Innovative Technologies in Teaching and Learning: Incorporating Recent Developments in Virtual and Augmented Reality into Active Learning at the University of Georgia

Sergio Bernardes¹, Allison Howard², Akshay Mendki¹, Ashurst Walker¹, Dhaval Bhanderi¹, Lillian Le¹, Angela Tsao², and Marguerite Madden¹

¹Center for Geospatial Research - University of Georgia ²University of Georgia

November 26, 2022

Abstract

This work presents system concepts, integration efforts and results of the incorporation of recent advances in geospatial technologies, including augmented reality, virtual reality and unmanned aerial systems (UAS), into teaching and learning in the geosciences. Descriptions include the exploration of multiple technological alternatives and introduce system design and integration to enhance and innovate instructional materials in classrooms. The 3D Immersion and Geovisualization (3DIG) system, implemented at the Center for Geospatial Research at the University of Georgia incorporates augmented/customized commercial-off-the-shelf solutions for data acquisition, visualization and human-machine interaction. Through the immersive capabilities of 3DIG, students can be involved in a full data acquisition-processing-analysis workflow. Data streams are used for system integration, with emphasis to model generation/manipulation and remote sensing applications, including multispectral data acquisition/analyses, structure-from-motion based point-cloud/model generation, DEM and texture extraction, and orthomosaics. Resulting products are used with virtual and mixed reality holographic devices, a Geographic Information System (GIS) and with game engines (Unreal Engine and Unity) to create realistic multi-scale multi-theme 3D reconstructions of planet Earth, landscapes and/or objects. Among other system components, an augmented reality digital sandbox equipped with two depth cameras supports experiential learning and experimentation involving scaled down replicas of landscapes or user-defined topographies. The system allows for fast representation of landscape changes (near-real time response), which simulates fluid flow over modified terrain, as well as quantitative analyses, modeling and what-if scenarios through the integration with a GIS. The 3DIG system has been incorporated into classwork and results have been evaluated. This work introduces the interconnected and complementary technologies of 3DIG; presents lessons learned during system design; introduces system implementation and evolution (including the recent integration of new components); describes system use for hands-on and immersive experiential learning; and discusses system evaluation.

Innovative Technologies in Teaching and Learning: Incorporating Recent Developments in Virtual and Augmented Reality into Active Learning at the University of Georgia

Students are increasingly visual learners and come to universities with a high level of expectation and experience in visualization strategies, including 3D graphics. Recent advances in technologies already being used by students, including a variety of mobile-based applications, computer gaming related hardware/software, and unmanned aerial systems, among others, can be used to facilitate data acquisition and visualization. Although some of these technologies are progressively finding their way towards classrooms, materials for education and outreach in the geosciences rely predominantly on two-dimensional displays of images, maps, photographs, data graphs and conceptual diagrams. This work summarizes efforts at the Center for Geospatial Research (CGR) to integrate a system for cuttingedge data acquisition, virtual/augmented reality and immersive geovisualization for enhanced Earth Science teaching and learning.

Sergio Bernardes, Allison Howard, Akshay Mendki, Ashurst Walker, Dhaval Bhanderi, Lillian Le, Angela Tsao & Marguerite Madden

www.com

Center for Geospatial Research (CGR), Department of Geography, The University of Georgia (sbernard@uga.edu, www.cgr.uga.edu)

BACKGROUND

Use in Teaching, Learning and Research

Experiential learning: undergraduate and graduate students are paid hourly or offered research assistantships and are involved in all phases of system development, configuration and use.

Training on flight planning for simultaneous RGB and multispectral image collection.

Processing of results for integration into other components of the system.

Geovisualization: use of 3D models and images to create realistic and immersive environments.

Realistic 3D visualization derived from single flight mission (367 images)

System Statistics & Evaluation (since Nov 2016)

- Estimated audience: over 6,000 students (college pre-K, elementary and middle schoolers), as well as other members of the community.
- Use for teaching/learning: 50 courses/sessions (Geography [Physical Geography, Weather and Climate, GIS], Geology (Earth Science

- Participation in outreach: **14 events**.

ACKNOWLEDGMENTS

This project is being supported by the Center for Teaching and Learning at the University of Georgia-Athens, through multiple Learning Technology Grants. We thank also augmented reality software contributions by the UC Davis' W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES) and the North Carolina State University's GeoForAll Laboratory

Students learn how to fly UAVs and are trained in aerial system operations and data collection methods.

Products:

- orthomosaics
- 3D models (Structure from Motion-SfM)
- very-high resolution (<1 in) calibrated
- reflectance images and mosaics (5 bands) • processed images (filtered, classified)
- spectral indices

Visualization of virtual 3D environment derived from SfM models and DEMs

for Middle School Teachers), Environment and Design and Psychology (Environmental Psychology), multiple First Year Odyssey courses. New courses created: 2 graduate-level seminar on UAV-based multispectral image collection, processing and analysis.