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Abstract

Direct-runoff and baseflow are the two primary components of total streamflow and their accurate estimation is indispensable

for a variety of hydrologic applications. While direct runoff is the quick response stemming from surface and shallow subsurface

flow paths, and is often associated with floods, baseflow represents the groundwater contribution to streams and is crucial for

environmental flow regulations, groundwater recharge, and water supply, among others. L’vovich (1979) proposed a two-step

water balance where precipitation is divided into direct runoff and catchment wetting followed by the disaggregation of the

latter into baseflow and evapotranspiration. Although arguably a better approach than the traditional Budyko framework, the

physical controls of direct runoff and baseflow are still not fully understood. Here, we investigate the role of the aridity index

(ratio between mean annual potential evapotranspiration and precipitation) in controlling the long-term (mean-annual) fluxes

of direct runoff and baseflow. We present an analytical solution beginning with similar assumptions as proposed by Budyko

(1974), leading to two complementary expressions for the two fluxes. The aridity index explained 83% and 91% of variability

in direct runoff and baseflow from 499 catchments within the continental US, and our formulations were able to reproduce the

patterns of water balance proposed by L’vovich (1979) at the mean annual timescale. Our approach allows for the prediction of

baseflow and direct runoff at ungauged basins and can be used to further understand how climate and landscape controls the

terrestrial water balance at mean annual timescales.
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Key points 17 

1. Aridity index (𝜙) formulations for the combined estimation of direct runoff, 18 

baseflow and total streamflow are presented. 19 

 20 

2. The formulations include physical reasoning on streamflow components at 𝜙 21 

reaching its limiting conditions. 22 

 23 
 24 

3. The proposed formulations can reproduce water balance partitioning of the 25 

L’vovich (1979) framework at the mean annual timescale. 26 

 27 
 28 



Abstract 29 
 30 

Direct-runoff and baseflow are the two primary components of total streamflow and their 31 

accurate estimation is indispensable for a variety of hydrologic applications. While direct 32 

runoff is the quick response stemming from surface and shallow subsurface flow paths, 33 

and is often associated with floods, baseflow represents the groundwater contribution to 34 

streams and is crucial for environmental flow regulations, groundwater recharge, and water 35 

supply, among others. L’vovich (1979) proposed a two-step water balance where 36 

precipitation is divided into direct runoff and catchment wetting followed by the 37 

disaggregation of the latter into baseflow and evapotranspiration. Although arguably a 38 

better approach than the traditional Budyko framework, the physical controls of direct 39 

runoff and baseflow are still not fully understood. Here, we investigate the role of the 40 

aridity index (ratio between mean annual potential evapotranspiration and precipitation) in 41 

controlling the long-term (mean-annual) fluxes of direct runoff and baseflow. We present 42 

an analytical solution beginning with similar assumptions as proposed by Budyko (1974), 43 

leading to two complementary expressions for the two fluxes. The aridity index explained 44 

83% and 91%, of variability in direct runoff and baseflow from 499 catchments within the 45 

continental US, and our formulations were able to reproduce the patterns of water balance 46 

proposed by L’vovich (1979) at the mean annual timescale. Our approach allows for the 47 

prediction of baseflow and direct runoff at ungauged basins and can be used to further 48 

understand how climate and landscape controls the terrestrial water balance at mean annual 49 

timescales. 50 
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1. Introduction 58 

1.1. Background 59 

Direct runoff (𝑄𝐷) and baseflow (𝑄𝐵) are the two main components of total streamflow 60 

(𝑄). 𝑄𝐷 represents the fast response of the catchment to rainfall, which is generated either 61 

by infiltration-excess (Horton, 1933) or saturation-excess (Dunne and Black, 1970) runoff. 62 

On the other hand, 𝑄𝐵 denotes the slow response of the catchment, which is the portion of 63 

water that did not leave the catchment as direct runoff or evapotranspiration, but 64 

contributed to the groundwater system (L’vovich, 1979; Ponce and Shetty, 1995a; Miller 65 

et al., 2016). Understanding the controls on these individual responses is of great 66 

importance to advance hydrologic sciences: For example, 𝑄𝐷  is associated with floods 67 

(Blöschl et al., 2019) and soil erosion (Morgan and Nearing, 2011), while 𝑄𝐵 is crucial for 68 

environmental flow regulation, groundwater recharge, and water supply (Miller et al., 69 

2016; Graaf et al., 2019).  70 

The need to provide freshwater for the growing populations combined with the effects of 71 

climate change has motivated studies on the prediction of global-scale groundwater 72 

recharge (Döll and Fiedler, 2008) and the assessment of climate change impacts on 73 

groundwater systems (Green et al., 2011; Taylor et al., 2012; Walvoord et al., 2016), more 74 

specifically, on groundwater recharge (Smerdon, 2017; Mohan et al., 2018). Catchment-75 

scale formulations of baseflow can provide additional insights on those issues as baseflow 76 

can represent groundwater recharge at sufficiently long time-scales: the portion of water 77 

that is not lost as direct runoff or evaporation will eventually recharge a shallow aquifer 78 

and exit the catchment as baseflow. This simple yet practical approach was found to be 79 

useful in several studies on groundwater recharge estimation (Meyboom, 1961; Nathan and 80 

McMahon, 1990; Fröhlich et al., 1994; Wittenberg and Sivapalan., 1999; Walker et al., 81 

2018).  82 

While the estimation of direct runoff has a long tradition in hydrologic sciences, most 83 

notably with the curve number (SCS-CN) method (NRCS, 2004) for event-based direct 84 

runoff estimation, very few studies investigated the controls on the mean annual direct 85 

runoff ( 𝑄𝐷̅̅ ̅̅ ), whereas the controls and mechanisms of baseflow generation are still not 86 



fully understood. One of the earlier studies in which both 𝑄𝐷 and 𝑄𝐵 have been explicitly 87 

considered into a framework for annual water balance was conducted by L’vovich (1979), 88 

where the author classified these fluxes as “genetically distinct” responses of a catchment. 89 

In that study, the author observed a similar behavior between the annual expressions of 90 

precipitation and direct-runoff, and between catchment wetting (amount of precipitation 91 

not leaving through direct runoff) and baseflow. L’vovich (1979) noted that such patterns 92 

were consistent with geographic location but did not attribute physically meaningful 93 

parameters to account for the observed differences. This framework was not investigated 94 

any further until Ponce and Shetty (1995a, 1995b) developed a mathematical framework 95 

to account for the observed patterns. Although they could eventually reproduce the patterns 96 

found in L’vovich’s (1979), a physical linkage between climatic and landscape properties 97 

and the assigned parameters was not attempted. More recently, Sivapalan et al (2011) 98 

investigated the L’vovich framework through the mathematical formulation of Ponce and 99 

Shetty (1995a) for a group of 431 catchments within the conterminous US and were able 100 

to shed light on the physical meaning of the assigned parameters by analyzing their spatial 101 

distributions across different climates. Their study, however, does not establish physical 102 

linkages between the Ponce and Shetty (1995a) model parameters and climatic and/or 103 

landscape properties. A similar approach, as in Sivapalan et al (2011), was followed by 104 

Gnann et al., (2019), who also used the Ponce and Shetty (1995a, 1995b) model to explain 105 

the baseflow dissimilarities between catchments within the U.S and the U.K. 106 

The climatic controls on the mean-annual streamflow ( 𝑄̅) have received much attention in 107 

the hydrologic literature, and its commonly explained through the Budyko framework 108 

(Budyko, 1979). In this framework, the climate is represented by the aridity index 109 

(𝜙), which is the ratio between mean-annual potential evapotranspiration ( 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) and 110 

mean-annual precipitation (𝑃̅). The Budyko framework has been widely used for global 111 

assessments of the impacts of climate change on streamflow through differentiation of the 112 

Budyko equation (or some parametric version of it) with respect to its controlling variables 113 

(Dooge et al., 1999; Arora, 2002; Renner et al., 2012; Roderick et al., 2014; Berghuijs et 114 

al., 2017) while also being used for prediction at ungauged sites (Blöschl et al., 2013). 115 

Additionally, several studies have used this framework to draw inferences on catchment 116 

behavior at mean annual timescales by analyzing how factors other than 𝜙 can explain 117 



observed departures from observed data against the Budyko equation (Donohue et al., 118 

2007; Berghuijs et al., 2014).  119 

Wang and Wu (2013) have shown that the baseflow fraction (the ratio between baseflow 120 

and precipitation at the mean-annual scale i.e.  𝑄𝐵̅̅ ̅̅ /𝑃̅) and runoff coefficient ( 𝑄̅/𝑃̅) follow 121 

similar behaviors when plotted against 𝜙 for 185 perennial catchments located within the 122 

continental U.S. Wang and Wu (2013)  derived an equation to express this relationship 123 

quantitatively, providing an interesting way to study the controls of climate on  𝑄𝐵̅̅ ̅̅ . 124 

However, the equation presented in Wang and Wu (2013) have not been thoroughly 125 

analyzed for the limiting case of 𝜙 → 0, as it will be seen in Section 1.4. More recently, 126 

Gnann et al., (2019) conducted a study to understand whether 𝜙 can be used to predict the 127 

baseflow fraction. Their study was based on the analysis of several hundreds of catchments 128 

from the continental U.S and the U.K and their results suggest that 𝜙 alone cannot be used 129 

for such task. Following that, the authors parameterized the Ponce and Shetty (1995a) 130 

model to investigate the controls on baseflow generation within their group of catchments. 131 

 132 

In this study, we discuss the role of 𝜙 on 𝑄𝐵̅̅ ̅̅  and 𝑄𝐵̅̅ ̅̅  over a wide range of 𝜙 and then 133 

propose an analytical derivation that leads to two expressions for the controls of 𝜙 on 𝑄𝐷̅̅ ̅̅  134 

and 𝑄𝐵̅̅ ̅̅ . We further investigate the 𝜙-based formulations as potential solutions for the 135 

water balance framework proposed by L’vovich (1979) at the mean annual timescale. The 136 

paper is organized as follows. Section 1.2 and 1.3 provide a revision of the Budyko (1974) 137 

and L’vovich (1979) frameworks, where we discuss in detail both frameworks and 138 

establish a common nomenclature. In Section 1.4, we present an approach for the analytical 139 

derivation of predictive equations for  𝑄𝐷̅̅ ̅̅   and 𝑄𝐵̅̅ ̅̅  based on the decomposition of 𝑄̅ into its 140 

complementary fluxes under similar assumptions as in Budyko (1974). This approach also 141 

provides a solution for the L’vovich (1979) framework at the mean-annual scale. Section 142 

2 presents the dataset and methods used in this study. Following that, in Section 3, we 143 

evaluate the proposed derivation to fit predictive equations for 499 catchments within the 144 

conterminous U.S. and test the predictive capacity of the derived equations for both 𝑄𝐷̅̅ ̅̅ , 145 

 𝑄𝐵̅̅ ̅̅  and 𝑄̅ while also assessing their ability to reproduce the spatial (between-catchments) 146 

patterns arising from the two-step water-balance proposed by L’vovich (1979). 147 



1.2. The Budyko Framework 148 

Under the assumption of negligible changes in storage over sufficiently long timescales, 149 

the water balance can be written as the partitioning of 𝑃̅ into 𝑄̅ and 𝐸̅: 150 

𝑃̅ = 𝑄̅ + 𝐸̅  (1) 151 

Several studies have been carried out in the past with a goal of understanding the overall 152 

controls on this simple partitioning. The water balance framework proposed by Budyko 153 

(1974) and others (Schreiber, 1904; Ol’dekop, 1911; Turc, 1954; Mezentsev, 1955; Pike, 154 

1964) is still widely used and its success lies in the observation that the fraction of 155 

precipitation that becomes evaporation (evaporation fraction, 𝐸̅ 𝑃̅⁄ ) is largely controlled by 156 

𝜙 If we normalize the terms of Equation 1 by  𝑃̅ and assume this control to be translated 157 

into a functional relationship, we can write: 158 

𝐸

𝑃̅

̅
= 1 −

𝑄̅

𝑃̅
= 𝑓𝐸(𝜙) (2) 159 

Where 𝑓𝐸  is the function that relates  𝐸̅ 𝑃̅⁄  to 𝜙. When such relationship is defined, a simple 160 

formulation for the prediction of long-term streamflow can be derived as: 161 

𝑄̅ = 𝑃 × (1 − 𝑓𝐸(𝜙)) (3) 162 

In developing a functional form for 𝑓𝐸(𝜙), Budyko (1974) observed that the following 163 

conditions must be met: 164 

 𝜙 → ∞ ∴   𝐸̅ 𝑃̅ → 1⁄ , 𝑎𝑛𝑑 𝑄̅ 𝑃̅ → 0⁄  (4) 165 

  𝜙 → 0 ∴   𝐸̅ 𝑃̅ → 0⁄ , 𝑎𝑛𝑑 𝑄̅ 𝑃̅ → 1⁄  166 

Several functional forms satisfying the above constraints have been proposed in the 167 

literature (Ol’Dekop, 1911, Turc, 1954; Mezentsev, 1955), the most common being the one 168 

proposed by Budyko (1974): 169 

   𝐸̅ 𝑃̅⁄ = [𝜙 × (1 − exp𝜙) × tanh𝜙−1]0.5 (5) 170 

Figure 1-A shows this formulation for  𝑄̅ 𝑃̅⁄ . 171 

 172 



  1.3. The L’vovich Framework  173 

In the framework proposed by L’vovich (1979), the annual water balance partitioning is 174 

taken as a two-step process. In the first step, the annual precipitation (𝑝)  is partitioned into 175 

annual direct runoff (𝑞𝐷) and annual catchment wetting (𝜔):  176 

𝑝 = 𝑞𝐷 + 𝜔, (6) 177 

Whereas 𝜔 is further partitioned into annual baseflow (𝑞𝐵) and annual evapotranspiration 178 

𝑒:  179 

𝜔 = 𝑞𝐵 + 𝑒, (7) 180 

Equation 6 and 7 can be combined as:  181 

𝑝 = 𝑞𝐷 + 𝑞𝐵 + 𝑒  (8) 182 

Upon observing the distinct patterns between the individual components of the two-step 183 

water partitioning in catchments across different geographical locations, L’vovich (1979) 184 

developed relationships, as shown in Figure 1-B through E, where the blue lines represent 185 

the general shape of the curves in that study. It can be seen that 𝜔  and 𝑞𝐷   respond 186 

differently to the increase in 𝑝: On one hand,  𝜔 increases almost linearly at low values of 187 

𝑝, eventually reaching a maximum (Figure 1-B). On the other hand, 𝑞𝐷 is initially zero at 188 

the low values of 𝑝, and will only be observed when a threshold value of 𝑝 is exceeded. 189 

After that, 𝑞𝐷 increases rapidly with 𝑝 (Figure 1-D). A similar behavior can be found for 190 

the partitioning of 𝜔 between 𝑞𝐵 and 𝑒 in Figure 1-C and E.  191 

1.4. Climate-based Formulations for Budyko and L’vovich Frameworks 192 

From Equation 2, the runoff coefficient ( 𝑄̅/𝑃̅ ) can be derived as: 193 

   𝑓𝑅(𝜙) =  1 − 𝑓𝐸(𝜙) (9) 194 

By using Equation 8 written in terms of mean-annual fluxes, the water balance can be 195 

written as:  196 

𝑄̅

𝑃̅
=
𝑄𝐷̅̅ ̅̅

𝑃̅
+
𝑄𝐵̅̅ ̅̅

𝑃̅
(10) 197 



Combining Equations 9 and 10 we get: 198 

𝑄𝐷̅̅ ̅̅

𝑃̅
+
𝑄𝐵̅̅ ̅̅

𝑃̅
= 𝑓𝑅(𝜙) (11) 199 

which demonstrates the connection between the aridity index and the two complementary 200 

partitioning indices arising from the L’vovich (1979) formulation at the mean-annual 201 

timescale. If both left-hand terms can be written as a function of 𝜙, we have: 202 

𝑓𝑅(𝜙) =  𝑓𝐷(𝜙) + 𝑓𝐵(𝜙) (13) 203 

where:   204 

𝑄𝐷̅̅ ̅̅

𝑃̅
= 𝑓𝐷(𝜙) (14) 205 

𝑄𝐵̅̅ ̅̅

𝑃̅
= 𝑓𝐵(𝜙) (15) 206 

Following the same reasoning as Budyko (1974), we can apply limiting conditions to the 207 

relationships in Equation 14 and 15. With values of 𝜙 approaching infinity,  𝑄̅ 𝑃̅⁄  will 208 

tend to zero, which leads to both 𝑄𝐷̅̅ ̅̅ /𝑃̅ and 𝑄𝐵̅̅ ̅̅ /𝑃̅ approaching zero as well:  209 

𝑤𝑖𝑡ℎ 𝜙 → ∞,
𝑄̅

𝑃̅
=
𝑄𝐷̅̅ ̅̅

𝑃̅
+
𝑄𝐵̅̅ ̅̅

𝑃̅
→ 0 (16)  210 

𝑡ℎ𝑢𝑠, 𝑓𝐷 → 0 ;  𝑓𝐵 → 0 211 

As 𝜙 reaches zero,  𝑄̅ 𝑃̅⁄  will be one. In this way, some combination of 𝑄𝐷̅̅ ̅̅ /𝑃̅ and 𝑄𝐵̅̅ ̅̅ /𝑃̅ 212 

must occur such that their sum is equal to one, which also means that the maximum values 213 

of 𝑄𝐷̅̅ ̅̅ /𝑃̅ and 𝑄𝐵̅̅ ̅̅ /𝑃̅ can be derived from the limiting conditions: 214 

𝑤𝑖𝑡ℎ  𝜙 → 0,
𝑄̅

𝑃̅
=
𝑄𝐷̅̅ ̅̅

𝑃̅
+
𝑄𝐵̅̅ ̅̅

𝑃̅
→ 1 (17) 215 

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑓𝐷 → [
𝑄𝐷̅̅ ̅̅

𝑃̅
]
𝑚𝑎𝑥

  216 

𝑎𝑛𝑑,             𝑓𝐵 → [
𝑄𝐵̅̅ ̅̅

𝑃̅
]
𝑚𝑎𝑥

= 1 − [
𝑄𝐷̅̅ ̅̅

𝑃̅
]
𝑚𝑎𝑥

 217 



If such relationships are established, one can re-write the variables from the L’vovich 218 

formulation as:  219 

𝑄𝐷̅̅ ̅̅ = 𝑃̅. 𝑓𝐷 (18) 220 

  𝑊̅ = 𝑃̅ − 𝑄𝐷̅̅ ̅̅ = 𝑃̅ − 𝑃̅. 𝑓𝐷 = 𝑃̅. (1 − 𝑓𝐷) (19) 221 

𝑄𝐵̅̅ ̅̅ = 𝑃̅. 𝑓𝐵 (20) 222 

𝐸̅ = 𝑃̅ − 𝑄𝐵̅̅ ̅̅ − 𝑄𝐷̅̅ ̅̅ = 𝑃.̅ (1 − 𝑓𝐷 + 𝑓𝐵) (21) 223 

where  𝑊̅ represents the mean-annual catchment wetting. 224 

 225 

Figure 1. A- The Budyko framework for mean-annual water balance, where the aridity 226 
index (𝜙 ) appears to be the main control on the ratio between total streamflow and 227 
precipitation ( 𝑄̅ 𝑃̅⁄ ) at the mean-annual scale. The blue line shows the empirical curve 228 
fitted by Budyko (1957). B - The L’vovich (1979) model for annual water balance, showing 229 
the first step, where 𝑝 is partitioned into 𝜔 (B.1) and 𝑞

𝐷
 (B.2), whereas in the second step, 230 

𝜔 is partitioned into 𝑒 (B.2) and 𝑞𝐵 (B.4). The blue lines represent the general behavior 231 
observed at the annual scale.  232 
 233 
 234 
 235 
  236 



2. Methods 237 

2.1. Catchments and Hydrological Data 238 

The catchments selected for this study are part of the CAMELS dataset (Addor et al., 2017), 239 

which is available online and contains daily time-series of streamflow and precipitation, 240 

among other variables. The meteorological variables used within the CAMELS dataset are 241 

described in Newman et al., (2015). The time period of analysis was 30 hydrologic years 242 

(October 1st through September 30st, between 1983 and 2013). We removed the catchments 243 

with more than 1% missing values of streamflow and negative mean annual evaporation 244 

(𝐸̅ < 0). The resulting subset comprised data for 499 catchments (Figure 2).  245 

 246 

Daily streamflow time-series were separated into daily values of direct-runoff and baseflow 247 

with a one-parameter, recursive low-pass filter (Lyne and Hollick, 1979). The filter 248 

parameter was set to 0.925 for all catchments to assure consistency. The filtering approach 249 

has been used in several recent studies (Sivapalan et al., 2011; Gnann et al. 2019). Finally, 250 

we calculated  𝑄̅,  𝑄𝐷̅̅ ̅̅ ,  𝑊̅,  𝑄𝐵̅̅ ̅̅ , and  𝐸 ̅ using Equation 1, 6, 7, and 8. Additionally, daily 251 

precipitation values where aggregated into mean annual 𝑃̅  for each of the selected 252 

catchments. 253 

 254 

2.2. Aridity Index Calculation 255 

 We used the Reference-crop Penman-Monteith formulation for calculating daily values of 256 

𝑃𝐸𝑇 (in mm) as: 257 

 258 

𝑃𝐸𝑇 =
0.408Δ(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273𝑢

(𝑒𝑠 − 𝑒) 

Δ + 𝛾(1 + 0.34𝑢)
(22) 259 

 260 

Where 𝑅𝑛 is the net radiation at the surface  (𝑀𝐽.𝑚−2. 𝑑𝑎𝑦−1) is the heat flux into the 261 

subsurface in  (𝑀𝐽.𝑚−2. 𝑑𝑎𝑦−1 ) , 𝑒  and 𝑒𝑆  are respectively the actual and saturated vapor 262 

pressure (𝑘𝑃𝑎. 𝐾−1), 𝑢 is the wind speed at 2 m (𝑚. 𝑠−1), 𝑇 is the air temperature at 2 m (𝐾),  263 

Δ is the slope of the relationship between saturation vapor pressure and temperature (𝑘𝑃𝑎. 𝐾−1) 264 

and 𝛾 is the psychrometric constant (𝑘𝑃𝑎. 𝐾−1). 𝑅𝑛 was calculated as: 265 

𝑅𝑛 = 𝑅𝑠(1 − 𝛼) + 𝑅𝑛𝑙 (23) 266 



 267 

Where 𝑅𝑠  is the incoming solar radiation (𝑀𝐽.𝑚−2. 𝑑𝑎𝑦−1 ), 𝛼  is the albedo of the reference 268 

surface ( 𝛼 = 0.23) , and 𝑅𝑛𝑙  is the net longwave radiation (𝑀𝐽.𝑚−2. 𝑑𝑎𝑦−1 ). Briefly, we 269 

computed equations 22 and 23 based on the procedure described in Zotarelli et al., (2009). Daily 270 

𝑅𝑠  and 𝑢  values were extracted for the CAMELS catchments from the gridMET dataset 271 

(Abatzoglou, 2013), whereas the other necessary variables where used where directly provided 272 

within the CAMELS dataset. Following that, we aggregated the 𝑃𝐸𝑇 into mean annual values 273 

and computed 𝜙. 274 

 275 

In our study, we chose to estimate 𝑃𝐸𝑇 rather than use the estimates provided with the 276 

CAMELS dataset, which are first presented in Newman et al., (2015). This was done since 277 

Newman et al., (2015) used a form of the Priestley and Taylor (REF) equation in which 278 

one of its variables was used as a calibrated parameter within a hydrologic model. The 279 

estimation of this parameter, therefore, will be largely affected by errors and uncertainties 280 

in model inputs, parameters, structures, among others. Furthermore, the 𝑃𝐸𝑇 estimates of 281 

Newman et al., (2015) are not reproducible, making the verification of our results 282 

impossible for other regions of the globe. We believe that a parsimonious representation of 283 

𝑃𝐸𝑇 , and consequently 𝜙 , is crucial for our analysis, since the estimated value of 𝜙 284 

determines the location of a catchment along the x-axis of the Budyko plot, which can 285 

potentially impact our results.  286 



 287 
 288 

Figure 2 - Location of streamflow gages for the 499 catchments with complete records 289 
used in our study, color coded by the assigned value of 𝜙. 290 

 291 
 292 
 293 
 294 
 295 
 296 
  297 



3. Results 298 

3.1. Analysis of Observed Mean-Annual L’vovich Water Balance 299 

Variables 300 
 301 

Figure 3 shows the mean-annual components of the L’vovich (1979) water balance. We 302 

note a clear pattern of increment in both   𝑊̅ and 𝑄𝐷̅̅ ̅̅  with 𝑃̅ (subplots A and D), while the 303 

concavity of the relationships is similar to what can be seen in Figure 1-B through E. A 304 

threshold value for the initiation of 𝑄𝐷̅̅ ̅̅ , as suggested by L’vovich (1979), is also observed 305 

in Figure 1-B, while the existence of a limiting upper value of 𝑊̅ was not found for the 306 

selected CAMELS catchments. 307 

 308 

The between-catchment patterns of the second partitioning are shown in Figure 3-B and 309 

D. We find an increasing trend in 𝐸̅  with 𝑊̅ , but with higher variability. This trend, 310 

however, is not preserved for values of 𝑊̅ around 1400 mm and higher. In fact, not only 𝐸̅ 311 

is highly scattered around 𝑊̅~1400 𝑚𝑚, it also seems to decrease, at least for its upper 312 

limit. The patterns of 𝑄𝐵̅̅ ̅̅   with 𝑊̅ are, however, more consistent, with increasing values of 313 

𝑊̅ leading to an increase in 𝑄𝐵̅̅ ̅̅  in a similar fashion as in Figure 1-E. A threshold value for 314 

the initiation of 𝑄𝐵̅̅ ̅̅  can also be seen. 315 



 316 

 317 

Figure 3 – Location of the selected CAMELS catchments (n=499) with respect to the 318 
L’vovich water balance, at the mean-annual time scale.  While 𝑷 appears to exert strong 319 
control on both 𝑾̅̅̅ and 𝑸𝑫

̅̅ ̅̅  (subplots A and C, respectively), much higher variability is 320 
present in the patterns between  𝑾̅̅̅ and  𝑬̅ ( subplot B) and  𝑾̅̅̅ and  𝑸𝑩

̅̅ ̅̅  (subplot D). 321 
Interestingly, the suggested limits for 𝑾̅̅̅ and 𝑬̅ (Figure 1 B.1 and B.2) are not seen at the 322 
mean-annual scale. Note that 𝑬 is maximum for a 𝑾 value close to 1400 mm. 323 

 324 

3.2. Functional forms of 𝒇𝑫 and 𝒇𝑩 325 

These observed patterns of 𝑄𝐷̅̅ ̅̅ 𝑃̅⁄  and 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  are shown in Figure 4, where a similarity in 326 

the patterns of both ratios as a function of 𝜙 is apparent. Additionally, a wide range of 𝜙 327 

values is observed, ranging from 0.2 to 7.6. For simplicity, we used the functional form of 328 

an exponential decay to estimate 𝑓𝐷 and 𝑓𝐵 as: 329 

 330 

𝑓𝐷(𝜙) = exp (𝜙𝑎 + 𝛿𝐷) (24) 331 

 332 



𝑓𝐵(𝜙) = exp (𝜙𝑏 + 𝛿𝐵) (25) 333 

 334 

where 𝑎 and 𝑏 are shape parameters, while  𝛿𝐷 and 𝛿𝐵 are shifting coefficients necessary 335 

to satisfy conditions of Equation 17:  336 

𝑓𝐷(0) = [ 
𝑄𝐷̅̅ ̅̅  

𝑃̅
]
𝑚𝑎𝑥

     ;      𝑓𝐵(0) = [ 
𝑄𝐵̅̅ ̅̅

𝑃̅
 ]
𝑚𝑎𝑥

(26) 337 

Leading to:  338 

𝛿𝐷 = ln ([ 
𝑄𝐷̅̅ ̅̅  

𝑃̅
]
𝑚𝑎𝑥

)   ;     𝛿𝐵 = ln (1 − [ 
𝑄𝐷̅̅ ̅̅  

𝑃̅
]
𝑚𝑎𝑥

) (27) 339 

We followed a manual procedure for fitting of the exponents through visual assessment of 340 

the resulting curves against observed values of Figure 4, while also computing the 341 

coefficient of determination (R2) and fitting a regression line between observed and 342 

predicted fluxes 𝑄𝐷̅̅ ̅̅ , 𝑄𝐵̅̅ ̅̅ , and  𝑄̅ in order to assess the bias between predicted and observed 343 

values. After fitting the exponents, we assessed the robustness of the results by testing the 344 

resulting formulation on randomly sampled subsets having half of the sample size (n=249). 345 

We repeated the resampling and testing procedure 1000 times, recording the resulting R2 346 

of the predicted fluxes from each round to further compute its mean and coefficient of 347 

variation. 348 

 349 

Figure 4 - Observed values of 𝑄𝐷̅̅ ̅̅ 𝑃̅⁄  (subplot A), 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  (subplot B), and 𝑄̅ 𝑃̅⁄  (subplot C) 350 
against 𝜙 for the selected subset of the CAMELS data-set (n=499). A similar pattern is 351 
observed among the curves, suggesting a similar functional form. It is worth noting that 352 
the limiting values of both 𝑄𝐷̅̅ ̅̅ 𝑃̅⁄  and 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  are evident in A and B for 𝜙 approaching 0. 353 



3.3. Resulting Equations for 𝒇𝑫  and 𝒇𝑩  and their Predictive 354 

Performances 355 

The fitting procedure described above allowed us to write the final functions as: 356 

 357 

𝑓𝐷(𝜙) = exp (𝜙 + ln(0.36)) (28) 358 

 359 

𝑓𝐵(𝜙) = exp (𝜙1.6 + ln(0.64)) (29) 360 

 361 

The fitted exponents for 𝑓𝐷  and 𝑓𝐵  are shown in the left column of Table 1, whereas  362 

Figure 5 shows a plot of Equations 28 and 29 against observed values (subplots A and 363 

B). Additionally, 𝑓𝑅 as predicted by the Budyko (1974) through Equation 5, is also shown 364 

as a blue line in subplot C. It is clear from the figures that the suggested functional form 365 

was able to reproduce the observed patterns quite well and the resulting curve 𝑓𝑅(𝜙) 366 

follows a very similar trajectory as the Budyko curve, with some noticeable differences in 367 

horizontal position of the curve against the data. Such differences are somehow expected 368 

since our dataset was not the same as the one used in the original work of Budyko (1974). 369 

More importantly, it is not the objective of this work to provide an exact derivation of 370 

Equation 5. 371 

 372 

The predictive capabilities of the derived equations can be seen at right column of Table 373 

1, as the mean and coefficient of variation (C.V) of the R2 from the resampling procedure 374 

described in Section 3.2. These results provide an insight on the role of 𝜙 as the main 375 

control of both  𝑄𝐷̅̅ ̅̅̅,  𝑊̅, and   𝑄𝐵̅̅ ̅̅ , as 𝜙 is able to explain 83%, 96%, and 91% of the 376 

between-catchment variability of these storage and flux terms. Moreover, the low 377 

variability in predictive performance as seen in low C.V values indicate a robust fit of the 378 

exponents of the selected functional form. Figure 6 shows how the fitted curves performed 379 

against the observed values. A simple linear regression model (black dashed line) was fitted 380 

between observed and the predicted values discussed above and a 1:1 line (red dashed line) 381 

was added for reference. The slope of the regression line suggested a very low bias, around  382 

1% for all fluxes. 383 

 384 



We further explore the performance of the predicted relationships for the components of 385 

the L’vovich water balance at the mean-annual time-scale (Figure 7). The black circles 386 

represent the observed values for each catchment whereas the red circles are for the 387 

predicted values. Subplots A and C show a remarkable similarity between the observed 388 

and predicted variables of the first partitioning, confirming that the aridity index is able to 389 

explain great portion of the between-catchment variability, while also reproducing the 390 

trajectories of the progression between the competitions of 𝑄𝐷̅̅ ̅̅  and  𝑊̅ . The observed 391 

patterns for the second partitioning are shown in subplots B and D, from where similar 392 

conclusions can be drawn. The somehow scattered pattern in the relationship between 𝑊 393 

and 𝐸 seemed to be well reproduced by the aridity index formulations (subplot B). It is 394 

worth noting that the decrease in  𝐸̅ for  𝑊̅~1400 mm and higher is also reproduced, 395 

reinforcing the hypothesis of such decrease to be a function of climate. Additionally, the 396 

patterns in  𝑄𝐵̅̅ ̅̅  as a function of 𝑊̅  are also well reproduced both in magnitude of its 397 

variability as well as in the general shape of its increasing trajectory. 398 

 399 
 400 
 401 
 402 
 403 
Table 1 – Results from the fitting procedure. Left: Estimates of the exponents (Equations 404 
23 through 26).  Right:  Predictive capabilities of the fitted equation is presented as the 405 
mean and coefficient of variance (C.V) of the 𝑹𝟐 based on 1000 randomly sampled subsets. 406 

 407 

 408 

Parameter Mean Flux

0.36 0.83 2.6%

1.0 0.96 0.4%
1.6 0.91 1.4%

0.94 1.0%

 𝑅  𝑚𝑒𝑎𝑛

 𝑄𝐷 

𝑃̅
𝑚𝑎𝑥

𝑎

𝑄𝐷

𝑄𝐵
𝑄̅

𝑊̅

𝑏

𝑷         𝑬        𝑷                  

𝑅   .  



 409 
 410 

 411 
Figure 5. Observed values versus derived analytical equations for 𝒇𝑫 = 𝑸𝑫

̅̅ ̅̅ 𝑷̅⁄  (subplot 412 
A), 𝒇𝑩 = 𝑸𝑩

̅̅ ̅̅ 𝑷̅⁄  (subplot B), and 𝒇 = 𝑸̅ 𝑷̅⁄  (subplot C). The results of 𝑸̅ 𝑷̅⁄  according to 413 
the equation proposed by Budyko (eqn. 5, blue line) are shown in subplot C for comparison.414 
  415 

 416 

 417 
Figure 6. Observed versus predicted fluxes and explained variances for the 499 CAMELS 418 
catchments. An additional 1:1 line (dashed red line) is plotted for reference together with 419 
a linear regression (dashed black line) and regression coefficients. A:  𝑄𝐷̅̅ ̅̅ 𝑝𝑟𝑒𝑑

 calculated 420 

as in Equation 18.  B: 𝑊̅𝑝𝑟𝑒𝑑  calculated as in Equation 19 C: 𝑄𝐵̅̅ ̅̅ 𝑝𝑟𝑒𝑑
  calculated as in 421 

Equation 20. D:  𝑄̅𝑝𝑟𝑒𝑑 calculated as in Equation 21.   422 

 423 

 424 



 425 

Figure 7. Comparison between the mean annual components of the L’vovich water balance 426 
observed at the CAMELS catchments (black) and predicted by using equations 28 and 29 427 
into equations 18 thorough 21. A good agreement can be seen in all subplots: Both patterns 428 
of increase in  𝑊̅ and  𝑄𝐷̅̅ ̅̅  with  𝑃̅ are reproduced (subplots A and C), while similar patterns 429 
of variability of  𝐸̅ as a function of  𝑊̅ were reproduced, including the decrease of 𝐸̅ after 430 
a threshold of 𝑊̅~1400 mm. The increase in  𝑄𝐵̅̅ ̅̅  with 𝑊̅ is also observed. 431 

 432 
 433 
 434 

  435 



 436 

4. Discussion 437 

Our findings highlight the role of climate on both direct-runoff and baseflow at the mean-438 

annual timescale. The proposed approach differs from the one presented by Sivapalan et 439 

al., (2011) and Gnann et al., (2019), where a conceptual model for the partitioning was 440 

implemented, which lead to formulations requiring site-specific calibration. The 441 

importance of our results lies in the fact that there are very few catchment-scale 442 

formulations for the prediction of direct-runoff and baseflow at the mean annual timescale. 443 

Prediction of these fluxes at the catchment-scale is of paramount importance. Furthermore, 444 

our approach was able to encapsulate the impact of aridity index on both direct-runoff and 445 

baseflow contributions to the total streamflow, which has not been studied previously.  446 

 447 

4.1. Role of 𝝓 on the Mean Annual  𝑸𝑫 ̅̅ ̅̅ ̅ and 𝑸𝑩 ̅̅ ̅̅ ̅ 448 

While enough evidence and mathematical frameworks have been thoroughly documented 449 

to explain and quantify different mechanisms in generating direct runoff at shorter 450 

timescales, to our knowledge, no study has shown how the long-term climate affects this 451 

hydrologic response. Moreover, our findings indicating that 84% of the variability of  𝑄𝐷̅̅ ̅̅  452 

between the selected catchment is explained by aridity index alone can provide great 453 

insights on how event-based runoff mechanisms are propagated over longer timescales. 454 

Direct runoff is traditionally formulated at the event-scale as a function of storm-455 

characteristics, land-surface properties and antecedent moisture conditions, such as in the 456 

Curve Number method (NRCS, 2004). Guswa et al., (2017) developed an approach based 457 

on the SCS-CN method with exponential distribution of rainfall depths to predict monthly 458 

and annual values of direct-runoff from 97 catchments in the conterminous US. However, 459 

their approach requires the estimation of the CN, which is a landscape-based parameter. 460 

While their method was able to predict with high accuracy the mean annual direct-runoff 461 

when using CN obtained on rainfall-streamflow analysis of the intended catchments, it 462 

performed poorly while using the readily available tabulated values of CN. We believe the 463 

aridity index to be an emerging descriptor of the interplay between event rainfall 464 



(represented in  𝑃̅) and antecedent moisture conditions, which is among other factors 465 

controlled by 𝑃𝐸𝑇.  466 

We have shown that the aridity index alone explains 91% of the variability of mean-annual 467 

baseflow. We confirmed the results shown in Wang and Wu (2013) regarding the similarity 468 

between 𝑓𝑅 and 𝑓𝐵. However, their formulation provides a solution for 𝑓𝐵 only and does 469 

not consider the limiting conditions for both baseflow and direct runoff coefficients at 𝜙 →470 

0. It is easy to observe in the equation from Wang and Wu (2013) that 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄ → 𝑄̅ 𝑃̅⁄  at 471 

𝜙 → 0, i.e. their solution assumes that at 𝜙 → 0, all rain becomes baseflow and no direct 472 

runoff is produced, which does corroborate with the findings from this study (see Figure 473 

4-A).   474 

Our results contradict the findings of Gnann et al., (2019), whose conclusion was that 475 

“there is no single baseflow Budyko curve, (…) baseflow fraction cannot be modelled as a 476 

function of an aridity index alone”. Their main argument came from the observation that 477 

the baseflow coefficient (𝑄𝐵̅̅ ̅̅ 𝑃̅⁄ ) “did not always increase with decreasing 𝜙 ” after 478 

observing the behavior of a small subset of catchments with very low values of 𝜙 (𝜙 ≤479 

0.2, see Figures 1B and Figure 10 of the referred study) located within the U.K. subgroup, 480 

in which catchments demonstrated a decrease in 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  with the decrease in 𝜙 . Two 481 

considerations regarding our study and Gnann et al., (2019) are made here. First, as 482 

suggested here, 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  will not always increase with decreasing 𝜙 since a maximum value 483 

of  [𝑄𝐵̅̅ ̅̅ 𝑃̅⁄ ]𝑚𝑎𝑥  should exist at the limiting case of 𝜙 → 0.  As previously explained, if 484 

𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  is allowed to increase indefinitely for 𝜙 → 0 , 𝑄𝐷̅̅ ̅̅ 𝑃̅⁄  would reach zero, meaning that 485 

in extremely humid climates all rainfall becomes baseflow and no direct-runoff is 486 

produced. Even though the catchments within our study do not fall under such low values 487 

of aridity index, with our lowest 𝜙 being equal to 0.25, the observed trends in both 𝑄𝐷̅̅ ̅̅̅ 𝑃̅⁄  488 

and 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  with decreasing 𝜙 suggest the existence of such limiting conditions. Second, 489 

upon visual inspection of Figure 1b and Figure 10  of that study, we estimate that a subset 490 

of approximately 10 catchments with 𝜙~0.2 somehow does not follow the increasing trend 491 

with decreasing 𝜙 but that does not visually confirm a decreasing trend in 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  with 𝜙, 492 

as argued by the authors. Considering the small sample size within such low range of values 493 

of 𝜙 with the addition of what has been shown in this study, that pattern can also be 494 



interpreted as values of 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  reaching a plateau around a minimum value, or can be even 495 

interpreted as outliers. It is worth noting that the overall location of the U.K catchments 496 

within the 𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  versus 𝜙 space in that study (triangles in Figure 1b and Figure 10 of the 497 

referred study) suggest a very different behavior for that subgroup regardless of 𝜙. An 498 

additional reason to further the discussion on the positioning of catchments within the 499 

𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  versus 𝜙 space in that study is the estimation of 𝜙. The 𝑃𝐸𝑇 used for the U.S subset 500 

of their study were taken from Newmann et al., (2015), which are not solely based on 501 

observations of meteorological variables (see Section 2.2), whereas 𝑃𝐸𝑇 for their U.K 502 

subset were taken from different dataset (Robinson et al., 2016), and computed based on 503 

the FAO-Penman-Monteith (Allen et al., 1998) method. It is our opinion that the use of a 504 

single 𝑃𝐸𝑇 estimator, computed with a common set of inputs should be preferred when 505 

assessing differences in catchment behavior across datasets and varying ranges of 𝜙.  506 

We believe that behavior of  𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  over very low values of 𝜙 is still uncertain and should 507 

be further investigated using more extensive datasets with a larger sample size around very 508 

low values of 𝜙. Despite of that, the results shown here are clearly encouraging for the 509 

assessment of the role of climate on 𝑄𝐵̅̅ ̅̅  and 𝑄𝐷̅̅ ̅̅  over wide range of climatic regions, 510 

represented by the range of 𝜙 used in the derivation of the formulations of this study.  511 

 512 

4.2. Controls of L’vovich Water Balance Formulation 513 

While other studies have so far used the modelling framework of Ponce and Shetty (1995) 514 

(Sivapalan et al., 2011, and Gnann et al., 2019), the relationships from Equation 18 515 

through 21 were able to reproduce the overall patterns of partitioning and are based on 516 

semi-empirical relationships, without the need for calibration. Even though our analysis 517 

was performed at the mean-annual scale, it provides strong evidence for using the aridity 518 

index in interannual formulations of the water balance according to the L’vovich 519 

framework, as proposed in Sivapalan et al., (2011). 520 

 521 

4.3. Broader Implications of the Proposed Method 522 



Continental and global scale assessments of the impacts of climate change based on 523 

catchment-scale formulations of the water balance have a long tradition in hydrology. Most 524 

approaches have used the Budyko framework to assess the sensitivity of changes in 𝜙 or 525 

its individual components on  𝑄̅ (Dooge et al., 1999; Arora, 2002; Renner et al., 2012; 526 

Roderick et al., 2014; Berghuijs et al., 2017). These studies apply differentiation techniques 527 

to either the Budyko equation or some other parametric version of it to derive equations 528 

relating the effect of changes in aridity index or its separate components (Berghuijs et al., 529 

2017) on total streamflow. It stands to reason that our proposed approach can undergo 530 

similar procedures, yielding assessments of the effects of climate change on 𝑄𝐷̅̅ ̅̅  and 𝑄𝐵̅̅ ̅̅ . 531 

This might prove valuable for studies of the effects of climate on groundwater resources, 532 

as it has been previously shown in Section 1. 533 

Another interesting venue for research is the investigation of other controlling factors on 534 

𝑄𝐵̅̅ ̅̅ 𝑃̅⁄  and 𝑄𝐷̅̅ ̅̅ 𝑃̅⁄  at the mean-annual scale. Several studies that attempted to quantify 535 

departures from the Budyko curve by use of additional landscape and other climatic factors 536 

yielded invaluable insight on how such factors affect the long-term water balance 537 

(Donohue et al., 2007; Berguijs et al., 2014), while also improving the predictive capacity 538 

of  𝑄𝐷̅̅ ̅̅  and  𝑄𝐵̅̅ ̅̅  (Xu et al., 2013; Zhang et al., 2015).  A similar procedure can be extended 539 

to the formulations presented here to further investigate the controls on baseflow and 540 

direct-runoff coefficient. We could start by asking how the already understood climatic and 541 

landscape features that are known to provide further insight into the controls on  𝑄̅ are 542 

translated into the control of its complementary components 𝑄𝐷̅̅ ̅̅  and  𝑄𝐵̅̅ ̅̅ . Finally, our 543 

proposed approach may be used as a tool for the prediction of streamflow in ungauged 544 

basins as it uses easy-to-obtain variables and do not rely on specific site calibration. 545 

  546 



6. Conclusion 547 

 548 

The understanding and prediction of the water-balance beyond its traditional form which 549 

considers the total streamflow as its single response can yield invaluable insight needed for 550 

different hydrologic applications. While the two-step water balance formulation proposed 551 

by L’vovich (1979) appears as a promising venue for approaching this task, the need for 552 

the understanding of its underlying climatic and landscape controls has not yet allowed for 553 

the development of robust predictive tools.  554 

We have provided a derivation of analytical expressions of the control of 𝜙 on both 𝑄𝐷̅̅ ̅̅   555 

and 𝑄𝐵̅̅ ̅̅ . The formulations presented here were able to explain most of the mean-annual 556 

(between catchment) variabilities of 𝑄𝐷̅̅ ̅̅ , 𝑄𝐵̅̅ ̅̅  and 𝑄̅ and be valid predictive tools for those 557 

fluxes. Additionally, our solution was able to reproduce the observed patterns between the 558 

components of the L’vovich (1979) water balance at the mean annual timescale, and is 559 

based on the derivation of two complementary curves that when combined provide a 560 

solution for the 𝑄̅ that is similar to the widely known Budyko (1974) formulation. While 561 

further investigations for assessing the validity of the 𝜙-based expressions when dealing 562 

with catchments with 𝜙 values lower than the observed here,  the large sample size (n=499) 563 

and wide range of aridity indices (from 0.2 < 𝜙 <  7.7) of study are encouraging for the 564 

use of our method for regions beyond our study area. 565 

Finally, we believe our method provides an extension for the assessments on how factors 566 

other than 𝜙 control the mean-annual runoff, this time allowing for the assessment of such 567 

factors on 𝑄𝐷̅̅ ̅̅  and 𝑄𝐵̅̅ ̅̅  and can also be used for estimating sensitivities of both components 568 

to changes in climate. 569 

 570 

 571 

 572 

 573 
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