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Abstract

The winter Arctic Oscillation (AO) is important for understanding the Northern Hemisphere climate variability and pre-

dictability. However, ENSEMBLES models produce inconsistent predictions when applied to the interannual variability of the

1962–2006 winter AO. In this study, the interannual increment of the winter AO index (DY AOI) during 1962–2006 is first

improved by a dynamical-statistical model with two predictors: the preceding autumn Arctic sea ice and the concurrent winter

ENSEMBLES-predicted sea surface temperature over the North Pacific. Next, the improved final AOI is obtained by adding the

improved DY AOI to the preceding observed AOI. Because the interannual increment approach can amplify prediction signals

and takes advantage from the previous observed AOI, this method shows promise for significantly improving the interannual

variability prediction capabilities of the winter AO during 1962–2006 in the ENSEMBLES models. Therefore, this study offers

important insights for AO predictions, even other climate variables predictions.
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Improving the Prediction of Arctic Oscillation by the Interannual

Increment Approach

Fig. 2: The normalized DJF AOI (a) and DY of AOI (b) during

1962−2006 derived from observation and ENSEMBLE models,

which are obtained by projecting the observed AO spatial pattern.

Fig. 3: (a) The correlation coefficients between the

preceding SON sea ice concentration and DJF AOI

derived from observation during 1961/62−2005/06. (b)

As in (a), but for the DY of sea ice and the DY of AOI.

The dotted areas indicate statistical significance at the

95% confidence level, based on a Student’s t test.

Fig. 4: (left) The correlation coefficients between the

observed DJF AOI and ENSEMBLE-predicted SST

during 1962−2006. (right) As in (left), but for the DY of

SST and the DY of AOI. The dotted areas indicate

statistical significance at the 95% confidence level, based

on a Student’s t test.

Fig. 5: Predicted and observed (a) DY of AOI and (b)

AOI for 1962−2006, in which the predicted DY using

the dynamic and statistical prediction model in the

cross-validation.

Predictor1 — Preceding Sea Ice

Predictor2 — Concurrent SSTPreceding sea ice and concurrent SST are 

used as the predictors to improved the AO 

prediction for their significant impact on 

DJF AO. The dynamical-statistical model 

for DY_AOI prediction is established based 

on a multivariable regression method, as 

follows:

ENSEMBLE

Model

Cross-Validation RMSE

AOI DY_AOI AOI DY_AOI

ECWMF 0.54(0.20) 0.60(0.02) 17% 46%

IFM 0.51(0.29) 0.57(0.31) 9% 38%

MF 0.54(0.33) 0.59(0.30) 8% 40%

UKMO 0.54(0.22) 0.60(0.31) 16% 40%

INGV 0.48(-0.05) 0.52(-0.11) 22% 50%

MME 0.51(0.36) 0.55(0.33) 3% 37%

Table 1 The correlation coefficients between the observed 

and predicted AOI, DY_AOI by the improved scheme 

(raw model) during 1962−2006 along with the 

improvement of RMSE in parentheses. Significance level 

at 95% (blue) and 99%(red) are based on a Student’s t

test with effective degrees of freedom.

The good performance of this dynamical-statistical 

model  indicates a capability of the interannual-increment 

approach for interannual prediction of the AO.  Thus, the 

dynamical-statistical model combine interannual-

increment approach gives a new clue for AO prediction 

and the short-term climate prediction.

Fig. 6: Predicted and observed (a) DY of AOI and (b)

AOI for 1990−2006, in which the predicted DY

using the dynamic and statistical prediction model in

the hindcast.

The main advantage of the interannual-increment

approach is that the year-to-year increment (calculated by

the value of current year minus the value of preceding year)

amplifies the signals of interannual variability of predictors

and/or predictant. To date, this approach has been utilized

in many studies.

In this study, efforts have been made to improving the

prediction of Arctic Oscillation (AO) by the interannual-

increment approach.

a. Introduction

Table 2 The correlation coefficients between the observed 

and predicted AOI, DY_AOI by the improved scheme 

(raw model) during 1990−2006 along with the 

improvement of RMSE in parentheses. Significance level 

at 95% (blue) and 99%(red)  is based on a Student’s t test 

with effective degrees of freedom.

ENSEMBLE

Model

Hindcast RMSE

AOI DY_AOI AOI DY_AOI

ECWMF 0.66(0.09) 0.76(0.26) 41% 58%

IFM 0.62(0.08) 0.73(0.35) 26% 37%

MF 0.67(0.31) 0.76(0.40) 31% 53%

UKMO 0.65(-0.07) 0.72(0.34) 35% 39%

INGV 0.67(0.10) 0.79(-0.08) 30% 54%

MME 0.66(0.15) 0.75(0.39) 29% 42%

Cross-validation Hindcast

b.  AO Prediction of ENSEMBLE

e. Conclusion

d. Results

DY_AOIpredicted = aDY_SICI+bDY_SSTI

AOIimproved = DY_AOIpredicted + AOIobs-preceding

c. Improvement

Fig. 1: The spatial patterns of the leading EOF

mode of DJF sea level pressure anomalies (hPa)

of north 20ºN during 1961−2006 derived from

observation (a) and ENSEMBLE (b-g). The pcvar

and pcc represent the percent variance and spatial

correlation coefficient of the leading EOF modes

between observation and ENSEMBLE models,

respectively.

The ENSEMBLE model have  bad performance in 

predicting the spatial pattern and interannual variation of  

AO, which demands improvements.

The dynamical-statistical model demonstrates a considerable capability for improving the 

AOI prediction of ENSEMBLE, with most the improved correlation coefficients significant at 

99% confidence level and the large reduce of RMSE in cross-validation and hindcast. 

Reference: Zhang, D., Huang, Y., & Sun, B. (2019). Verification and improvement of the capability of ENSEMBLES to predict the winter Arctic Oscillation. 
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Verification and Improvement of the Capability
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Arctic Oscillation
Dapeng Zhang1,2 , Yanyan Huang1,2 , and Bo Sun1,2

1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of
Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing,
China, 2Nansen−Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, China

Abstract The winter Arctic Oscillation (AO) is important for understanding the Northern Hemisphere
climate variability and predictability. However, ENSEMBLES models produce inconsistent predictions
when applied to the interannual variability of the 1962–2006 winter AO. In this study, the interannual
increment of the winter AO index (DY_AOI) during 1962–2006 is first improved by a dynamical‐statistical
model with two predictors: the preceding autumn Arctic sea ice and the concurrent winter
ENSEMBLES‐predicted sea surface temperature over the North Pacific. Next, the improved final AOI is
obtained by adding the improved DY_AOI to the preceding observed AOI. Because the interannual
increment approach can amplify prediction signals and takes advantage from the previous observed AOI,
this method shows promise for significantly improving the interannual variability prediction capabilities of
the winter AO during 1962–2006 in the ENSEMBLES models. Therefore, this study offers important insights
for AO predictions, even other climate variables predictions.

1. Introduction

Thompson and Wallace (1998) found that the Arctic Oscillation (AO), which is also known as the Northern
Annular Mode, is the primary mode of the extratropical atmospheric circulation in the Northern
Hemisphere (NH). The AO is characterized by an out‐of‐phase relationship between the midlatitudinal
and high‐latitudinal parts of the atmosphere in the NH. The positive phase of the AO is associated with posi-
tive (negative) anomalies of SLP in the midlatitudes (high latitudes) and vice versa; the AO has a zonally
symmetric pattern (Thompson & Wallace, 2000). This pattern of the AO represents a barotropic structure
that can be observed from the ground up to the lower stratosphere (Thompson & Wallace, 1998, 2001).

The AO has a larger amplitude and meridional scale in the cold season (Thompson & Wallace, 2000)
throughout the year. Consequently, the winter AO produces a stronger exchange of mass and energy
between the midlatitudes and the Arctic atmosphere than the other season AO and has a noticeable effect
on the temperature and precipitation of the Northern Hemisphere (He et al., 2017, 2019; Wettstein &
Mearns, 2002). Early studies suggested that the winter AO has an important influence on the climate of
East Asia by impacting the Siberian High, westerly winds, and blocking frequencies (Gong & Wang, 2003;
He et al., 2017; Li et al., 2014). Specifically, a positive phase of the winter AO is associated with a weakened
East Asian winter wind, leading to weaker cold wave activities and warmer conditions in East Asia as well as
increased (decreased) winter precipitation in the southern (northern) regions of China (He &Wang, 2013; Li
et al., 2018; Zhu et al., 2018). The winter‐spring AO also influences spring dust storms, temperature, and pre-
cipitation (Gong et al., 2006; He et al., 2017; Mao et al., 2011) and even summer rainfall in China (Gong &Ho,
2003). Moreover, the winter AO can also lead to extreme weather events (He &Wang, 2016). The winter AO
in 2008 played an important role in a major winter storm event in South China that affected 100 million peo-
ple and led to 100 billion yuan in economic losses (Zhao et al., 2008). Considering the significant influence of
the winter AO on NH climate predictability and the predictability of extreme weather events, it is important
to obtain reliable predictions of the winter AO.

The main method for predicting the AO is the numerical model. Previous studies found that the National
Centers for Environmental Prediction Climate Forecast System version 2 can predict the winter AO up to
two months in advance (Riddle et al., 2013). However, this predictive capability is based on the ensemble
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average of 188 hindcasts of the Climate Forecast System version 2, which requires huge computing
resources. In addition, Kang et al. (2014) assessed six state‐of‐the‐art seasonal forecast models that accu-
rately predicted the winter AO for 1997–2010; however, they were less accurate in predicting the winter
AO for 1983–1996. The predictability of the AO by DEMETER project was also evaluated; the seven mod-
els in this project succeeded in predicting the AO pattern but failed to predict the temporal variability of
the AO (Qian et al., 2011).

It is revealed that the larger the variability is, the better predictability will be (Sun & Wang, 2013). Recently,
considering the quasi‐biennial oscillation of climate variables, the interannual increment approach was pro-
posed to improve seasonal to interannual climate predictions (Fan et al., 2008). Instead of focusing on the
anomalies of a variable relative to climatology, a strategy that is used in the conventional prediction
approach, the interannual increment approach uses the year‐to‐year increment (calculated by the value of
the current year minus the value of preceding year, called the DY) of variables as the predictant. Then, the
final predicted variable result is obtained by adding the predicted DY of the variable to the observed value
from the previous year. Specifically, if a climate variability (Y) has a characteristic of quasi‐biennial oscilla-
tion, Yi and Yi − 1 represent the variable in the current and previous year, respectively, then Yi = C + Pi and
Yi − 1 =−C+ Pi − 1 where Pi and Pi − 1 represent a disturbance in C. After ignoring the disturbance, the year‐
to‐year increment is DYi = Yi − Yi – 1 ≈ 2C, suggesting that the amplitude of a variable in the form of the
year‐to‐year increment is twice the value of the anomaly (Fan et al., 2008), which is conductive to short‐term
climate prediction (Sun & Wang, 2013). Meanwhile, because the final predicted variable is obtained by
including the observed value from previous year, which contains the interdecadal signals, the interannual
increment approach is able to capture the interdecadal variability of the variable (Fan et al., 2012; Huang
et al., 2014). To date, the interannual increment approach has successfully predicted winter/summer tem-
perature and rainfall over China (Fan et al., 2008; Fan &Wang, 2010), and East Asian winter/summer winds
and winter haze days (Fan et al., 2012; Tian et al., 2018; Yin & Wang, 2016). This interannual increment
approach is also used to improve the large‐scale atmospheric circulation predictions of numerical models
that focus on climate patterns such as the Asian‐Pacific Oscillation (Huang et al., 2014), the North
Atlantic Oscillation (Fan et al., 2016; Tian & Fan, 2015), and the Antarctic Oscillation (Zhang et al., 2019).
Moreover, recent studies have suggested that the interannual increment approach has particularly effective
predictive capabilities with respect to extreme weather events (Qian et al., 2018). However, the utility of this
interannual increment approach for predicting the AO has not yet been examined.

ENSEMBLES is a European Union‐funded integrated project that intends to develop an ensemble prediction
system for climate change based on the principal state‐of‐the‐art, high‐resolution global models developed in
Europe (Doblas‐Reyes et al., 2009). The five leading European global coupled climate models of the
ENSEMBLES project are well suited to evaluate climate predictability (Li et al., 2012). Previous studies have
suggested that ENSEMBLES has a strong ability to predict the East Asian winter monsoon and the western
North Pacific summer climate, including precipitation and sea surface temperatures (SSTs; Li et al., 2012;
Weisheimer et al., 2009; Yang & Lu, 2014). Meanwhile, the 46‐year hindcasts of 1961–2006 in
ENSEMBLES offer an opportunity to understand the predictability of climate variables and their stationarity.
However, how do the ENSEMBLES models predict the AO? Can the interannual increment approach
improve AO predictions? All of these issues are worth explored.

In this study, the ability of ENSEMBLES to predict the winter AO is assessed, and a dynamical‐statistical
model is established to improve the ability of ENSEMBLES to predict the winter AO based on the interann-
ual increment approach. The data and methods are introduced in section 2. Section 3 evaluates the ability to
predict the AO using ENSEMBLES. In section 4, the dynamical‐statistical model is established to improve
AO predictions of ENSEMBLES and is validated by the methods of cross‐validation and independent hind-
casting. Conclusions and discussions are presented in section 5.

2. Data and Methods
2.1. Data

The ENSEMBLES project includes five coupled atmosphere‐ocean‐land models developed by the European
Centre for Medium‐Range Weather Forecasts, the Leibniz Institute of Marine Sciences at Kiel University
(IFM), Météo‐France (MF), the UK Met Office (UKMO), and the Euro‐Mediterranean Center for Climate

10.1029/2019EA000771Earth and Space Science

ZHANG ET AL. 1888



Change (CMCC). We use the monthly hindcasts of the SLP and SST for December‐January‐February (DJF)
during 1961−2006 in the five ENSEMBLES models. For each year, the monthly hindcasts are initialized on 1
November with nine members for each model. The multimodel ensemble (MME) is calculated by taking a
simple equal weight average of the five models.

The observed data used in this study include monthly SLP data (2.5° × 2.5°) derived from the National
Centers for Environmental Prediction Reanalysis I product (Kalnay et al., 1996), SSTs from the NOAA
Extended Reconstructed SST version 3b (2° × 2°) data set (Smith et al., 2008), and sea ice concentration
(SIC) data (1° × 1°) from the Met Office Hadley Centre (Rayner et al., 2003). All data sets are interpolated
to 2.5° × 2.5° horizontal resolution using bilinear interpolation. Considering that this study focuses on inter-
annual variability, all of the data sets from 1961 to 2006 are detrended.

The Arctic Oscillation Index (AOI) of winter (DJF) is defined as the time series of the leading empirical
orthogonal function (EOF) mode of winter SLP anomalies north of 20°N (Thompson & Wallace, 1998).
For obtaining the best model performance, the ENSEMBLES‐predicted AOI in this study is obtained
by projecting the observed AO spatial pattern (the leading EOF mode) onto the ENSEMBLES‐
predicted SLP.

2.2. Methods

In this study, a dynamical‐statistical model is established to improve the ENSEMBLES‐predicted AOI.
Assuming that two predictors of sea ice (SIC) and SST are selected and the relationships of the winter AO
with SST and SIC are analyzed. Afterward, based on the multivariable regression method, the dynamical‐sta-
tistical model for the DJF DY of AOI (DY_AOI) prediction is established as follows:

DY_AOI ¼ aDY_SICI þ bDY_SSTI (1)

where DY_SICI represents the observed preceding SON SIC for the DY form; DY_SSTI is the ENSEMBLES‐
predicted concurrent SST for the DY form; and a and b are the corresponding regression coefficients for SON
sea ice and the DJF SST, respectively. In this way, dynamical‐statistical models are established for each of the
ENSEMBLES models.

Both the cross‐validation method and the independent hindcast method are used to validate this dynamical‐
statistical model. The cross‐validation method predicts the predictand for two specific years via a model built
from the sample omitting these two years; this approach is known as the two‐year‐out cross‐validation
(Michaelsen, 1987). Specifically, we use the data during 1964−2006 to establish the dynamical‐statistical
model to predicted the DYs of AOI (DY_AOIs) in 1962 and 1963. Then the improved AOIs from 1962 and
1963 are obtained by adding the predicted DY_AOIs to the observed AOI from 1961 and 1962, respectively.
And so on, we can get the improved AOI from 1962 to 2006. Independent hindcasts for 1990−2006 also pre-
dict the DY_AOIs in the target year among the 17 years, while a model is established on a 29‐year sliding
window prior to the target year. Then the final improved AOIs are also got by adding the predicted
DY_AOIs to the observed AOIs from previous year.

The correlation coefficient and the root‐mean‐square error (RMSE) are also used in this study. The statistical
significance of correlation coefficients is estimated using Student's t test. The number and independence of
samples often have nontrivial influence on their significance. The effective number of independent samples
(degrees of freedom) is calculated by Monte Carlo simulation and testing, which is measured by the quotient
of the number dividing the autocorrelations at different lags of the time series, removing the autocorrelation
of the independent samples or time series (Livezey & Chen, 1983). In this study, the improved DY_AOI and
AOI in cross‐validation and independent hindcast are tested with effective degrees of freedom (Tables 2
and 3).

3. The Predictive Capability of ENSEMBLES

Considering that the definition of the AO mode in this study is the leading EOF mode of the SLP, the SLP
predictions in ENSEMBLES are evaluated first. Figure 1 shows the climatological DJF mean SLP north of
20°N during 1961−2006 derived from observations and the ENSEMBLES models. The SLPs predicted by
ENSEMBLES are consistent with observations of the spatial pattern of the DJF mean SLP in the NH.
Specifically, the position and intensity of the Mongolian high, the Aleutian low, and the Icelandic low are
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well predicted by ENSEMBLES models relative to the observed results. All of the spatial correlation
coefficients (uncentered) between the ENSEMBLES predictions and the observations for the DJF mean
SLP are above the value of 0.90 significance at the 95% confidence level except for the correlation
coefficients from the ECWMF model (0.88), which overestimates the intensity of the Icelandic low.
Moreover, all of the models show a 4−8‐hPa overestimation of the mean SLP over the European and
Atlantic regions, where the observed SLPs are mostly below 1,020 hPa (Figure 1a), while the
ENSEMBLES‐predicted SLPs are mostly above 1,020 hPa (Figures 1b–1g).

The EOF analysis is applied to each ENSEMBLES model to evaluate the AO modes predicted by these mod-
els. The leading EOF modes are shown in Figure 2, which is characterized by opposite anomalies in the
Arctic Ocean and the midlatitudinal oceans (the North Atlantic Ocean and the North Pacific Ocean), repre-
senting the zonally symmetric pattern of the AO. Although all ENSEMBLES models are able to produce this
opposite pattern well, they tend to overestimate the anomalies in the North Pacific and underestimate the
anomalies in the North Atlantic and Arctic. Correspondingly, the spatial correlation coefficients between
the observations and the forecasts reflect the inconsistent predictive capabilities of these models. The MF,
ECWMF, and UKMO models have comparable spatial correlation coefficients (uncentered) that are higher
than 0.60, indicating that these models perform reasonably in identifying the positions of anomalies in the
Arctic Ocean, North Atlantic Ocean, and North Pacific Ocean in comparison to the observations. In contrast,
the IFM and CMCC models and MME do not capture the positions and intensities of the anomalies in the
Arctic and North Atlantic. Generally, the ENSEMBLES models can capture the zonally symmetric pattern
of the AO mode, but place much emphasis on the center in North Pacific. Furthermore, the MF, UKMO,
and ECWMF models exhibit more reasonably predictive capabilities for AO prediction than the
other models.

Figure 3 displays the DJF AOIs and the DY_AOIs from 1962 to 2006 that were obtained from observations
and the ENSEMBLES forecasts. From above analysis, the ENSEMBLES project shows relatively high biases
in its predictions of AO spatial pattern; the ENSEMBLES‐predicted AOIs are obtained by projecting the
observed AO spatial pattern (Figure 2a) onto the ENSEMBLES‐predicted SLP to get optimal models fore-
casts. The MME shows relatively consistence with the observed AOI with a correlation coefficient of 0.36,
significant at 99% confidence level (Table 1), notwithstanding the opposing relationship in the 1960s and
1990s. However, the correlation coefficients between the observed and predicted AOIs are 0.20, 0.29, 0.33,
0.22, and −0.05 for the ECWMF, IFM, MF, UKMO, and CMCC models, respectively (Table 1). Only the
IFM andMF‐predicted the correlation coefficients are statistically significant at 95% confidence level, reflect-
ing the uneven performance of the above models in predicting the interannual variation of the DJF AO
(Figure 3a). The corresponding DY_AOIs also reflect the uneven capabilities of most of the forecasts, which
exhibit inconsistent relationships between the observed and predicted results; correlation coefficients are

Figure 1. The DJF mean sea level pressure (units: hPa) north of 20°N during 1961–2006 derived from the (a) observations,
(b) ECWMF, (c) IFM, (d) MF, (e) UKMO, (f) CMCC, and (g) MME.
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0.02 and 0.11 for the ECWMF and CMCC models, respectively (Table 1). Meanwhile, the IFM, MF, UKMO,
and MMEmodels have correlation coefficients of 0.31, 0.30, 0.31, and 0.33, significant at the 95% confidence
level, respectively, indicating their relative ability to predict the DY of the AOI. Therefore, the ECWMF and
CMCC models have poor performance in predicting the interannual variation of AOI. Although the IMF,
MF, and MME models show some predictive capabilities for the AOI and the DY of the AOI, the
ENSEMBLES predictions for the DJF AO are far from reliable and require improvements.

4. Improvements to AO Prediction

The AO has a two‐year period for the wavelet analysis of the winter AOI from 1961 to 2006 in Figure 4, indi-
cating that it is reasonable to use the interannual increment approach to improve the AO prediction.
Additionally, considering the poor performance of most ENSEMBLES models in DJF AO predictions, the

combination of a dynamical‐statistical model and an interannual incre-
ment approach is used to improve the AO predictions. According to this
method, a dynamical‐statistical model is established to improve the DY
of the AOI for each model of ENSEMBLES. Then, the final predicted
AOI is generated by adding the improved DY of the AOI to the observed
AOI of the previous year. The predictors used in this model, the approach
of this dynamical‐statistical model, and the validation and hindcast of this
model are discussed as follows.

4.1. The Predictors and Associated Mechanisms

Two types of predictors can be used to establish the dynamical‐statistical
model. One is the observed preceding predictor, which has a lead‐lag rela-
tionship with the predictand, that is, the DJF AO. The other is the concur-
rent predictor that is well predicted by numerical models. It is suggested
that sea ice (Liu et al., 2012), SST (Marshall et al., 2001), and snow cover
(Saito & Cohen, 2003) contribute to the interannual variability of winter
AO. The changes in these boundary conditions have influence on the
upward propagation of planetary waves from the lower troposphere to
the stratosphere, strengthening or weakening the stratospheric polar vor-
tex. Then, there is a process of downward propagation of stratospheric AO
anomalies to troposphere, which is modulated by the waveguide for

Figure 2. Spatial patterns of the leading EOF mode of DJF SLP anomalies (units: hPa) north of 20°N during 1961–2006
derived from the (a) observations, (b) ECWMF, (c) IFM, (d) MF, (e) UKMO, (f) CMCC, and (g) MME. The abbreviations
pcvar and pcc represent the percentage variance and spatial correlation coefficient of the leading EOF modes between the
observations and the models, respectively.

Figure 3. The normalized (a) DJF AOI and (b) DY_AOI during 1962–2006
derived from the observations, ECWMF, IFM, MF, UKMO, CMCC, and
MME.

10.1029/2019EA000771Earth and Space Science

ZHANG ET AL. 1891



planetary‐scale waves, contributing to a certain AO phase/amplitude (Baldwin & Dunkerton, 1999; Xu, He,
et al., 2018). Accordingly, the preceding September‐October‐November (SON) Arctic sea ice data and
concurrent DJF SST data are selected for the dynamical‐statistical model; these data are derived from the
observational data and the ENSEMBLE predictions, respectively.

The variability of highly reflective sea ice could affect the radiation balance, the freshwater budget, and deep-
water formations along with the surface flux of heat and moisture between the ocean and the atmosphere
that modulates atmospheric circulation (Lin & Li, 2018; Stammerjohn & Smith, 1997; Xu, Li, et al., 2018).
It is suggested that a reduction in SON Arctic sea ice could lead to the development of the negative phase
of the DJF AO (Kim et al., 2014; Liu et al., 2012). The mechanism can be explained that the decreased sea
ice cover in Arctic strengthens the upward planetary wave propagation with wave number of 1 and 2.
Then, the upward waves weaken the stratospheric polar vortex, inducing a negative phase of AO at the tropo-
sphere/surface though (Kim et al., 2014) with a downward process above mentioned (Baldwin & Dunkerton,
1999). The positive correlation relationship between SON Arctic sea ice and DJF AO is also shown in
Figures 5a and 5b. Therefore, the preceding SON Arctic sea ice can be considered a predictor for the dyna-
mical‐statistical model.

Figure 5 shows the distribution of correlation coefficients between the preceding SON SIC and the DJF AOIs.
A positive relationship between the Arctic SON SIC and the winter AOI is displayed in Figure 5a. The signif-
icant influence of the autumn sea ice on the winter AO is particularly evident in the Beaufort Sea (Figure 5a).
In addition, the correlation coefficients between the corresponding DY_SICs and DY_AOIs are shown in
Figure 5b. The DY_SICs and DY_AOIs indicate a more significant correlation in the East Siberian Sea and
the Beaufort Sea than is demonstrated by the above‐mentioned correlation between the SIC and the AOIs.

The increased correlation shown in Figure 5b demonstrates the advantage
of the interannual increment approach for amplifying the signals of inter-
annual variability. Thus, the area‐weighted areal mean SON DY_SIC in
two key regions is defined as the sea ice index (DY_SICI), shown in
Region‐1, covering (73°N−80°N, 147°E−164°E), and Region‐2, covering
(67°N−74°N, 130°W−170°W), for the positive correlation coefficients
between the DY_SIC and the DY_AOI are associated with the East
Siberian Sea and the Beaufort Sea, as shown in Figure 5b. Hereafter, the
DY_SICI for SON sea ice is defined as the sum of the area‐weighted areal
mean SON DY_SICs in Region‐1 and Region‐2, which has a significant
correlation coefficient of 0.55 with the observed DY_AOI. Thus, the
DY_SICI will be used in the dynamical‐statistical model for
DY_AOI predictions.

Many previous studies suggest that the SST has a significant influence on
atmospheric circulation (Han et al., 2017; Li et al., 2017; Marshall et al.,
2001). In particular, the association between the extratropical Pacific
SST and atmosphere is described (Li et al., 2015). Li et al. (2015) revealed
that positive anomalies in the midlatitudinal North Pacific tend to

Table 1
Correlation Coefficients Between the Observed and Directly Predicted AOIs and the Corresponding DY Form (DY_AOI) in the
ENSEMBLES Project for 1962–2006 (1990–2006) Along With the RMSEs

ENSEMBLES
model

Correlation coefficients RMSE

AOI DY_AOI AOI DY_AOI

ECWMF 0.20 (0.09) 0.02 (0.26) 1.26 (1.42) 1.91 (2.04)
IFM 0.29* (0.08) 0.31* (0.35) 1.19 (1.21) 1.68 (1.44)
MF 0.33* (0.31) 0.30* (0.40) 1.15 (1.21) 1.74 (1.81)
UKMO 0.22 (−0.07) 0.31* (0.34) 1.24 (1.38) 1.71 (1.48)
CMCC −0.05 (0.10) −0.11 (−0.08) 1.45 (1.15) 2.19 (1.84)
MME 0.36** (0.15) 0.33* (0.39) 1.13 (1.19) 1.70 (1.51)

Note. “*” and “**” indicate statistical significance at the 95% and 99% confidence level, based on Student's t test.

Figure 4. Wavelet analysis of the DJF AOI for the period 1961–2006. Dotted
regions indicate significant variability at the 90% confidence level estimated
by a red noise process, and the parabola indicates the “cone of influence.”
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enhance the equatorward planetary wave propagation, inducing a strengthened poleward meridional eddy
momentum flux. Meanwhile, negative SST anomalies in the high‐latitudinal North Pacific tend to weaken
the upward planetary wave propagation, implying a weak poleward eddy heat flux. Consequently, the
upper level polar night jet is strengthened and polar vortex become colder, suggesting an intensified polar
vortex, following a positive phase of AO at the troposphere/surface (Mitchell et al., 2013). The mechanism
indicates a significant positive (negative) correlation relationship between the concurrent midlatitudinal
(high‐latitudinal) Pacific SST and DJF AO, which can be observed in Figures 5c and 5d. Considering the
significant influence of the concurrent SST on the DJF AO, the ENSEMBLES‐predicted SST may be used
as another concurrent predictor in the dynamical‐statistical model.

The distribution of correlation coefficients between the North Pacific SSTs (DY_SST) and the AOIs
(DY_AOI) derived from the ENSEMBLES models and winter observations are displayed in Figure 6.
Compared to the observations (Figures 5c and 5d), all the ENSEMBLES models predict the significant posi-
tive correlation between observed AOI and predicted SSTs in the midlatitudinal Pacific of the NH and fall to
predict the significant negative correlation in the Bering Sea (Figure 6). Moreover, large areas with signifi-
cant positive correlation coefficients between the observed AOIs and the predicted SSTs are found in the
midlatitudinal North Pacific for the IFM (Figure 6c) and UKMO (Figure 6g) models, and MME
(Figure 6k). However, for the ECWMF (Figure 6a), MF (Figure 6e), and CMCC (Figure 6i) models, the
SSTs have an insignificant relationship with the observed AOIs. Meanwhile, the observed DY_AOI and pre-
dicted DY_SST exhibit more significant correlations than the previously described predictions in the midla-
titudinal North Pacific for all the ENSEMBLES models (the right column of Figure 6). Compared to the
correlation coefficients between the AOIs and the SSTs (the left column of Figure 6), the correlation coeffi-
cients for the DY form are more significant and extensive in the midlatitudes of the Pacific, which reflects the
significant relationship between the DJF AOI and the concurrent SST revealed by the interannual
increment approach.

The area‐weighted areal mean DJF DY_SSTs of the ENSEMBLES predictions in key regions are computed as
SST indices (DY_SSTI); Region‐3 covers the midlatitudes of the North Pacific for the ECWMF (30°N−50°N,
160°E−173°W), IFM (25°N−35°N, 165°E−150°W), MF (23°N−40°N, 145°E−150°W), UKMO (31°N−44°N,
160°E−148°W), and CMCC (20°N−44°N, 160°E−146°W) models and the MME (27°N−43°N,
153°E−145°W), as shown in the right column of Figure 5. The same key regions (25°N−45°N,
160°E−150°W) over midlatitudinal North Pacific in all ENSEMBLES models have also been used to

Figure 5. (a) Correlation coefficients between the preceding SON SIC and the DJF AOI derived from observations during
1962/1963–2005/2006. (b) Same as in (a) but for the DY of sea ice and the DY of the AOI. Dotted areas indicate
statistical significance at the 95% confidence level, based on Student's t test. The black curvilinear rectangles represent
the key regions where the SON SIC influences the DJF AO. (c and d) Same as in (a) and (b) but for observed DJF SST
and AOI.
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Figure 6. Correlation coefficients between the observed DJF AOIs and the model‐predicted SSTs during 1962–2006 for the (a) ECWMF, (c) IFM, (e) MF, (g) UKMO,
(i) CMCC, and (k) MME. (b, d, f, h, j, and l) Same as in (a), (c), (e), (g), (i), and (k), respectively, but for the DY of the SST and the DY of the AOI. Dotted areas
indicate statistical significance at the 95% confidence level, based on Student's t test. The black curvilinear rectangles represent the key regions where the SST
influences the DJF AO.
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improve the DY_AOI, showing little difference with the improved results
of different regions for different models. Meanwhile, considering the dif-
ferent system errors of different models and the aim for optimal improve-
ment of AO, the different key regions for different models are selected
(Region‐3 above mentioned), all of which are also located in the midlati-
tudes of the North Pacific. Hereafter, the area‐weighted areal mean
DY_SSTs for Region‐3 is labeled DY_SSTI. The DY_SSTIs indicate signifi-
cant relationship with observed DY_AOI with correlation coefficients of
0.42, 0.41, 0.41, 0.39, and 0.37, all significant at the 99% confidence level
(IFM is at 95% confidence level with 0.34) for the ECWMF, MF, UKMO,
and CMCC models and the MME, respectively. In addition, the correla-
tion coefficients between the time series of DY_SSTI derived from the
observations and ENSEMBLES predictions are calculated to show the
good performance of ENSEMBLES models for DY_SSTI predictions with
values of 0.59, 0.54, 0.60, 0.66, 0.64, and 0.74 corresponding to the
ECWMF, IFM, MF, UKMO, and CMCC models and the MME, respec-
tively, beyond the 99% confidence level.

From observational analyses and numerical experiments, increased snow
cover may lead to a negative phase of AO with wave‐mean flow interac-
tions (Gong et al., 2003; Saito & Cohen, 2003). It is suggested that
enhanced autumn Eurasia snow cover increases the vertical wave energy
propagation upward into the stratosphere, weakening the polar vortex,
generating a negative winter AO pattern (Cohen et al., 2007). Therefore,
the autumn snow cover may be a potential predictor for AO prediction.

However, the snow cover index (DY_SNCI: area‐weighted areal mean DY of snow cover over East Asia;
figure not shown) is non‐independent with DY_SICI with a correlation coefficient of−0.24. It is revealed that
the declining sea ice acts as moisture source and modulates atmospheric circulation, resulting in enhanced
snow cover (Wegmann et al., 2015). For best improvement of AO prediction in ENSEMBLES, DY_SICI are
selected to be the preceding predictor. The improved results of DY_SNCI and DY_SSTI are also shown in
section 5.

4.2. The Dynamical‐Statistical Model and Results

From above‐mentioned analysis, two predictors, that is, DY_SICI and DY_SSTI, are used to establish a dyna-
mical‐statistical model (1) to improve the DJF AOI predicted by ENSEMBLES. According to the interannual
increment approach, the improved DJF AOI is produced by adding the improved DY_AOI obtained from the
dynamical‐statistical model to the observed DJF AOI from the previous year.

These dynamical‐statistical models are evaluated by two‐year‐out cross‐validation for 1962−2006 and inde-
pendent hindcasts for the hindcasting period 1990−2006. The results of the cross‐validation are shown in
Figure 7. It can be seen that the predicted DJF DY_AOI is largely improved in comparison to the direct out-
puts by ENSEMBLES, resulting in more consistency with the observed DJF DY_AOI (Figure 7a). The corre-
lation coefficients of the DY_AOIs derived from the observations and from the improved results are 0.60,
0.57, 0.59, 0.60, 0.52, and 0.55 (Table 2), all at 99% significant confidence level for the ECWMF, IFM, MF,
UKMO, CMCC models, and for the MME, respectively. These values are substantially higher than the raw
model values (0.02, 0.31, 0.30, 0.31, −0.11, and 0.33, respectively). The corresponding RMSEs between the
improved and observed DY_AOIs are reduced by 46%, 38%, 40%, 40%, 50%, and 37% (Table 2). These results
indicate that the DY_AOI is best determined by the dynamical‐statistical model for all the models
of ENSEMBLES.

Figure 7b displays the improved AOIs obtained by adding the predicted DJF DY_AOI to the observed DJF
AOI for the previous year. The time series of these improved AOIs for all models of ENSEMBLES are largely
consistent with the time series of the observed DJF AOI. The corresponding correlation coefficients between
the observed and improved time series are 0.54, 0.51, 0.54, 0.54, 0.48, and 0.51, all significant at the 99% con-
fidence level for the ECWMF, IFM,MF, UKMO, CMCC, models and for theMME, respectively. These values
indicate better predictions by the interannual increment approach for all models relative to the raw model

Figure 7. Predicted (a) DY of the AOI and (b) AOI during 1962–2006 for the
observations, ECWMF, IFM, MF, UKMO, CMCC, and MME, in which the
predicted DY uses the dynamical–statistical prediction model in the cross‐
validations.
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results (0.20, 0.29, 0.33, 0.22, −0.05, and 0.36). The percentage improve-
ments in the RMSE of the AOI for the ECWMF, IFM, MF, UKMO, and
CMCC models and the MME are 17%, 9%, 8%, 16%, 22%, and 3%, respec-
tively. And the little improvement of RMSE of MME model may be
because the reasonable AOI prediction of MME model. These results
demonstrate the strong ability of the interannual increment approach to
improve the AO predictions. However, there are several years where the
improved AOI still displays a discrepancy with the observed AOI, includ-
ing 1968, 1972, 1977, 1989, and 2001 (Figure 7b); these discrepancies are
mainly due to the limitations of the DY_AOI predictions (Figure 7a). In
addition, all of the improved AOIs for ENSEMBLES successfully captured
the interdecadal variability of the observed AOIs, indicating a remarkable
improvement relative to the direct predictions produced by ENSEMBLES
(Figure 3a). Overall, the dynamical‐statistical model combined with the
interannual increment approach shows strong potential for improving
the DJF AOI predictions of ENSEMBLES.

The results of independent hindcasts for the period 1990−2006 are shown in Figure 8. The time series of the
predicted DY_AOIs are consistent with the time series of the observed DY_AOIs (Figure 8a) with correlation
coefficients of 0.76, 0.73, 0.76, 0.72, 0.79, and 0.75, significant at 95%, 99%, 99%, 95%, 99%, and 99% confidence
level for the ECWMF, IFM, MF, UKMO, CMCCmodels, and for the MME, respectively (Table 3). The differ-
ent significance levels of similar values of the correlation coefficients are because the improved DY_AOI of
all models have different effective degrees of freedom. These correlation coefficients are greatly improved in
comparison with the values (0.26, 0.35, 0.40, 0.34, −0.08, and 0.39) of raw model predictions (Table 1). The
corresponding RMSEs in independent hindcasts are reduced by 58%, 37%, 53%, 39%, 54%, and 42%
(Table 3). These results again demonstrate the strong potential of the dynamical‐statistical model to improve
the DY_AOI. Meanwhile, the final predicted AOIs for the ECWMF, IFM, MF, UKMO, CMCC models, and
for theMME are produced by an interannual increment approach; the predicted AOIs are consistent with the
observed AOIs (Figure 8b). The correlation coefficients between the predicted and observed AOIs are 0.66,
0.62, 0.67, 0.65, 0.67, and 0.66, at 95%, 95%, 99%, 95%, 99%, and 99% significant confidence level for the

ECWMF, IFM, MF, UKMO, CMCC models, and for the MME, respec-
tively (Table 3). These values in hindcast are substantially higher than
the corresponding raw model outputs for the period 1990−2006 (0.09,
0.08, 0.31, −0.07, 0.10, and 0.15; Table 1). The percentage improvements
in the RMSEs for the hindcast are 41%, 26%, 35%, 31%, 30%, and 29%.
Thus, the dynamical‐statistical model and interannual increment
approach can predict the DJF AO better than previous approaches.
However, in several years, the hindcast results for all ENSEMBLES mod-
els have larger deviations relative to the observations; these years include
1994, 2001, and 2002 (Figure 8b), and the deviations are mainly due to the
deviations of the DY_AOI predictions in hindcasts (Figure 8a). Therefore,
the dynamical‐statistical model has the ability to improve predictions
of the interannual variability of the DJF AO, and it can be applied to
all the ENSEMBLES models.

5. Discussion and Conclusions

This study evaluates the capability of ENSEMBLES models for winter AO
predictions during 1962−2006. All of the ENSEMBLES models have a
good predictive capability for predicting the SLP and can accurately pre-
sent the spatial patterns and intensities of the winter SLP in the NH.
The inconsistent performances of most ENSEMBLES models for winter
AO predictions are noted. Specifically, all of the models can capture the
zonally symmetric pattern of the AO, but they tend to overestimate
the anomalies in the North Pacific and underestimate the anomalies in

Figure 8. Predicted (a) DY of the AOI and (b) AOI during 1990–2006 for the
observations, ECWMF, IFM, MF, UKMO, CMCC, and MME, in which the
predicted DY uses the dynamical–statistical prediction model in the inde-
pendent hindcast.

Table 2
Correlation Coefficients Between the Observed and Predicted AOIs and
DY_AOIs Based on the Cross‐Validation of the Dynamical‐Statistical Model
for 1962–2006, Along With the RMSEs (Improvement of the RMSEs Is
Shown in Parentheses and Is Relative to the Raw Model Outputs)

ENSEMBLES
model

Correlation coefficients RMSE

AOI DY_AOI AOI DY_AOI

ECWMF 0.54** 0.60** 1.05 (17%) 1.03 (46%)
IFM 0.51** 0.57** 1.08 (9%) 1.05 (38%)
MF 0.54** 0.59** 1.06 (8%) 1.04 (40%)
UKMO 0.54** 0.60** 1.04 (16%) 1.03 (40%)
CMCC 0.48** 0.52** 1.13 (22%) 1.09 (50%)
MME 0.51** 0.55** 1.10 (3%) 1.07 (37%)

Note. “*” and “**” indicate statistical significance at the 95% and 99% con-
fidence levels, respectively, based on Student's t test with effective degrees
of freedom.
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the Arctic and North Atlantic. The IFM, CMCC, and MME models fail to
predict the positions and intensities of the AO pattern anomalies in the
Arctic and North Atlantic. Moreover, inconsistent predictions of the AOI
are also found in ENSEMBLES models; most of the model‐predicted
AOIs are inconsistent with the observed AOIs during 1962–2006, although
the MF and MME‐predicted AOI has a significant correlation of 0.33 and
0.36. The performance of ENSEMBLES in the prediction of the DY of the
AOI shows similar predictive capabilities.

To improve the AOI prediction accuracy of ENSEMBLES, a dynamical‐
statistical model is established utilizing the interannual increment
approach and two predictors, namely, the observed SIC for the preceding
SON in the East Siberian Sea and the Beaufort Sea and the ENSEMBLES‐
predicted SST for the concurrent DJF over the midlatitudinal Pacific in the
NH. The results of the two‐year‐out cross‐validation indicate that the
dynamical‐statistical model can produce DY_AOI predictions that are
much better than the raw ENSEMBLES predictions; a notably improved
AOI is obtained via the dynamical‐statistical model. The correlation coef-

ficients of the AOIs (DY_AOIs) between the observations and the improved results are greatly improved rela-
tive to the rawmodel predictions, and the corresponding RMSEs are greatly reduced (Table 2). Furthermore,
an independent hindcast for 1990−2006 is also applied to evaluate the dynamical‐statistical model. The
results show that the dynamical‐statistical model is capable of improving the AOI (DY_AOI) predictions
of ENSEMBLES (Table 3).

In addition, the preceding SON snow cover in Asia has also been used to be the preceding predictor for its
significant effect on winter AO (Saito & Cohen, 2003). Because the SON snow cover is nonindependent
with SON sea ice, SON snow cover and ENSEMBLES‐predicted SST are also tried to be predictors to
improve the AOI. All the improved correlation coefficients are less than the value of 0.42, significant at
99% confidence level. But the improvements of snow cover and ENSEMBLES‐predicted SST are far from
the results of sea ice and ENSEMBLES‐predicted SST (Table 2), indicating that these two predictors of
snow cover and SST have less predictive skill than the two of sea ice and SST. We also attempt to improve
the AOI by the direct use of interannual increment approach. The improved AOIs are got by adding the
observed AOIs of the preceding year to the DY_AOIs from the UKMO and MME models, which has rea-
sonable performance in DY_AOI prediction. The correlation coefficients between predicted and observed
AOIs are 0.32 and 0.35 for MF and UKMO, respectively, both at a 95% significant confidence level,
thereby yielding less or no improvement than the dynamical‐statistical model. The above efforts for AO
prediction indicate that the efficiency of the dynamical‐statistical model and interannual increment
approach depends on the selection of predictor and the predictive ability of the models used in the DY
prediction of AO.

Overall, the dynamical‐statistical model combined with the interannual increment approach yields more
accurate winter AO predictions than ENSEMBLES. The ability of the interannual increment approach to
amplify signals of year‐to‐year variability applies to all variables and signals that have considerable inter-
annual variability, especially quasi‐biennial oscillation. Therefore, the interannual increment approach
can be used to improve the prediction of many climate variables in East Asia, including the air pollution
in China (Wang, 2018). Because this approach can take advantage from the previous observed signal of
climate variables, it may be a new clue to apply the interannual increment approach into the prediction
of extreme weather event, even the decadal prediction of climate variables. Moreover, it is feasible and
worthwhile to combine the interannual increment approach with other modeling methods, such as
deep learning.

Finally, although the ENSEMBLES models have generally favorable capabilities for SST prediction, they do
not predict the significantly negative relationship between the observed winter AO and the concurrent SST
over the high‐latitudinal Pacific of the NH (Figures 5c and 5d), thereby limiting the ability of the dynamical‐
statistical model to improve AO predictions in ENSEMBLES. Furthermore, more recent databases of seaso-
nal forecasts such as Climate Forecast System version 2, Met Office Global Seasonal Forecast System 5

Table 3
Correlation Coefficients Between the Observed and Predicted AOIs and
DY_AOIs Based on the Dynamical‐Statistical Model in Independent
Hindcast for 1990–2006, Along With the RMSEs (Improvement of RMSEs Is
Shown in Parentheses and Is Relative to Raw Model Outputs)

ENSEMBLES
model

Correlation coefficients RMSE

AOI DY_AOI AOI DY_AOI

ECWMF 0.66* 0.76* 0.84 (41%) 0.86 (58%)
IFM 0.62* 0.73** 0.89 (26%) 0.91 (37%)
MF 0.67** 0.76** 0.84 (31%) 0.86 (53%)
UKMO 0.65* 0.72* 0.90 (35%) 0.90 (39%)
CMCC 0.67** 0.79** 0.81 (30%) 0.84 (54%)
MME 0.66** 0.75** 0.85 (29%) 0.87 (42%)

Note. “*” and “**” indicate statistical significance at the 95% and 99% con-
fidence levels, respectively, based on Student's t test with effective degrees
of freedom.
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(GloSea5), show some enhanced predictive skill in seasonal and year‐to‐year predictions (Maclachlan et al.,
2014; Saha et al., 2014), which will be evaluated in the future work.
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