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Abstract

Seismic full-waveform inversion (FWI) can produce high resolution images of the Earth’s subsurface. Since full waveform
modelling is significantly nonlinear with respect to velocities, Monte Carlo methods have been used to assess image uncertainties.
However, because of the high computational cost of Monte Carlo sampling methods, uncertainty assessment remains intractable
for larger data sets and 3D applications. In this study we propose a new method called variational full-waveform inversion
(VFWI), which uses Stein variational gradient descent (SVGD) to solve FWI problems. We apply the method to a 2D synthetic
example and demonstrate that the method produces accurate approximations to those obtained by Hamiltonian Monte Carlo
(HMC). Since variational inference solves the problem using optimization, the method can be applied to larger datasets and

3D applications by using stochastic optimization and distributed optimization.
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Abstract

Seismic full-waveform inversion (FWI) can produce high resolution images of the
Earth’s subsurface. Since full waveform modelling is significantly nonlinear with re-
spect to velocities, Monte Carlo methods have been used to assess image uncertainties.
However, because of the high computational cost of Monte Carlo sampling methods,
uncertainty assessment remains intractable for larger data sets and 3D applications. In
this study we propose a new method called variational full-waveform inversion (VFWTI),
which uses Stein variational gradient descent (SVGD) to solve FWT problems. We ap-
ply the method to a 2D synthetic example and demonstrate that the method produces
accurate approximations to those obtained by Hamiltonian Monte Carlo (HMC). Since
variational inference solves the problem using optimization, the method can be applied
to larger datasets and 3D applications by using stochastic optimization and distributed
optimization.

1 Introduction

Seismic full-waveform inversion (FWI) is a method which characterizes proper-
ties of the Earth’s subsurface by exploiting information throughout recorded seismic
waveforms (Lailly & Bednar, 1983; Tarantola, 1984; Gauthier et al., 1986; Pratt et al.,
1998; Pratt, 1999; Tromp et al., 2005). The method has been used successfully from
industrial scale (Prieux et al., 2013; Warner et al., 2013; Shen et al., 2018), regional
scale (Chen et al., 2007; Tape et al., 2009; Fichtner et al., 2009; Tape et al., 2010) to
global scale (French & Romanowicz, 2014; Bozdag et al., 2016; Fichtner et al., 2018).

The FWI problem is often solved using optimization by minimizing a misfit
function between observed and predicted seismograms. Since the problem is highly
non-linear with multi-modal objective functions, a poor starting model can cause con-
vergence to incorrect solutions. Apart from finding an adequate starting model, nu-
merous misfit functions that can reduce multi-modalities have been proposed (Luo
& Schuster, 1991; Gee & Jordan, 1992; Fichtner et al., 2008; Brossier et al., 2010;
Van Leeuwen & Mulder, 2010; Bozdag et al., 2011; Métivier et al., 2016). Neverthe-
less, although optimization has been used widely in practical applications, the method
cannot provide accurate uncertainty estimations which makes it difficult to assess and
interpret the results of FWI.

Monte Carlo sampling methods provide a procedure to solve general non-linear
problems and quantify uncertainties (Brooks et al., 2011). The methods have been
applied to travel time tomography (Bodin & Sambridge, 2009; Galetti et al., 2015;
Hawkins & Sambridge, 2015; Zhang et al., 2018, 2019) and FWI (Ray et al., 2016, 2017;
Biswas & Sen, 2017; Gebraad et al., 2019). However, Monte Carlo sampling methods
are computationally expensive and remains intractable for large data sets due to the
curse of dimensionality (Curtis & Lomax, 2001). To extend nonlinear uncertainty
analysis to larger systems, M. A. Nawaz and Curtis (2018); M. Nawaz and Curtis (2019)
and Zhang and Curtis (2019) introduced variational inference methods to Geophysics,
and Zhang and Curtis (2019) applied them to seismic travel time tomography. By
optimizing a different formulation of the inverse problem, variational inference methods
can be more efficient than Monte Carlo sampling methods (Bishop, 2006; Blei et al.,
2017), can be applied to larger systems by using methods like stochastic optimization
(Robbins & Monro, 1951; Kubrusly & Gravier, 1973) and distributed optimization, and
provide uncertainties in the form of marginal probability distributions on parameters
(M. A. Nawaz & Curtis, 2018; M. Nawaz & Curtis, 2019; Zhang & Curtis, 2019).

In this study we apply variational inference methods to FWI, which we refer
as variational full-waveform inversion (VFWTI). Specifically we use Stein variational
gradient descent (SVGD) to solve FWI problems because SVGD can produce accurate
approximations to the results of Monte Carlo sampling methods (Zhang & Curtis,



2019). In section 2 we provide a brief overview of SVGD and FWI. In section 3 we
apply the method to a 2D synthetic test and compare the results with those obtained by
Hamiltonian Monte Carlo (HMC). We then provide a discussion about the possibility
to apply the method to larger systems and 3D applications.

2 Methods
2.1 Stein variational gradient descent (SVGD)

Bayesian methods update a prior probability density function (pdf) p(m) with
new information from the data to produce a probability distribution of model pa-
rameters post inversion, which is often called a posterior pdf, written as p(m|dops).
According to Bayes’ theorem,

p(dobs |m)p(m)
p(dobs)

where p(dops|m) is the likelihood, which is the probability of observing data dgps if
model m was true, and p(deps) is a normalization factor called the evidence. The like-
lihood function is often represented as the exponential of a misfit function £(dops, m),

p(m|dobs) =

1
p(dobs|m) = 6€xp(_£(dobsa m))
where C' is the normalization factor. This process is called Bayesian inference.

Bayesian inference is often solved by using Markov chain Monte Carlo (McMC)
methods. However, due to the high computational expense of Monte Carlo methods,
they cannot easily be applied to large datasets which are often expensive to simu-
late given a set of model parameters. Variational inference provides a different way
to solve Bayesian inference problems: the method seeks an optimal approximation
to the posterior pdf within a predefined family of distributions, by minimizing the
Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) between the approxi-
mate probability distribution and the posterior probability distribution (Blei et al.,
2017). Since variational inference solves Bayesian inference problems using optimiza-
tion, it can be more efficient than Monte Carlo sampling methods (Blei et al., 2017;
Zhang & Curtis, 2019).

Stein variational gradient descent (SVGD) is one such algorithm based on it-
erative incremental transforms of the prior pdf (Liu & Wang, 2016). In SVGD, a
smooth transform T(m) = m + epp(m) is used, where m = [mq,...,mg] and m; is
the i'" parameter, and ¢(m) = [¢1, ..., ¢4] is a smooth vector function that describes
the perturbation direction and where € is the magnitude of the perturbation. SVGD
minimizes the KL-divergence by iteratively applying the transform to the current ap-
proximate probability distribution which is represented using a set of particles. At
each iteration the perturbation ¢(m) is determined by seeking the steepest descent
direction that minimizes the KL-divergence (Liu & Wang, 2016). The method has
been introduce to geophysics to solve 2D seismic travel time tomographic problems by
Zhang and Curtis (2019). In this study we use SVGD to solve VEWI problems.

2.2 Full-waveform inversion (FWI)

FWI uses full waveform information to image the Earth’s subsurface. In this
study we solve a P-SV wave system along a 2D vertical cross section of isotropic wave
velocities and density. The wave equation is solved by using a fourth-order variant
of the staggered-grid finite difference scheme (Virieux, 1986; Gebraad et al., 2019).
The gradients with respect to velocities and density are calculated using the adjoint
method (Tarantola, 1988; Liu & Tromp, 2006; Fichtner et al., 2006; Plessix, 2006;
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Figure 1. The true model for Vp, Vs and density. The dashed black line indicates the study

region within which parameters are inverted. Sources are located at the bottom which are repre-

sented by beachballs and receivers are shown with black triangles.

Virieux & Operto, 2009) and are used to transform the pdf in the SVGD algorithm.
For the misfit function, we choose the Lo waveform difference:

1 dobs — d;(m)
L= 7 1 2
where i is the index of time samples and o; is the standard deviation of each data
point. Since the Ly misfit is dominated by large amplitude shear waves, it is probably
more sensitive to shear velocities than to P-wave velocities. Note that in practice other
more advanced misfit functions may be used (Luo & Schuster, 1991; Van Leeuwen &

Mulder, 2010; Bozdag et al., 2011; Métivier et al., 2016).

3 Results

We apply the above method to a 2D synthetic example identical to that in
Gebraad et al. (2019) who used a particularly efficient MC method, so that the results
can be fairly compared. Figure 1 shows the true model for Vp, Vs and density. Sources
are located at the bottom of the region and have random moment tensors. For source-
time function we use a Ricker wavelet with dominant frequency of 50 Hz. Receivers
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Figure 2. The mean (left) and standard deviation (right) for Vp, Vs and density obtained
using SVGD.

are located at the depth of 10 metres near the surface. The data are simulated using
the staggered-grid finite difference scheme over a 220 x 110 gridded discretisation in
space, within which a 180 x 60 sub-grid of cells has free parameters (region within the
dashed black box in Figure 1).

To reduce the complexity of the inverse problem we use strong prior information
as in Gebraad et al. (2019): Uniform distributions in the interval of 2000 £+ 100 m/s
for Vp, 800 £ 50 m/s for Vs and 1500 & 100 kg/m? for density. For the noise level
we use a fixed data variance of 1 um? as this variance produces a more accurate
model when using HMC (Gebraad et al., 2019). For SVGD we use 600 particles which
are initially generated from the prior probability distribution. The particles are first
transformed to an unconstrained space as in Zhang and Curtis (2019) and updated
using 600 iterations. The final particles are transformed back to the original space and
are used to calculated mean and standard deviations.

Figure 2 shows the mean and standard deviation models for Vp, Vs and density
obtained using SVGD. The mean model of Vs successfully recovers the true model,
whereas the mean model of Vp provides a significantly different image to the true
model. This is probably because the waveforms are more sensitive to Vs than to Vp,
so that large scale structure of Vp can be recovered. The mean model of density
shows similar features to the true model near discontinuities, which is likely because
waveforms are primarily sensitive to density gradients. In comparison the bottom high
density structure is not present in the result.

The standard deviation of Vs shows similar features to the velocity structure.
For example, the horizontal higher velocity layers and the bottom high velocity struc-
ture have smaller standard deviations. There are higher standard deviations at the
boundary of tilted layers which have been observed previously in travel time tomog-



Mean of Vp Standard deviation

YYYYYVYVYVYYYYYVYYYYVYVYY 55

Ztm)

100 e - s

$ & ® @ &6 & ©Q »

100 0 50 100 150 200 250
Mean of Vs Standard deviation

¥YYVYVYYYVYVYVYYYVYVYVYVYYYY YYVYYYVYVVYYYYVVYYYVYVYY 275

Z(m)

Standard deviation

YYYYYYVYVYYYYYVYYYYVYVYY

Z(m)

Density (kg/m?)

50 100 150 200 250

Figure 3. The mean (left) and standard deviation (right) for Vp, Vs and density obtained by
Gebraad et al. (2019) using Hamiltonian Monte Carlo.

raphy (Galetti et al., 2015; Zhang et al., 2018; Zhang & Curtis, 2019). This suggests
that the location of velocity boundaries are not well-constrained. The standard devi-
ation of Vp shows similar features to the mean model, for example, high velocities are
associated with lower standard deviations. Similar to the results of shear velocity, the
standard deviations of density are lower at the horizontal lower density layers and the
boundary of the tilted layers have higher standard deviations. Due to the fact that
waveforms are more sensitive to density gradients, the bottom constant higher density
structure is not well constrained and has higher standard deviations.

To validate the method we compare the results with those obtained using HMC
(Figure 3) by Gebraad et al. (2019). Overall the results from HMC are very similar
to those obtained using SVGD except for slightly different magnitudes. Since the
same solution is found by completely different methods, it is likely to be the true
solution to the full waveform Bayesian inference problem. Note that the results from
SVGD appears to be smoother than those from HMC, which is probably caused by
undersampling and lack of convergence of HMC as noted by Gebraad et al. (2019).

4 Discussion

We first compare the computational cost of the two methods. SVGD involves
600 x 600 = 360,000 forward and adjoint simulations, whereas HMC involves approx-
imately 130,000 forward and adjoint simulations. While in this case it thus appears
that HMC is more efficient than SVGD, in the above example HMC was conducted
using only one chain which had not fully converged (Gebraad et al., 2019). Since
in practice multiple chains are usually required to produce an accurate result, HMC
may need more computational cost. Also, in contrast to HMC, the simulations in
SVGD can easily be parallelized which could make the method more efficient in real



time (Zhang & Curtis, 2019). A Markov chain cannot be easily parallelized due to
dependence between successive Markov samples (Neiswanger et al., 2013). In practice
HMC often requires deliberate and tedious tuning to achieve an efficient Markov chain
(e.g. see discussions in Gebraad et al., 2019) so HMC may incur a significantly higher
computational cost than that reported above, whereas SVGD requires less effort to
achieve an efficient algorithm by using available optimization techniques, e.g. ADA-
GRAD (Duchi et al., 2011; Liu & Wang, 2016). Note that instead of tuning HMC
manually some adaptive methods may also be used (Hoffman & Gelman, 2014). To
give an overall idea about the computational cost of SVGD, the above example takes
about 6 days parallelized using 16 CPU cores.

Although in this study we applied the method to a simple 2D example with
only seven sources, the method can be applied easily to larger data sets and to 3D
applications by using stochastic optimization (Robbins & Monro, 1951; Kubrusly &
Gravier, 1973) and distributed optimization by dividing large data sets into random
minibatches. In comparison the same technique cannot easily be applied to McMC
methods since it breaks the reversibility property of Markov chains which is required by
most Monte Carlo methods. Clearly further work is required to compare the efficiency
of the methods in a range of practical applications.

In this study we used a simple Lo misfit function which may cause multimodalities
in the likelihood function. Although SVGD can approximate arbitrary probability
distributions, the absence of local minima may improve the efficiency of convergence
and require fewer particles. Therefore in practice other misfit functions that measure
similarity of waveforms can be used to reduce multimodalities (Luo & Schuster, 1991;
Gee & Jordan, 1992; Fichtner et al., 2008; Brossier et al., 2010; Van Leeuwen & Mulder,
2010; Bozdag et al., 2011; Métivier et al., 2016). In the example we used a fixed noise
level from Gebraad et al. (2019). In practice the noise level may be estimated from the
data (Sambridge, 2013; Ray et al., 2016) or estimated in the inversion in a hierarchical
way (Malinverno & Briggs, 2004; Bodin et al., 2012; Ranganath et al., 2016; Zhang et
al., 2018, 2019).

5 Conclusion

In this study we introduced a new method called variational full-waveform in-
version (VFWI), which uses Stein variational gradient descent (SVGD) to solve full-
waveform inversion problems and provide accurate uncertainty estimation. We applied
the method to a 2D synthetic example and compared the results with those obtained
using Hamiltonian Monte Carlo (HMC). The results show that SVGD can produce ac-
curate approximations to the probabilistic results obtained by HMC. Although in the
simple 2D example SVGD is less efficient than HMC, the method can easily be paral-
lelized and applied to larger data sets by taking advantage of methods like stochastic
optimization and distributed optimization. This can make the method more efficient
in practice, allowing it to be applied to larger datasets and 3D applications.

Acknowledgments

The authors thank the Edinburgh Interferometry Project sponsors (Schlumberger,
Equinor and Total) for supporting this research. This work has made use of the
resources provided by the Edinburgh Compute and Data Facility (ECDF) (http://
www.ecdf.ed.ac.uk/). The data used in this study and the codes used to generate
data are available at Zenodo (http://doi.org/10.5281/zenodo.3565313).

References

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.



Biswas, R., & Sen, M. (2017). 2D full-waveform inversion and uncertainty esti-
mation using the reversible jump Hamiltonian Monte Carlo. In Seg technical
program expanded abstracts 2017 (pp. 1280-1285). Society of Exploration Geo-
physicists.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference:
A review for statisticians. Journal of the American Statistical Association,
112(518), 859-877.

Bodin, T., & Sambridge, M. (2009). Seismic tomography with the reversible jump
algorithm. Geophysical Journal International, 178(3), 1411-1436.

Bodin, T., Sambridge, M., Tkal¢i¢, H., Arroucau, P., Gallagher, K., & Rawlinson,

N. (2012). Transdimensional inversion of receiver functions and surface wave
dispersion. Journal of Geophysical Research: Solid Earth, 117(B2).

Bozdag, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., ... Pug-
mire, D. (2016). Global adjoint tomography: first-generation model. Geophysi-
cal Journal International, 207(3), 1739-1766.

Bozdag, E., Trampert, J., & Tromp, J. (2011). Misfit functions for full waveform in-
version based on instantaneous phase and envelope measurements. Geophysical
Journal International, 185(2), 845-870.

Brooks, S., Gelman, A., Jones, G., & Meng, X.-L. (2011). Handbook of Markov chain
Monte Carlo. CRC press.

Brossier, R., Operto, S., & Virieux, J. ~ (2010).  Which data residual norm for ro-
bust elastic frequency-domain full waveform inversion? Geophysics, 75(3),
R37-R46.

Chen, P., Zhao, L., & Jordan, T. H.  (2007).  Full 3D tomography for the crustal
structure of the Los Angeles region. Bulletin of the Seismological Society of
America, 97(4), 1094-1120.

Curtis, A., & Lomax, A. (2001). Prior information, sampling distributions, and the
curse of dimensionality. Geophysics, 66(2), 372-378.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization.  Journal of Machine Learning Research,
12(Jul), 2121-2159.

Fichtner, A., Bunge, H-P., & Igel, H. (2006). The adjoint method in seismology: I.
theory. Physics of the Earth and Planetary Interiors, 157(1-2), 86—-104.

Fichtner, A., Kennett, B. L., Igel, H., & Bunge, H.-P. (2008).  Theoretical back-
ground for continental-and global-scale full-waveform inversion in the time—
frequency domain. Geophysical Journal International, 175(2), 665-685.

Fichtner, A., Kennett, B. L., Igel, H., & Bunge, H.-P. ~ (2009).  Full seismic wave-
form tomography for upper-mantle structure in the Australasian region using
adjoint methods. Geophysical Journal International, 179(3), 1703-1725.

Fichtner, A., van Herwaarden, D.-P., Afanasiev, M., Simuté, S., Krischer, L., Cubuk-
Sabuncu, Y., ... others (2018). The collaborative seismic earth model: genera-
tion 1. Geophysical research letters, 45(9), 4007-4016.

French, S., & Romanowicz, B. (2014). Whole-mantle radially anisotropic shear veloc-
ity structure from spectral-element waveform tomography. Geophysical Journal
International, 199(3), 1303-1327.

Galetti, E., Curtis, A., Meles, G. A., & Baptie, B. (2015).  Uncertainty loops in
travel-time tomography from nonlinear wave physics.  Physical review letters,
114(14), 148501.

Gauthier, O., Virieux, J., & Tarantola, A. (1986). Two-dimensional nonlinear inver-
sion of seismic waveforms: Numerical results. Geophysics, 51(7), 1387-1403.

Gebraad, L., Boehm, C.; & Fichtner, A. (2019). Bayesian elastic full-waveform inver-
sion using Hamiltonian Monte Carlo. FarthArXiv, qftn5.

Gee, L. S., & Jordan, T. H. (1992). Generalized seismological data functionals. Geo-
physical Journal International, 111(2), 363-390.



Hawkins, R., & Sambridge, M. (2015). Geophysical imaging using trans-dimensional
trees. Geophysical Journal International, 203(2), 972-1000.

Hoffman, M. D., & Gelman, A.  (2014). The No-U-Turn sampler: adaptively set-
ting path lengths in Hamiltonian Monte Carlo.  Journal of Machine Learning
Research, 15(1), 1593-1623.

Kubrusly, C., & Gravier, J.  (1973).  Stochastic approximation algorithms and ap-
plications.  In 1978 ieee conference on decision and control including the 12th
symposium on adaptive processes (pp. 763-766).

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics, 22(1), 79-86.

Lailly, P., & Bednar, J.  (1983). The seismic inverse problem as a sequence of be-
fore stack migrations. In Conference on inverse scattering: theory and applica-
tion (pp. 206-220).

Liu, Q., & Tromp, J.  (2006). Finite-frequency kernels based on adjoint methods.
Bulletin of the Seismological Society of America, 96(6), 2383-2397.

Liu, Q., & Wang, D. (2016). Stein variational gradient descent: A general purpose
Byesian inference algorithm. In Advances in neural information processing sys-
tems (pp. 2378-2386).

Luo, Y., & Schuster, G. T. (1991). Wave-equation traveltime inversion. Geophysics,
56(5), 645-653.

Malinverno, A., & Briggs, V. A.  (2004).  Expanded uncertainty quantification in
inverse problems: Hierarchical Byes and empirical Byes. Geophysics, 69(4),
1005-1016.

Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., & Virieux, J. (2016). Measuring
the misfit between seismograms using an optimal transport distance: applica-
tion to full waveform inversion. Geophysical Journal International, 205(1),
345-377.

Nawaz, M., & Curtis, A. (2019). Rapid discriminative variational Byesian inversion
of geophysical data for the spatial distribution of geological properties. Journal
of Geophysical Research: Solid Earth.

Nawaz, M. A., & Curtis, A. (2018). Variational Bayesian inversion (VBI) of quasi-
localized seismic attributes for the spatial distribution of geological facies. Geo-
physical Journal International, 214 (2), 845-875.

Neiswanger, W., Wang, C., & Xing, E. (2013). Asymptotically exact, embarrassingly
parallel MCMC. arXiv preprint arXiv:1311.4780.

Plessix, R.-E. (2006). A review of the adjoint-state method for computing the gradi-
ent of a functional with geophysical applications. Geophysical Journal Interna-
tional, 167(2), 495-503.

Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, part 1:
Theory and verification in a physical scale model. Geophysics, 64(3), 888-901.

Pratt, R. G., Shin, C., & Hick, G. (1998). Gauss—Newton and full Newton meth-
ods in frequency—space seismic waveform inversion. Geophysical Journal Inter-
national, 133(2), 341-362.

Prieux, V., Brossier, R., Operto, S., & Virieux, J. (2013). Multiparameter full
waveform inversion of multicomponent ocean-bottom-cable data from the Val-
hall field. part 1: Imaging compressional wave speed, density and attenuation.
Geophysical Journal International, 194(3), 1640-1664.

Ranganath, R., Tran, D., & Blei, D. (2016). Hierarchical variational models. In In-
ternational conference on machine learning (pp. 324-333).

Ray, A., Kaplan, S., Washbourne, J., & Albertin, U.  (2017).  Low frequency full
waveform seismic inversion within a tree based Byesian framework.  Geophysi-
cal Journal International, 212(1), 522-542.

Ray, A., Sekar, A., Hoversten, G. M., & Albertin, U.  (2016).  Frequency domain
full waveform elastic inversion of marine seismic data from the Alba field using
a Bayesian trans-dimensional algorithm. Geophysical Journal International,



205(2), 915-937.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals
of mathematical statistics, 400-407.

Sambridge, M. (2013). A parallel tempering algorithm for probabilistic sampling and
multimodal optimization. Geophysical Journal International, ggt342.

Shen, X.,; Ahmed, I., Brenders, A., Dellinger, J., Etgen, J., & Michell, S. (2018).
Full-waveform inversion: The next leap forward in subsalt imaging. The Lead-
ing Edge, 37(1), 67b1-67b6.

Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2009). Adjoint tomography of the south-
ern California crust. Science, 325(5943), 988-992.

Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2010). Seismic tomography of the south-
ern California crust based on spectral-element and adjoint methods. Geophysi-
cal Journal International, 180(1), 433-462.

Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approxima-
tion. Geophysics, 49(8), 1259-1266.

Tarantola, A. (1988). Theoretical background for the inversion of seismic waveforms,
including elasticity and attenuation. In Scattering and attenuations of seismic
waves, part i (pp. 365-399). Springer.

Tromp, J., Tape, C., & Liu, Q. (2005). Seismic tomography, adjoint methods, time
reversal and banana-doughnut kernels. Geophysical Journal International,
160(1), 195-216.

Van Leeuwen, T., & Mulder, W.  (2010). A correlation-based misfit criterion for
wave-equation traveltime tomography. Geophysical Journal International,
182(3), 1383-1394.

Virieux, J. (1986). P-SV wave propagation in heterogeneous media: Velocity-stress
finite-difference method. Geophysics, 51(4), 889-901.

Virieux, J., & Operto, S. (2009). An overview of full-waveform inversion in explo-
ration geophysics. Geophysics, 74(6), WCC1-WCC26.

Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., ... others
(2013). Anisotropic 3D full-waveform inversion. Geophysics, 78(2), R59-R&0.

Zhang, X., & Curtis, A.  (2019).  Seismic tomography using variational inference
methods. Journal of Geophysical Research: Solid Earth. Retrieved from
https://doi.org/10.1029/2019JB018589 doi: 10.1029/2019JB018589

Zhang, X., Curtis, A., Galetti, E., & de Ridder, S. (2018). 3-D Monte Carlo surface
wave tomography. Geophysical Journal International, 215(3), 1644-1658.

Zhang, X., Hansteen, F., Curtis, A., & de Ridder, S. (2019). 1D, 2D and 3D Monte
Carlo ambient noise tomography using a dense passive seismic array installed
on the North Sea seabed. Journal of Geophysical Research: Solid Farth. doi:
10.1029/2019JB018552

—10—



