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Abstract

A convolutional neural network was used to detect occurrences of pockets of open cells (POCs). Trained on a small hand-

logged dataset and applied to 13 years of satellite imagery the neural network is able to classify 8,491 POCs. This extensive

database allows the first robust analysis of the spatial and temporal prevalence of these phenomena, as well as a detailed

analysis of their micro-physical properties. We find a large (30%) increase in cloud effective radius inside POCs as compared

to their surroundings and similarly large (20%) decrease in cloud fraction. This also allows their global radiative effect to be

determined. Using simple radiative approximations we find that the instantaneous global mean top-of-atmosphere perturbation

by all POCs is only 0.01Wm-2.
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Key Points:

• Convolutional Neural Networks are used to detect 8491 pockets of open cells in
marine stratocumulus between 2005-2018.
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• Their global radiative effect is found to be neglible. Closing all POCs would lead
to an instantaneous top-of-atmosphere imbalance of only 0.01 W/m2
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Abstract
Pockets of open cells sometimes form within closed-cell stratocumulus cloud decks but
little is known about their statistical properties or prevalence. A convolutional neural
network was used to detect occurrences of pockets of open cells (POCs). Trained on a
small hand-logged dataset and applied to 13 years of satellite imagery the neural net-
work is able to classify 8,491 POCs. This extensive database allows the first robust anal-
ysis of the spatial and temporal prevalence of these phenomena, as well as a detailed anal-
ysis of their micro-physical properties. We find a large (30%) increase in cloud effective
radius inside POCs as compared to their surroundings and similarly large (20%) decrease
in cloud fraction. This also allows their global radiative effect to be determined. Using
simple radiative approximations we find that the instantaneous global annual mean top-
of-atmosphere perturbation by all POCs is only 0.01 W/m2.

Plain Language Summary

The amount of sunlight that reaches, and warms, the surface of the earth is heav-
ily influenced by clouds, in particular marine stratocumulus clouds, a type of low-lying
cloud that forms above cold-upwelling regions of the ocean. Marine stratocumulus clouds
form in two distinct regimes; open-cells and closed-cells. Closed-cell clouds have a higher
cloud cover and reflectivity than open-cell clouds. Small pockets of open cell clouds some-
times form within larger regions of closed-cell clouds, these are referred to as ’pockets
of open cells’. Here we use machine learning to detect occurrences of this phenomenon
and characterise them in a long-term satellite dataset. This allows their effect on the cli-
mate to be determined for the first time. Despite substantial local-scale changes in cloud
properties we find that their effect on the climate is small.

1 Introduction

Stratocumulus clouds play a vital role in the global energy balance (Randall et al.,
1984) and can exist in two distinct regimes: open cells and closed cells (Agee et al., 1973),
which can be considered two states of a coupled oscillator (Koren & Feingold, 2011). First
coined in 2004 (Bretherton et al., 2004), POCs are small regions of open cell clouds em-
bedded in a uniform surrounding deck of closed cell clouds. Despite the importance of
the marine stratocumulus decks on the global climate (Randall et al., 1984; Stevens et
al., 2005; Hansen et al., 2013), studying POCs poses several difficulties due to their com-
plex and ill defined nature. POCs also cannot be resolved by the general circulation mod-
els (GCMs) used to model the global climate due to their relatively small spatial scale
and a lack of representation of mesoscale organisation in such models (Berner et al., 2013a).
The global radiative impact of POCs and hence that of their absence in GCMs is cur-
rently unknown.

Closed cells have a markedly higher albedo than open cells for a given cloud frac-
tion (McCoy et al., 2017), and this is exacerbated by their increased cloud fraction (Rosenfeld
et al., 2006). Factors affecting the open/closed transition could have a dramatic effect
on the total contribution of these clouds to the planetary albedo. For example, it has
been proposed that anthropogenic aerosol could have a large effect on the number of POCs,
and in turn lead to a large top-of-atmosphere radiative perturbation (Rosenfeld et al.,
2006).

Since their discovery, many studies have investigated the properties of selected POCs.
It has been observed that POCs are coherent and long-lived, lasting tens of hours (Stevens
et al., 2005; Berner et al., 2013a; Wang & Feingold, 2009), and typically consisting of
fewer, larger cloud droplets than the surrounding cloud (Stevens et al., 2005; Wood et
al., 2011; Terai et al., 2014). They locally have a reduction in cloud optical depth, and
a stronger tendency to precipitate compared to the surrounding cloud (Stevens et al.,
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2005; Berner et al., 2013a). The surrounding cloud outside of a POC is moister than in
uniform closed cells (Stevens et al., 2005), there is a reduced rate of entrainment dry-
ing, and more efficient coalescence scavenging in POCs than in the surrounding cloud (Stevens
et al., 2005; Berner et al., 2013a; Wood et al., 2011; Terai et al., 2014). Modelling stud-
ies have shown the formation of POCs is likely driven by a sharp increase in collision-
coalescence as Liquid Water Path (LWP) increases and cloud droplet number decreases (Berner
et al., 2013b), and is maintained through the enhanced nucleation caused by the very
efficient wet removal of aerosol just below the inversion (Kazil et al., 2011).

While painting a consistent picture, each of the observational studies described above
include very few POC cases (at most five), and often used data that was not collected
specifically for the analysis of POCs. Although one recent analysis presented a large hand-
annotated collection of open-cellular cloud cover over the south east Atlantic (Abel et
al., 2019), no global analysis of POCs has been performed. Here we use a machine learn-
ing technique to automatically detect POCs from satellite images and build up a database
of almost 8500 POCs, shedding light for the first time on their spatial and temporal dis-
tributions. Using this database we are also able to make robust estimates of the aver-
age micro- and macro-physical properties of these phenomena in each of the three main
stratocumulus regions of the globe.

We will outline the data used and the machine learning methods applied to the prob-
lem in Sec. 2; describe the spatial and temporal distributions of the POCs and their av-
erage physical properties in Sec. 3; before concluding in Sec. 4 with a discussion of the
implications for these results and an indication of some of the many other possible uses
for the database.

2 Method

For the POC detection process we use true-color RGB composites generated us-
ing SatPy (Raspaud et al., 2018) from the Moderate Resolution Imaging Spectrometer
(MODIS) on board the NASA Terra (MODIS Science Team, 2015) satellite. The Level
1B data sets were used which provide calibrated and geolocated radiances for all 36 MODIS
spectral bands at 1km resolution. Due to the relatively large size of POCs and to speed
up training and detection the images were linearly resampled from 1350x2030 pixels and
split in two, producing 224x224 pixel images.

In order to train the machine-learning model it is necessary to create a dataset of
satellite images and hand-logged POC masks. However, determining whether a partic-
ular pattern in a cloud deck is truly a POC or not can be ambiguous as no clear defi-
nition currently exists. In order to ensure that the labelling of the POCs was consistent,
a set of rules were devised. These rules were designed to balance the number of falsely
identified POCs and the number of missed POCs. The finalised rules are as follows:

1. The structure of the POC and surrounding cloud must be correct: POCs must be
open cell cloud, which looks ‘stringy’, and the surrounding cloud must be closed
cell cloud, which looks ‘bubbly’. It is often hard to distinguish between a thin layer
of closed cell clouds, where the ‘bubbles’ become separated and open cell clouds,
but identifying it as one of these two descriptive words helps to decide which it
is.

2. At least 80% of the perimeter of the POC must be continuous closed cell cloud.
This is still likely a POC, since it has formed mostly embedded, and not requir-
ing a POC to be completely embedded significantly increases the amount of data
with which to train the model.

3. POCs can be at the edge of an image. While there is no way of knowing what the
cloud deck looks like beyond the bounds of the image, it is beneficial for the neu-
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ral net to count these as POCs, since they share the same structure and proper-
ties as POCs elsewhere, allowing it to learn better.

4. The boundary must be ‘reasonably sharp’ on all edges. A sharp transition from
open to closed cell clouds is characteristic of a POC, and so if this transition was
too gradual the POC was ignored.

Applying these labelling rules to a selection of 1029 images resulted in a dataset
of 216 images containing 715 POCs, and 813 images that are known to contain no POCs1.

The model itself uses a modified ResNet-152 (He et al., 2015) with the dense lay-
ers replaced by three up-sampling blocks based on the second half of the ResUnet model (Zhang
et al., 2017). The ResNet-152 portion of the model is pre-trained on ImageNet (Deng
et al., 2009). The upsampling blocks are trained using a DICE loss function and Adam
optimizer, with a learning rate that decayed by factors of 0.2 when the validation loss
plateaued for 3 epochs. The final masks are refined using a second, reduced ResUnet,
model that was trained in the same way as the ResNet-152 model. These models were
both implemented in Keras (Chollet et al., 2015), using the TensorFlow engine (Abadi
et al., 2015) and are freely available as described in the Acknowledgements.

To gauge the performance of the model in terms of true positives (TP) and neg-
atives (TN), and false positives (FP) and negatives (FN), a balanced accuracy (bACC)
score is used (L. Olson & Delen, 2008):

bACC =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
. (1)

These scores were initially calculated on a pixel-by-pixel basis, however the training set
of POCs was constructed using masks that had straight edges, while the model can track
the edge of a POC with much greater accuracy. This meant that the model was unfairly
penalised since the exact shape of the POC did not match up, resulting in greater num-
bers of false negatives and positives. To combat this, the metrics were calculated using
whether or not the image contained a POC, since if it did it is likely that the POC was
placed correctly due to its distinctive nature. The balanced accuracy score of the model
on the test set of 100 images was 0.863. Therefor any POC identified by the model has
an 86% chance of being a correct identification, meaning the vast majority of POCs in
the dataset created by the model are true positives. In other iterations of the model, it
was possible to get a much higher recall (TP/(TP+FN)), however only to the detriment
of the precision (TP/(TP+FP)). We choose to prefer ensuring more of the POCs found
are true positives rather than detecting as many as possible and introducing false pos-
itives.

It should also be noted that, even with the rules enumerated above, labelling POCs
could often be quite an ambiguous task, and visual inspection confirmed that the net-
work performed very well. While the masks deviated from the human labels in some places,
those differences were entirely reasonable and in some cases more accurate than the hu-
man labelling. An example of a POC annotated by hand and by the model can be seen
in Fig. 1.

We apply the inferred POC masks to a wide selection of satellite retrievals to build
statistics about the POCs and their surrounding environment. Primarily we use the re-
trieved MODIS Terra (MOD06 L2) cloud properties (Platnick et al., 2015) which are al-
ready available on the same coordinates and have been shown to compare favourably to
in-situ observations (Painemal & Zuidema, 2011; Min et al., 2012). To complement these
retrievals we have included collocated cloud retrievals from the combined cloud profil-
ing radar (CPR; on Cloudsat) and Cloud-Aerosol Lidar with Orthogonal Polarization

1 This resource is being made publicly available - see the Acknowledgments for details.
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(a) (b) (c)

Figure 1. From left to right: (a) An example rescaled input image of a POC, (b) the hand

logged test mask, and (c) the inferred mask from the machine learning model (which did not see

this POC during training).

(CALIOP; on Calipso) to determine the cloud base and top height (2B-GEOPROF-LIDAR;
Mace & Zhang, 2014), as well as cloud and rain water paths (2C-RAIN-PROFILE; Lebsock
& L’Ecuyer, 2011). We have also included liquid water path estimates from the Advanced
Microwave Scanning Radiometer for EOS (AMSR-E) on board Aqua (Wentz & Meiss-
ner, 2004); the Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the GCOM-
W1 (Chang et al., 2015). An additional subset of 1572 POCs were detected in MODIS
Aqua imagery in order to facilitate collocation between these other products retrieved
from the A-train constellation, 398 of which intersected the narrow CloudSat-CALIOP
swath.

For visualisation of the background stratocumulus amount in each region, as well
as calculation of the radiative effect of POCs we use a combination of nearly 2 million
individual MODIS stratocumulus classifications (Wood & Hartmann, 01 May. 2006) and
MODIS monthly cloud fraction (Hubanks et al., 2008) between 2003 and 2011.

Due to their very irregular shapes and sizes it is not possible to create an average,
or composite POC. Instead, using OpenCV (Bradski, 2000) to extract regions of fixed
distance from the edge of each POC we can plot the average MODIS properties as a func-
tion of distance from the edges of all of the detected POCs. For CloudSat-CALIOP and
AMSR, the sparser sampling of these instruments necessitates a coarser aggregation and
so their results are reported only as average quantities inside and outside of the POC
boundary.

3 Results and discussion

The model was run on all MODIS images which intersected the three main marine
stratocumulus regions in the north-east Pacific (off the coast of California), south-east
Pacific (off the coast of Peru) and south-east Atlantic (off the coast of Namibia), as de-
fined by Klein and Hartmann (1993), between 2005 to 2018. From the 51,164 images in-
spected 8,491 POCs were detected, in 4,729 of the images.

Figure 2 shows the temporal distributions of POC occurrence. These have been nor-
malised using the number of images used and the average stratocumulus cloud amount
taken from ISCCP data (Young et al., 2018) in order to remove the strong seasonal cy-
cle in the quantity of stratocumulus cloud. One of the most striking features is the mag-
nitude of Peruvian distribution which shows more than three times the number of POCs
compared to the other regions. All regions show a well defined peak around local win-
tertime, coinciding with the maximum stratocumulus amount. The Californian stratocu-
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Figure 2. Temporal distribution of POC occurrences detected in MODIS true-color imagery

by our algorithm for the three regions studied, normalised by the number of images used and the

average stratocumulus cloud amount in that region.

mulus deck, however, also shows a second peak during June to August, the local sum-
mertime.

Figure 3. The percentage density of detected POCs in the three regions of interest with the

MODIS climatological stratocumulus amount overlaid. The POC dataset represents an average

between 2005 to 2018, while the MODIS stratocumulus amount is averaged over 2003 to 2011.

Figure 3 shows the spatial distribution of POCs for the three regions with the av-
erage MODIS stratocumulus amount for 2003 to 2011 overlaid. It is interesting to note
that in the Californian and Namibian cases there appears to be higher densities of POCs
further from the coast, slightly offset from the peak Sc densities. This could be a con-
sequence of the deepening of the boundary layer with increasing sea surface tempera-
ture away from coast, which favours precipitation and stratocumulus breakup. Off the
coast of Namibia, the pattern of POC formation is quite distinct, with a clear hotspot
that lies away from the centre of the climatological stratocumulus distribution. This matches
the distribution recently demonstrated by Abel et al. (2019), which they attribute to the
influence of biomass burning aerosol on the open- to closed-cell transition. In the Peru-
vian case the POC density broadly coincides with the main stratocumulus deck.
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Considering the properties of the POCs themselves, we find that the MODIS cloud
fraction is lower and has greater variability within the POC, which is to be expected,
since cloud fraction is the defining characteristic of a POC. We find mean cloud fractions
inside the POC of ∼70-80%, which are in excellent agreement with detailed in-situ stud-
ies Terai et al. (2014) which report values of 56-83% .

Figure 4 shows the retrieved mean cloud properties as a function of distance from
the POC boundary. There are some key features present in these results. Firstly, the in-
crease in cloud droplet effective radius (4a) and reduction in cloud optical thickness (4b)
inside the POCs, which is also in good agreement with previous findings and has been
attributed to a propensity for POCs to form precipitation (Stevens et al., 2005). This
is supported by a clear increase in Rain Water Path (RWP) as observed by CloudSat within
the POCs (4f). Interestingly, the effective radius transitions more slowly than the cloud
optical thickness. Since the MODIS retrieved LWP is directly proportional to the effec-
tive radius multiplied by the optical thickness this leads to a dip in the LWP (4b) at the
edge of the POCs. While the CloudSat retrievals are unable to resolve this dip, they do
show a broadly constant LWP inside and outside the POC, corroborating the relation-
ship of effective radius and optical thickness seen in MODIS (despite a constant bias in
the respective retrievals). The AMSR LWP is only shown outside the POC, since the
large footprint is unable to resolve the open-cellular structure, and suggests a slightly
higher LWP than CloudSat.

While the MODIS cloud top height (CTH) retrieval suffers from artifacts due to
the broken clouds within the POCs (not shown), Figure 4e shows the average cloud base
height (CBH) and CTH estimated from the CALIOP-CloudSat retrievals. These show
a robust decrease in CBH of around 100m inside the POCs as compared to the surround-
ing closed cell stratocumulus, again in good agreement with in-situ observations which
show a decrease of around 50m Terai et al. (2014). The average CTH within the POC
also shows a decrease of a similar magnitude, although this disappears when the MODIS
cloud mask is applied to the CALIOP-CloudSat retrieval suggesting that the decrease
in CTH is primarily caused by optically thinner veil clouds which have recently been as-
sociated with the breakup of stratocumulus (O et al., 2018).

One property we can discern directly from the POC masks, and for the first time
robustly quantify, is the spatial area of the POCs. The probability distributions shown
in Fig. 4d show a clear bi-modal, log-normal distribution. The peak in the smaller mode
occurs at ∼ 350km2, while the larger distribution (containing most of the POCs) peaks
at ∼ 6750km2. It is not clear why POCs should form in these two distinct size regimes,
however it is possible that this is a consequence of growth dynamics of POCs. Figure A1
shows the average size of each POC detected in an image - ordered by its size within that
image and demonstrates that when many POCs are present in an image they tend to
smaller, while larger POCs tend to appear alone. We hypothesize that the smaller POCs
(the first mode in Fig. 4d) represent an initial population of individual POCs while the
larger (second mode of) POCs is primarily the result of merging of these smaller POCs.
This is corroborated by Fig. A2, which shows the growth of the maximum and total POC
size in a given region where POCs were detected in consecutive days. While the total
number of POCs present over more than a few consecutive days decreases very rapidly,
on average, the POCs in a given region appear to grow over a period of several days.

Finally, and perhaps most interestingly, these properties all seem to have very lit-
tle dependence on the region in which they are found, implying that a POC is a univer-
sal phenomenon whose formation and properties do not depend on its location or the
differences in their large scale environment.

Combining these derived properties with the density distributions, the effect of POC
formation on the radiative properties of the stratocumulus decks can be estimated. The
albedo of the cloud was calculated using the Eddington approximation (Christensen &
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Inside POC Outside POC

Cloud Fraction (fc) 0.8086 ± 0.1285 0.9573 ± 0.05398
Cloud Optical Thickness (τc) 7.996 ± 3.25 13.58 ± 3.55
Cloud albedo (αc) 0.375 0.51
Scene albedo (α) 0.33 0.49

Table 1. Cloud properties and albedo inside and outside POCs.

Stephens, 2011; Stephens, 1994), and then combined with the cloud fraction to give the
overall scene albedo of both the regions inside and outside the POCs:

αc =
(1− g) τc

2 + (1− g) τc
, (2)

α = fcαc + (1− fc)αo, (3)

where αc is the albedo of the cloud, τc is the cloud optical depth, g is the asymmetry
parameter, which for cloud droplets is taken to be ∼0.85, α is the average albedo for the
scene, fc is the cloud fraction, and αo is the albedo of the ocean, which was taken to be
0.15 in this case. The interior quantities were averaged over the region from the centre
of the POC to 35 km from the boundary, and the exterior quantities were averaged over
the region from 35 km from the boundary to 150 km from the boundary in order to avoid
the ∼70 km transition zone, as summarised in Table 1. This leads to an albedo of the
interior region of POCs (αPOC) of 0.33, whereas the exterior region was calculated to
be 0.49 (αclosed cell), giving a difference of 0.16.

This difference in albedo can be combined with the average incident solar radia-
tion (R ≈ 350Wm-2), and the appropriate cloud amounts to estimate the difference in
top-of-atmosphere radiation caused by the presence of POCs using:

Rdiff = Rinc × (αno POCs − αwith POCs) , (4)

αno POCs = |fstratαclosed cell| , (5)

αwith POCs = |fstrat (fPOCαPOC +

(1− fPOC)αclosed cell)| ,
(6)

where fstrat is the MODIS stratocumulus amount, fPOC is the density of POCs (both
shown in Fig. 3) and the vertical bars represent averages taken over the entire spatial
region of available data. This leads to estimates of αwith POCs and αno POCs of 0.019803
and 0.019843 respectively (a 0.2% change), and an overall radiative effect of Rdiff ≈ 0.01Wm−2.
The locally averaged albedo changes are similar for Californian and Namibian POCs at
0.3%, while it is around twice as large in the Peruvian POCs at 0.6% driven by the higher
rate of occurrence there. Using ISCCP climatological stratocumulus amount (Young et
al., 2018), or surface derived values (Hahn & Warren, 2008) results in identical values
to within the accuracy reported here. This small value reflects the relatively low spatial
density of POCs (c.f. Fig. 3) and suggests that any change of POC amount via anthro-
pogenic activity (c.f. Rosenfeld et al. (2006)) would not have a large effect on the Earth’s
radiation balance. It is possible that the observed POC occurrence is already affected
by anthropogenic aerosol, however the similarity in micro-physical properties and rates
of occurrence across the different regions would seem to suggest this is unlikely.

4 Conclusion

We have created a large-scale database of all POCs present in three of the main
stratocumulus decks over the last 13 years (nearly 8,500) and have analysed their spa-
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tial and temporal distributions. The properties of the POCs themselves were also stud-
ied providing significant evidence in support of previous observations of their properties,
including a 33% increase in effective radius and a 20% reduction cloud fraction compared
to the surrounding cloud. The LWP shows a marked reduction at the boundary of the
POCs, which along with a corresponding increase in rain water path within the POCs,
reinforces the role of precipitation in POC formation. Finally, the properties and clima-
tology of POCs were combined to obtain an estimated radiative effect of 0.01 W/m2, in-
dicating that closing all the POCs in the atmosphere may not have as big an impact as
previously postulated (Rosenfeld et al., 2006). These are nevertheless interesting phe-
nomena due to their relevance for stratocumulus to cumulus transition (with potentially
much larger effects) and future work tracking POC development and dissipation in geo-
stationary satellite imagery should shed light on these mechanisms. This will also en-
able an in-depth analysis of their growth dynamics, including testing our hypothesis of
the possible role of merging in forming large POCs. The hand-logged training database
and automatically detected POCs are made freely available to the community for fur-
ther analysis.

Appendix A Supplementary Figures
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Figure 4. Retrieved cloud properties as a function of distance from the boundary of POCs:

(a) Cloud effective radius as retrieved from MODIS; (b) Cloud liquid water path as retrieved

from MODIS (solid lines) and CloudSat (circles) and AMSR-E (squares) shown as averages in-

side and outside the POCs; (c) Cloud optical thickness as retrieved from MODIS. The vertical

line at 0 is the boundary between the POC and the surrounding cloud, with negative values

on the x axis being inside the POC and positive values being outside. d) shows the probability

distribution of the areas of the POCs in each region. The different colours represent different ge-

ographical regions, and the shaded regions represent the standard error of the data. e) CALIOP-

CloudSat retrieved cloud base and top height for each region with CALIOP cloud mask (hollow)

and MODIS cloud mask (solid). f) Rain water path retrieved from CloudSat for each region both

inside and outside the POCs.
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Figure A1. The mean POC area ordered by the largest to smallest POC in each image.

Figure A2. POC properties as a function of consecutive days that a POC was detected in

that region: (a) the average maximum area of the POCs in a given scene; (b) average number of

POCs in each scene; (c) average total area of POCs in each scene; (d) absolute number of POCs

across all scenes for each consecutive day bin.
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