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Abstract

We present an upscaled model to predict the plume evolution

in highly heterogeneous alluvial aquifers.

The model is parameterized exclusively by the

mean, variance and correlation length of the logarithm of hydraulic conductivity, porosity and the mean hydraulic

gradient. It can be conditioned on the tracer and conductivity data at the

injection region. The model predicts the evolution of the

longitudinal mass distribution observed at the MADE site, which is characterized

by strongly non-Gaussian plume shapes with a localized peak and pronounced

forward tail. The proposed model explains these features by the

conductivity heterogeneity at the injection region, and tracer propagation due to

a broad distribution of spatially persistent Eulerian flow speeds.
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Transport upscaling in highly heterogeneous alluvial aquifers and the prediction of
tracer dispersion at the Macrodispersion Experiment (MADE) site

Marco Dentz, Alessandro Comolli, and Vivien Hakoun∗

Spanish National Research Council (IDAEA-CSIC), Barcelona, Spain

We present an upscaled model to predict the plume evolution in highly heterogeneous alluvial
aquifers. The model is parameterized exclusively by the mean, variance and correlation length
of the logarithm of hydraulic conductivity, porosity and the mean hydraulic gradient. It can be
conditioned on the tracer and conductivity data at the injection region. The model predicts the
evolution of the longitudinal mass distribution observed at the MADE site, which is characterized
by strongly non-Gaussian plume shapes with a localized peak and pronounced forward tail. The
proposed model explains these features by the conductivity heterogeneity at the injection region,
and tracer propagation due to a broad distribution of spatially persistent Eulerian flow speeds.

I. INTRODUCTION

The upscaling and prediction of tracer transport in highly heterogeneous porous and fractured media is of central
concern in a broad range of subsurface applications from groundwater management to underground gas and waste
storage. This task is challenging due to strong spatial variability in hydraulic conductivity values encountered in
geological media [1].

Spatial variability in hydraulic conductivity induces spatial fluctuations in the flow and transport velocities, whose
impact on large scale tracer migration has been quantified in terms of macrodispersion coefficients [2, 3]. For moder-
ately heterogeneous media, [2] used a stochastic modeling approach [4–6] to express the longitudinal macrodispersion
coefficients in terms of the mean flow velocity, and the correlation length and variance of the logarithm of hydraulic
conductivity. This expression is a central results for hydrogeological prediction because it allows to forecast macro-
scopic transport features based on transport independent observables.

However, spatial heterogeneity gives rise to transport behaviors that can be very different from the ones predicted
by advection-dispersion models characterized by constant macrodispersion coefficients. For pointlike solute injections,
the latter predicts Gaussian shaped tracer plumes and breakthrough curves, while observed distributions are typically
found to be non-Gaussian [7–11]. This is the case for the tracer plumes observed during the macrodispersion experi-
ments conducted in the alluvial aquifer underlying the Columbus Air Force Base in northeastern Mississippi [7, 12].
Spatial tracer distributions are characterized by strongly non-Gaussian shapes characterized by a slowly moving peak
and a pronounced forward tail. These and other observations of anomalous solute dispersion have spurred the develop-
ment of non-Fickian transport theories [13–16]. Those include multirate mass transfer approaches [17, 18], continuous
time random walks [13, 19], fractional advection-dispersion models [20, 21], time-domain random walks [22, 23], and
space-time non-local advection-dispersion equations [24, 25]. While all of these approaches provide dynamic frame-
works to model non-Gaussian large scale transport features, their parameterization in terms of transport independent
parameters and thus their predictive power remain open questions.

The migration of the tracer plume at the MADE site was modeled by [26] with the CTRW approach based on
an empirical distribution of transition length and times, which reflects a broad distribution of mass transfer time
scales. [27] model the plume evolution using an MRMT model that considers rate limited mass transfer between a
mobile domain with accelerating flow, and an immobile zone, which represents intragranular porosity, low permeability
zones, dead end pores and surface sorption sites. These processes are lumped into into a capacity coefficient, a rate
coefficient, a retardation coefficient, a velocity parameter and an acceleration parameter, which are estimated from
the experimental data. [28] modeled the tracer plumes of the MADE-1 experiment using a fractal mobile-immobile
model that accounts for both solute retention due to a broad distribution of mass transfer time scale, and preferential
transport due to a broad distribution of mass transfer length scales. The characteristic exponents of the model are
estimated from the experimental data. These modeling approaches propose a range of mass transfer processes and
invoke broad distributions of mass transfer time scales and lengths in order to simulate the impact of medium and
flow heterogeneity on large scale transport. A key question in order to constrain such models refers to the actual local
scale mechanisms that cause non-Fickian large scale transport.

∗ E-mail: marco.dentz@csic.es
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A series of works [29–31] have shown that a local scale advection-dispersion model based on the detailed knowledge
of the spatial distribution of hydraulic conductivity allows reproducing the tracer plumes observed at the MADE
site. This implies that the observed tracer plumes can indeed be understood from the spatial variability of hydraulic
conductivity and thus advective heterogeneity. The question arising from this observation is whether non-Fickian
transport in strongly heterogeneous media can be predicted based only on a few geostatistical medium characteristics
similar to the prediction of macrodispersion in moderately heterogeneous media. Along these lines, several authors
[23, 32–34] investigated the relation between advective travel times and hydraulic conductivity, and the impact of
broad distributions of the logarithm of hydraulic conductivity on non-Fickian transport. The stochastic multi-indicator
approach of [23] was adapted in [35] to predict the plume evolution of the MADE-1 experiment based on analytical
expressions for the advective travel times over rectangular inclusions.

In this paper, we adress the questions of upscaling and prediction of dispersion in highly heterogeneous alluvial
aquifers based on a stochastic time domain random walk approach [36, 37]. This modeling framework propagates
particles in space and time according to a velocity Markov model that is determined by the distribution of the
Eulerian speed and correlation length. We discuss the parameterization of the model in terms of the medium and
flow properties, and use it for the modeling and interpretation of the one-dimensional tracer profiles of the MADE-1
experiment.

II. UPSCALED TRANSPORT MODEL

We employ the stochastic time-domain random walk (TDRW) approach presented in [37] in order to built an
upscaled model to predict the concentration evolution in highly heterogeneous alluvial aquifers, based on the statistical
characteristics of the logarithm of hydraulic conductivity, porosity and the mean hydraulic gradient. We consider
purely advective transport, which is a reasonable assumption given that the Péclet number at the MADE site is
around 103 [35]. The method propagates solute particles at constant space increments whose duration is obtained
from a Markov chain representation for the particle speed. In the following, we detail the model, its assumptions and
parameterization.

Particle motion is quantified by the following stochastic evolution equations for the longitudinal particle position
x(s) and particle time t(s),

dx(s)

ds
= χ−1,

dt(s)

ds
=

1

v`(s)
(1)

where s is the distance along streamline, v`(s) > 0 the particle speed and χ advective tortuosity. Advective tortuosity
measures the ratio of streamline distance and average linear distance [37]. The particle speed v`(s) describes an ergodic
and stationary Markov process characterized by the steady state distribution pv(v). The latter is a Lagrangian
quantity, which, however, can be related to the distribution of Eulerian flow speed pe(v) via the flux-weighting
relation [37, 39]

pv(v) =
vpe(v)

〈ve〉
. (2)

The Eulerian velocity ve(x) is given by the Darcy flux q(x) and porosity φ as ve(x) = q(x)/φ. We assume the
porosity is constant. The Darcy flux satisfies

q(x) = −K(x)∇h(x), ∇ · q(x) = 0, (3)

where K(x) is hydraulic conductivity and h(x) hydraulic head. The Eulerian speed is ve(x) = |ve(x)|, and its
distribution is, as introduced above, denoted by pe(v). Hydraulic conductivity is represented by a three-dimensional
lognormally distributed spatial random field. The vertical correlation length `v � `h is much smaller than the
horizontal, which is typical for alluvial aquifers. We assume that the Eulerian speed can be approximated by

ve(x) = K(x)J/φ, (4)

where J is the magnitude of the mean hydraulic gradient. This relation is exact for stratified media [40] and a
good approximation for media characterized by channel like structures. Furthermore, the advective tortuosity is set
to χ = 1. Based on (4), the Eulerian velocity distribution is given in terms of the distribution pk(k) of hydraulic
conductivity as

pe(v) =
φpk(vφ/J)

J
. (5)
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Figure 1. (Solid black line) Eulerian velocity distribution pe(v), (solid blue line) distribution of particle velocity pv(v). The
initial velocities are sampled from pv(v) in the velocity range indicated by the vertical dashed lines.

The conductivity point distribution is lognormal, characterized by the mean f = lnKg and variance σ2
f of f(x) =

ln[K(x)],

pk(k) = exp
(
−[ln(k)− ln(Kg)]2/2σ2

f

)
/k
√

2πσ2
f . (6)

Thus, the Eulerian and Lagrangian speeds are also lognormally distributed and obtained from (6) through (5) and (2),
respectively. This implies that the variances of both the logarithms of the Eulerian and Lagrangian speeds are equal
to σ2

f , the geometric mean of the Eulerian speed is vg = KgJ/φ, and the geometric mean of the particle speed

is vg exp(σ2
f ). Figure 1 illustrates the Eulerian and Lagrangian speed distributions corresponding to the lognormal

conductivity distribution (6) for the parameters give in Table I.
In order to propagate the particle velocities v`(s) from their initial values v0 = v(0), we use an Ornstein-Uhlenbeck

process for the normal score of v`(s) [36, 37]. The normal score w(s) of v`(s) is here simply given by

w =
ln(v)− [ln(vg) + σ2

f ]

σf
, v = vg exp(σfw + σ2

f ) (7)

The normal score w(s) evolves according to the Ornstein-Uhlenbeck process [41]

dw(s)

ds
= −`−1c w(s) +

√
2`−1c η(s), (8)

where η(s) is a Gaussian white noise characterized by 0 mean and correlation 〈η(s)η(s′)〉 = δ(s−s′). The steady state
distribution of w(s) is the unit Gaussian. The initial values w(0) of the normal scores are obtained from v(0) through
the Smirnov transform (7). The initial velocity distribution is denoted by p0(v). For the correlation length `c of the
normal score w(s) we employ the same value as for the horizontal conductivity correlation length, which `c ≈ `h.

Equations (1) together with the evolution equation for v`(s), describe the propagation of the particle position x(s)
and velocity v`(s) from the initial values x(0), and v(0), which are distributed according to ρ(x), and p0(v). The
initial value of time is t(0) = 0. The projected streamwise concentration profile c(x, t) in this framework is obtained
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Parameter σ2
f Kg [m/s] `h [m] `v [m] J [-] φ

Value 5.9 6.7 × 10−6 9.1 1.8 3.6 × 10−3 0.31

Table I. Geostatistical and hydraulic parameters for the MADE site and MADE1 experiment according to Bohling et al. [38]
and Boggs et al. [12].

by

c(x, t) = 〈δ [x− s(t)/χ]〉 , (9)

where s(t) = max[s|t(s) ≤ t]. The angular brackets denote the average over all particles. In the following, we use
this upscaled transport model to predict the longitudinal plume evolution of the MADE-1 experiment. The numerical
implementation of the upscaled model is detailed in the Appendix.

The upscaled model described above is fully defined by the hydraulic conductivity distribution pk(k), advective
tortuosity χ, which here is set equal to 1, and the correlation length `c. We distinguish between these parameters,
which determine the way the system is propagated, and the initial data for particle positions and velocities, which
depend on the injection conditions and on the details of the heterogeneity distribution at the injection region.

III. PREDICTION OF DISPERSION AT THE MADE SITE

We apply the upscaled transport model presented in the previous section, for the prediction of the streamwise tracer
profiles of the MADE-1 experiment. In order to parameterize the model, we rely on description of the experimental
conditions in [12] and [7] and the geostatistical characterization of the hydraulic conductivity field given in [38].
Thus, the medium porosity and the magnitude of the mean hydraulic gradient are set equal to φ = 0.31 and J =
3.6 × 10−3 [7, 12, 35]. [38] obtain for the geometric mean conductivity the value Kg = 6.7 × 10−6 m/s, for the
variance of the logarithm of conductivity σ2

f = 5.9 and for the horizontal and vertical correlation length `h = 9.1 m
and `v = 1.8 m. These values are summarized in Table I. As pointed out at the end of the previous section, these
parameter values determine the propagator of the upscaled transport model. In order to predict the plume evolution,
we need both the propagator, and the the initial conditions, this means here, the initial particle positions, i.e., initial
tracer distribution, and initial particle speed distribution.

As described in [12], tracer was injected into five 5.2-cm-diameter injection wells separated by 1 m in a linear array
perpendicular to the mean flow direction. This justifies the use of a pointlike initial particle distribution, localized at
the origin at x = 0,

ρ(x) = δ(x). (10)

On the other hand, the tracer was injected at constant rate with 10.07 m2 of groundwater during 48.5 h. This would
imply a uniform initial plume of an extension of `0 = 2.68 m centered at x = 0. In the following, we employ for
the sake of simplicity the pointlike initial condition (10). However, as shown in the Appendix, there is virtually no
difference between the predictions using the pointlike or uniform initial plumes. This demonstrates the robustness of
the model and of the actual flow and transport system.

Regarding the initial velocity distribution p0(v), we note that [12] estimated the typical hydraulic conductivity
value in the injection region to be of the order of 10−5 m/s, which corresponds to an advective speed of approximately
10−7 m/s or 10−2 m/d. This is also consistent with the experimental observation that the peak moved about 5 m in
500 days [7]. Thus, we consider a velocity window of 10−7 m/s < v < 5 × 10−7 m/s, as illustrated in Figure 1. As
pointed out in [12] and [35], more mass entered in the high than in the low conductivity zones, which implies that
the initial mass distribution is approximately flux-weighted. The flux-weighted Eulerian speed distribution is equal
to pv(v), see Eq. (2). Thus, we set p0(v) equal to

p0(v) = pv(v)
/ vu∫

v`

dv′pv(v) (11)

for v` < v ≤ vu and 0 else, where v` = 10−7 m/s and vu = 5× 10−7 m/s.
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Figure 2. Concentration profiles from the (black crosses) MADE data and the upscaled model for an averaging window of
(green squares) ∆x = 10 m at times (top left to bottom right) t = 49 d, 126 d, 202 d, 279 d, 370 d and 503 d using a pointlike
initial distribution.

A. Longitudinal tracer profiles

Figure 2 shows the experimental and predicted longitudinal concentration distributions. As explained in [7], con-
centration values between sampling wells were linearly interpolated. The data displayed in Figure 2 was obtained
by vertical and transverse integration of the concentration field, as well as longitudinal averaging over a window
of ∆x = 10 m. The bin centers are located at xi = −15 m + i10 m with i = 0, . . . , 19. Concentration values
are normalized by the initial mass. The longitudinal concentration distribution is shown at 6 snapshots at times
t = 49, 126, 202, 279, 370 a d 503 days. The tracer distributions predicted from the upscaled model are presented in
the same way. For comparison, we show in Figure 3 the tracer distributions with an averaging window of ∆x = 10−1

m. We refer to the latter as the fine scale data.

We first notice that the experimental data does not integrate to 1. In fact the are under the longitudinal profiles
integrates to 2.06, 0.99, 0.68, 0.62, 0.54 and 0.43 for the six snapshots at increasing time [35]. As discussed in Adams
and Gelhar [7] and Fiori et al. [35], the mass loss for t > 49 days can mainly be attributed to the downstream plume
truncation and low density of sampling points at distances larger than 20 m downstream from the injection region.
This is supported by the results of the upscaled model, which predicts a significant downstream tailing beyond the
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Figure 3. Concentration profiles from the (black crosses) MADE data and the upscaled model for an averaging window of
(green squares) ∆x = 10 m and (dash dotted blue line) ∆x = 10−1 m at times (top left to bottom right) t = 49 d, 126 d, 202
d, 279 d, 370 d and 503 d using a pointlike initial distribution.

maximum sampling distance at 180 m. As discussed in [7], the excess mass at t = 49 d may be due to the fact that
the spatial integration used to estimate the mass recovery assumes a uniform tracer concentration while the multilevel
samplers may sample mainly from localized high concentration regions. This interpretation is supported by the fine
scale data, which predicts a sharply peaked tracer distribution at t = 49 days.

The tracer distribution in the upscaled model is by default normalized to 1 and predicts the overall shape of the
observed tracer distributions with the localized peak at x = 5 m and strong downstream tailing. Like Fiori et al.
[35], we tend to attribute differences in the tail of the experimental and predicted concentrations to the low density
of samplers at distances large than 20 m downstream from the injection region. This would explain that the values
are higher in the predicted than in the experimental tail concentrations. The stochastic TDRW model captures the
retention of tracer mass in the injection region by conditioning on the initial velocity through (11), and fast tracer
motion through particle transitions into spatially persistent fast velocity channels.

The comparison between the coarse and fine scale model predictions shows that the averaging window of ∆x = 10 m
introduces an artificial broadening of the peak due to oversmoothing, while the tail concentrations are nearly identical.
With increasing time, as the peak width increases due to hydrodynamic dispersion, the differences between the coarse
and fine scale models decrease.
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Figure 4. Maximum concentrations versus times from the (black crosses) MADE data, and (green squares) the prediction from
the upscaled model with ∆x = 10 m. The dashed-dotted line denotes cumulative distribution of residence times (12) obtained
from the upscaled model for p0(v) given by (11) with v` = 10−7 m/s and vu = 5 × 10−7 m/s. The dashed and dotted lines
denote the residence time distribution for vu = 2.5 × 10−7 m/s and vu = 10−6 m/s with v` = 10−7 m/s.

B. Peak concentrations

The concentration peak is localized at all snapshots at x = 5 m, which indicates that it does not move beyond the
averaging window between x = 0 m and 10 m. This is supported by the fine scale prediction. The upscaled model
predicts peak heights and widths that are qualitatively and quantitatively similar to the experimental observations.
The peak concentrations from the experimental data, and the corresponding model predictions are displayed in
Figure 4. The upscaled model predicts the overall decay of the peak concentration. The decay behavior in the
localized peak is in fact a measure for the residence time in the injection region. The mass m0(t) remaining in the
region between 0 m and 10 m is equal to the probability that the residence time τ0 of a particle is larger than t,

m0(t) =

∞∫
t

dt′ψ0(t′), (12)

where ψ0(t) denotes the residence time distribution. As long as the mass in the injection region of size ∆x is larger
than the mass in all other bins, the peak concentration is equal to c0(t) = m0(t)/∆x. Figure 4 shows the evolution
of c0(t) from experimental data and model prediction compared to the cumulative distribution of residence times
in the injection bin obtained from the upscaled model. In order to highlight the impact of the conductivity in the
injection regions, we plot the decay of the maximum concentration for p0(v) given by (11) with vu = 10−6 m/s and
vu = 2.5 × 10−7 m/s. The former underestimates the observed maximum concentrations because higher velocities
together with persistence over the distance `c leads to a faster tracer release from the injection domain. The latter
overestimates the maximum concentration because of stronger tracer retention at the injection region. Nevertheless,
both cases display qualitatively the same non-Gaussian behavior for the tracer profiles (not shown) as the ones in
Figure 2. This shows the robustness of the salient non-Gaussian transport features, and emphasizes the importance
of accounting for the the conductivity in the source zone. Furthermore, this observation implies that the conductivity
heterogeneity may be inferred from the evolution of the maximum concentration in the injection area.
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IV. CONCLUSIONS

We have presented a particle based model for transport in alluvial aquifers that is parameterized in terms of
the statistical characteristics of hydraulic conductivity. The model is based on a Markov processes for equidistant
particle velocities, and assumes that the Eulerian flow speed can be expressed in terms of hydraulic conductivity,
the mean hydraulic gradient, and porosity. This assumption yields an efficient predictive model for tracer transport
in heterogeneous media. We use this upscaled model to predict the evolution of the tracer plume of the MADE-1
experiment, which is characterized by strongly non-Gaussian shapes. Relatively low conductivity in the source zone
leads to slow peak movement of only a few meters over the duration of 500 days, while part of the tracer moves fast
in high conductivity channels, which gives rise to a pronounced forward tail. These behaviors are captured by the
upscaled model through conditioning on the conductivity data in the injection region, and tracer propagation due to
spatially persistent and broadly distributed Eulerian flow speeds. The model predicts a higher concentration in the
forward tail than obtained in the experiment. However, the concentration data in the forward tail is less reliable than
the concentration around the peak due to the sparseness of the network of monitoring wells beyond 20 m downstream
of the injection array. The evolution of the mass contained within 10 m of the injection point is well predicted by
the proposed model, which relates it to the conductivity distribution in the source region. Thus, the upscaled model
seems to capture the salient heterogeneity mechanisms, and their impact on non-Fickian large scale dispersion. It is
predictive, and highlights the importance of conditioning on the conductivity data in the source region.
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[30] P. Salamon, D. Fernàndez-Garcia, and J. J. Gómez-Hernández, Water Resour. Res. 43, W08404 (2007).



9

[31] M. Dogan, R. L. Van Dam, G. Liu, M. M. Meerschaert, J. J. Butler Jr., G. C. Bohling, D. A. Benson, and D. W. Hyndman,
Geophys. Res. Lett. 41, 7560 (2016).

[32] V. Cvetkovic, A. Fiori, and G. Dagan, Water Resources Research 50, 5759 (2014).
[33] Y. Edery, A. Guadagnini, H. Scher, and B. Berkowitz, Water Resour Res 50 (2), 1490 (2014).
[34] A. Tyukhova, M. Dentz, W. Kinzelbach, and M. Willmann, Physical Review Fluids 1, 074002 (2016).
[35] A. Fiori, G. Dagan, I. Jankovic, and A. Zarlenga, Water Resources Research 49, 2497 (2013).
[36] V. Hakoun, A. Comolli, and M. Dentz, Water Resour. Res. 55, 10.1029/2018WR023810 (2019).
[37] A. Comolli, V. Hakoun, and M. Dentz, Water Resour. Res. accepted (2019).
[38] G. C. Bohling, G. Liu, P. Dietrich, and J. J. Butler, Water Resources Research 52, 8970 (2016).
[39] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, Physical Review Fluids 1, 074004 (2016).
[40] M. Matheron and G. de Marsily, Water Resour. Res. 16, 901 (1980).
[41] C. W. Gardiner, Applied Optics 25, 3145 (1986).

Appendix A: Numerical model implementation

In the following, we outline the basic steps of the numerical implementation of the stochastic time domain random
walks model. First, we note that the steady state velocity distribution pv(v) is given by the lognormal distribution

pv(v) =
exp

(
−[ln(v)− ln(vg)− σ2

f ]2/2σ2
f

)
v
√

2πσ2
f

, (A1)

Step 1: Initialization Initial particle velocities v(0) are sampled from the uniform distribution (11), particle posi-
tions x(0) are chosed from the initial particle distribution ρ(x).
Step 2: Propagation of normal scores The initial velocities v(0) are then converted to the initial values w(0) of

the normal scores using the map (7). The normal scores w(s) are propagated from their initial values w(0) according
to the Ornstein-Uhlenbeck process (8), which is discretized by using an Euler scheme. This gives

w(s+ ∆s) = w(s)
(
1− `−1c ∆s

)
+
√

2`−1c ∆sζ(s), (A2)

where ζ(s) denotes a Gaussian random variable with zero mean and unit variance. The discretization ∆s is chosen
much smaller than `c. Here we set ∆s = 10−2`c.
Step 3: Propagation of particle position and time The particle positions are incremented at each random walk

step by ∆s/χ, the particle times by ∆s/v`(s),

x(s+ ∆s) = x(s) +
∆s

χ
, t(s+ ∆s) = t(s) +

∆s

v`(s)
. (A3)

The current particle speed v`(s) is obtained according to Eq. (7).
Steps 2 and 3 are repeated until the maximum simulation time is reached. Particle positions are recorded at steps

s if t(s) ≤ ti and t(s+ ∆s) > ti with ti the desired observation times.

Appendix B: Plume prediction for extended initial distribution

Figure 5 shows the predictions of the upscaled model for pointlike and extended initial particle distribution. The
differences between the two predictions are very small, which confirms the robustness of the model, and the physical
systems regarding the initial particle distribution. In general, the extended initial distribution, gives a better prediction
of the data at x = −5 m, and a slightly better prediction of the maximum concentration at x = 5 m. At larger
distances, the predicted concentration values are essentially identical.
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Figure 5. Concentration profiles from the (black crosses) MADE data, and the upscaled model for an averaging window of
∆x = 10 m with (green squares) pointlike initial condition and (blue circles) uniform initial condition of extension 2.64 m
centered in x = 0, at times (top left to bottom right) t = 49 d, 126 d, 202 d, 279 d, 370 d and 503 d.


