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Abstract

The carbon cycle displays strong sensitivity to short term variations in environmental conditions, and it is key to understand

how these variations are linked with variations in CO2 fluxes. Previously, atmospheric observations of CO2 have been sparse

in many regions of the globe, making it challenging to evaluate these relationships. However, the OCO-2 satellite, launched in

July 2014, provides new insight into global CO2 fluxes, particularly in regions that were previously difficult to monitor. In this

study, we combine OCO-2 observations with a geostatistical inverse model to explore data-driven relationships between inferred

CO2 flux patterns and environmental drivers. We further use year 2016 as an initial case study to explore the applicability

of the geostatistical approach to large satellite-based inverse problems. We estimate daily, global CO2 fluxes at the model

grid scale and find that a combination of air temperature, daily precipitation, and photosynthetically active radiation (PAR)

best describe patterns in CO2 fluxes in most biomes across the globe. PAR is an adept predictor of fluxes across mid-to-high

latitudes, whereas a combined set of daily air temperature and precipitation shows strong explanatory power across tropical

biomes. However, we are unable to quantify a larger number of relationships between environmental drivers and CO2 fluxes

using OCO-2 due to the limited sensitivity of total column satellite observations to detailed surface processes. Overall, we

estimate a global net biospheric flux of -1.73 ± 0.53 GtC in year 2016, in close agreement with recent inverse modeling studies

using OCO-2 retrievals as observational constraints.
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Key points: 31 

(1) We adapt the geostatistical approach to satellite-based inverse problems. 32 

 33 

(2) A combination of photosynthetically active radiation, air temperature and precipitation 34 

best describe variations in CO2 fluxes in most biomes across the globe. 35 

 36 

(3) The geostatistical approach yields flux totals that are consistent with an OCO-2 inverse 37 

modeling inter-comparison. 38 

 39 
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Abstract  61 

The carbon cycle displays strong sensitivity to short term variations in environmental conditions, 62 

and it is key to understand how these variations are linked with variations in CO2 fluxes. 63 
Previously, atmospheric observations of CO2 have been sparse in many regions of the globe, 64 
making it challenging to evaluate these relationships. However, the OCO-2 satellite, launched in 65 
July 2014, provides new insight into global CO2 fluxes, particularly in regions that were 66 
previously difficult to monitor. In this study, we combine OCO-2 observations with a 67 

geostatistical inverse model to explore data-driven relationships between inferred CO2 flux 68 
patterns and environmental drivers. We further use year 2016 as an initial case study to explore 69 
the applicability of the geostatistical approach to large satellite-based inverse problems. We 70 
estimate daily, global CO2 fluxes at the model grid scale and find that a combination of air 71 

temperature, daily precipitation, and photosynthetically active radiation (PAR) best describe 72 
patterns in CO2 fluxes in most biomes across the globe. PAR is an adept predictor of fluxes 73 
across mid-to-high latitudes, whereas a combined set of daily air temperature and precipitation 74 

shows strong explanatory power across tropical biomes. However, we are unable to quantify a 75 
larger number of relationships between environmental drivers and CO2 fluxes using OCO-2 due 76 

to the limited sensitivity of total column satellite observations to detailed surface processes. 77 
Overall, we estimate a global net biospheric flux of -1.73 ± 0.53 GtC in year 2016, in close 78 

agreement with recent inverse modeling studies using OCO-2 retrievals as observational 79 
constraints. 80 

 81 

 82 

1. Introduction 83 

The carbon cycle is closely linked with short term environmental variations, and it is critical to 84 

explore the connections between these variations and variability in CO2 fluxes. However, surface 85 

atmospheric CO2 observations in many regions outside of North America and Europe are sparse, 86 

making it difficult to constrain CO2 fluxes or to investigate the sensitivity of the CO2 fluxes to 87 

underlying environmental drivers across many broad regions of the globe (e.g., Peylin et al., 88 

2013; Crowell et al., 2019). We define the term “environmental drivers” as any meteorological 89 

variables or characteristics of the physical environment that can be modeled or measured and 90 

may correlate with net ecosystem exchange (NEE). Across North America, dense, continuous 91 

atmospheric CO2 observations from ground-based towers and aircraft make it possible to 92 

extensively study the relationships between CO2 fluxes and these environmental drivers at 93 

regional and continental levels (e.g., Peters et al., 2007; Gourdji et al., 2012; Fang and 94 

Michalak, 2015; Shiga et al., 2018); by contrast, a paucity of in situ observations for many 95 

regions, including the tropics and the Southern Hemisphere, makes it difficult to conduct 96 

comparable studies in these regions. 97 
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CO2-observing satellites, including GOSAT (Kuze et al., 2009), TanSat (Yang et al., 2018) and 98 

OCO-2/OCO-3 (Crisp, 2015; Eldering et al., 2019) observe CO2 broadly across the globe and 99 

can provide new insight into CO2 fluxes, particularly in regions that were previously difficult to 100 

monitor (e.g., the tropics and Southern Hemisphere). To date, observations from the OCO-2 101 

satellite, launched in July 2014, have been used to constrain CO2 flux variability at point source 102 

(e.g., Nassar et al., 2017), regional (e.g., Liu et al., 2017; Chatterjee et al., 2017; Palmer et al., 103 

2019) and global scales (e.g., Crowell et al., 2019; Miller et al., 2018; Wang et al., 2019).  104 

The next challenge is to connect OCO-2 observations and estimated CO2 fluxes with 105 

environmental drivers (e.g., Liu et al., 2017; Chevallier et al., 2018). Understanding this 106 

connection between fluxes and environmental drivers is critical for improving bottom-up or 107 

process-based flux models (e.g., Huntzinger et al., 2017).  108 

A geostatistical inverse model (GIM) provides a unique lens to explore these connections. 109 

Specifically, a GIM does not prescribe or rely on a traditional prior flux model. The choice of 110 

prior fluxes in a classical inverse model is often subjective, and this choice can impact the 111 

posterior flux estimate (e.g., Peylin et al., 2013; Houweling et al., 2015; Phillip et al., 2019). For 112 

example, existing state-of-art terrestrial biosphere models (TBMs) provide divergent flux 113 

estimates at regional to global scales and display very different sensitivities to environmental 114 

drivers (e.g., Huntzinger et al., 2017). By contrast, a GIM can assimilate a wide range of 115 

environmental drivers, making it possible to evaluate data-driven relationship between these 116 

drivers and the CO2 fluxes inferred from atmospheric observations (see Sect. 2). Existing GIM 117 

studies have investigated connections of CO2 fluxes and environmental drivers for North 118 

America (Gourdji et al., 2010, 2012; Commane et al., 2017; Shiga et al. 2018) and the globe 119 

(Gourdji et al., 2008) using a variety of in situ CO2 observations. 120 

New satellite observations of CO2 provide a novel opportunity to expand this analysis across the 121 

globe. However, the sheer number of observations from satellites like OCO-2 also present novel 122 

computational and statistical challenges for GIMs that were originally designed for far smaller in 123 

situ CO2 datasets (e.g., Miller et al., 2019). To overcome this challenge, we combine the GIM 124 

with the adjoint of a global chemical transport model. Using this framework, we not only 125 

estimate daily global CO2 fluxes at the model grid scale (4 o latitude × 5 o longitude) but also 126 

quantify posterior uncertainties in the estimated fluxes. The primary purpose of this study is to 127 
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couple a GIM to a global adjoint model and use this framework to evaluate the relationships 128 

between the environmental drivers and the CO2 fluxes inferred from OCO-2. We focus on a 129 

single year (i.e., 2016) as an initial case study -- to explore the applicability of the geostatistical 130 

approach to large satellite-based inverse problems. We first describe the implementation of the 131 

GIM for OCO-2 observations; we then evaluate and discuss the results of this approach (e.g., 132 

inferred flux estimates and relationships with environmental drivers) using the 2016 case study.  133 

2. Data and Methods 134 

2.1 Approach overview  135 

We design a framework that couples the GIM to a global adjoint model (version v35n of the 136 

GEOS-Chem adjoint, Henze et al., 2007) and explore the applicability of the geostatistical 137 

approach to inverse problems with a large number of flux grid boxes (i.e., ~1.2 x 106) and a large 138 

number of OCO-2 satellite observations (i.e., ~9 × 104). We use year 2016 as an initial case 139 

study, as there is better temporal coverage of good-quality data from OCO-2 throughout the 140 

entire year relative to years 2015 and 2017. For example, there are 7 week-long gaps in the 141 

OCO-2 data in year 2015 and a 1.5-month gap in the OCO-2 data in year 2017, whereas there are 142 

no such gaps in year 2016. This time period also overlaps with an OCO-2 inverse modeling 143 

inter-comparison (MIP) study, enabling direct comparison with those results (Crowell et al., 144 

2019). We specifically estimate CO2 fluxes for September 1, 2015 to December 31, 2016 but 145 

discard the first four months as a spin-up time period. We also offer up a wide range of 146 

environmental drivers and allow the GIM to select a subset that best predicts spatiotemporal 147 

patterns in CO2 fluxes at the model grid scale, described in detail below (Sects. 2.2-2.4). 148 

2.2. OCO-2 satellite observations 149 

We utilize 10-s average XCO2 generated from version 9 of the satellite observations for the period 150 

from September 1, 2015 through the end of year 2016 (e.g., Chevallier et al., 2019). We use both 151 

land nadir- and land glint-mode retrievals in the inverse model. Recent retrieval updates have 152 

eliminated biases that previously existed between land nadir and land glint observations (O’Dell 153 

et al., 2018). Moreover, Miller and Michalak (2020) evaluated the impact of these updated OCO-154 

2 retrievals on the terrestrial CO2 flux constraint in different regions of the globe; the authors 155 
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found that the inclusion of both land nadir and land glint retrievals yielded a stronger constraint 156 

on CO2 fluxes relative to using only a single observation type.   157 

2.3 Geostatistical inverse model 158 

A GIM does not require an emission inventory or a bottom-up model as an initial guess of 159 

fluxes; instead, a GIM can leverage a wide range of environmental driver datasets to help predict 160 

spatial and temporal patterns in the CO2 fluxes (e.g., Gourdji et al., 2008, 2012; Shiga et al., 161 

2018). We further pair the GIM with a statistical approach known as model selection to 162 

objectively determine which set of drivers can best reproduce CO2 observations from OCO-2. 163 

This setup makes it feasible to both estimate CO2 fluxes and to explicitly quantify the 164 

relationships between the fluxes and the underlying environmental drivers.  165 

The fluxes, as estimated by the GIM, consist of two components. First, the GIM will scale the 166 

environmental drivers to match patterns in the atmospheric observations, and this component of 167 

the flux estimate is referred to as the ‘deterministic model’. Second, the GIM will model space-168 

time patterns in the CO2 fluxes that are implied by the atmospheric observations but not 169 

explained by any environmental drivers, and this component of the fluxes is referred to as the 170 

‘stochastic component’. The best flux estimate is a sum of the deterministic model and the 171 

stochastic component:  172 

   𝒔 = 𝐗𝜷 + 𝜻                                                         (1) 173 

where s are m ×1 unknown fluxes, X is a m × p matrix of environmental drivers (see Sect. 2.4), 174 

β are p×1 unknown scaling factors or drift coefficients. These coefficients quantify the 175 

relationships between each of the p environmental drivers (i.e., each column of X) and the 176 

estimated CO2 fluxes. The product of X and β is the deterministic model (𝐗𝜷). The stochastic 177 

component (𝜻) is zero-mean with a pre-specified spatial and/or temporal correlation structure; it 178 

describes spatial and temporal patterns in the fluxes that are not captured by the deterministic 179 

model. For the setup here, the drift coefficient (β) associated with each environmental driver is 180 

constant in space and time, while the stochastic component (𝜻) varies at the model grid scale.  181 

We estimate both the fluxes (s) and the drift coefficients (β) by minimizing the GIM cost 182 

function (e.g., Kitanidis and Vomvoris, 1983; Kitanidis, 1995; Michalak et al., 2004): 183 

𝐿𝑠,𝛽 =
1

2
(𝒛 − ℎ(𝒔))𝑻𝐑−𝟏(𝒛 − ℎ(𝒔)) +

1

2
(𝒔 − 𝐗𝜷)𝑻𝐐−𝟏(𝒔 − 𝐗𝜷)    (2) 184 
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The cost function includes two components: the first component indicates that the fluxes (s), 185 

when run through an atmospheric model, h(s), should match the observations (z) to within a 186 

specific error tolerance (𝒛 − ℎ(𝒔)) that is prescribed by the covariance matrix R (n × n). R 187 

describes model-data mismatch errors, including errors from the atmospheric transport model 188 

and the OCO-2 retrievals, among other errors. The second component of Eq. 2 stipulates that the 189 

structure of the stochastic component (𝒔 − 𝐗𝜷) is described by the covariance matrix Q (m × m). 190 

Q, like R, must be defined by the modeler before estimating the fluxes; it represents the 191 

variances and spatiotemporal covariances of the stochastic component. We estimate Q using a 192 

statistical approach known as Restricted Maximum Likelihood (RML; e.g., Kitanidis, 1997; 193 

Gourdji et al., 2012; Miller et al., 2016). Q includes both diagonal and off-diagonal elements; 194 

the latter decay with the separation time and distance between two model grid boxes. We 195 

construct R as a diagonal matrix with constant elements on the diagonal. Supporting Information 196 

Text S1 provides a detailed explanation of the approach used here to estimate the covariance 197 

matrix parameters.  198 

After estimating the covariance matrix parameters, we then estimate the CO2 fluxes by iteratively 199 

minimizing Eq. 2 using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-200 

BFGS, Liu and Nocedal, 1989). We use this approach to simultaneously estimate both s and β. 201 

Miller et al (2019) describe this iterative approach to minimize Eq. 2 in detail. 202 

 203 

2.4 Auxiliary environmental drivers 204 
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Figure 1. The seven biome-based regions aggregated from a world biome map in Olsen et al 

(2001).   

 205 

We consider a wide range of environmental drivers (X). These are meteorological variables 206 

primarily related to heat, water, and radiation, available from NASA’s Modern-Era Retrospective 207 

Analysis for Research and Applications, Version 2 (MERRA-2, Rienecker et al., 2011). 208 

Specifically, we consider daily 2-m air temperature, daily precipitation, 30-day average 209 

precipitation, photosynthetically active radiation (PAR), surface downwelling shortwave 210 

radiation, soil temperature at 10-cm depth, soil moisture at 10-cm depth, specific humidity, and 211 

relative humidity. We also include a non-linear function of 2-m air temperature as an 212 

environmental driver (refer to hereafter as scaled temperature). This function is from the 213 

Vegetation Photosynthesis and Respiration Model (VPRM, Mahadevan et al., 2008) and 214 

describes the non-linear relationship between temperature and photosynthesis (e.g., Raich et al. 215 

1991, see Supporting Information Text S2).  216 
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Note that we do not include any remote sensing indices (e.g., solar‐induced chlorophyll 217 

fluorescence (SIF) or leaf area index (LAI)) in the present study. Rather, the focus of this study 218 

is to explore environmental drivers of CO2 fluxes, not remote sensing proxies for CO2 fluxes.  219 

We group the globe into seven biome-based regions and allow the GIM to use different 220 

environmental drivers in different biomes. The seven-biome map (Fig. 1) is derived from the 221 

biomes in Olson et al (2001), aggregated to form larger regions. As a result of this setup, each 222 

column of X includes a single environmental driver for a single biome. Therefore, each 223 

environmental driver is represented by a total of seven columns in X. Within each column, all 224 

elements are zeros except for elements that correspond to a single biome.  225 

We also include several constant columns of ones in X. These columns are analogous to the 226 

intercept in a linear regression. Existing GIM studies always include one or more constant 227 

columns within X (e.g., Gourdji et al. 2008; Gourdji et al., 2012; Miller et al., 2016). In this 228 

study, we specifically use a total of seven constant columns, one for each biome. We also include 229 

a constant column for the ocean.  230 

We further consider non-biospheric fluxes in the X matrix, including fossil fuel emissions from 231 

the Open-source Data Inventory for Anthropogenic CO2 monthly fossil fuel emissions 232 

(ODIAC2016, Oda et al., 2018), climatological ocean fluxes from Takahashi et al. (2016), and 233 

biomass burning fluxes from the Global Fire Emissions Database (GFED) version 4.1 234 

(Randerson et al., 2018). We only allocate a single column of X for fossil fuel, biomass burning, 235 

and ocean fluxes, respectively, because these fluxes are not the focus of this study.  236 

In total, we consider a total of 81 columns for the X matrix: 8 constant columns of ones, 70 237 

columns associated with environmental drivers, and 3 columns associated with anthropogenic, 238 

ocean, and biomass burning fluxes. 239 

  240 

2.5 Model selection 241 

We utilize a model selection framework to evaluate which subset of the environmental drivers 242 

(i.e., columns of X) best describe variations in CO2 fluxes as inferred from the OCO-2 243 

observations. The inclusion of additional environmental drivers or columns in X will always 244 

improve the model-data fit, but the inclusion of too many variables in X can yield an overfit of 245 

the OCO-2 observations or can yield unrealistic drift coefficients (β) (e.g.,  Zucchini, 2000). 246 
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Instead of including all environmental drivers in X, we use model selection to decide which set 247 

of environmental drivers to include in X. In this study, we implement a type of model selection 248 

known as the Bayesian Information Criterion (BIC; Schwarz, 1978), which has been extensively 249 

used in recent GIM studies (e.g., Gourdji et al., 2012; Miller et al. 2013; Fang and Michalak, 250 

2015). Using the BIC, we score different combinations of environmental drivers that could be 251 

included in X based on how well each combination reproduces the OCO-2 observations. We 252 

calculate these scores using the following equation for the implementation here (Miller et al. 253 

2018; Miller and Michalak, 2020): 254 

𝐵𝐼𝐶 = 𝐿 + 𝑝ln(𝑛∗)                                                                          (3) 255 

where L is log likelihood of a particular combination of environmental drivers (i.e., columns of 256 

X), p is the number of environmental drivers in this particular combination, and n* is the 257 

effective number of independent observations. The first component (L) rewards combinations 258 

that are a better fit to the observations, whereas the second component in Eq. 3 (𝑝ln(𝑛∗)) 259 

penalizes models with a greater number of columns to prevent overfitting. The best combination 260 

of environmental drivers for X is the combination that receives the lowest score (Supporting 261 

Information Text S3 and Table S2). We implement the BIC using a heuristic branch and bound 262 

algorithm (Yadav et al., 2013) to reduce computing time. Miller et al (2018) describes this model 263 

selection procedure in greater detail, including the specific setup and equations for the BIC.   264 

 265 

2.6 Posterior uncertainties 266 

In a GIM, the direct solution to calculate the posterior covariance matrix Vs (dimensions m x m) 267 

can be computed as (e.g., Saibaba and Kitanidis, 2014; Miller et al., 2019): 268 

 𝐕𝐬 = 𝐕𝟏 + 𝐕𝟐𝐕𝟑𝐕𝟐
𝐓                                                                          (4) 269 

 𝐕𝟏 = (𝐐−𝟏 + 𝐇𝐓(𝐑−𝟏𝐇))−𝟏                                                                (5) 270 

 𝐕𝟐 = 𝐕𝟏𝐐−𝟏𝐗                                                                                  (6) 271 

 𝐕𝟑 = (𝐗𝐓𝐐−𝟏𝐗 − (𝐐−𝟏𝐗)𝐓𝐕𝟏𝐐−𝟏𝐗)−𝟏                                          (7) 272 

 273 
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where the posterior error covariance matrix Vs is the sum of V1 and V2V3V2
T, and H is a n ×m 274 

matrix describing the footprint sensitivity of the observations (z) to the fluxes (s). Note that V1 is 275 

the posterior error covariance matrix in a classic Bayesian inverse model (e.g., Rodgers, 2000; 276 

Brasseur and Jacob, 2017). V2V3V2
T accounts for the additional uncertainty in the fluxes due to 277 

the unknown drift coefficients ().  278 

 279 

The calculations in Eq. 5 are not computationally feasible for most inverse problems with very 280 

large datasets; the matrix sum in V1 is often too large to invert, and we do not explicitly construct 281 

an H matrix or its transpose HT. Instead, we employ a low-rank approximation of V1 that 282 

circumvents these problems. Specifically, we approximate the matrices in V1 as a low rank 283 

update to Q using a limited number of eigenpairs (i.e., eigenvectors and eigenvalues). Miller et 284 

al (2019) and the Supporting Information Text S4 describe the uncertainty quantification in 285 

greater detail.  286 

 287 

3. Results and Discussion 288 

3.1 Connections between CO2 fluxes and environmental drivers 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 
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Table 1. Estimated drift coefficients (β) and associated uncertainties in β for environmental 299 

drivers selected using the BIC 300 

Biomes Selected environmental 

drivers 

Drift coefficients (β) Uncertainties in 

β, with 95% 

confidence 

interval*  

Boreal forests PAR -1.59 0.16 

Temperate grasslands Daily precipitation -0.15 0.05 

PAR -0.29 0.04 

Temperate forests Daily precipitation -0.36 0.03 

PAR -0.81 0.03 

Tropical grasslands Daily precipitation -0.55 0.06 

Scaled temperature -0.35 0.04 

Tropical forests Daily precipitation -0.23  0.05 

PAR 0.27  0.05 

Scaled temperature -0.04  0.02 

Desert and 

shrublands 

Daily precipitation -0.27 0.03 

Scaled Temperature -0.07 0.01 
*Supporting Information Text S5 provides detail on the calculations of uncertainties in β.  301 

A small number of environmental drivers can describe most spatiotemporal variability in CO2 302 

fluxes as estimated in the GIM. In this study, we define spatiotemporal variability as any spatial 303 

or temporal patterns in CO2 fluxes that manifest at the daily, 4o (latitude) × 5o (longitude) 304 

resolutions of the GEOS-Chem model during the one-year study period (year 2016). The 305 

deterministic model accounts for ~89.6% of the variance in the estimated fluxes (Fig. 2a), and 306 

the stochastic component conversely accounts for only 10.4% of the flux variance (Fig. 2b).  307 
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Figure 2. Estimated terrestrial fluxes from (a) the 

deterministic component (Xβ) and (b) the stochastic 

component (ζ). The sum of these two components 
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equals (c) the posterior flux estimates (s). Here the 

posterior flux estimates include contributions from 

all source types, including flux patterns that map 

onto fossil fuels from ODIAC2016. 

 308 

A combination of PAR, daily temperature, and daily precipitation best describe patterns in CO2 309 

fluxes in most biomes across the globe (Table 1). PAR is an adept predictor of fluxes across mid-310 

to-high latitudes, whereas a combined set of daily air temperature and daily precipitation are 311 

better predictors across tropical biomes.  312 

 313 

The deterministic model also includes fossil fuel emissions from ODIAC2016 but not biomass 314 

burning fluxes from GFED or ocean fluxes from Takahashi et al., (2016). Fossil fuel emissions 315 

from ODIAC2016, when passed through the GEOS-Chem model, help describe enough 316 

variability in the OCO-2 observations to be selected using the BIC. By contrast, neither biomass 317 

burning fluxes from GFED nor ocean fluxes from Takahashi et al. (2016) help reproduce the 318 

OCO-2 observations more than the penalty term in the BIC, and these fluxes are therefore not 319 

selected using the BIC. Specifically, biomass burning and ocean fluxes may not have been 320 

selected for several reasons: either those fluxes are small relative to fossil fuel emissions and 321 

NEE, the land OCO-2 observations from 2016 are not sensitive to biomass burning and ocean 322 

fluxes, and/or the flux patterns in GFED and Takahashi et al., (2016) are not consistent with the 323 

OCO-2 observations. Instead, biomass burning and ocean fluxes are included within the 324 

stochastic component of the flux estimate. 325 

 326 

Overall, we only select a limited number of environmental drivers (12 out of 70, ~18%) using 327 

model selection. Specifically, we never select more than 3 environmental drivers in any 328 

individual biome (Table 1). This result indicates two likely conclusions. First, a few simple 329 

linear relationships may adeptly describe flux variability at the scale and resolution of a global 330 

gridded atmospheric model, although the underlying leaf- and organism-level processes are 331 

admittedly more complex. Indeed, previous top-down studies (e.g., Gourdji et al., 2008, 2012; 332 

Fang and Michalak, 2015; Shiga et al., 2018) also found that simple linear relationships can 333 

effectively describe broad spatial and temporal patterns in CO2 flux variability across North 334 
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America and across the globe. Such simple linear relationships allow for a straightforward 335 

assessment of the explanatory power of environmental drivers, and make it possible to compare 336 

these relationships inferred from atmospheric observations against the relationships used in 337 

TBMs (e.g., Huntzinger et al., 2013; Fang and Michalak, 2015). 338 

Second, additional environmental drivers, when run through an atmospheric transport model and 339 

interpolated to the times and locations of OCO-2 observations, are not sufficiently unique to 340 

parse out their differing relationships with CO2 fluxes. Model selection ensures that we only 341 

include environmental drivers that contribute unique information to the flux estimate and do not 342 

overfit the OCO-2 observations. If multiple environmental drivers are highly correlated or 343 

colinear, then the inclusion of more than one of these drivers will not contribute unique 344 

information. As a result, we are unable to quantify a larger number of environmental driver 345 

relationships using OCO-2. Fig. 3 illustrates an example of air temperature and PAR. In most of 346 

the biomes, there is a weak correlation (R < 0.4; left column) between 2-m air temperature and 347 

PAR; however, the correlation is much stronger (R > 0.8; right column) when these 348 

environmental drivers are passed through an atmospheric model (h(X)). A larger number of 349 

environmental drivers is not selected due to this high level of correlation or collinearity among 350 

the columns in h(X). This collinearity, not errors in the OCO-2 retrievals or atmospheric model, 351 

appears to be a limiting factor in the model selection results.  352 

 353 
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Figure 3. The correlation coefficient (R) between 2-m air 

temperature and PAR within different global biomes. The left 

panel shows correlations between air temperature and PAR from 

MERRA-2, re-gridded to the GEOS-Chem model grid; these 

environmental drivers are the columns of X (Eq. 1). The right 

panel displays the correlations between these variables after they 

have been passed through an atmospheric model, h(X). The 

correlation between 2-m air temperature and PAR is weak (R < 

0.4) in most of the biomes; however, the correlation is much 

stronger (R > 0.8) when these environmental drivers are passed 

through an atmospheric model. The correlations among other pairs 

of environmental drivers show similar patterns. 

 354 

 355 

 356 
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3.1.1 PAR shows stronger explanatory power than temperature or precipitation in mid-to-357 

high latitudes 358 

PAR is selected for four biomes: temperature forests, temperate grasslands, boreal forests and 359 

tropical forests (Table 1). In the middle and high latitudes, PAR, rather than temperature or 360 

precipitation, appears to better reproduce seasonal patterns in CO2 fluxes. This result reflects the 361 

fact that light availability is likely an important factor that drives CO2 flux variability in mid-to-362 

high latitudes (e.g., Fang and Michalak, 2015; Baldocchi et al., 2017). The β values for PAR 363 

indicate a strong to moderate negative correlation with estimated CO2 fluxes, suggesting that an 364 

increase (or decrease) in PAR is associated with a decrease (or increase) in NEE, and an increase 365 

(or decrease) in carbon uptake; this β value is larger in boreal and temperate forests relative to 366 

grasslands, indicating a stronger relationship between PAR and net biosphere CO2 fluxes in those 367 

biomes (Table 1; Fig. 4a).  368 

Indeed, previous studies also indicate that PAR and similar environmental drivers (e.g., 369 

shortwave radiation) are closely associated with CO2 fluxes. For example, a top-down study of 370 

North America (Fang and Michalak, 2015) found that shortwave radiation is more adept than 371 

other environmental variables in reproducing spatiotemporal variability of NEE, particularly 372 

across the growing season. Moreover, several site-level studies have reached parallel conclusions 373 

(e.g., Mueller et al., 2010; Yadav et al., 2010); these studies indicated that PAR is strongly 374 

correlated with photosynthesis, consistent with current mechanistic understandings of the light 375 

limitation on photosynthesis (e.g., Gough et al., 2007). 376 

 377 
 378 
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Figure 4. The contribution of different environmental drivers (Xβ) to estimated CO2 fluxes 

from the GIM.  The individual panels display the contribution of a) PAR, b) scaled 

temperature, c) daily precipitation, d) fossil fuel, e) the intercept terms, and f) the full 

deterministic model (Xβ). White colors in panels (a-c) reflect the fact that not all 

environmental drivers are selected in all biomes.   
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3.1.2 Drought is likely associated with flux variations across tropical forests  379 

A composite of PAR, scaled temperature, and daily precipitation adeptly describe variability in 380 

CO2 fluxes across tropical forests, as seen through the OCO-2 observations. PAR in tropical 381 

forests is usually a function of the presence or absence of clouds (e.g., Baldocchi et al., 2017; 382 

Zeri et al., 2014); cloudiness is also associated with rainfall. Therefore, low PAR over tropical 383 

forests is likely an indicator of cloud presence and rainfall. A positive  estimated for PAR 384 

suggests that a decrease in PAR, indicative of enhanced precipitation, is associated with 385 

increased carbon uptake. Furthermore, the negative  value assigned to scaled temperature 386 

(Supporting Information Text S2) implies that an increase in air temperature, which often 387 

exceeds optimal temperature over tropical forests, is associated with reduced carbon uptake. 388 

Recent studies (e.g., Jiménez-Muñoz et al., 2016; Liu et al., 2017; Palmer et al., 2019) indicated 389 

that tropical droughts associated with the 2015-2016 El Niño events likely resulted in above 390 

average carbon release. Indeed, the combination of high values of PAR, high air temperature, 391 

and low precipitation may be a manifestation of these drought impacts.    392 

Indeed, multiple lines of evidence indicate that drought is associated with diminished carbon 393 

uptake in tropical forests (e.g., Philips et al., 2009; Brienen et al., 2015; Baccini et al., 2017). 394 

For example, Gatti et al (2014) suggested that a suppression of photosynthesis during tropical 395 

drought may cause a reduction in carbon uptake. Brienen et al (2015) added that tropical drought 396 

is often associated with higher-than-normal temperature, which may further contribute to 397 

reducing gross primary production (GPP) and carbon uptake. Overall, this GIM study supports 398 

the conclusion that environmental conditions indicative of drought are associated with net carbon 399 

emissions from tropical forests. 400 

3.1.3 CO2 fluxes, as inferred from OCO-2, are closely correlated with temperature and 401 

precipitation in tropical grasslands  402 

 403 

 Temperature and precipitation closely correlate with variability in CO2 fluxes across tropical 404 

grasslands. This result suggests that heat and water availability are likely associated with carbon 405 

fluxes across this biome. 406 
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A negative β value for precipitation indicates that an increase in precipitation is associated with 407 

an increase in carbon uptake, which is in line with current knowledge that water availability 408 

facilitates photosynthesis, especially in arid or semi-arid regions. In addition, a negative β value 409 

for scaled temperature (Supporting Information Text S2) indicates that an increase in air 410 

temperature is associated with a reduction in carbon uptake. Specifically, high temperatures in 411 

the tropics often exceed the optimal temperature for photosynthesis (e.g., Baldocchi et al., 2017), 412 

which can suppress GPP (e.g., Doughty and Golden, 2008). Overall, a combined set of air 413 

temperature and precipitation adeptly describes CO2 flux variability in tropical grasslands, 414 

rendering it a net source in year 2016. 415 

 416 

3.2 Estimated biospheric flux totals for different global regions 417 

We estimate a global terrestrial biospheric CO2 budget of -1.73 ± 0.53 GtC (Uncertainties listed 418 

are the 95% confidence interval. Supporting Information Text S5 provides detail on the posterior 419 

uncertainty estimate for biospheric fluxes.). Among the seven biomes, middle to high latitudes 420 

(primarily temperate, boreal and tundra biomes) act as a significant carbon sink; tropical biomes 421 

are a net source; desert and shrubland regions play a small, neutral role (Table 2). Note that we 422 

subtract flux patterns that map onto fossil fuels (Xβ, Fig. 4d) from the posterior flux estimate (s, 423 

Fig. 2c) to obtain an estimate for biospheric fluxes (including terrestrial NEE and biomass 424 

burning fluxes). We estimate a β value of 1.09 ± 0.05 (95% confidence interval) for the fossil 425 

fuel emissions from ODIAC2016, indicating that the overall global magnitude of ODIAC2016 is 426 

consistent with OCO-2 observations. We therefore assume that ODIAC2016 is a reasonable 427 

global estimate for fossil fuel emissions.  428 

Table 2. Biospheric CO2 flux totals estimated for different global biomes 429 

biomes Tundra Boreal 

forests 

Temperate 

grasslands 

Temperate 

forests 

Tropical 

grasslands 

Tropical 

forests 

Deserts/shrublands 

Flux budget (Gt 

C yr-1, with 

95% confidence 

interval) 

-0.01 ± 

0.31 

-0.62 

± 0.25 

-1.71 ± 

0.43  

-1.78 ± 

0.27 

1.21 ± 

0.44 

1.16 ± 

0.76 

0.02 ± 0.30 

 430 
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These flux totals are broadly consistent with a recent MIP of different inverse models that 431 

assimilate OCO-2 observations (Crowell et al., 2019). The inverse modeling teams that 432 

participated in the MIP employed different transport models, inverse modeling approaches, and 433 

prior flux assumptions. The total global terrestrial biospheric flux, averaged across all models, 434 

was -1.4 ± 0.7 GtC for the year of 2016. The MIP fluxes assimilate v7 of land nadir-mode XCO2 435 

retrievals; unlike this study in which we use v9 of land nadir- and glint-mode retrievals. In spite 436 

of this difference, the averaged global flux from the MIP study and the estimate reported here are 437 

very similar. 438 

In order to provide an additional comparison with the MIP results, we group the estimated fluxes 439 

into TRANSCOM land regions (Gurney et al., 2002). We split the classic TRANSCOM regions 440 

at the Equator to avoid regions that encompass parts of both the northern and southern 441 

hemisphere, as in Crowell et al (2019). In most of the regions, the fluxes estimated using the 442 

GIM are very similar to those reported in the MIP (Fig. 5); however, the fluxes estimated here 443 

are significantly different in a limited number of regions (e.g., tropical Australia and northern 444 

tropical Africa), a possible reflection of differences between the v9 and v7 OCO-2 retrievals 445 

(O’Dell et al., 2018; Miller et al., 2019). For example, we estimate a smaller CO2 source for 446 

northern tropical Africa relative to the MIP study. However, previous studies (e.g., Wang et al., 447 

2019) indicated that existing satellite-based estimates of CO2 fluxes for this region may be too 448 

high. OCO-2 collects far more observations across northern Africa during the dry season than the 449 

wet season due to persistent cloudiness in the wet season, and existing studies have postulated 450 

that this difference in data availability may be to blame for a high bias in CO2 fluxes estimated 451 

from OCO-2 (Crowell et al. 2019; Wang et al. 2019).  452 

The fluxes estimated here are also broadly consistent with aircraft-based CO2 observations, a 453 

topic discussed in the Supporting Information Text S6.  454 

 455 
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Figure 5. Comparison of regional (TRANSCOM-based) biospheric flux estimates in 

this study (red) and the MIP study (blue). 

 456 

3.3 Estimated posterior uncertainties 457 

The posterior uncertainties for individual biomes range from 0.25 to 0.76 GtC yr-1. Estimated 458 

fluxes for tropical forests have higher uncertainties than any other biome (0.76 GtC yr-1), likely a 459 

consequence of poor observational coverage due to persistent cloudiness. By contrast, a large 460 

number of good-quality OCO-2 retrievals provides robust constraints over temperate forests, 461 

yielding a small posterior uncertainty (0.27 GtC yr-1) in the estimated flux.  462 

It is important to note that the posterior uncertainties calculated in most classical Bayesian or 463 

geostatistical inverse models account for many but not all possible sources of uncertainty. For 464 

example, the posterior uncertainties presented here account for the sparsity of the OCO-2 465 

observations, random observational or atmospheric transport errors, and uncertainties due to 466 

uncertain drift coefficients (β) (e.g., Kitanidis and Vomvoris, 1983; Michalak et al., 2004). 467 
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However, these calculations do not fully account for bias-type errors: regional- or continental-468 

scale biases in the OCO-2 observations, biases in modeled atmospheric convection (e.g., Basu et 469 

al., 2018; Schuh et al., 2019), or biases in modeled interhemispheric transport, among other 470 

possible biases. Most classical Bayesian and geostatistical inverse models assume that the 471 

observational or model errors are Gaussian with a mean of zero (e.g., Kitanidis and Vomvoris. 472 

1983; Michalak et al., 2004; Tarantola, 2005), making it challenging to account for the types of 473 

biases listed above. As a result, the posterior uncertainties estimated in this study are typically 474 

smaller than the range of flux estimates produced from the recent MIP study (Fig. 5; Crowell et 475 

al., 2019).  476 

 477 

4. Conclusions 478 

In this study, we couple a GIM to a global adjoint model and evaluate the data-driven 479 

relationships between environmental drivers and CO2 fluxes inferred from OCO-2. Using year 480 

2016 as an initial case study, we explore the applicability of the geostatistical approach to large 481 

satellite-based inverse problems. We find that  482 

      (1) A combination of air temperature, daily precipitation, and PAR best describe patterns in 483 

CO2 fluxes in most biomes across the globe;  484 

(2) PAR is an adept predictor of fluxes across mid-to-high latitudes, whereas a combination 485 

of daily air temperature and daily precipitation shows strong explanatory power across 486 

tropical biomes; 487 

(3) A larger number of environmental driver datasets is not selected because they are not 488 

sufficiently unique to parse out their differing relationships with CO2 fluxes using OCO-2. 489 

This high collinearity, not errors in the OCO-2 retrievals or atmospheric model, appears to be 490 

a limiting factor;  491 

(4) We estimate a global terrestrial biospheric budget of -1.73 ± 0.53 GtC in year 2016, in 492 

close agreement with recent inverse modeling studies that use OCO-2 retrievals as 493 

observational constraints. 494 

 495 
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