). We conclude with recommendations of 138 



machine learning methods that hold particular promise for improved reservoir policy design, and 139 

possible avenues for future research.  140 

 141 

2.  Data and Methods 142 

2.1. Case Study: Folsom Reservoir and Policy Trees 143 

These ideas are tested on a case study of Folsom Reservoir, California, following Nayak et al. 144 

(2018). We use daily inflow data for the period of 1922 – 2016, split into a training set (1982-145 

2016) and a testing set (1922-1981) based on water years beginning in October. In addition, we 146 

use a policy tree formulation of reservoir control rules, which was originally proposed in Herman 147 

& Giuliani (2018) (Figure 1). In form, these policy trees are equivalent to Classification and 148 

Regression Tree (CART) models (Breiman, 1984), where each node of the tree produces a binary 149 

response based on a thresholding feature. In our application, these features are state variables 150 

within the reservoir simulation model, i.e., available water at time t, equal to the sum of previous 151 

storage and current inflow (St-1 + Qt), and day of water year (dt). The terminal nodes of the tree 152 

relate to specific target release actions (ut), including the release of demand (Dt), varying degrees 153 

of water supply hedging, and flood control releases. Target releases are then adjusted for hard 154 

constraints (e.g., ramping, maximum channel capacity rmax = 130,000 cfs) to produce final 155 

releases (rt).  156 

 157 

 158 



Figure 1: Set of indicator variables and actions for the Folsom Reservoir case study (left); an 159 

example policy tree using these components (right). 160 

 161 

The policy tree is optimized to minimize the following objective function calculated over the 162 

simulation horizon (N), which is composed of a squared water supply shortage cost relative to 163 

daily demand (first term) and a large penalty that discourages releases that exceed the daily 164 

maximum channel capacity 𝑟𝑚𝑎𝑥 (second term): 165 

 166 

𝐽 =
1

𝑁
∑ max(𝐷𝑡 − 𝑟𝑡 , 0)

2 +𝑁
𝑡=0 ∑ 109 ×max(𝑟𝑡 − 𝑟𝑚𝑎𝑥, 0)

𝑁
𝑡=0    (Eq. 1) 167 

 168 

A key difference between the policy tree and the original CART model for classification and 169 

regression is that the policy tree is evaluated by running a simulation model rather than fitting 170 

observed data. It is therefore optimized using random permutations of its structure via an 171 

evolutionary algorithm (Herman & Giuliani, 2018), whereas a CART tree is optimized using a 172 

recursive partitioning framework. Nonetheless, policy trees have exhibited very similar 173 

performance limitations to CART models, including a tendency to overfit to the training data, 174 

which has also been observed in other types of policy search methods. 175 

 176 

2.2. Experimental Design 177 

The baseline experiment, taken from Nayak et al. (2018), is to train a set of policy trees to a 178 

single inflow time-series across a number of random seeds and choose the best policy based on 179 

its performance in training. We then devise a set of experiments to test alternate methods of 180 

training and selecting policies based on the two components of bagging (bootstrapping and 181 



model aggregation), as well as calibration-validation procedures that are also based on 182 

bootstrapped data from the hydrologic record. We employ a 2 × 2 × 2 factorial design, described 183 

below and shown in Table 1. Importantly, in all experiments a total of 30 policies are trained, 184 

each to a relatively short (35 year) hydrologic trace, which constrains the computational expense 185 

to be roughly equivalent in each of the proposed procedures. All experiments were performed on 186 

a Dell OptiPlex Desktop with an 8-core, 3.00 GHz i7 processor in a non-parallel configuration, 187 

which required approximately 24 hours to create each of the ensembles of 30 policies using 188 

10,000 function evaluations per policy. 189 

Table 1: Summary of Factors and Treatments tested in experimental design. 190 

 Factor 1 – Treatment 1 

(policies fit to original data) 

 Factor 1 – Treatment 2 

(policies fit to bootstrapped data) 

 Factor 3– 

Treatment 1 

(aggregate on 

calibration 

period 

statistics) 

Factor 3 – 

Treatment 2 

(aggregate on 

validation 

period 

statistics) 

Factor 3 – 

Treatment 1 

(aggregate on 

calibration 

period 

statistics) 

Factor 3 – 

Treatment 2 

(aggregate on 

validation period 

statistics) 

Factor 2 -

Treatment 1 

(aggregate 

via best tree) 

Fit many trees 

to 1980-2016, 

pick best tree 

for 1980-2016 

 

 

 

 

(best.cal.hist) 

Fit many trees 

to 1980-2016, 

pick best tree 

for resampled 

hydrology 

 

 

 

(best.val.hist) 

Fit one tree to 

each sequence 

of resampled 

hydrology, 

pick best tree 

against its own 

sequence 

 

(best.cal.paleo) 

 

Fit one tree to 

each sequence of 

resampled 

hydrology, pick 

best tree across 

resampled 

hydrology 

 

(best.val.paleo) 

 

Factor 2 -

Treatment 2 

(aggregate 

via ensemble 

mode) 

Fit many trees to 1980-2016, 

use ensemble mode approach 

  

 

(ens.mode.hist) 

 

Fit one tree to each sequence of 

resampled hydrology, use 

ensemble mode approach 

 

(ens.mode.paleo) 

 

 191 



Within Factor 1, we assess the utility of bootstrapping as a method to train multiple policies. 192 

Two treatments are considered. Under Treatment 1, bootstrapping is not used when training the 193 

policies, and 30 policy trees (i.e., 30 random seeds) are fit to the same historical sequence of 194 

1982-2016 hydrology. Under Treatment 2, 1 policy tree (i.e., 1 seed) is trained to 30 different 195 

hydrologic sequences, each of which is developed by block bootstrapping the 1982-2016 data. 196 

The block bootstrapping procedure is described in Section 2.3. The primary hypothesis related to 197 

Factor 1 is that policies fit to bootstrapped data will exhibit more diversity, providing a wider 198 

range of policies that when aggregated will increase system performance.   199 

 200 

Regardless of whether policies are fit to the original hydrologic sequence or bootstrapped 201 

samples of that sequence, each approach produces 30 policy trees that need to be aggregated to 202 

produce a single policy. Factor 2 relates to the aggregation method and considers two different 203 

approaches. The first treatment employs a strategy where a single tree is selected from the 30 204 

candidate trees based on a measure of the objective function over a subset of data (Factor 3 205 

relates to the data used for this purpose). Treatment 2 employ a voting-based approach where the 206 

decisions of all 30 trees are considered at each time step of the simulation and the decision with 207 

the most votes (arithmetic mode) is selected. This aggregation technique is referred to as the 208 

ensemble mode approach. If a tie exists in the mode solution, a random selection is made 209 

between the two candidate decisions.  210 

 211 

For the first of the aggregation strategies (selecting the best tree), each tree needs to be assigned 212 

a score that can be used to compare performance across trees. This score is related to, but not 213 

equal to, the objective function of that policy evaluated over a subset of data determined by 214 



Factor 3. Under Treatment 1, the data used to optimize the policy tree are also used to calculate 215 

the performance score. Under Treatment 2, the score is averaged over the ensemble members of 216 

the bootstrapped dataset that were not used to train the policy (i.e., validation traces). The final 217 

score used to weight each policy (Cfinal) is calculated by summing scaled (between 0-1) values of 218 

water supply cost (first term in Eq. 1, Csupply) and total flood volume (second term in Eq. 1, 219 

Cflood):  220 

     221 

𝐶𝑓𝑖𝑛𝑎𝑙 = 𝐶𝑠𝑢𝑝𝑝𝑙𝑦,𝑠𝑐𝑎𝑙𝑒𝑑 + 𝐶𝑓𝑙𝑜𝑜𝑑,𝑠𝑐𝑎𝑙𝑒𝑑    (Eq. 2) 222 

𝑤ℎ𝑒𝑟𝑒𝐶𝑥 =
1

𝑀
∑𝐶𝑥,𝑛

𝑀

𝑛=1

𝑎𝑛𝑑𝐶𝑥,𝑠𝑐𝑎𝑙𝑒𝑑 =
(𝐶𝑥 −𝐶𝑏𝑒𝑠𝑡)

(𝐶𝑤𝑜𝑟𝑠𝑡 −𝐶𝑏𝑒𝑠𝑡)
 

      223 

Here, water supply and flood overage costs are first averaged across the M traces being used to 224 

develop the weighting score (M equals 1 for Treatment 1; M equals the number of validation 225 

traces for Treatment 2) and then scaled by the best (𝐶𝑏𝑒𝑠𝑡) and worst (𝐶𝑤𝑜𝑟𝑠𝑡) costs in the 226 

ensemble. We used scaled versions of both water supply and flood overage costs instead of the 227 

original objective function so that the weighting of the two costs would be equivalent. In both 228 

treatments, the policy with the lowest final score is chosen as the best. No policies evaluated in 229 

their respective calibration period (Treatment 1) exhibited flood failures owing to the high 230 

penalty imposed by the objective function in training the policy. Therefore, the score used to 231 

choose policies under Treatment 1 was based solely on water supply cost. 232 

 233 

2.3. Paleo-based Streamflow Bootstrap  234 

This work proposes a simple block bootstrapping approach to support the bagging and 235 

calibration-validation scoring procedures discussed above (see Figure 2). In this approach, we 236 



use a 1,113 year (900 – 2012 CE) tree-ring based annual inflow series for the American River 237 

upstream of Folsom Lake (Meko & Touchan, 2014). We partition the tree-ring derived series 238 

into 35-year periods from 900 – 1915 AD, resulting in 29 annual flow sequences matching the 239 

length of our training period (1982-2016). The resampling period ends in 1915 to prevent a 240 

policy from being trained on information from the 1922-1981 period, which is being used as an 241 

out-of-sample test period.  242 

 243 

A K-nearest neighbor (KNN) resampling approach is used to populate each 35-year paleo-period 244 

with daily inflow data. For each year in a paleo-period, we first select K=6 years from the 245 

training period (1982-2016) that are closest in annual flow to that paleo year. Then, we randomly 246 

sample with replacement the monthly flows from those 6 years to reconstruct a daily flow 247 

sequence for the paleo-year. The months of October – March are sampled individually, whereas 248 

the months of April – September are sampled as one continuous 6-month flow sequence in order 249 

to preserve persistence related to snowpack and melt. As an example, if we are seeking to 250 

generate a daily flow sequence for the paleo-year 900 CE, we pick the 6 years in the training 251 

period closest in annual flow to 900 CE, randomly select one of these 6 years, retrieve the daily 252 

October flow sequence from that year, and use those resampled data for October in 900 CE. This 253 

process is repeated to fill the remaining months through March, and then again for April-254 

September, but as a single 6-month block.  255 

 256 

The proposed block bootstrap preserves realistic sequences of daily inflow but allows for inter-257 

monthly and inter-annual variability not experienced in the training period. Although there are 258 

likely some discontinuities between individual months in the cold season, these discontinuities 259 



are less problematic because of the high daily flow variability in this season. Conversely, by 260 

maintaining the continuity of daily flows in the April – September dry season, we preserve the 261 

persistence of slow hydrologic processes (snowmelt, groundwater discharge) that would 262 

generally not change drastically from month to month and may be influenced by inter-monthly 263 

factors.  264 

 265 

The proposed bootstrapping procedure ultimately produces 29 resampled daily flow sequences, 266 

in addition to the original 1982 – 2016 time-series. These sequences form the 30-member 267 

ensemble that are the basis for the bagging and validation strategies discussed above. While 268 

other approaches could also be used to develop this ensemble (Giuliani et al. 2014; Quinn et al., 269 

2017), the proposed bootstrap procedure requires little effort to develop and can sample from a 270 

diverse space of inter-monthly to inter-annual flow sequences. 271 

 272 

Finally, a 30-member ensemble is also generated using the same bootstrap procedure described 273 

above but using data from the testing period (1922 – 1981) as the basis for resampling. This 274 

ensemble is strictly used to assess the performance of different policies developed under the 275 

experimental design and is never used in policy training (i.e., all policies are trained on the 1982-276 

2016 data and then tested on the 30-member ensemble based on 1922-1981 data).   277 

 278 



 279 

Figure 2: Workflow of hydrological resampling and policy training framework. The top layer 280 

shows partitioning of the paleo annual inflow time-series into the desired number and length of 281 

periods. The second layer depicts the process to create resampled daily inflows based on the 282 

paleo annual inflows with the KNN resampling sub-process depicted in the upper left. The third 283 

layer shows the training of policies to each of the resampled daily inflows (Factor 1 – Treatment 284 

2), and the final layer shows the aggregation strategy (Factor 2), which in the case of choosing 285 

the best tree (Factor 2 – Treatment 1) may involve comparing policy performance to validation 286 

data (blue, Factor 3 – Treatment 2)). 287 

 288 

Results  289 

To assess the performance of each factor and treatment, we tested each framework against all 290 

resampled inflow sequences from both the training period (1982-2016) and the test period (1922-291 

1981). For each inflow sequence, we simulated the water supply cost and the total flood overage 292 



of each policy. Importantly, the results for the training period are developed in a leave-one-out 293 

framework, in which each trace is removed from the 30-member ensemble, and policies from the 294 

other 29 traces are aggregated to simulate performance over the left-out trace. In this way, the 295 

results shown for the training period reflect some degree of out-of-sample performance, as 296 

policies used to simulate reservoir operations over each trace were trained to reordered versions 297 

of the 1982-2016 data not experienced in that trace.  298 

 299 

Figure 3 shows the distribution of water supply costs and the total flood overage (summed across 300 

traces) for each combination of treatments and both the training and testing period. A single 301 

value rather than distribution of flood overage values is presented because of the large number of 302 

traces with zero flood overages. In each period, we compared the water supply cost distributions 303 

for each pair of frameworks using a Tukey multiple pairwise comparison test. In both the upper 304 

and lower panels of Figure 3, the ‘ens.mode.hist’ water supply costs are well above the cost 305 

range for other policies (median cost 1982-2016: 1.61, 1922-1981: 3.34). Similarly, the total 306 

flood overage for the ‘best.cal.paleo’ in 1982-2016 (9998 TAF) is much higher than that for 307 

other policies.  The axis range in Figure 3 is designed to highlight with greater precision the 308 

differences between the policy frameworks with more competitive water supply and flood 309 

overage costs.  310 

 311 

We note that the test period of 1922-1981 is drier than 1982-2016, and so is more prone to higher 312 

water supply costs and lower flood overage costs. The histograms in Figure 3 demonstrate this 313 

point, showing the observed mean annual flow in the training period near the center of the paleo-314 

resampled distribution, whereas in the test period the observed flow is on the drier end of its 315 



respective paleo-resampled distribution. Despite these differences, the relative water supply costs 316 

between formulations are consistent across the training and testing periods, suggesting that these 317 

comparative results are robust across a range of climate conditions. 318 

 319 

Figure 3: Policy framework performance across factors and treatments from Table 1. Boxplots 320 

display the distribution of water supply costs (left y-axis) while red dashed line and ‘+’ symbols 321 

show the total flood overage (right y-axis) across all 30 resampled inflows. The upper plot is for 322 

the training period of 1982-2016 whereas the lower plot is for the test period of 1922-1981. The 323 

pale-yellow background highlights policy frameworks based on the historical sequence of inflow 324 

(Factor 1 - Treatment 1) while the white background highlights policy frameworks based on 325 

resampled traces based on the paleo-record (Factor 1 – Treatment 2). Histograms in the upper 326 



right corner display the distribution of mean annual flow for 29 resampled 35-year inflow 327 

sequences and the red arrow shows mean annual flow from the observed record. 328 

 329 

One of the most apparent signals that emerges from Figure 3 is the superiority of using validation 330 

data to select a policy (Factor 3). This insight only applies to the aggregation method that 331 

chooses the best policy among the ensemble of 30 candidates (best.cal vs. best.val), and holds 332 

regardless of the period under consideration (1982-2016 or 1922-1981) or the sequencing of data 333 

used to fit the policies (historical sequence or paleo-based bootstrapped sequences). The use of a 334 

validation set (Treatment 2) to choose a policy is uniformly better than the use of the calibration 335 

set (Treatment 1) with respect to flood overages. When polices are fit to the historic sequence of 336 

inflow (best.cal.hist vs. best.val.hist), this performance enhancement is matched by a similar 337 

improvement in water supply cost, although the difference in means is not significant. When 338 

policies are fit to paleo-based bootstrapped sequences, the water supply cost performance of the 339 

best.cal.paleo framework is significantly lower than best.val.paleo (p < 0.01 by a Tukey multiple 340 

pairwise comparison test), but this comes at a tremendous cost to flood risk (nearly an order of 341 

magnitude greater than that of the other policies for the 1982-2016 period). In any conceivable 342 

water management scenario, this risk/reward relationship would be unacceptable. Therefore, we 343 

focus on the validation-based policies (best.val.hist and best.val.paleo) when comparing policy 344 

performance across other factors.  345 

 346 

Figure 3 also highlights significant differences in policy performance when policies are fit to the 347 

historical sequence versus bootstrapped data (Factor 1), at least for some aggregation techniques. 348 

If polices are aggregated by selecting the best policy among a candidate ensemble, then policy 349 



performance does not different significantly for either water supply or flood control costs when 350 

using historical or bootstrapped data (best.val.hist vs. best.val.paleo). However, when using the 351 

ensemble mode aggregation strategy, there is a large disparity between policy performance 352 

(ens.mode.hist vs. ens.mode.paleo). For both the 1982-2016 and 1922-1981 periods, the 353 

ens.mode.hist framework (Treatment 1) performs significantly worse (p << 0.01) in water supply 354 

cost than all the other policies, including the ens.mode.paleo (treatment 2) framework. While 355 

ens.mode.hist consistently shows very low flood overage values, many of the other policies can 356 

obtain water supply costs that are four or more times lower than the median cost of ens.mode.hist 357 

while having similar or only moderately elevated flood risk. This indicates a substantial 358 

deficiency in the ens.mode.hist framework. In contrast, the ens.mode.paleo framework exhibits 359 

water supply costs that are much more competitive, while maintaining an overall flood risk 360 

comparable in magnitude to those of other high-performing policy frameworks.  361 

 362 

These results provide evidence that policy diversity can influence ensemble mode performance. 363 

Many of the 30 different policies fit to the historical sequence of 1982-2016 data exhibited very 364 

similar rule structures and feature thresholds, while the 30 policies each fit to a separate 365 

bootstrapped sequence of the 1982-2016 data exhibited a wider range of tree designs. For 366 

instance, within the 30 policies fit to historical data, there were three groups (of 5, 4, and 2 367 

policies, respectively) with nearly identical replicate structures. There were no such replicates in 368 

the bootstrapped policies. In addition, the distribution of values for the decision threshold on the 369 

day of water year feature (dowy) was far more variable across policies in the bootstrapped case 370 

than the historical case, likely because the timing and magnitude of high flows was more varied 371 

in the bootstrapped traces. Given the results in Figure 3, the greater diversity in the policy 372 



ensemble enabled by bootstrapping appears to be necessary to maintain reasonable water supply 373 

and flood risk performance when aggregating policies using the ensemble mode approach.  374 

 375 

When comparing aggregation methods (Factor 2), the differences between policies are less 376 

pronounced. For the purposes of this comparison, we focus on the three most competitive 377 

policies, two using the aggregation strategy that selects a single, best policy (best.val.hist and 378 

best.val.paleo) and one that uses the ensemble mode (ens.mod.paleo).  When using both 1982-379 

2016 and 1922-1981 data, median cost performance for the ensemble mode aggregation is 380 

slightly (albeit insignificantly) lower than the policies based on selecting a single best policy. 381 

However, flood overages are moderately higher, at least in the 1982-2016 period.  382 

 383 

Overall, best.val.hist and best.val.paleo appear to be the policies that provide the best overall 384 

performance for both water supply and flood control costs. When using 1982-2016 data, 385 

best.val.paleo has near equal water supply costs and slightly better (i.e., lower) flood overages, 386 

but when using the 1922-1981 data neither policy has any flood overages and best.val.hist has 387 

the lower water supply cost. In addition, in the 1922-1981 test period, the ens.mod.paleo 388 

approach does provide non-trivial improvements in water supply costs without any flood 389 

increase, but again this only occurs in the drier climate of the 1922-1981 period that is less prone 390 

to significant flooding.  391 

 392 

Conclusions 393 

Heuristic policy search methods are becoming increasingly popular for designing reservoir 394 

control policies, but these methods can suffer from overfitting to training data and reduced policy 395 



performance on out-of-sample streamflow sequences. New frameworks are needed to better 396 

exploit the limited hydrologic record to design reservoir policies that can generalize to flow 397 

sequences previously unseen in the historical record, which may occur either due to long-term 398 

change in the distribution of floods and droughts or limited samples of natural hydrologic 399 

variability  (Herman et al., 2020). In the latter case, the machine learning literature is rich with 400 

novel approaches for this purpose. This technical note draws from that literature and contributes 401 

a systematic experimental design to test whether bagging techniques and calibration-validation-402 

testing frameworks can be used to reduce overfitting in reservoir policy design and improve out-403 

of-sample policy performance. Three policy design parameters were considered, including the 404 

use of bootstrapped data for policy fitting, aggregation strategies to combine multiple candidate 405 

policies into a single decision, and the use of validation data to select policies. These methods 406 

were implemented in a case study using policies structured as binary trees, but insights are 407 

generalizable to other policy fitting techniques. Importantly, all methods were implemented 408 

under a fixed computational cost that was feasible within 24 hours (per method) using relatively 409 

standard personal computing resources. 410 

 411 

The primary conclusions of this work are as follows:  412 

1. When selecting a single best policy from a candidate set, the use of validation (rather than 413 

calibration) performance provides a more robust metric that can help prevent policy 414 

performance degradation on out-of-sample hydrology.  415 

2. Validation data based on a simple and fast block bootstrap of the available hydrology can 416 

be used for this purpose.  417 



3. When training a policy, the use of bootstrapped data based on a paleo-record did not lead 418 

to significant improvements in out-of-sample policy performance (particularly when 419 

selecting a single best policy from a candidate set). However, the use of the bootstrapped 420 

data for validation and policy selection did lead to significant improvements (see #1 and 421 

#2 above).  422 

4. An ensemble mode approach to policy aggregation requires diversity among the 423 

candidate policies to be competitive with other approaches. However, even with a diverse 424 

set of policies, the ensemble mode approach did not provide significant benefits over the 425 

simpler approach of selecting a single, best policy based on validation performance.  426 

 427 

Overall, the results of this work suggest that there is potential to improve policy optimization and 428 

selection processes by incorporating some methods used in classic machine learning constructs. 429 

As stated above, the calibration-validation-testing framework showed the most potential in this 430 

study. However, there are many other machine learning methods to control overfitting that could 431 

be considered in future experiments. For instance, the ensemble mode approach used in this 432 

study (ens.mode.paleo) produced results on par with the other high-performing techniques (and 433 

somewhat better for the dry climate of 1922-1981), and is a relatively simple bagging 434 

formulation analogous to the early scheme presented in Breiman (1996a). Modifications to this 435 

technique to include a weighted voting scheme could prove effective in improving performance 436 

of an ensemble based solely on historical inflow data. In addition, alternative choices could be 437 

explored for developing the trees included in the ensemble mode, such as a Random Forest 438 

formulation in which the underlying policy tree algorithm would include random feature 439 

selection. Finally, a common critique of ensemble methods is their lack of policy interpretability. 440 



Future work could explore approaches to address this issue by deriving a simple policy structure 441 

from ensemble mode-based decisions. For instance, in the case of policy trees (the method used 442 

in this work), a single policy tree could be derived from the input/output sequence of the 443 

ensemble mode via another CART regression.  444 

 445 

Our experiments were conducted on a relatively simple case study with two objectives (water 446 

supply cost and flood overage) that were combined into a single objective function using a 447 

weighting approach. It is possible that the benefits of some of the approaches considered in this 448 

work could become more or less apparent in a higher-dimensional multi-objective formulation, 449 

or a more complex case study of a multi-reservoir system. In addition, we leveraged an existing 450 

paleo-based inflow reconstruction in our bootstrapping approach. In instances where such 451 

reconstructions are unavailable, a time series model of the annual inflow record (possibly 452 

designed to capture low-frequency variability) could be used as an alternative source of data on 453 

which to base the block bootstrap (see Steinschneider and Brown, 2013). Both of these issues are 454 

left as potential avenues of future work. 455 

 456 
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