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Abstract

A framework for data assimilation in climate dynamics is presented, combining aspects of quantum mechanics, Koopman

operator theory, and kernel methods for machine learning. This approach adapts the formalism of quantum dynamics and

measurement to perform data assimilation (filtering), using the Koopman operator governing the evolution of observables as

an analog of the Heisenberg operator in quantum mechanics, and a quantum mechanical density operator as an analog of

probability distributions in Bayesian data assimilation. The framework is implemented in a fully empirical, data-driven manner

by representing the evolution and measurement operators via matrices in a basis of kernel eigenfunctions learned from time-

ordered observations. We discuss applications to data assimilation of Indo-Pacific SST and probabilistic forecasting of the Nino

3.4 index.
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Motivation & Main Achievements

• Sequential data assimilation (a.k.a. filtering) is a
predictor–corrector approach for state estimation and
prediction of observables of dynamical systems. Among
many applications, it is an integral part of weather and
climate forecasting systems1.

• Theoretical “gold standard” for filtering is computation of
the Bayesian posterior distribution, given the full history
of past observations of the system. However, this is
oftentimes intractable, necessitating the use of ad hoc
approximations, such as Gaussianity assumptions.

• We propose a new method2,3 to address these issues,
inspired from a conceptual similarity between data
assimilation and quantum mechanics. Namely, both are
inherently statistical theories, alternating between
evolutionary dynamics between measurements, and
projective dynamics during measurements.

Data assimilation

tn tn+1

ptn|tn

prediction

observation

ptn+1|tn+1

correction

ptn+1|tn

true signal

Quantum mechanics

tn tn+1

observation

Πρtn+1
Π

ρtn

unitary evolution

projective update
ρ−tn+1

• The quantum mechanical data assimilation (QMDA)
framework is realized by mapping the assimilated
dynamical system into a quantum system using Koopman
operator techniques.

• A data-driven formulation is also constructed using kernel
methods for machine learning, enabling data assimilation
without prior knowledge of the equations of motion.

QMDA Framework

• We consider a dynamical system Φt : M → M on a
(unknown) state space M , preserving a probability
measure µ (climatology). The system is observed at an
interval ∆t through a function h : M → R.

• The goal is to infer the probability distribution for future
values of v(t) = h(Φt(x)), given past measurements v(tn),
tn = n∆t.

• Associated with the dynamical system is the Hilbert space
of observables (functions of the state) L2(µ) and a group of
unitary Koopman evolution operators4

U t : L2(µ) → L2(µ), U tf (x) = f (Φt(x)).

• Following the quantum mechanical formalism, we
represent the statistical state of the data assimilation system
at time t by a density operator ρt on L2(µ), such that

ρt ≥ 0, tr ρt = 1.

This generalizes the notion of a probability distribution in
Bayesian statistics.

• We represent the assimilated observable h by a self-adjoint
multiplication operator T on L2(µ), such that Tf = hf .
This operator can be decomposed in terms of an
operator-valued measure E, which generalizes the notion
of a spectral measure in time series analysis, viz.

T =

∫
R

ω dE(ω).

• Between measurements, tn ≤ t < tn+1, the state ρt evolves
by unitary dynamics under the action of the Koopman
operator,

ρt = Uτ∗ρtnU
τ , τ = t− tn.

The probability distribution for v(t) to take values in a set
Ω ⊆ R is then given by

Pt(Ω) = tr(ρtE(Ω)).

• If the measurement v(tn+1) is found to lie in a set Ξ ⊆ R,
and the state immediately prior to tn+1 is ρ−tn+1

, the state

ρtn+1
immediately after the measurement is given by

ρtn+1
=

E(Ξ)ρ−tn+1
E(Ξ)

tr(E(Ξ)ρ−tn+1
E(Ξ))

.

This projection step is analogous to the Bayesian update
formula in classical statistics.

Data-Driven Approximation

• The scheme is implemented by finite-rank approximation
(i.e., matrix representation) of all operators involved in a
basis of L2(µ) learned from training data using kernel
algorithms5,6.

• Given time-ordered training data F (xn) taken through a

map F : M → R
d on a dynamical trajectory xn = Φtn(x0),

we compute eigenfunctions φj(xn) of a self-adjoint kernel

integral operator K : L2(µ) → L2(µ),

Kf (x) =

∫
M

k(F (x), F (x′))f (x′) dµ(x′),

approximating integrals with respect to µ by ergodic time

averages, i.e.,
∫
M g(x) dµ(x) ≈

∑N−1
n=0 g(xn)/N .

• Operators A on L2(µ) are then represented by matrices,

Aij = 〈φi, Aφj〉L2(µ) ≈
1

N

N−1∑
n=0

φi(xn)Aφj(xn).

The Koopman operator, in particular, is approximated by
the shift operator for time series, Uq∆tφj(xn) = φj(xn+q).

• Given the corresponding values v(tn) = h(xn) of the
assimilated observable, we also approximate the spectral
measure E by a discrete measure constructed through a
histogram of the values of v(tn).

Comparison with Classical Methods

• By expressing data assimilation in terms of intrinsically
linear operators for the dynamics (U t), state (ρt), and
measurement (T ), QMDA avoids ad hoc approximations
such as Gaussianity assumptions and diffusion
regularization.

• The method outputs full probability distributions (Pt) in a
nonparametric manner, as opposed to low-order moments
(e.g., mean, covariance). The availability of Pt is useful for
risk assessment and uncertainty quantification.

• Through basis projection, the cost of operator
representation is decoupled from the ambient data space
dimension and/or number of training samples.

• Unlike classical spectral approximation techniques, QMDA
preserves sign and normalization of predicted probabilities.

• Rigorous convergence results2 are obtained in a limit of
infinite training data using techniques from linear operator
theory in conjunction with spectral consistency results for
kernel algorithms7.

Periodic Dynamical System

• Dynamical flow is a rotation on the circle M = S1,
Φt(θ) = θ + νt mod 2π.

• Assimilated observable is a trigonometric function,
h(θ) = cos θ.

Measurement probability for h(θ) = cos θ

— true signal * observations

• QMDA starts from a stationary state ρ0, corresponding to
an uninformative (uniform) probability distribution P0.

• When the first measurement is made, P0 collapses to a
bimodal distribution, consistent with the fact that cos θ is a
2-to-1 function on the circle.

• When the second measurement is made, Pt collapses to a
strongly peaked unimodal distribution that accurately
tracks the true signal. This is consistent with the fact that
two successive measurements of cos θ are enough to
uniquely infer θ.

El Niño Southern Oscillation

NASA/JPL/PODAAC, NOAA NOAA

• We apply QMDA to data assimilation of ENSO in the
Community Climate System Model Version 4 (CCSM4)8.

• Training data is 1200 years of monthly-averaged
Indo-Pacific SST fields at 1◦ resolution (d ≃ 104 gridpoints).

• Verification data is the Niño 3.4 index over the last 100
years of the control integration.

• Assimilated observables (h) are the Niño 1+2, Niño 3,
Niño 3.4, and Niño 4 indices, observed monthly.

Probability density Pt for Niño 3.4 index

— true signal

• Starting from an uninformative (climatogological)
distribution, the Niño 3.4 distribution Pt output by QMDA
is seen to track the true signal.

• In addition to point forecasts (e.g., through the mean), Pt
provides meaningful uncertainty quantification.

• El Niño/ La Niña initiation is oftentimes captured several
months in advance. This suggests skillful seasonal
probabilistic ENSO prediction.

Future Directions

• Extensions to high-dimensional observation functions
using multitask learning techniques9.

• Forecasting of ENSO impacts on the climate (e.g.,
precipitation, sea ice) and socio-environmental systems.

• Applications to closure and stochastic subgrid-scale
modeling of unresolved dynamics.
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