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Abstract

We use global coupled atmosphere-ocean-biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5),

under the RCP8.5 scenario, to show that the global interannual variability of the sea surface pCO (calculated as 1σ) could

increase by 62 ± 22 % by 2090. This amplification is a consequence of a larger background pCO and a lower buffering capacity

that enhance the response of pCO to surface temperature (T) and dissolved inorganic carbon (DIC) changes.

The amplification is counteracted by a decrease in the sea-surface DIC interannual variability, which will likely cause a strong

reduction on the pCO’s variability in the equatorial Pacific. The potential changes in seawater carbonate chemistry are simulated

with higher consistency than those in the DIC and T anomalies driven by ocean circulation and biology. The changes in sea-

surface pCO interannual variability are reflected in the ocean-atmosphere flux of CO and need to be accounted for future carbon

projections.
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Key Points:9

• The sea surface pCO2 interannual variability is amplified by the end of 21st cen-10

tury in most of the ocean, except in the equatorial Pacific.11

• The amplification is due to an increased ocean sensitivity to surface dissolved in-12

organic carbon and temperature variations.13

• A decrease in the dissolved inorganic carbon interannual variability largely coun-14

teracts the amplification.15
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Abstract16

We use global coupled atmosphere-ocean-biogeochemistry models from the Cou-17

pled Model Intercomparison Project (CMIP5), under the RCP8.5 scenario, to show that18

the global interannual variability of the sea surface pCO2 (calculated as 1σ) could in-19

crease by 62 ± 22 % by 2090. This amplification is a consequence of a larger background20

pCO2 and a lower buffering capacity that enhance the response of pCO2 to surface tem-21

perature (T) and dissolved inorganic carbon (DIC) changes. The amplification is coun-22

teracted by a decrease in the sea-surface DIC interannual variability, which will likely23

cause a strong reduction on the pCO2’s variability in the equatorial Pacific. The poten-24

tial changes in seawater carbonate chemistry are simulated with higher consistency than25

those in the DIC and T anomalies driven by ocean circulation and biology. The changes26

in sea-surface pCO2 interannual variability are reflected in the ocean-atmosphere flux27

of CO2 and need to be accounted for future carbon projections.28

Plain Language Summary29

We used models to show that the variations in the ocean surface partial pressure30

of carbon dioxide, that occur between one and ten years, will be larger by the end of the31

21st century in most of the ocean. This is because the human carbon emissions make the32

ocean less able to buffer the natural changes in the total amount of inorganic carbon and33

temperature that are driven by physics and biology. The models also show that the fluc-34

tuations in the total inorganic carbon will be smaller in the future, reducing the vari-35

ations of the partial pressure of carbon dioxide in the equatorial Pacific. The changes36

in the ocean’s carbon are reflected in the flux of carbon between the atmosphere and the37

ocean.38

1 Introduction39

On average, the ocean absorbs 2.4 ± 0.5 Pg of carbon each year (Le Quéré et al.,40

2018) but this amount varies on interannual time-scales. Efforts have been made to es-41

timate the interannual variability of CO2 uptake in observations and models (Dong et42

al., 2017), however there is little agreement with values ranging from ±0.14 PgC yr−143

for 1982-2007 (Park et al., 2010), ±0.29 1985-2017 (Le Quéré et al., 2018) to ±0.40 PgC44

yr−1 for 1997-97 (Le Quéré et al., 2000). The CO2 ocean-atmosphere flux is determined45

by the difference between ocean and atmospheric pCO2, and it is further modulated by46

wind speed variations and sea ice coverage. As the atmospheric pCO2 is largely uniform47

around the globe, most of the interannual variability is controlled by the sea surface pCO248

which is determined by surface dissolved inorganic carbon (DIC), total alkalinity (TA),49

temperature (T) and salinity (S). Large scale atmosphere-ocean interactions, such as the50

El Niño Southern Oscillation (ENSO) in the equatorial Pacific, the Pacific Decadal Os-51

cillation (PDO) in the North Pacific, the Southern Annular Mode (SAM) in the South-52

ern Ocean, and the North Atlantic Oscillation (NAO) (McKinley et al., 2004; Friedrich53

et al., 2006; Landschützer et al., 2019) induce changes in physical circulation and biol-54

ogy that alter DIC, TA, T and S ultimately impacting the CO2 flux. The effect of DIC,55

TA, T and S interannual anomalies on the pCO2 depends on how sensitive the water car-56

bonate chemistry is to these changes. In the ocean, approximately 89% of the dissolved57

inorganic carbon is in the form of bicarbonate (HCO−3 ) and ≈ 10.5% as carbonate (CO−23 );58

the CO2 concentration ([CO2]) only comprises a ≈0.5% (Zeebe & Wolf-Gladrow, 2001).59

As the ocean captures CO2, its ability to convert it into HCO−3 and CO−23 decreases, and60

the pCO2 sensitivity to any change in DIC increases. In the same way, a larger back-61

ground [CO2] enhances the effect of temperature on pCO2’s solubility. Recently, it was62

shown that the sea-surface pCO2 is already experiencing a seasonal amplification (Landschützer63

et al., 2018; Gorgues et al., 2010) which is projected to increase further according to model64

projections (Gallego et al., 2018; Fassbender et al., 2017; McNeil & Sasse, 2016; Hauck65
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& Völker, 2015). Yet the question remains unresolved whether the amplification will also66

occur for other time-scales. Interannual changes in ocean surface pCO2 may affect the67

oceanic sink of anthropogenic CO2; for example in 2013 the North Pacific subtropical68

gyre was a net annual source of CO2 for the first time, due high pCO2 caused by warm69

anomalies (Sutton et al., 2017), and during the 2015-2016 El Niño the CO2 outgassing70

in the equatorial Pacific was reduced by 26 to 54% (Chatterjee et al., 2017). The cur-71

rent observational time series are not long enough to detect changes in interannual to72

multi-decadal scales, therefore we rely on Earth System Models (ESMs) to project fu-73

ture changes. Our aim is to quantify how well the CMIP5 models represent the mech-74

anisms of present-day sea surface pCO2 interannual variability (from now referred as IAV)75

when compared to data-based estimates, and from there, elucidate the future interan-76

nual variability amplification (IAVA) of the carbon cycle in response to greenhouse gases77

and global warming and the possible consequences for the ocean-atmosphere flux of CO2.78

2 Methodology79

Models80

For our analysis, sea surface FCO2, pCO2, DIC, TA, T and S monthly-mean out-81

put variables covering the period from 1861-2005 were obtained from historical simula-82

tions, and the period 2006-2100 from future climate change simulations under the Rep-83

resentative Concentration Pathway 8.5 (RCP8.5) (IPCC, 2013). We selected 15 fully cou-84

pled earth system models that participated in the Coupled Model Intercomparison Project,85

Phase 5 (CMIP5) to analyze the standard deviation of pCO2. Out of the fifteen, we se-86

lected six modelsfor a more comprehensive analysis of the causes driving pCO2 variabil-87

ity; these models were selected based on data availability: CanESM2, CESM1-BGC, GFDL-88

ESM2M, MPI-ESM-LR, HadGEM2-ES and HadGEM2-CC (See supplementary mate-89

rial of Hauri et al. (2015)). The ocean’s surface data sets were regrided onto a 1ox1o grid90

using Climate Data Operators (CDO). The Arctic Ocean and the region poleward of 70oS91

are removed from the analyses, because observational data for model validation are scarce.92

Analysis93

Commonly, the interannual anomalies are defined as deviations of monthly output94

values from a mean climatology, or by using a running 12 month filter on detrended monthly95

values. However, for CMIP5 models, the future seasonal cycle of pCO2 is expected to96

increase (Gallego et al., 2018), therefore removing a mean climatology for the 1861-210097

period would result in an overestimation of IAVA. On the other hand, a 12 month run-98

ning filter would remove important sub-annual information and removing a linear trend99

from a 200-year-long time series poses its own difficulties. To avoid these issues, we cal-100

culate the monthly anomalies for each year as the monthly deviation from a 11-year run-101

ning climatology centered on that year. For example, for the year 1935 we desasonalize102

the monthly values by subtracting the mean climatology from 1930 to 1940; for the year103

1936 we use the climatology from 1931-1941 and so on. (Supplement Figure S1 shows104

the running climatology for pCO2 and the anomalies obtained with this method). To105

elucidate the underlying physical and chemical processes controlling the pCO2 interan-106

nual anomalies (from now pCO′2) we calculated a first order Taylor series expansion of107

pCO′2 in terms of its four controlling factors, DIC, TA, T and S. To remove the fresh wa-108

ter concentration/dilution effect we use salinity-normalized DIC and TA using a mean109

salinity of 35 psu, referred as DICs and TAs, (Lovenduski et al., 2007). The freshwater110

effect is now included in the Sfw term. For the Taylor series expansion, each variable (X111

= DICs , TAs , T and Sfw ) is decomposed as X = X + X′. The term X represents the112

running climatology and X′ denotes the interannual anomaly. The full first-order series113

expansion is given by:114
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pCO2
′ ≈ ∂pCO2

∂DIC

∣∣∣∣TA,DIC
T,S

DICs
′ +

∂pCO2

∂TA

∣∣∣∣TA,DIC
T,S

TAs
′ +

∂pCO2

∂T

∣∣∣∣TA,DIC
T,S

T ′ +
∂pCO2

∂S

∣∣∣∣TA,DIC
T,S

S′
fw,

(1)

115

where the derivatives are evaluated on the running climatologies. The full deriva-116

tion of Eq. (1) is given in the Supplementary material. Equation (1) can be rewritten117

as:118

pCO2
′ ≈ pCO2 ·

(
γDICs ·DICs

′ + γTAs · TAs
′ + γT · T ′ + γS · Sfw

′) (2)

119

Where, for notation purposes, each derivative is re-defined as: γX = 1
pCO2

· ∂pCO2
∂X ,120

and we will refer to them as the pCO2 sensitivity to X. To determine how much each term121

contributes to the variability of pCO′2 Equation (2) is mulitplied by pCO2
′, and then av-122

eraged, obtaining the following equation:123

< (pCO2
′)2 > ≈ pCO2 · γDICs < DICs

′ · pCO′
2 > + pCO2 · γTAs < TAs

′ · pCO′
2 > +(3)

pCO2 · γT < T ′ · pCO′
2 > + pCO2 · γS < Sfw

′ · pCO′
2 >,

124

where < ... > represents a temporal averaging operator. Introducing the follow-125

ing notation:126

βX ≡
< pCO2 · γX ·X ′pCO2

′ >

< (pCO′2)2 >
(4)

, we can then divide Eq. (3) by < (pCO′2)2 > to give the relationship
∑
X

βX = 1,127

where X = {DIC,TA,T,S}, as introduced by Doney et al. (2009). Thus, if we multiply128

Eq.(4) by the root-mean-square (RMS) of the anomalies (defined as
√
< (pCO2

′)2 > ),129

then the βX coefficients can be interpreted as the fraction of the total pCO′2 RMS that130

each variable contributes. In our numerical calculations the sum of the β’s differs slightly131

from one due the approximation used for the Taylor expansion, and the anomalies av-132

eraged being slightly different from zero.133

3 Results134

The increase in IAV of surface pCO2
′ is illustrated with the running standard de-135

viation of the monthly anomalies from 1871 to 2090 (Figure 1). The ensemble mean of136

the globally averaged STD of pCO2 increases from 6 µatm to 11 µatm by the end of the137

21st century. Detailed global maps of the 1866-1917 and 2045-2095 STD are found in Sup-138

plement material S2 and S3. For the pCO2, a present day comparison shows that the139

1987-2010 models STD is about 7 µatm and is larger than the observation-based esti-140

mates of ≈ 3.2 µatm (Landschützer et al., 2017) (excluding the Arctic region).141

Present day sea surface pCO2 interannual variability142

To evaluate the models ability to represent the IAV, we compare the root mean square143

(RMS) of simulated pCO2
′ for the 1987-2010 period with data-based estimates of Landschützer144

–4–
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Figure 1. Increase in IAV of the sea surface pCO2
′ as a function of time. The IAV is

expressed as the running standard deviation (STD) of the monthly anomalies simulated for the

historical and the high-emissions Representative Concentration Pathway 8.5 from 1861 to 2100.

The STD is calculated using a 10 years moving window for each grid point and then globally av-

eraged. The monthly anomalies for each year were calculated by removing a 11-year climatology

centered around that year, in order to remove the positive trend and the increasing seasonal cycle

amplitude. The final STD time series comprises the 1871-2090 period. Solid black line indicates

the ensemble mean of the individual STDs; the grey area, ±1σ. The STD of the Landschützer et

al. (2017) data set for the period 1987-2010 is indicated by a red star.

et al. (2017) (Figure 2, first column ). The models CanESM2, CESM1-BGC and GFDL-145

ESM2M show the largest pCO2 variability in the equatorial Pacific in agreement with146

the data-based estimates, while for HadGEM2-CC/ES and MPIESM-MR, the strongest147

fluctuations occur in the high latitudes, especially in the Southern Ocean and North At-148

lantic. Other observation-based estimates by Rödenbeck et al. (2014) show that the equa-149

torial belt (15◦S to 15◦N) accounts for 40% of the total temporal standard deviation of150

the global Ocean. The low equatorial variability in the HadGEM2-CC/ES and MPI-ESM-151

MR models may be a consequence of the CO2 flux variability that exhibits a much shorter152

period variation than ENSO time-scales, thus ENSO does not play a dominant role and153

the high latitudes dominate the variability (Dong et al., 2016).154

Models exhibit a higher variability in the subtropical gyres and the high latitudes155

when compared to the data-based estimate of Landschützer et al. (2017); however the156

data-based estimations are an interpolation of the Surface Ocean CO2 Atlas (SOCAT)157

dataset (Bakker et al., 2016; Sabine et al., 2013) which may be biased due to under-sampling,158

and interpolation methods may cause a lower RMS in high latitudes with limited obser-159

vational coverage (Landschützer et al., 2019). For example, the data-base product of Rödenbeck160

et al. (2015), which also uses the SOCAT data, shows lower pCO2 values than mooring161

time series. This is related to the lack of measurements in some areas and seasons or be-162

cause moorings are not representative of larger areas (Sutton et al., 2017). In another163

study, Tjiputra et al. (2014) found that the 1970-2011 deseasonalized pCO2 anomalies164

of the second release of the SOCAT dataset (Bakker et al., 2014) show a larger standard165

deviation than the models, but they were of equal magnitude when the models were sub-166

sampled to the measurements’ areas. The values reported by Landschützer et al. (2019)167

are lower than the Tjiputra et al. (2014) for all regions. Moreover, the local interannual168

variability can be much larger when looking at individual time series. For example, Sutton169

et al. (2014) found that in the Niño 3.4 central equatorial Pacific index region the pCO2170

annual mean ranged from 315 to 578 µatm between 1997 and 2011.171
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The drivers of the pCO2
′ variability are analyzed in Figure 2 using the decompo-172

sition of Eq. (4). Figure 2, columns d, e, f and g show the respective contributions of T,173

DIC,TA and S to the RMS of the pCO2
′ for the 1987-2010 period. We compare the re-174

sults with the Landschützer et al. (2017) estimates for which we calculate only the ther-175

mal and non-thermal components (TA and DIC are not available). The non-thermal com-176

ponent comprises the combined contribution of DIC, TA and S, (Takahashi et al., 2002).177

The thermal and non-thermal contributions calculated for the CMIP5 models can be found178

in Supplement material (Figure S4); these follow the DIC and T patterns. The regional179

dominance of the thermal and non-thermal components on the IAV emulates that of its180

seasonal cycle; the high latitudes, and the strong upwelling region of equatorial Pacific181

are dominated by non-thermal changes; whereas the subtropical gyres are controlled by182

the solubility changes induced by temperature variations (Landschützer et al., 2019). In183

the equatorial Pacific, HadGEM2-CC/ES and MPIESM-MR show that during El Niño184

years the pCO2 anomalies are positive due to increased temperatures induced by the anoma-185

lous eastward advection of warmer waters; while CanESM2, CESM1-BGC and GFDL-186

ESM2M suggest that the redistribution of oceanic currents and reduced upwelling of DIC-187

rich waters generates negative pCO2 anomalies (Jin et al., 2019). The DIC-dominated188

models are in agreement with results obtained from observations (Feely et al., 2006; Sut-189

ton et al., 2014), an offline model driven by reanalysis ocean products (Valsala et al., 2014)190

and a hindcast simulation (Doney et al., 2009). The observed pCO2
′ associated with El191

Niño are negative and are predominantly caused by wind driven changes in the currents192

that alter the DIC distribution, rather than by changes in temperature (Doney et al.,193

2009; Valsala et al., 2014; Long et al., 2013; Feely et al., 1999; Cosca et al., 2003). The194

models that fail to represent the dominance of DIC on pCO2 IAV in the equatorial Pa-195

cific, present a weak reduction in upwelling during El Niño years and weak vertical gra-196

dients of DIC (Jin et al., 2019). In the equatorial Atlantic region only the HadGEM2-197

CC/ES shows a temperature dominance (Wang et al., 2015), disagreeing with the Landschützer198

et al. (2019) estimate. Only the HadGEM2-CC/ES model shows a relatively important199

alkalinity contribution in the North Atlantic and North Pacific that counteracts the pos-200

itive DIC contribution. Salinity has a minor effect everywhere, with a small positive ef-201

fect in the western Pacific associated with rainfall changes due ENSO. Models agree with202

the data estimates on the non-thermal dominance in the high latitudes (Figure 2). The203

Southern Ocean pCO2’s IAV is the result of increased upwelling of DIC-rich waters caused204

by stronger winds related to the southern annular mode (Resplandy et al., 2015; Verdy205

et al., 2007). In the sub-polar North Atlantic the observations show a non-thermal dom-206

inance north of 40oN, while in the models the DIC dominance extends to 25-30 oN.207

Future sea surface pCO2 interannual variability208

The sea surface pCO2 IAV, calculated as the RMS-value of the interannual pCO2209

anomalies, is amplified in most of the ocean by the end of the 21st century (Figure 3a),210

(see Supplement material Figure S5 for each individual model). Yet, the magnitude of211

the IAV amplification (IAVA) exhibits large regional differences, and even decreases in212

the equatorial Pacific for some models. Here, we analyze the causes of IAVA and its spa-213

tial heterogeneity by separating the analysis into two groups of models according to their214

behavior. The first group includes the CanESM2, CESM1-BGC and GFDL-ESM2G. They215

exhibit the maximum IAV in the equatorial Pacific, which decreases in the future and216

is dominated by DIC (see Figure 3a, upper row). The second group includes the HadGEM2-217

CC/ES and MPI-ESM-lR models, and is characterized by maximum IAV in the high lat-218

itudes (especially in the Southern Ocean), a temperature dominance in the equatorial219

Pacific’s IAV and an increase in future IAV everywhere (see Figure 3a, bottom row). The220

same behavior is observed in the ocean-atmosphere CO2 flux (FCO2) (Figure 3c). The221

pattern correlation between the change on RMS of pCO′2 and the change on RMS of FCO′2222

is in the order of 0.5 to 0.8 depending on the model (not shown). This indicates that in-223

creased pCO2 IAV is one of the main drivers of the FCO2 IAV increase. However, ad-224
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Figure 2. Mechanisms driving the 1987-2010 interannual variability of surface

ocean pCO2. First row shows the a) Landschützer et al. (2017) estimate of the root mean

square (RMS) of pCO2 interannual anomalies, and its b) thermal and c) non-thermal contri-

butions. Panels on the second to seventh rows show the different CMIP5 models a) root mean

square (RMS) of pCO2 interannual anomalies and its contributions from d) temperature (T),

e) salinity normalized dissolved inorganic carbon (DICs), f) salinity normalized total alkalinity

(TAs) and g) salinity inclduing fresh water effect (Sfw). For the observations, we calculate a

thermal and non-thermal terms following Takahashi et al. (2002) method because there is not

enough DIC, TA and S data available. The non-thermal component comprises the combined

effects of DIC, TA and S. Following the method of Doney et al. (2009), each map of the con-

tributions is calculated as the β coefficient of Eq. (4) normalized by the RMS of the pCO′
2. In

the panels, yellow-redish colors indicate a positive contribution to the RMS of pCO2 interannual

anomalies and blue colors represent a negative contribution.
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ditional substantial contributions coming from changes in wind speed and solubility also225

play a role.226

We now set to determine how much of the pCO2 IAVA is due to changes in mean227

background carbonate chemistry and how much can be explained by changes in phys-228

ical and biological processes. To this aim, we calculate the RMS of pCO2
′ for the final229

period as if only the background carbonate chemistry - represented by pCO2 and the sen-230

sitivities (γT and γDIC)- increase, but maintaining the initial values of the anomalies given231

by T′ and DICs
′ (see Eq. (2)). The later anomalies are the result of physical and bio-232

logical variations. In both groups of models, the case in which only the carbonate chem-233

istry is changed shows a global mean IAVA 3.4 times larger than for the case in which234

DICs
′ and T′ are also allowed to vary (compare in Figure 3b with 3a). The large increase235

in pCO2 and γDIC is similar for both groups of models and generate an overall ampli-236

fication (Figure 4a,b). It is important to mention that the separation between pCO2 and237

γDICs is a mathematically construct rather than two separate phenomena. Ultimately,238

the change in pCO2 · γDICs is what determines the increase in the DIC contribution, while239

the T contribution increases almost exclusively due to the increase in pCO2 since γT re-240

mains almost unchanged (not shown).241

The damping of the pCO2 IAVA in the case where both, carbon chemistry and in-242

terannual anomalies change is due to a decrease of the DIC′ interannual variability (Fig-243

ure 4a). The simulations differ in DIC′ creating a large spread in the projected IAVA.244

For example, in the first group of models, the DIC standard deviation has a maximum245

in the equatorial Pacific and decreases in the future by ≈41% causing a decrease in pCO2246

IAV in the region (Figure 4c). For the MPI-ESM-LR and HadGEM-ES/CC the DIC anoma-247

lies are smaller in the equatorial region but increase by ≈8% , enhancing the IAVA. In248

high latitudes, the DIC STD decreases for both groups of models, but they present a larger249

sensitivity and a more rapid increase in pCO2 than the mid-low latitudes (Figure 4a,b),250

which agrees with previous studies (Bates et al., 2014; Egleston et al., 2010). Of the two251

groups of models, the MPI-ESM-LR and HadGEM-ES/CC show a smaller decrease in252

DIC′ and a larger increase in the sensitivity, and therefore result in a larger pCO2 IAVA253

than the CanESM2, CESM1-BGC and GFDL-ESM2G. Interestingly, the T′ anomalies254

remain of similar magnitude during both periods of time, which makes the overall T con-255

tribution to pCO2 be more amplified than the DIC contribution (see Supplement ma-256

terial, Figure S6).257

The intra-model differences on DIC′ and T′ IAV arise from the differences in phys-258

ical and biological controls, or due to changes in the main modes of ocean-atmosphere259

variability, such as ENSO, NAO, SAM and PDO. An in-depth analysis of these causes260

is beyond the scope of this paper, but we discuss some possible explanations found in261

the current literature. One of the reasons for the diminished DIC′ variability under fu-262

ture emission scenarios, may be related to the fact that climate models simulate a weaker263

Walker circulation in response to global warming (Vecchi et al., 2006; Zhao & Allen, 2019);264

this would weaken the upwelling of DIC-rich waters during La Niña conditions.Other stud-265

ies suggest a future increase in ENSO amplitude and a weakening of the Walker circu-266

lation, will increase the frequency of the eastward propagation of warm waters (Timmermann267

et al., 1999; Cai et al., 2015, 2018). Moreover, Cai et al. (2018) found that models that268

accurately represent the ENSO features, also show a future increase in ENSO’s frequency;269

this indicates that the reduction of DIC variability cannot be controlled solely by changes270

in the climate modes of variability. However, the recent strengthening of the trade winds271

and the unresolved models biases make these projections of medium confidence (Cai et272

al., 2015; Timmermann et al., 2018).273

Another possible explanation for the diminished DIC′ variability is the projected274

shoaling of the winter mixed layer depth, associated with a reduced heat loss during the275

cold season. The mixed layer shoaling will cause less mixing of deep rich DIC waters to276

the surface on both, seasonal and interannual timescales. In the winter deep convection277
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Figure 3. Causes of increasing sea surface pCO2
′ variability: Total change (measured

as 2045-2095 minus 1870-1920 values) of a) the RMS of pCO2
′, b) RMS of pCO2

′ when only the

value of pCO2, γDICs and γT vary, but we keep constant the 1870-1920 value of the DICs
′ and

T′ interannual anomalies and c) the RMS of FCO2
′. First we compute the total change for each

model and subsequently take the ensemble mean of CanESM2, CESM1-BGC and GFDL-ESM2G

(top row) and HadGEM-CC/ES and MPI-ESM-LR (bottom row). Panel b) highlights that

the RMS of pCO2 increases due carbonate chemistry changes. However, the interannual variabil-

ity of DIC and T generates differences between column a) and b) that depend on the models’

physical and biological dynamics.

regions the future shoaling of the MLD may be underestimated by models, because they278

show a shallower than observed present-day mixed layer depth (Downes et al., 2009; Sallée279

et al., 2013). Simulations show that a decrease in mixed layer depth will also reduce the280

input of macronutrients and therefore reduce primary productivity, this may be reflected281

in a reduced DIC variability (Bopp et al., 2013). In other areas, such as the Southern282

Ocean, a reduction in the light and temperature limitation prove to increase primary pro-283

ductivity (Steinacher et al., 2010) which could counteract the decrease of the DIC vari-284

ability in these regions associated with shallower MLD. The total reduction of the DIC285

STD may be a combination of these factors; for example, even if ENSO magnitude and286

frequency were to increase, a reduction of the MLD may confine the ocean uptake of CO2287

to the surface, thereby reducing the DIC vertical gradient. As a result frequent upwelling288

events would have a smaller impact on pCO2.289

4 Summary and Conclusions290

The ocean surface pCO2 responds to climate modes of variability that alter the ocean’s291

circulation and biogeochemical conditions on interannual time-scales (Resplandy et al.,292

2015). Two opposing mechanisms control future changes in pCO2 IAVA; a higher back-293

ground CO2 concentration together with an increased sensitivity to DIC that enhances294

the pCO2 response to changes in T and DIC, and a reduction of the DIC′ IAV that coun-295

teracts the pCO2 IAVA. In the end, although DIC′ changes will be smaller compared to296

present-day, the ocean will be much more sensitive to them, resulting in an overall pCO′2297

variability increase in most of the global ocean.298

The future pCO2 interannual response to greenhouse gases varies with latitude; most299

models show that the high latitudes with large pCO2 IAV are also the ones that will be300

exposed to larger amplification, because the buffering capacity decreases faster in this301

region (Egleston et al., 2010). The mid-latitudes variability will be mildly amplified by302
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Figure 4. Changes in carbonate chemistry and interannual variability of surface

DICs
′ and T′. Percentage change (measured as 2045-2095 minus 1870-1920 values) of a) pCO2

and b) γDICs . A 100% change indicates a doubling in magnitude. c) and d) show the ensem-

ble mean of the zonally averaged standard deviation of DICs
′ and T′ respectively. The top row

shows the ensemble mean for models CanESM2, CESM1-BGC and GFDL-ESM2G and the bot-

tom for HadGEM-CC/ES and MPI-ESM-LR.

a larger pool of CO2 that magnifies the response to T variability. In the equatorial Pa-303

cific the models show a larger discrepancy; the models that agree with present-day ob-304

servations project a decrease in equatorial pCO2 IAV due to the reduction of the DIC′305

variability that overcompensates the increased DIC sensitivity. On the other hand, the306

HadGEM2-CC/ES and MPI-ESM-LR models show a future small increase in this region,307

because their pCO2 IAV is dominated by T instead of DIC.308

An unresolved issue is how a future increase in CO2 emissions will affect the CO2309

flux budget. We showed that the FCO2 anomalies also experience an increase in vari-310

ability, that follows the pattern of the pCO2 IAVA but is modulated by wind speed and311

solubility variations not accounted for in the present work. The FCO2 IAVA disagree with312

the result of Dong et al. (2016) who found no increase in FCO2 IAV on the CMIP5 mod-313

els. The reason behind this discrepancy is that Dong et al. (2016) compared the STD314

of the FCO2 anomalies between pre-industrial and present day levels, while we compared315

the end of the century levels with those at the onset of the industrial revolution. The316

increase in IAV is gradual and remains small at the beginning of the 21st. Therefore, longer317

time series are needed to detect the amplification. In another study, Keller et al. (2015)318

studied ENSO variability in CESM1-BGC for the 850-2100 period, the authors found319

that the warmest period had the lowest variance in ENSO, and that the air-sea CO2 flux320

response was the lowest. The later result agrees with our finding that the pCO2 vari-321

ability decreases in the eastern equatorial Pacific for this model.322

Changes of surface ocean pCO2 on interannual time scales not only affect the source/sink323

nature of the ocean, but also they may generate in the high latitudes acidification and324

hypercapnia episodes on interannual time-scales (McNeil & Sasse, 2016; Sasse et al., 2015).325

In the mean time, future projections rely on ocean models as the current datasets are326

sparse and lack time continuity. The model’s differences and similarities highlight the327

large gap in knowledge about the complex physical and biological factors modulated by328

ocean-atmosphere interactions that control the interannual variability, but also prove the329

undeniable consequences of the changing background carbonate chemistry.330
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Text S1.

We construct the full pCO2 Taylor’s expansion decomposition starting with the carbon-

ate chemistry definitions of DIC and TA as in Egleston, Sabine, and Morel (2010):

DIC = [CO2] +
K1[CO2]

[H+]
+
K1K2[CO2]

[H+]2
(1)

TA =
K1[CO2]

[H+]
+ 2

K1K2[CO2]

[H+]2
+

BtotKb

(Kb + [H+])
− [H+] +

Kw

[H+]
(2)
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X - 2 :

Where K1 and K2 are defined as Millero, Graham, Huang, Bustos-Serrano, and Pierrot

(2006), Kw as Millero (1995) and Kb according to Dickson (1990). From Eq. (1) we can

obtain [H+] and from Eq. (2) we get [CO2] respectively as:

[H+] =
K1[CO2] +

√
K2

1 [CO2]2 + 4K1K2[CO2](DIC − [CO2])

2(DIC − [CO2])
(3)

[CO2] =
[H+]2

K1[H+] + 2K1K2

(
TA− BtotKb

(Kb + [H+])
+ [H+] − Kw

[H+]

)
(4)

For [H+] the positive solution was chosen; the negative root gives a result far from real

values. From Eq. (3) and Eq. (4) we can make a Taylor’s expansion of [H+] and [CO2]

respectively as:

δ[H+] =
∂[H+]

∂DIC

∣∣∣∣CO2,DIC

T,S

δDIC +
∂[H+]

∂[CO2]

∣∣∣∣CO2,DIC

T,S

δ[CO2] +
∂[H+]

∂T

∣∣∣∣CO2,DIC

T,S

δT +
∂[H+]

∂S

∣∣∣∣CO2,DIC

T,S

δS(5)

δ[CO2] =
∂[CO2]

∂TA

∣∣∣∣TA,H

T,S

δTA+
∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

δ[H+] +
∂[CO2]

∂T

∣∣∣∣TA,H

T,S

δT +
∂[CO2]

∂S

∣∣∣∣TA,H

T,S

δS (6)

The overbars indicate the climatologies of the variables in which the derivatives are eval-

uated. Finally, we insert δ[H+] from Eq. (5) into Eq. (6), to get [CO2] in terms of DIC,

TA, T and S:

δ[CO2] =

[
1 − ∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

∂[H+]

∂[CO2]

∣∣∣∣CO2,DIC

T,S

]−1

·
[
∂[CO2]

∂TA

∣∣∣∣TA,H

T,S

δTA

+
∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

∂[H+]

∂DIC

∣∣∣∣CO2,DIC

T,S

δDIC

+
(
∂[CO2]

∂T

∣∣∣∣TA,H

T,S

+
∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

∂[H+]

∂T

∣∣∣∣CO2,DIC

T,S

)
δT
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+
(
∂[CO2]

∂S

∣∣∣∣TA,H

T,S

+
∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

∂[H+]

∂S

∣∣∣∣CO2,DIC

T,S

)
δS

]
(7)

Comparing the terms from Eq.(7) to the desired Taylor’s expansion:

δpCO2 ≈ ∂pCO2

∂DIC

∣∣∣∣TA,DIC

T,S

δDIC +
∂pCO2

∂TA

∣∣∣∣TA,DIC

T,S

δTA+
∂pCO2

∂T

∣∣∣∣TA,DIC

T,S

δT +
∂pCO2

∂S

∣∣∣∣TA,DIC

T,S

δS (8)
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We can identify the derivatives from Eq.(8), as follows:

∂pCO2

∂TA

∣∣∣∣TA,DIC

T,S

= pCO2 ·
−TAc

DIC ·Θ− TA
2
c

(9)

∂pCO2

∂DIC

∣∣∣∣TA,DIC

T,S

= pCO2 ·
Θ

DIC ·Θ− TA
2
c

∂pCO2

∂T

∣∣∣∣TA,DIC

T,S

= pCO2 ·
1

DIC ·Θ− TA
2
c

[
TAc ·

(
∂Alkc

∂T
+

∂[B(OH)−4 ]

∂T
+

∂[OH−]

∂T

)
−Θ ·

∂(DIC − [CO2])

∂T

]
−

pCO2·
K0(T, S)

∂K0(T, S)

∂T

∂pCO2

∂S

∣∣∣∣TA,DIC

T,S

= pCO2 ·
1

DIC ·Θ− TA
2
c

[
TAc ·

(
∂TAc

∂S
+

∂[B(OH)−4 ]

∂S
+

∂[OH−]

∂S

)
−Θ ·

∂(DIC − [CO2])

∂S

]
−

pCO2·
K0(T, S)

∂K0(T, S)

∂S

where Θ = [HCO−3 ] + 4[CO2−
3 ] +

[B(OH)−4 ][H+]

(kb+[H+])
+ [H+] + [OH−] and Alkc = [HCO−3 ] + 2[CO2−

3 ].

Below are some details of the specific concentrations derivatives.

∂Alkc
∂T, S

=
[CO2]

[H+]2

(
∂k1
∂T, S

[H+] + 2k1
∂k2
∂T, S

+ 2k2
∂k1
∂T, S

)
(10)

∂(DIC − [CO2])

∂T, S
=

[CO2]

[H+]2

(
∂k1
∂T, S

[H+] + k1
∂k2
∂T, S

+ k2
∂k1
∂T, S

)
∂[B(OH)−4 ]

∂T
=

Btot[H
+]

(kb + [H+])2
∂kb
∂T

∂[B(OH)−4 ]

∂S
=

Btot[H
+]

(kb + [H+])2
∂kb
∂S

+
kb

(kb+ [H+])

∂Btot

∂S

∂[OH−]

∂T, S
=

1

[H+]

∂kw
∂T, S
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Figure S1. Time series (1866-2095 ) of pCO2 as a) 11 years running climatology and b)

monthly anomaly (calculated as the deviation from the climatology), for 13 different CIMP5

models, under RCP8.5 scenario. Overlaid in black is the anomalies from the observation-based

estimations of Landschützer et al. (2017)
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Figure S2. pCO2’s interannual anomalies, shown as a) 1866-1916 and b) 2045-2095 standard

deviations. c) shows the 2045-2095 STD divided by 1866-1916 STD. Each row shows a different

CMIP5 model.
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Figure S3. Same as Figure S2 but for different models.
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Figure S4. 1987-2010 values of root mean square (RMS) for a) pCO2 anomalies and the b)

thermal and c) non-thermal contributions to pCO2’s RMS. The contributions are defined as the

regression coefficients between the components (either thermal or non-thermal) and the pCO2

anomaly, following the method of Doney et al. (2009). The thermal and non-thermal components

are calculated as Takahashi et al. (2002). The first row shows the observation-based results of

Landschützer et al. (2017). The anomalies where calculated with the method of Landschützer et

al. (2018), to compare with their results. The data was first filtered with a 12 month mean, and

then detrended with a quadratic polynomial.
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Figure S5. Causes of increasing pCO2
′ variability: Total change (measured as 2045-2095

minus 1870-1920 values) of a) the RMS of pCO2
′ and b) RMS of pCO2

′ when only the value

of pCO2, γDICs and γT vary, but we keep constant the 1870-1920 value of the DICs
′ and T′

interannual anomalies. Each row represents a different model.
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Figure S6. Increase on DICs and T contributions to pCO2 interannual variability.

a) and b) show the distributions of the DICs and T terms that control the pCO2 anomalies,

as calculated in Eq. (1) of the main text. The distributions show 600 monthly values for the

1870-1920 (blue) and 2045-2095 (red) periods for every point of the ocean between 180oE to

180oW and 60oS to 60oN.
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