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Abstract

We revisited the June, 2010 - October, 2011 Guy-Greenbrier earthquake sequence in central Arkansas using PhaseNet, a deep

neural network trained to pick P and S arrival times. We applied PhaseNet to continuous waveform data and used phase

association and hypocenter relocation to locate nearly 90,000 events. Our catalog suggests that the sequence consists of two

adjacent earthquake sequences on the same fault and that the second sequence may be associated with the wastewater disposal

well to the west of the Guy-Greenbrier Fault, rather than the wells to the north and the east that were previously implicated.

We find that each sequence is comprised of many small clusters that exhibit diffusion along the fault at shorter time scales. Our

study demonstrates that machine learning based earthquake catalog development is now feasible and will yield new insights

into earthquake behavior.
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Key Points:6

• Deep neural network pickers can increase the efficiency of earthquake cataloging7

workflow.8

• The sequence appears to be composed of two sub-sequences possibly triggered by9

different wells.10

• Improved catalog reveals characteristic spatio-temporal seismicity patterns.11
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Abstract12

We revisited the June, 2010 - October, 2011 Guy-Greenbrier earthquake sequence in cen-13

tral Arkansas using PhaseNet, a deep neural network trained to pick P and S arrival times.14

We applied PhaseNet to continuous waveform data and used phase association and hypocen-15

ter relocation to locate nearly 90,000 events. Our catalog suggests that the sequence con-16

sists of two adjacent earthquake sequences on the same fault and that the second sequence17

may be associated with the wastewater disposal well to the west of the Guy-Greenbrier18

Fault, rather than the wells to the north and the east that were previously implicated.19

We find that each sequence is comprised of many small clusters that exhibit diffusion20

along the fault at shorter time scales. Our study demonstrates that machine learning21

based earthquake catalog development is now feasible and will yield new insights into22

earthquake behavior.23

Plain Language Summary24

Finding small earthquake signals from long duration continuous seismic data is a25

time consuming task, but machine learning algorithms have the potential to accelerate26

the workflow and improve the results. We reprocessed the seismic data from the area span-27

ning Guy and Greenbrier in central Arkansas in 2010 and 2011 using a machine learn-28

ing algorithm to re-examine this well-studied earthquake sequence, which is thought to29

be caused by injection of wastewater from uncoventional hydrocarbon production into30

deep disposal wells. Even using conservative post-processing steps, we were able to lo-31

cate nearly 90,000 earthquake events. The improved catalog illuminates previously un-32

seen aspects of this earthquake sequence that give new insights into its behavior.33

1 Introduction34

The Guy-Greenbrier sequence stretched from June, 2010 to October, 2011 in the35

region spanning Guy and Greenbrier, Arkansas and is thought to have been induced by36

some combination of hydraulic stimulation of horizontal production wells and injection37

of wastewater into deep disposal wells. Since the work published by Horton in 2012 (Horton,38

2012), this sequence has become an important subject for induced seismicity studies (Horton,39

2012; Llenos & Michael, 2013; Huang & Beroza, 2015; Huang et al., 2016; Ogwari et al.,40

2016; Ogwari & Horton, 2016; Yoon et al., 2017; Mousavi et al., 2017; Yehya et al., 2018).41
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Some of these studies have focused on improving the catalog using different algo-42

rithms and workflows. Ogwari and co-workers (Ogwari et al., 2016) used the short-time43

average/long-time average (STA/LTA) trigger for detection, manually picked P and S44

arrival times, and located 17,395 events from July 7, 2010 to October 20, 2010. From45

their improved catalog they concluded that seismicity was mostly correlated with the46

wastewater disposal well located close to the north end of the Guy-Greenbrier Fault. Yoon47

and co-workers (Yoon et al., 2017) applied the FAST algorithm (Yoon et al., 2015) and48

found over 10,000 events during the period from June 1, 2010 to August 31, 2010. They49

were able to locate 1,740 events, which revealed multiple event clusters from hydraulic50

fracturing operations as well as the initial stages of seismicity at the north end of the51

Guy-Greenbrier Fault.52

While these studies provided new insight into the initial stages of the sequence, the53

activity over the remaining 12 months of the sequence received less attention. Huang and54

Beroza (Huang & Beroza, 2015) used single station template matching on continuous wave-55

form from July, 2010 to October, 2011 and detected over 460,000 events. The detections56

in their study clearly showed two peaks of seismic activity: the first in October-November,57

2010 and the second in February-March, 2011, however, the hypocenters of the detected58

events were undetermined.59

Cataloging small earthquakes from long continuous data involves a trade-off be-60

tween detecting all the events and avoiding false detections. Avoiding false positive de-61

tections is often done through manual inspection in a post-processing stage, and the num-62

ber of waveforms to inspect can grow quite rapidly. Machine learning algorithms have63

the potential to play an important role in this application (Bergen et al., 2019). In par-64

ticular, deep neural network arrival time pickers (Zhu & Beroza, 2018; Ross et al., 2018)65

have the potential to accelerate the front end of the seismicity analysis workflow by re-66

ducing the need for human arrival time picking. The robustness of these algorithms can67

reduce the number of false positives, which can reduce the need for analysts to hand tune68

parameters and inspect waveforms. In this study, we use the PhaseNet arrival time picker69

developed by Zhu and Beroza (Zhu & Beroza, 2018), which uses the U-Net architecture70

(Ronneberger et al., 2015) as trained on the Northern California earthquake catalog. We71

demonstrate how this tool can accelerate and improve the earthquake cataloging work-72

flow. The improved catalog that results leads to new insights into this already well stud-73

ied earthquake sequence.74
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2 Method75

PhaseNet (Zhu & Beroza, 2018) takes a 3-component seismogram or a single chan-76

nel vertical seismogram as input, and outputs the probability of each time step being a77

P arrival, an S arrival, or neither. The algorithm is designed such that the probability78

will peak at the arrival time of the phase. We use data from ten stations located near79

the Guy-Greenbrier Fault. Station WHAR was operational during the entire period from80

June 1, 2010 to October 31, 2011, while the other stations covered only a portion of the81

period (Table S1) resulting in a temporally and spatially variable network. Each com-82

ponent of the data was high pass filtered at 1 Hz and windowed into traces with 3,00083

samples. We used an overlap of 1,500 samples to prevent earthquake signals being trun-84

cated at the edges. We removed duplicate picks in the post-processing step by tracking85

their timestamps and retained only the picks with probability 0.5 or higher. Traces con-86

taining time gaps were discarded. The approximate wall clock time for running the net-87

work on a month of continuous data from a single station was around 40 minutes on a88

single Intel Xeon CPU E5-2683V4 (2.10 GHz) hardware.89

We associated the picks returned by the neural network by grid searching for a match-90

ing synthetic moveout calculated from the travel times, similar to the methods described91

in (Johnson et al., 1997; Zhang et al., 2019) using the velocity model in (Yoon et al., 2017).92

For efficient computation, we allowed a maximum separation of 20 seconds per event when93

forming possible moveouts from the picks, and used a lookup table for the travel times,94

which was built after discretizing the domain into blocks with latitude and longitude spac-95

ing of 0.004 degrees and depth spacing of 0.4 km. We allowed a difference between ob-96

served and synthetic travel time of up to 0.4 seconds and retained only the cases with97

at least 4 associated picks from at least 3 stations as candidate events. The number of98

events after association was 100,092. We used HYPOINVERSE-2000 (Klein, 2002) to99

locate each event independently and used the grid search solutions to initialize hypocen-100

ters. We discarded events with RMS travel time residual greater than 0.2 seconds, hor-101

izontal error of greater than 5 km, and depth error of greater than 5 km. This reduced102

the number of events to 96,191.103

These initial locations placed the majority of the events on the Guy-Greenbrier Fault,104

with others forming small clusters that appeared to be a combination of natural seismic-105

ity, hydraulic fracturing operations, quarry blasts, and scatter due to the event being ei-106
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ther poorly located or a false positive. We separate these events into two groups: the on-107

fault group, which are spread along the Guy-Greenbrier Fault, and the off-fault group,108

which are more widely distributed, to facilitate double-difference relocation (Waldhauser109

& Ellsworth, 2000). The on-fault group was composed of the events within 2 km of the110

Guy-Greenbrier Fault and the remaining events were put into the off-fault group. The111

on-fault group was further separated into a group of well-constrained events and a group112

of poorly constrained events, based on the errors computed from HYPOINVERSE-2000.113

We used a horizontal error of 1 km and a depth error of 2 km for the separation.114

We paired all events with the well-constrained events to compute arrival time dif-115

ferences by waveform cross-correlation. We bandpassed the data from 1 to 25 Hz and116

the windows for cross-correlation were set to 0.2 seconds before and 0.4 seconds after the117

P arrival, and 0.4 seconds before and 0.8 seconds after the S arrival, with shift length118

of 0.3 seconds. We set the search radius to 2 km when pairing two well-constrained events119

and to 5 km when pairing a poorly constrained event with a well-constrained event af-120

ter setting the depths of all events to zero. The number of pairs was restricted to 100121

when pairing each poorly constrained event with well-constrained events to prevent the122

cluster centroid from moving towards the locations of the poorly constrained events. We123

paired neighboring events that had at least 4 differential travel time observations from124

3 stations with cross-correlation coefficient of 0.7 or above. The February 28, 2011 main-125

shock had enough phase arrival picks to determine the initial hypocenter but it could126

not be paired with other events using cross-correlation because the data was partially127

clipped. Therefore, we paired this event with 1,000 other events that were within 2 km128

radius and had highly confident picks (probability of 0.9 or greater). We passed the dif-129

ferential travel times to the HypoDD double-difference relocation algorithm (Waldhauser,130

2001) and the group was treated as a single cluster. After relocation, the events that did131

not belong to the now-sharp Guy-Greenbrier Fault and the scattered events that were132

appended to the on-fault group that were not paired with other events were placed back133

to the off-fault group.134

Most clusters and scattered events in the off-fault group had poor azimuthal sta-135

tion coverage, i.e., an azimuthal gap greater than 180 degrees. Rather than separating136

the events into well- and poorly constrained groups, we took a more conservative approach137

and only retained the events that had at least 5 other events within 1.5 km radius and138

that had at least 4 differential travel time observations from 3 stations with cross-correlation139
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coefficient of 0.7 or higher. The final number of events after the double-difference relo-140

cation was 86,657 for the on-fault group and 2,499 for the off-fault group, making the141

total count of 89,156. List of events are provided in Table S3 and the epicenters are plot-142

ted in Figure 1 along with the seismic stations, wastewater disposal wells, and produc-143

tion wells. The production wells are colored based on their completion date, which can144

either be the completion date of drilling or the date after hydraulic stimulation.145

We estimated local magnitudes with station WHAR alone as 99 percent of the events146

had phase picks from this station. We used the distance calibration factors from (Yoon147

et al., 2017) on 1 Hz highpass filtered waveforms converted to standard Wood-Anderson148

response. We measured the average of the zero to peak amplitudes of the two horizon-149

tal components. We did not calculate magnitudes of the 866 events (fewer than 1% of150

the total) not picked by station WHAR, and used the previously reported magnitude (M151

4.7) for the February 28, 2011 mainshock.152

3 Evaluation of the Workflow153

Monthly counts of P and S arrival time picks returned by the picker, and those even-154

tually used for locating the events as well as the ratio between the two (yield) are listed155

in Table S2. The number of picks from station WHAR was the highest (P: 283,248, S:156

280,331), but the overall yield was only around 0.3. The low yield is due to the limited157

number and relatively poorer performance of the other stations that were simultaneously158

in operation. There was a maximum of seven stations and an average of five during the159

study period. Because we required each event to have at least 4 phase picks from 3 sta-160

tions during phase association, events that were missed by a few stations were not as-161

sociated. This is especially apparent when comparing pre- and post- September, 2010162

in Table S2 where introducing additional stations increased the yield substantially. Note163

that data quality from stations ARK1 and ARK2 was much lower than station WHAR,164

which is apparent in the relatively low number of picks over the same period of opera-165

tion. More stations with high quality data would have greatly increased the yield from166

station WHAR and the total number of events in the catalog.167

Figure 2 shows frequency-magnitude distribution of the events along the Guy-Greenbrier168

fault plotted per batch of 1,000 with magnitude bin size of 0.1. The batch before the Febru-169

ary sequence, i.e., the distribution on the left to the vertical line at February 15, 2011,170
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contains 337 events and the last batch contains 457 events. To indicate an approximate171

level of magnitude of completeness (MC) for the figure, we used the b-value stability cri-172

terion (Cao & Gao, 2002), where the b-values were calculated using the maximum like-173

lihood estimation (Aki, 1965), and manually picked the cutoff magnitude that led to the174

first stable b-value as MC . These are shown in solid line in Figure 2. Note that these175

are approximated values and are not intended for quantitative analysis, but rather to176

support the notion that our catalog is statistically homogeneous enough to make an un-177

biased interpretation.178

4 The Case for Two Sequences179

Figure 3(a) shows the evolution of seismicity along the Guy-Greenbrier Fault, i.e.,180

the events colored in grey and the events that coincide with Well X (API: 03045102980000),181

as a function of time versus distance from point O along the dashed line in Figure 1. The182

sequence along the Guy-Greenbrier Fault is composed of two distinct sub-sequences that183

are separated from each other both in space and time. We refer to the two sub-sequences184

as the July sequence and the February sequence. Figure 4 shows the evolution of the July185

sequence, the initial stage of the February sequence, and the rest of the February sequence186

in separate plots based on the distance from point O in Figure 1 versus depth. The events187

that occurred in February 15, 2011, which is the start date of the February sequence, are188

plotted with filled circles in Figure 4(b). We plot events with magnitude 3 or greater with189

unfilled circles scaled by their estimated source radius assuming a constant stress drop190

of 9.47 MPa (Huang et al., 2016).191

The early stages of the July sequence are well explained by previous studies (Ogwari192

et al., 2016; Ogwari & Horton, 2016; Mousavi et al., 2017) suggesting it was caused by193

injection at Well 1 and 5. However, the explanation for the February sequence and the194

time delay between the two sequences is less clear. The separation of the two sequences195

was observed in the study by Horton (Horton, 2012) and he hypothesized that the Febru-196

ary sequence could have been influenced by the Enders Fault hydraulically connecting197

Well 2 and 5 with the Guy-Greenbrier Fault. Note that Well 2 is located to the west of198

the Guy-Greenbrier Fault and to the north of the Enders Fault (Figure 1) and was op-199

erating since April 2009 with a comparable injection rate to Well 1 (Well 1: 62663 m3/month,200

Well 2: 54058 m3/month) while the injection rate of Well 5 was much lower (19580 m3/month).201

The events detected by Huang and Beroza (Huang & Beroza, 2015) also clearly showed202
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the seismically less active period between late December, 2010 and early February, 2011.203

However, they associated both sequences with Well 1 and 5 instead of suggesting an al-204

ternative explanation. Later, Yehya and coworkers (Yehya et al., 2018) again associated205

the February sequence to Well 1 and 5 but suggested that the time delay between the206

two sequences could be caused by the Enders Fault providing a barrier to pore pressure207

diffusion along the Guy-Greenbrier Fault.208

The spatio-temporal evolution observed in our study suggests an alternative ex-209

planation. The initiation point of the February sequence was more than a kilometer south210

of the Enders Fault and spread bilaterally - north towards the Enders Fault and the July211

sequence, as well as to the south. This is displayed in Figure 3(b) and Figure 4(b) in two212

different views, and more explicitly in the supplementary animation (Movie S1). More-213

over, the seismicity cluster CL1 in Figure 1 suggests that the medium between the En-214

ders Fault and the Guy-Greenbrier Fault went through stress perturbation before the215

February sequence potentially due to the pore pressure diffusion from Well 2. Note that216

there are no production wells in the vicinity, which makes the possibility of these events217

being triggered by hydraulic fracturing less likely. We suggest that pressure from Well218

2 could also have diffused to the Guy-Greenbrier Fault, but not necessarily through the219

Enders Fault, triggering the February sequence. Such remote triggering of seismicity is220

also proposed and a well-accepted mechanism in Oklahoma and Kansas (Keranen et al.,221

2014; Peterie et al., 2018).222

Our observations also suggest that the July sequence effectively decayed before Wells223

1 and 5 were shut down. The seismicity cluster near the north end that formed in early224

March, 2011 is likely to be associated with Well X where its reported date of the first225

treatment was February 28, 2011 with a completion date of March 7, 2011 (Figure 3).226

Several clusters exterior to the Guy-Greenbrier Fault are also apparent in Figure227

1. While the relative locations were improved by the double-difference algorithm, the ab-228

solute locations of most of these clusters remain uncertain due to the poor azimuthal sta-229

tion coverage. However, most clusters collocate with production wells both in space and230

time, based on the well completion date, as discussed by Yoon and coworkers (Yoon et231

al., 2017). Thus, it is likely that these clusters are associated with hydraulic fracturing232

operations. The clusters on the west side of Well 3 (annotated with CL2 in Figure 1) and233

to the northeast of the Guy-Greenbrier Fault (annotated with CL3 in Figure 1), how-234
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ever, do not collocate with any production wells in the vicinity. Similar to CL1, these235

could be associated with long-term injection of the nearby wastewater disposal wells, or236

to natural seismicity.237

The depth versus distance plots in Figure 4 also exhibits multiple gaps in seismic-238

ity. The linear gap near the vertical line corresponding to the approximate intersection239

between the Guy-Greenbrier Fault and the Enders Fault in Figure 4(c) is especially no-240

table. While this is spatially correlated with the Enders Fault, precise information of the241

fault geometry is required for confirmation.242

5 Diffusion of Seismicity at Two Time Scales243

The diffusivity of a seismicity front with respect to a point injection source or other244

reference point is an important metric for analyzing induced seismicity (Shapiro et al.,245

2002; Segall & Lu, 2015). The February sequence showed a smoothly migrating front in246

both directions. Approximating the diffusivity with respect to the initiation point of the247

February sequence using r =
√

4πDt yields a diffusivity of 2.4 m2/s for the northern248

front and 1.6 m2/s for the southern front (Figure 3(b)).249

The overall sequence is comprised of a hierarchy of multiple smaller arc-shaped pat-250

terns of seismicity in space-time. These smaller seismicity patterns propagate at a some-251

what faster rate over the fault than does the large-scale front. Two well-separated arc-252

structures that span the south end of the fault are shown in Figure 3(b) and their hypocen-253

ters are shown in 3(c) as examples. The implied diffusivity is correspondingly higher -254

8 m2/s in both instances. It is not necessarily clear what quantity is diffusing, with pore255

fluid, stress, and aseismic slip being among the possibilities. Regardless of the cause, ob-256

serving such detailed features in the seismicity is only possible through the systematic257

cataloging of small earthquakes.258

Yet another aspect of interest, which is most clearly revealed in the animation (Movie259

S1), is the propensity of parts of the fault to be illuminated by microearthquake activ-260

ity multiple times. Most prominent are parts of the fault from 3-7.5 km along strike that261

were initially active in February, but were reactivated from March 22-23, and even more262

dramatically from April 7-8. Such behavior could occur if small events were driven by263

otherwise aseismic slip.264
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6 Conclusion265

Through the case study of the Guy-Greenbrier seismic sequence, we demonstrate266

that machine-learning-based analysis of earthquake sequences is now possible. The PhaseNet267

deep neural network arrival time picker can accelerate the front end of earthquake cat-268

alog development that in this instance led to precise locations of almost 90, 000 events.269

Our results suggest that the Guy-Greenbrier seismicity consisted of two sub-sequences,270

that the second sequence may have been triggered by a wastewater disposal well previ-271

ously not implicated, and revealed diffusive patterns of seismicity at shorter time scales,272

and repeated illumination of large parts of the fault by seismicity.273
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Figure 1. Epicenters of the 89,156 located events. Triangles are seismic stations, star is the

February 28, 2011 mainshock, hexagons are wastewater disposal wells with well numbers based

on Horton (Horton, 2012), and diamonds are production wells with each dashed line connecting

the heel-toe. Events that are exterior to the Guy-Greenbrier Fault and the events that collo-

cates with Well X (API: 03045102980000) in space and time are colored by their origin time.

Production wells are colored by their completion date. See text for details.
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Figure 2. Frequency-magnitude distribution of the events along the Guy-Greenbrier Fault.

Each batch contains 1,000 events except the batch before the February 15, 2011 line (337 events)

and the last batch (457 events). The magnitude bin size was set to 0.1. Estimated magnitude of

completeness (MC) per batch is shown in solid line.

Figure 3. Events along the Guy-Greenbrier Fault plotted by their origin times versus the dis-

tance from point O in Figure 1 (a) from July 1, 2010 to October 31, 2011 and (b) from February

14, 2011 to March 14, 2011. Subplot (c) shows the hypocenters of the events forming the two arc-

shaped structures in (b) scaled by their source radius. The first event in each plot is marked with

×. Numbers in (b) are approximated diffusivities for each seismicity front. See text for details.
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Figure 4. Events along the Guy-Greenbrier Fault plotted by the distance from point O in

Figure 1 versus depth (a) from June 1, 2010 to February 14, 2011, (b) from February 15, 2011 to

February 20, 2011, and (c) from February 20, 2011 to October 31, 2011. Events from February

15, 2011 (the initiation date of the February sequence) are plotted with filled circles in (b). Well

1, 2, and 5 are colored by their shutdown date and Well X is colored based on its completion date

in (c). Events with magnitude 3 or greater are plotted in open circles scaled by their estimated

source radius.
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