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Abstract

The uncertainty in present-day anthropogenic forcing is dominated by uncertainty in the strength of the contribution from

aerosol. Much of the uncertainty in the direct aerosol forcing can be attributed to uncertainty in the anthropogenic fraction of

aerosol in the present-day atmosphere, due to a lack of historical observations. Here we present a robust relationship between

total present-day aerosol optical depth and the anthropogenic contribution across two multi-model ensembles and a large single-

model perturbed parameter ensemble. Using observations of aerosol optical depth, we determine a reduced likely range of the

anthropogenic component and hence a reduced uncertainty in the direct forcing of aerosol.
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Key Points: 12 

 A strong relationship is demonstrated between total present-day aerosol loading and the 13 
anthropogenic contribution, across a variety of models. 14 

 Observations of the total present-day aerosol loading are thus used to constrain 15 
uncertainty in anthropogenic aerosol and aerosol direct forcing 16 

 Applying these constraints to one million samples of a 26-parameter perturbed parameter 17 

ensemble leads to a clear-sky RFari estimate of -0.67  0.13 Wm-2. 18 
  19 
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Abstract 20 

The uncertainty in present-day anthropogenic forcing is dominated by uncertainty in the strength 21 
of the contribution from aerosol. Much of the uncertainty in the direct aerosol forcing can be 22 
attributed to uncertainty in the anthropogenic fraction of aerosol in the present-day atmosphere, 23 
due to a lack of historical observations. Here we present a robust relationship between total 24 
present-day aerosol optical depth and the anthropogenic contribution across two multi-model 25 
ensembles and a large single-model perturbed parameter ensemble. Using observations of 26 
aerosol optical depth, we determine a reduced likely range of the anthropogenic component and 27 
hence a reduced uncertainty in the direct forcing of aerosol. 28 

Plain Language Summary 29 

Despite the impacts of global warming already being felt around the world it is still unclear how 30 
much of the effect of greenhouse gasses is being offset by the cooling effect of atmospheric 31 
aerosol through the scattering of incoming sunlight and the modification of clouds. A large part 32 
of the difficulty in determining the effect of aerosol is in understanding the proportion of present-33 
day aerosol that is due to human activity. In this work we demonstrate a strong relationship 34 
between the total amount of aerosol in the present-day atmosphere (something we can measure) 35 
and the amount due to human activity (something we cannot). We further show that this allows 36 
us to reduce the uncertainty in the cooling effect of aerosols.  37 
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1 Introduction 38 

Aerosols affect the climate both directly by scattering and absorbing incoming solar radiation, 39 
and indirectly by providing the nuclei on which cloud droplets form. Anthropogenic 40 
perturbations to the natural background aerosol population can therefore change the balance in 41 
radiation at the top of the atmosphere and hence provide a forcing, which offsets some of the 42 
forcing due to anthropogenic greenhouse gasses. Despite a concerted effort since the last IPCC 43 
assessment (Myhre et al., 2013) the magnitude of anthropogenic aerosol forcing remains highly 44 
uncertain.  45 

One of the main sources of uncertainty in aerosol forcing is the lack of reliable observational 46 
estimates of the amount of natural, or pre-industrial aerosol (Charlson et al., 1992; Carslaw et al., 47 
2013; Carslaw et al., 2017). Discerning the anthropogenic contribution to present-day aerosol 48 
from present-day observations directly is challenging though. While some aerosol species, such 49 
as sea-salt, are easy to attribute to natural processes, others, such as sulfate and organic carbon, 50 
can have a variety of natural and anthropogenic sources. Further, non-linearities in some aerosol 51 
processes mean that anthropogenic perturbations can affect the production and removal of 52 
natural aerosol (Stier et al., 2006).  53 

Aerosol optical depth (𝝉) is a measure of the extinction of solar radiation by aerosol and is 54 

directly related to the direct aerosol effect. Satellite remote sensing retrievals of 𝝉 in the present 55 

day (𝝉𝑷𝑫  are available from a wide range of sensors, on different platforms and using different 56 

retrieval algorithms. While satellite-based retrievals of 𝝉 require accurate models of surface 57 
albedo and can suffer from biases due to the need to accurately screen for clouds, they are the 58 

only aerosol datasets available which provide near-global coverage over land and ocean. 𝝉 is also 59 
a common GCM diagnostic, and a large ensemble of model values are available from the 60 
AeroCom modelling community (Myhre et al., 2013), as well as some contributions to the 61 
CMIP5 ensemble, making it an ideal observational constraint. 62 

A number of cases have been found recently where relatively simple relationships between 63 
observable and unobservable quantities can be discerned, belying the apparent complexity of the 64 
underlying system (Allen & Ingram, 2002; Hall & Qu, 2006). These relationships can be 65 
exploited using observations to constrain model ensemble values of the unobservable quantity. 66 
Correlation does not imply causation, however, and so these ‘emergent constraints’ must be 67 
treated with care to ensure that the relationship is physically based and observationally robust. 68 
Further care should be taken that the ensemble of models used to sample the uncertainty 69 
adequately reflects the uncertainty in the properties in question. Similarly, perturbed parameter 70 
ensembles (PPEs) enable exploration of the parametric uncertainty, and with sufficient 71 
observations, a constrained estimate of a quantity from a given model. This method however can 72 
say little of the structural deficiencies of a model and large inter-model differences may be un-73 
accounted for. Here we look to combine the strengths of each of these approaches in a 74 
complimentary way. An emergent constraint from a large multi-model ensemble is 75 
demonstrated, but not relied on. Instead a PPE is used to explore, and constrain, the parametric 76 
uncertainty quantitively in one model, in the context of the larger multi-model ensemble. 77 
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In this work we demonstrate, and explain, a robust relationship between 𝝉𝑷𝑫 and the 78 

anthropogenic aerosol optical depth, 𝝉𝒂𝒏𝒕 (defined as the difference between present-day and 79 

pre-industrial aerosol optical depth, denoted 𝝉𝑷𝑫 and 𝝉𝑷𝑰 respectively) across three different 80 

model ensembles. We use satellite-based observations of 𝝉𝑷𝑫 to constrain the uncertainty in 𝝉𝒂𝒏𝒕 81 
in a large PPE, and in turn the clear-sky aerosol forcing (RFari). 82 

2 A constraint emerges 83 

As common GCM diagnostics, both 𝝉𝑷𝑰 and 𝝉𝑷𝑫 are available from a wide range of models. 84 
Here we consider the CMIP5 (Taylor et al., 2012) models which participated in the fixed sea 85 
surface temperature aerosol experiments (Zelinka et al., 2014) and the AeroCom Phase II models 86 
(Myhre et al., 2013). One drawback in using these ensembles to represent uncertainty in aerosol 87 
forcing however is that many of these simulations share anthropogenic emissions inventories and 88 
use the same or similar parameterizations for natural aerosol emissions, potentially leading to a 89 
lack of representativity within and across these ensembles. To sample these uncertainties, we use 90 
Gaussian Process (GP) emulators1 (O’Hagan, 2006) trained on a perturbed parameter ensemble 91 
(PPE) of 183 simulations of HadGEM3-UKCA corresponding to distinct combinations of 26 92 
physical parameters relating to aerosol processes and emissions, for both present-day (2008) and 93 
preindustrial (1850) emissions (Yoshioka et al., 2019; Carslaw et al., 2017). We are then able to 94 
explore the full parametric uncertainty attributable to the chosen parameter perturbations in 95 

global mean 𝝉𝑷𝑰 and 𝝉𝑷𝑫 by sampling the emulators at 1,000,000 parameter combinations from 96 
across the 26-dimensional parameter space of the PPE, drawn using a set of expert-elicited 97 
marginal distributions on the parameters (Yoshioka et al., 2019). Note that the three parameters 98 

relating to carbonaceous emissions were left unperturbed in this experiment as 𝝉𝑷𝑫 provides little 99 
constraint on these and they are only of secondary importance for RFari. 100 

In order to account for the uncertainty in satellite observations of 𝝉𝑷𝑫 we use the standard 101 
deviation in the global mean value obtained from 7 distinct datasets covering 5 platforms, 3 102 
sensors and 5 retrieval algorithms, as listed in Table 1. These observational datasets then provide 103 

well characterized global estimates of 𝝉, although the possibility of remaining systematic biases 104 

cannot be entirely discounted. Due to the orbits of the platforms and the difficulty in retrieving 𝝉 105 
over snow and ice these values represent averages only between 60S and 60N.... For the PPE 106 
values reported here we consider the same latitudinal range. While using only the global yearly 107 

average of 𝝉𝑷𝑫 as a constraint allows considerable freedom in the spatial and temporal 108 
distribution in the model, we find it still provides a robust constraint, and minimizes observation 109 
and sampling uncertainties.  110 

                                                           
1 The emulators are created using GPflow (Matthews et al. 2017) using a Gausian Process Regression model with a 
Radial Basis Function kernel and hyper-parameters optimized using the Broyden, Fletcher, Goldfarb, and Shanno 
(BFGS) algorithm (Nocedal and Wright 2006). 
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We consider all the sampled emulator variants whose 𝝉𝑷𝑫 is outside one standard deviation of 111 
the mean in the observed values implausible, and hence reject that parameter combination. The 112 
observed values are not normally distributed (since they are not truly independent, sharing 113 
instruments and retrieval algorithms) and this uncertainty range almost spans the entire observed 114 

values. In effect we are using a wide top-hat (or box-car) distribution for the observed 𝝉𝑷𝑫 (see 115 
Figure S1) and explore the sensitivity of our results to the width of this distribution below. This 116 
‘history matching’ approach produces a ‘constrained’ set of model variants which is now 117 
compatible with the observations (see e.g. Lee et al. 2016). The parameter combinations 118 
corresponding to these plausible simulations are then used to predict unobservable quantities 119 

such as 𝝉𝒂𝒏𝒕 and RFari, providing the new, observationally constrained distributions. 120 

 121 

Table 1: The satellite products and global mean values used to estimate the observational 122 

uncertainty in 𝜏  123 
Platform Sensor Retrieval AOD Reference 
Aqua MODIS DarkTarget 0.159 Levy et al. 2013 
Terra MODIS DarkTarget 0.175 Ibid. 
ENVISAT AATSR ADV 0.168 Kolmonen et al. 2016 
ENVISAT AATSR ORAC 0.174 Thomas et al. 2009 
ENVISAT AATSR SU 0.136 North et al. 2002 
Noaa18 AVHRR DeepBlue & SOAR 0.146 Hsu et al. 2013 
Seastar SeaWiFS DeepBlue & SOAR 0.130 Ibid. 
Mean   0.155  
Standard deviation   0.018  
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Figure 1 shows the relationship between 𝝉𝒂𝒏𝒕 and 𝝉𝑷𝑫 in the CMIP5 and Aerocom multi-model 124 
ensembles, as well as the joint probability distribution for both the unconstrained HadGEM-125 
UKCA PPE (contour lines) and the PPE constrained by the observations (as a hex-density plot2). 126 

The marginal distributions of 𝝉𝒂𝒏𝒕 and 𝝉𝑷𝑫 for each of the ensembles are shown along the top 127 

and right-hand-side. The distribution of 𝝉𝑷𝑫 in both the CMIP5 and AeroCom ensembles peaks 128 
just below the lower observational bounds, while the unconstrained PPE shows a larger spread 129 
and higher mean value – above the upper observational bound. Aerosol models are typically 130 

‘tuned’ to have a plausible 𝝉𝑷𝑫 (although they appear to be biased low compared to these 131 
observations), while the PPE was designed to sample the full parametric uncertainty, and so this 132 

difference is not surprising. The higher range of values for 𝝉𝑷𝑫 shown in the PPE is due to the 133 

large base 𝝉𝑷𝑫 produced by the model (labelled ‘default’ in Fig.1) and the large range of 134 
uncertainty in sea-salt emissions elicited during the construction of the experiment.  135 

A clear relationship between global annual mean 𝝉𝒂𝒏𝒕 and 𝝉𝑷𝑫 is evident in each of the 136 
ensembles and can be understood in simple physical terms. Firstly, it can be shown that the 137 

covariance between 𝑿 and 𝑿  𝒀, where 𝑿 and 𝒀 are two normally distributed random 138 

variables, must be positive. The fact that both 𝝉𝒂𝒏𝒕 and 𝝉𝑷𝑫 are not independent and co-vary 139 
through shared removal mechanisms only increases this covariance. This is demonstrated by 140 

drawing samples from the simple analytic model for 𝝉𝒂𝒏𝒕 described by Charlson et al., 1992: 141 

𝝉𝒂𝒏𝒕 𝛂𝑺𝑶𝟒
𝒇 𝑹𝑯 𝑸𝑺𝑶𝟐

𝒀𝑺𝑶𝟒
𝑳𝑺𝑶𝟒

/𝑨, 

where the molar scattering cross section (𝛂𝑺𝑶𝟒
, enhancement in scattering due to humidification 142 

(𝒇), anthropogenic sulfur dioxide source strength (𝑸𝑺𝑶𝟐
,  sulfate yield 143 

(𝒀𝑺𝑶𝟒
, sulfate lifetime 𝑳𝑺𝑶𝟒

, and global area (𝑨) all have the same values and uncertainty 144 

estimates. We then extend this to estimate 𝝉𝑷𝑫 as: 145 

𝝉𝑷𝑫 𝛂𝑺𝑶𝟒
𝒇 𝑹𝑯 𝑸𝑺𝑶𝟐

𝒀𝑺𝑶𝟒
𝑸𝑺𝑶𝟒

𝒏 𝑳𝑺𝑶𝟒
/𝑨  𝝉𝑺𝑺 𝝉𝑫 𝝉𝑶𝑪, 

by including a natural sulfate source term (𝑸𝑺𝑶𝟒
𝒏 , with the same lifetime) and including natural 146 

sea-salt (𝝉𝑺𝑺 , dust 𝝉𝑫  and organic carbon (𝝉𝑶𝑪) components from the distributions described 147 
in Bellouin et al., 2013. As shown in gray-scale contours of Figure 1, this distribution shows a 148 
very similar relationship to both ensembles and is in remarkably good agreement with the 149 
observations. While this simple model does not include many of the processes and uncertainties 150 

as the more complex PPE, it demonstrates the basis for the relationship between 𝝉𝒂𝒏𝒕 and 𝝉𝑷𝑫. 151 

                                                           
2 A hex-density plot represents a 2D histogram using hexagonal bins – avoiding visual artefacts sometimes 
associated with square bins 
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sampled from an analytic approximation described in the main text. The horizontal lines show 170 

the 1 observational uncertainty range in globally-averaged 𝜏 , while the vertical lines show 171 

the resulting 1 range in 𝜏  of the constrained PPE. 172 
 173 

Clear-sky RFari against 𝜏  for the same model ensembles is shown in Fig. 2. The full joint-174 
probability distribution from the emulated PPE is shown with contour lines, while the values 175 

constrained by the 𝜏  observations are shown as a hex-density. The effect of the constraint of 176 

the 𝜏  on the spread in uncertainty in both 𝜏  and RFari is immediately obvious. The full 177 
distribution of RFari in the model variants sampled from the emulated PPE peaks at -0.8 W m-2 178 
and is non-negligible even at -1.2 W m-2. After applying the constraint, the remaining variants 179 

provide a 1 range in clear-sky RFari of -0.54 – -0.8 W m-2. This is very similar to the original 180 
AeroCom range (-0.47 – -0.84 W m-2), and a similar range to that which would be provided by 181 
assuming a linear relationship in both the AeroCom and CMIP5 ensembles (-0.7 – -0.85 W m-2) 182 

using the values of 𝝉𝒂𝒏𝒕 derived above. The RFari is directly proportional to 𝜏  (Charlson et al., 183 

1992) and this is demonstrated by the excellent agreement in clear-sky forcing efficiencies  184 

among all three ensembles. All of which are in-line with the values for the AeroCom models 185 

reported by Myhre et al., 2013 of -23.7  3.1 Wm 𝜏  (neglecting an anomalous outlier). 186 

 187 
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3 Discussion 217 

The anthropogenic contribution to the present-day aerosol loading has been a key source of 218 
uncertainty in both bottom-up and top-down estimates of the aerosol forcing. We have 219 
demonstrated a robust relationship between present-day total and anthropogenic aerosol loading 220 
across two multi-model ensembles and a perturbed parameter ensemble. Combined with 221 

observational bounds on the total present-day aerosol loading we estimate 𝝉𝒂𝒏𝒕 to be in the 1  222 
range 0.031 - 0.048 (or a 95% credible range of 0.026 – 0.054). For comparison, by determining 223 
the anthropogenic contribution to fine mode aerosol in the Monitoring Atmospheric Composition 224 

and Climate (MACC) Reanalysis (Benedetti et al. 2009), Bellouin et al. 2013 determine 𝝉𝒂𝒏𝒕 as 225 
0.06. This is slightly higher than our estimate, potentially due to relying on the MODIS retrieved 226 

𝝉 which are two of the largest values used in our observational dataset. The Max Planck Institute 227 
Aerosol Climatology (MAC) (Kinne et al., 2006) combines AERONET climatologies with 228 

aerosol properties from AeroCom models (Kinne et al., 2006)  and report 𝝉𝒂𝒏𝒕 of 0.03, which is 229 
in good agreement with our estimate.  230 

The plausible range in 𝝉𝒂𝒏𝒕 translates into a constrained clear-sky RFari of -0.67  0.13 Wm-2 (or 231 
a 95% credible range of -0.91 – -0.47 Wm-2). Although this range is not significantly smaller 232 
than the original ranges demonstrated in the AeroCom (Myhre et al., 2013) and CMIP5 (Zelinka 233 
et al., 2014) ensembles, these were not sampling the full model uncertainty, as demonstrated by 234 

the large uncertainty in the unconstrained PPE forcing for HadGEM-UKCA (-0.91  0.23 Wm-2, 235 
or 95% range of 1.32 – -0.56 Wm-2). While performing similar PPE experiments for each of the 236 
models in the AeroCom and CMIP5 ensembles would reveal the full, presumably larger, 237 
uncertainty in RFari, the robust relationship between the base models suggests this constraint may 238 
hold. We have also explored the sensitivity of this constraint to the observational uncertainty in 239 

𝝉𝑷𝑫. The constraint is much more sensitive to the upper bound, rather than the spread and so a 240 
robust estimate of this upper bound should be the focus for future investigation. It is also 241 
possible that other retrieved properties, such as fine mode AOD or multiple-wavelength AOD 242 
would provide a tighter constraint. 243 

While all the model ensembles are in good agreement on the clear-sky forcing efficiencies, there 244 
is still uncertainty around the magnitude of aerosol absorption, and in particular the absorptivity 245 
of black carbon (BC). Indeed, this PPE did not explore the large uncertainty in the imaginary part 246 
of the refractive index of BC. By combining the AOD constraint with observations of absorbing 247 
AOD it may be possible to better constrain the magnitude of aerosol absorption. Future work will 248 
use absorbing AOD measurements to constrain the RFari, including the (large) uncertainty in 249 
these particles. The radiative forcing due to aerosol-cloud interactions (RFaci) depends 250 

logarithmically on 𝝉𝒂𝒏𝒕 and so is even more sensitive to its uncertainty than RFari (Carslaw et al., 251 
2013). Despite AOD being an unreliable proxy for cloud condensation nuclei (Stier, 2016), a 252 
constraint on anthropogenic fraction should be expected to constrain the anthropogenic 253 
contribution to CCN, and hence help constrain RFaci. Future work will explore this possibility.  254 

  255 
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