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Abstract

Climate variability, in terms of the climatic fluctuations in precipitation and potential evapotranspiration, impacts the variability

of runoff at different timescales. This paper developed a new daily water balance model which unifies the probability distributed

model and the SCS curve number method, and provides a unified framework for water balances across different timescales. The

model uses a daily step but can be forced with climate inputs varying at different timescales. The model is applied to 82

MOPEX catchments, and the runoff at a coarser timescale is aggregated from the daily runoff. For runoff at each timescale, the

relative role of each climate variability (daily, monthly, or inter-annual variability) is evaluated by comparing the modeled runoff

forced with the climate variability at two consecutive timescales. It is found that the runoff variability at the daily, monthly,

and annual scale is primarily controlled by the climate variability at the same timescale. The monthly climate variability

significantly contributes to both the daily and inter-annual runoff variability. However, both daily and inter-annual climate

variability play much smaller roles in monthly runoff variability. Besides monthly climate variability, mean annual runoff

receives considerable contribution from the inter-annual climatic variability, which is often disregarded in previous studies. The

quantitative evaluation of the roles of climate variability reveals how climate controls runoff across different timescales.
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Abstract 10 

Climate variability, in terms of the climatic fluctuations in precipitation and potential 11 

evapotranspiration, impacts the variability of runoff at different timescales.  This paper 12 

developed a new daily water balance model which unifies the probability distributed model and 13 

the SCS curve number method, and provides a unified framework for water balances across 14 

different timescales.  The model uses a daily step but can be forced with climate inputs varying 15 

at different timescales.  The model is applied to 82 MOPEX catchments, and the runoff at a 16 

coarser timescale is aggregated from the daily runoff.  For runoff at each timescale, the relative 17 

role of each climate variability (daily, monthly, or inter-annual variability) is evaluated by 18 

comparing the modeled runoff forced with the climate variability at two consecutive timescales.    19 

It is found that the runoff variability at the daily, monthly, and annual scale is primarily 20 

controlled by the climate variability at the same timescale.  The monthly climate variability 21 

significantly contributes to both the daily and inter-annual runoff variability.  However, both 22 

daily and inter-annual climate variability play much smaller roles in monthly runoff variability.  23 
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Besides monthly climate variability, mean annual runoff receives considerable contribution from 24 

the inter-annual climatic variability, which is often disregarded in previous studies.  The 25 

quantitative evaluation of the roles of climate variability reveals how climate controls runoff 26 

across different timescales. 27 

Keywords: Runoff, Climate variability, Inter-annual, Seasonality, Storminess, Budyko 28 

 29 

Key points:  30 

1. Runoff variations at the daily, monthly, and annual timescales are primarily affected by 31 

climate variability at the same timescale. 32 

2. Monthly climate variability is the most important climatic fluctuation, followed by inter-33 

annual variability, affecting mean annual runoff. 34 

3. Monthly climate variability has significant effects on runoff at all the timescales.   35 

  36 

1. Introduction 37 

Understanding the climate’s controls on catchment runoff at various timescales is of 38 

interest to hydrologists, earth system modelers, and water resources managers.  Climate, soil, 39 

vegetation and topography all affect hydrological processes [Eagleson, 1978; Farmer et al., 40 

2003; Troch et al., 2013].  The long-term mean and short-term fluctuations of climate exert a 41 

fundamental control on the water balance directly and indirectly.  Climate variability can control 42 

the water balance differently at the daily, monthly and inter-annual timescales [Jothityangkoon et 43 

al., 2001; Atkinson et al., 2002, Zhang et al., 2008].  As the two main variables of climate, 44 

precipitation serves as the water supply to the catchments from atmosphere, and potential 45 

evapotranspiration determines the water demand to the catchments.  The effect of individual 46 
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variability and co-variability of precipitation and potential evapotranspiration on runoff are 47 

dependent on the timescale at which the runoff is quantified.  48 

Daily runoff variation is closely associated with daily climate fluctuations which are 49 

observed in the hydrographs for rainfall events.  The variability of precipitation is much larger 50 

than that of potential evapotranspiration, and runoff dynamics at the daily scale are strongly 51 

controlled by the daily precipitation interacting with catchments characteristics, such as 52 

antecedent soil moisture [Rodriguez-Iturbe et al., 1999; Aubert et al., 2003; Porporato et al., 53 

2004; Botter et al., 2007].  Antecedent soil moisture determines both the soil storage potential 54 

and infiltration capacity in catchments.  Higher intensities of daily precipitation at lower 55 

frequencies create favorable conditions for runoff generation because of the limited soil retention 56 

and/or infiltration capacity [Brutsaert, 2005].  Monthly and inter-annual climatic fluctuations 57 

have impacts on daily runoff through direct changes in daily precipitation characteristics and 58 

through changes in antecedent soil moisture conditions [Sivapalan, et al., 2005; Berghuijs et al., 59 

2014, 2016; Perdigão and Blöschl, 2014; Rossi et al., 2015].  For example, on the first day of 60 

each month (or year), the runoff generation can be different for a given daily precipitation due to 61 

the different legacy soil moisture from the previous month (or year).  Soil water storage capacity 62 

provides catchments resilience to climate perturbations [McNamara et al., 2011].  The variation 63 

in groundwater storage regulates the storm water storage space and the antecedent soil wetness 64 

condition [Troch et al., 1993; Soylu et al., 2011; Appels et al., 2017], and it has exhibited both 65 

significant seasonal and inter-annual variations because of the temporal fluctuations of recharge 66 

from precipitation [Fan et al., 2007; Jasechko et al., 2014; McMillan and Srinivasan, 2015].  67 

Therefore, in order to fully capture the variation of daily runoff, it is required to identify the 68 

impacts of climate variabilities at different timescales.   69 

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Bl%C3%B6schl%2C+G%C3%BCnter
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Monthly variations in precipitation and potential evapotranspiration are crucial 70 

characteristics of climate and are largely responsible for the runoff variability at the monthly 71 

scale [Dettinger and Diaz, 2000; Yokoo et al., 2008; Yaeger et al., 2012; Berghuijs et al., 2014].  72 

Monthly variations in precipitation and potential evapotranspiration are usually described as 73 

sinusoidal functions with certain phase shifts [Milly, 1994; Woods, 2009].  The correlation 74 

between precipitation and potential evapotranspiration has significant impacts on the monthly 75 

runoff.  Runoff seasonality can be weak when precipitation and potential evapotranspiration are 76 

in phase because the peak of water supply and water demand occur in the same month(s) even 77 

though both of them have a strong seasonality.  On the other hand, if precipitation and potential 78 

evapotranspiration are out of phase, the peak of runoff can be largely determined by the 79 

seasonality of precipitation because the peak of water supply coincides with the lowest water 80 

demand [Petersen et al., 2012; Berghuijs et al., 2014].  Inter-annual climate variability also has 81 

an impact on the monthly water balance by controlling the antecedent soil moisture through 82 

storage carryover in catchments [Chen et al., 2013].  Additionally, the number of rainfall events 83 

and the time intervals between rainfall events at the daily scale influence the cumulative runoff at 84 

the monthly scale as well [Appels et al., 2017].   85 

Inter-annual variation in the water balance has been investigated in many studies [Koster 86 

and Suarez, 1999; Arora, 2002; Yang et al., 2007; Istanbulluoglu et al., 2012; Han et al., 2018].  87 

It has been found that the inter-annual variability in runoff is mainly controlled by the inter-88 

annual variability of climate, especially in humid regions [Milly and Dunne, 2002; Yang et al., 89 

2006; Xu et al., 2012].  Monthly climate variability is also an important determinant of the inter-90 

annual variations in runoff [Milly and Dunne, 2002; Potter and Zhang, 2009; Jothityangkoon et 91 

al., 2009].  For example, the same annual precipitation depth could produce different amounts of 92 
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runoff if precipitation is concentrated on just several months compared to if precipitation is 93 

evenly distributed across all the months.  The impacts of daily storminess could also propagate to 94 

the annual runoff, especially in dry catchments [Zanardo et al., 2012]. 95 

Mean annual water balances are mainly determined by the long-term mean climate 96 

condition in terms of climate aridity index, defined as the ratio between mean annual potential 97 

evapotranspiration and precipitation.  The first-order control of the mean climate on the mean 98 

annual runoff has been widely demonstrated in the Budyko framework [Budyko, 1958, 1974; 99 

Milly, 1994; Zhang et al., 2001; Yang et al., 2008; Gentine et al., 2012].  The scatter of 100 

catchments around the original Budyko curve has been interpreted as the result of short-term 101 

climate variability and varying catchment characteristics such as vegetation, soil and topography 102 

[Fu, 1981; Porporato et al., 2004; Donohue et al., 2007; Li et al., 2013].  Daily precipitation 103 

with a larger variance tends to increase mean annual runoff [Shao et al., 2012], though it has 104 

been found the effects of daily storminess are almost negligible when the infiltration excess 105 

runoff is not prevalent [Reggiani et al., 2000].  Several studies have shown that runoff tends to 106 

be smaller for a given mean annual precipitation when the precipitation and potential 107 

evapotranspiration are in phase, and larger when they are out of phase [Milly, 1994; Hickel and 108 

Zhang, 2006; Feng et al., 2012; Petersen et al., 2012].  However, the opposite could be observed 109 

because infiltration excess runoff can contribute significant volumes of runoff in catchments 110 

when the precipitation and potential evapotranspiration are in phase [Potter et al., 2005].  The 111 

influence of inter-annual climate variability on mean annual runoff is often disregarded even 112 

though it has been justified that the inter-annual variability of precipitation and potential 113 

evapotranspiration reduces the mean annual evaporation and increases the mean annual runoff 114 

[Li, 2014].   115 
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Existing studies have recognized that runoff, at each timescale, receives direct and 116 

indirect influences from climate variability at various timescales.  However, these studies have 117 

focused on runoff at one or two timescales, the mean climate and/or individual climate 118 

variability (e.g., monthly variability), or a few catchments with similar climate.  Therefore, a 119 

fundamental research question still remains unresolved: What are the relative magnitudes of the 120 

impacts of different climate variabilities on each timescale runoff under different climatic 121 

regimes?  For example, for the daily runoff, which timescale climate variability plays the most 122 

predominant role on the runoff variation?, and what are the relative magnitudes of the impacts 123 

exerted by daily, monthly, and inter-annual climate variability on the daily runoff?  124 

The major purpose of this paper is to systematically quantify the relative roles of daily, 125 

monthly, and inter-annual variability in precipitation (𝑃) and potential evapotranspiration (𝐸𝑝) on 126 

the runoff at four timescales, i.e., daily, monthly, annual and long-term.  Additionally, this paper 127 

shows how the mean annual water balance of each catchment deviates from the asymptotes in 128 

the Budyko framework by the impacts of mean climate, soil water storage capacity as well as 129 

different climate variabilities.  A conceptual hydrological model is developed in this paper for 130 

quantifying the contributions of different climate variabilities by comparing runoff resulting 131 

from different timescale climate inputs.  This paper is organized as follows:  In Section 2, the 132 

conceptual water balance model is presented, followed by how to apply different timescale 133 

climate inputs in the daily water balance model, and lastly, the methods for quantifying the roles 134 

of different climate variabilities on runoff at the four timescales.  Results and discussion are 135 

presented in Section 3, followed by summary in Section 4. 136 

 137 

2. Methodology 138 
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2.1 A conceptual water balance model  139 

It is challenging, if not impossible, to directly separate the impact of different climate 140 

variabilities on the water balance using climate and runoff observations.  Hydrological models 141 

are powerful tools for evaluating and predicting the water balance under different climate 142 

conditions by changing the climate inputs.  A new conceptual hydrological model is developed 143 

in this study because a conceptual water balance model is simple to setup while it incorporates 144 

important hydrological processes using semi-empirical equations with a physical basis [Devia et 145 

al., 2015].   The newly developed model is a modification of the HyMOD model [Moore, 1985; 146 

Chen et al., 2013; Razavi and Gupta, 2016] that runs at the daily time step.  Runoff at a coarser 147 

timescale can be obtained by aggregating the daily outputs.   148 

The model structure is a saturation excess runoff model based on the spatial distribution 149 

of the soil water storage capacity (𝐶) proposed by Wang [2018]: 150 

 𝐹(𝐶) = 1 −
1

𝑎
+

𝐶+(1−𝑎)𝑆𝑏

𝑎√(𝐶+𝑆𝑏)2−2𝑎𝑆𝑏𝐶
              (1) 151 

where C is soil water storage capacity at a point and C ≥ 0; 𝐹(𝐶) is the fraction of the catchment 152 

area for which the storage capacity is less than or equal to 𝐶; 𝑎 is the shape parameter with a 153 

range of 0 < 𝑎 < 2; and 𝑆𝑏 is the average soil water storage capacity over the catchment.  Figure 154 

1 presents the schematic description of the daily water balance model.  As shown in this figure, 155 

precipitation is partitioned into soil wetting (i.e., infiltration, W) and runoff (R).  Soil wetting, 156 

determined by both precipitation (𝑃) and the initial soil water storage (𝑆0), is computed by the 157 

following integration [Moore, 1985]: 158 

𝑊 = ∫ [1 − 𝐹(𝐶)]𝑑𝐶
𝑃+𝐶0

𝐶0
     (2) 159 

where 𝐶0 is the point storage capacity corresponding to  𝑆0 in Figure 1.  Substituting Equation 160 

(1) into Equation (2), soil wetting is obtained:  161 
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𝑊 =
𝑃+𝑆𝑏√(𝑚+1)2−2𝑎𝑚−√[𝑃+(𝑚+1)𝑆𝑏]2−2𝑎𝑚𝑆𝑏

2−2𝑎𝑆𝑏𝑃

𝑎
   (3) 162 

where, 163 

𝑚 =
𝑆0(2𝑆𝑏−𝑎𝑆0)

2𝑆𝑏(𝑆𝑏−𝑆0)
     (4) 164 

If initial soil water storage is zero ( 𝑆0 = 0 ), Equation (3) becomes the proportionality 165 

relationship of the SCS curve number method [SCS, 1972; Wang, 2018].  Therefore, the 166 

computation of soil wetting by Equations (3) is an extension of the SCS curve number method by 167 

explicitly incorporating initial soil moisture.  168 

Once soil wetting (𝑊) is computed using Equation (3), the sum of soil wetting and initial 169 

soil water storage (𝑌 = 𝑊 + 𝑆0) is then partitioned into evaporation (𝐸) and ending soil water 170 

storage (𝑆1), i.e., 𝑌 = 𝐸 + 𝑆1.  In the HyMOD model, 𝐸 is assigned as the smaller value between 171 

𝑌  and potential evapotranspiration proportional to the catchment saturation degree.  172 

Alternatively, in this model, the spatial heterogeneity of soil water storage is considered when 173 

determining evaporation.  As shown in Figure 1, the actual soil water storage varies spatially due 174 

to the spatial variability of storage capacity.  Therefore, the actual evaporation will also vary 175 

spatially even though the potential evapotranspiration is assumed to be spatially uniform.  When 176 

the soil water storage at every element in a catchment reaches their individual storage capacities 177 

(Figure 2a) (i.e., the entire catchment is saturated), then the average evaporation over the entire 178 

catchment is computed as follows: 179 

𝐸𝑠 = ∫ [1 − 𝐹(𝐶)]𝑑𝐶
𝐸𝑝

0
                                              (5) 180 

As presented in Figure 2a, the spatially averaged evaporation under conditions when the entire 181 

catchment is saturated (𝐸𝑠) is smaller than 𝐸𝑝, even though the average storage (𝑆𝑏) is greater 182 

than 𝐸𝑝.  The reason is that the soil water storage at some elements in the catchment are lower 183 



9 

 

than 𝐸𝑝 and the evaporation at those points are equal to the corresponding soil water storage.  184 

For the condition when the catchment is not fully saturated (Figure 2b) with an average storage 185 

of  𝑊 + 𝑆0, evaporation is proportionally reduced from 𝐸𝑠 relative to the soil water storage using 186 

Equation (6):  187 

 𝐸 =
𝑊+𝑆0

𝑆𝑏
𝐸𝑠                    (6) 188 

Therefore, evaporation is computed by the following equation after substituting Equation (1) into 189 

Equation (5): 190 

𝐸 =
𝑊+𝑆0

𝑆𝑏

𝐸𝑝+𝑆𝑏−√(𝐸𝑝+𝑆𝑏)
2

−2𝑎𝑆𝑏𝐸𝑝

𝑎
                                        (7) 191 

In the daily water balance model, runoff is decomposed into either direct runoff (𝑅𝑑) or 192 

groundwater recharge ( 𝑅𝑔 ) using a partitioning parameter (𝛾 ).  The direct runoff and 193 

groundwater recharge are then stored in a quick storage tank (𝑆𝑑) and a slow storage tank (𝑆𝑔), 194 

respectively.  These tanks are conceptually lumped storages representing the surface water body 195 

(𝑆𝑑) and the unsaturated zone and shallow groundwater aquifer (𝑆𝑔).  Because water in the 196 

storage tanks cannot be totally released to the catchment outlet within one day after precipitation, 197 

therefore, linear relationships between tank outflows and tank storages are used for the routing 198 

processes.  Correspondingly, the total runoff at the catchment outlet (𝑄) can be calculated using 199 

Equation (8-1) through Equation (8-8): 200 

   𝑅 = 𝑃 − 𝑊      (8-1) 201 

     𝑅𝑑 = 𝛾𝑅                              (8-2) 202 

𝑅𝑔 = (1 − 𝛾)𝑅              (8-3) 203 

𝑄𝑑 = 𝑘𝑑(𝑆𝑑0 + 𝑅𝑑)     (8-4) 204 

𝑆𝑑1 = (1 − 𝑘𝑑)(𝑆𝑑0 + 𝑅𝑑)          (8-5) 205 
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𝑄𝑏 = 𝑘𝑏(𝑆𝑔0 + 𝑅𝑔)                             (8-6) 206 

𝑆𝑔1 = (1 − 𝑘𝑏)(𝑆𝑔0 + 𝑅𝑔)         (8-7) 207 

𝑄 = 𝑄𝑑 + 𝑄𝑏                                      (8-8) 208 

where the reciprocals of parameters kd and kb are the average characteristic times of the quick 209 

storage tank and slow storage tank; 𝑄𝑑 and 𝑄𝑏 are the flow rates of direct runoff and baseflow 210 

measured at the catchment outlet; 𝑆𝑑0 and 𝑆𝑔0 are the initial storages in the quick storage tank 211 

and slow storage tank; 𝑆𝑑1 and 𝑆𝑔1  are the final storages in the quick storage tank and slow 212 

storage tank. 213 

In total, there are five parameters for the daily model: 𝑎, Sb , 𝛾, kb, and kd.  The ranges 214 

and units of the parameters are shown in Table 1.  Monthly and annual runoff are aggregated 215 

from the daily runoff, and the mean annual runoff is the average of annual runoff.  The role of 216 

the soil water storage capacity and its spatial variability have received considerable attention in 217 

the mean annual water balance because the spatially variable storage capacity promotes the mean 218 

annual runoff generation [Milly, 1994].  In order to quantify the role of soil water storage 219 

capacity and its spatial variability, a base simulation scenario with a spatially uniform soil water 220 

storage capacity is developed for mean annual water balances.  In this scenario, the uniform 221 

storage capacity is large enough so that no saturation excess runoff occurs, and the actual daily 222 

evaporation is calculated as the smaller value between the potential evapotranspiration 223 

proportional to the catchment saturation degree and the storage water: 224 

𝐸 = min(
𝑌

𝑆𝑏
𝐸𝑝, 𝑌)      (9) 225 

where, 𝑌 = 𝑊 + 𝑆0, is the soil water storage after infiltration. 226 

2.2 Climate inputs to the daily water balance model 227 
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Climate data at different timescales contain different components of climate variability.  228 

Specifically, daily climate data have the information of daily, monthly, and inter-annual climate 229 

variabilities.  While, monthly climate lacks the daily climate information.  Similarly, inter-annual 230 

climate further lacks monthly climate information.  In order to run the daily water balance model 231 

with climate data at different timescales, all the climate inputs are forced with the model at the 232 

daily time step.  For instance, to force the daily model with climate data that varies inter-233 

annually, daily climate data are averaged over each year, then that average is fixed for each day 234 

within that given year (Figure 3c).  Inputs are averaged over periods corresponding to the climate 235 

timescale; shown in Figure 3 are four patterns (daily, monthly, annual, and mean) of climate 236 

inputs for Caney River in Kansas during a three-year period.  Model calibration is done using 237 

observed daily precipitation and daily potential evapotranspiration (Figure 3a).   238 

The inter-annual climate inputs at the daily time step shown in Figure 3c describe the 239 

inter-annual variability of climate forcings.  Comparing results from using inter-annual climate 240 

(Figure 3c) and mean climate (Figure 3d) can show the role of inter-annual climate variability on 241 

runoff at the desired timescale.  Likewise, runoff from monthly climate (Figure 3b) can be 242 

compared with runoff using annually varying climate (Figure 3c) to show the role of monthly 243 

climate variability on water balance.  Lastly, daily climate (Figure 3a) can be used with monthly 244 

climate (Figure 3b) to show the role of daily climate variability on water balance.  Runoff is 245 

simulated using the daily water balance model forced with each type of daily inputs shown in 246 

Figure 3, therefore, each timescale runoff has four simulated series corresponding to the four 247 

climate forcings. 248 

2.3 Study catchments and data 249 
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Eighty-two catchments from Model Parameter Estimation Experiment (MOPEX) [Duan 250 

et al., 2006] with minimum snow effects and human interferences [Kienzle, 2008; Brooks et al., 251 

2011; Wang and Hejazi, 2011] were selected for this study.  Catchment area ranges from 134 to 252 

9886 km2 and the climate aridity index ranges from 0.27 to 1.33.  The hydrologic model used in 253 

this study is most useful for catchments where the saturation excess runoff regime is dominant. 254 

Therefore, catchments with a climate aridity index larger than 1.5 were not considered in this 255 

study because infiltration excess runoff generation would be significant in these catchments.  256 

Observed daily runoff for the years 1979-2003 is obtained through the MOPEX website 257 

(https://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm), and extended through 2015 using the 258 

U.S. Geological Survey’s (USGS) National Water Information System 259 

(https://waterdata.usgs.gov/nwis/sw).  Daily precipitation and daily reference potential 260 

evapotranspiration are extracted from a gridded surface meteorological data set (gridMET) for 261 

the years 1979-2015 with a spatial resolution of ~4 km 262 

(http://www.climatologylab.org/gridmet.html) [Abatzoglou, 2013].  Daily reference potential 263 

evapotranspiration in gridMET is calculated using the Penman-Monteith equation [Monteith, 264 

1964; Allen et al, 1998; Abatzoglou and Ficklin, 2017].  Mean annual potential 265 

evapotranspiration values from MOPEX website are used for scaling the reference potential 266 

evapotranspiration in each study catchment. 267 

2.4 Parameter estimation and model performance 268 

There are five parameters (i.e., a, Sb , γ, kb, and kd) in the daily water balance model.  The 269 

parameters are conceptual representations of catchment characteristics.  Thus, it is difficult to 270 

assign values using direct observations, instead, they can be determined through calibration.   271 

Available data are divided into three periods: 1) the warm-up period (1979-1980), 2) the 272 

https://waterdata.usgs.gov/nwis/sw
http://www.climatologylab.org/gridmet.html
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calibration period (1981-1998), and 3) the validation period (1999-2015).  Model parameters are 273 

calibrated using a Shuffled Complex Evolution Method (SCE-UA) [Duan et al., 1992] and an 274 

open source python package SPOTPY [Houska et al., 2015].  The objective function (OBJ) 275 

consists of 6 components, including 3 Nash-Sutcliffe Efficiencies (NSE) [Nash and Sutcliffe, 276 

1970; Moriasi et al., 2007] and 3 Volumetric Fit Efficiencies (VFE) [Wang et al., 2009] 277 

corresponding to daily, monthly, and annual runoffs, as shown: 278 

𝑂𝐵𝐽 =  |1.0 − 𝑁𝑆𝐸𝑑𝑎𝑖𝑙𝑦| + |1.0 − 𝑁𝑆𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦| + |1.0 − 𝑁𝑆𝐸𝑎𝑛𝑛𝑢𝑎𝑙| + |1.0 −279 

𝑉𝐹𝐸𝑑𝑎𝑖𝑙𝑦| + |1.0 − 𝑉𝐹𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦| + |1.0 − 𝑉𝐹𝐸𝑎𝑛𝑛𝑢𝑎𝑙|               (10) 280 

𝑁𝑆𝐸𝑑𝑎𝑖𝑙𝑦 = 1 −
∑ (Qs

d- Qo
d)

2
D
d=1

∑ (Qo
d - Qo,daily

̅̅ ̅̅ ̅̅ ̅̅ ̅ )
2

D
d=1

                                           (11-1) 281 

𝑁𝑆𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦 = 1 −
∑ (Qs

m- Qo
m)

2M
m=1

∑ (Qo
m - Qo,monthly

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  )
2

M
m=1

                                       (11-2) 282 

𝑁𝑆𝐸𝑎𝑛𝑛𝑢𝑎𝑙 = 1 −
∑ (Qs

y- Qo
y)

2Y
y=1

∑ (Qo
y  - Qo,annual̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )

2Y
y=1

                                         (11-3) 283 

𝑉𝐹𝐸𝑑𝑎𝑖𝑙𝑦 =
∑ Qs

dD
d=1

∑ Qo
d D

d=1

                                                       (11-4) 284 

𝑉𝐹𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦 =
∑ Qs

mM
m=1

∑ Qo
mM

m=1

                                                  (11-5) 285 

𝑉𝐹𝐸𝑎𝑛𝑛𝑢𝑎𝑙 =
∑ Qs

yY
y=1

∑ Qo
y  Y

y=1

                                                     (11-6) 286 

where Q
o

d
 (Q

o

m
, Q

o

y
) is the observed daily (monthly, annual) runoff on the 𝑑𝑡ℎ day (𝑚𝑡ℎ month, 287 

𝑦𝑡ℎ  year); Q
s

m
 (Qs

m
, Qs

y
) is the simulated daily (monthly, annual) runoff; Q

o,daily
̅̅ ̅̅ ̅̅ ̅̅  (Q

o,monthly
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 288 

Qo,annual
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ) is the observed mean daily (monthly, annual) runoff during the calibration period; and 289 

𝐷 (𝑀, 𝑌) is the total number of days (months, years) for calibration.   290 
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Including daily, monthly, and annual runoff in the objective function for calibration 291 

ensures that the model performance is satisfactory at multiple timescales [Schaake et al., 1996; 292 

Hay et al., 2006; Sudheer et al., 2007].  In addition, using two performance metrics in 293 

calibration, NSE and VFE, will simultaneously improve estimation of the hydrograph and of 294 

volumetric fitting.  The value of NSE ranges from −∞ to 1, with a value of 1 representing a 295 

perfect estimation of observed variability.  VFE, ranging from −∞ to ∞, reflects model bias with 296 

a value of 1 corresponding to no model bias.  The same objective function weights for NSE and 297 

VFE are used for 3 timescales modeled in this study.  Parameter values are chosen for each 298 

catchment by minimizing the objective function and fixing them for each model run.  299 

2.5 Roles of climate variability on runoff at different timescales  300 

2.5.1 Daily, monthly, and annual runoff 301 

The role of each climate variability in daily, monthly, or annual runoff is defined as its 302 

ability to explain runoff variability at each timescale.  This ability is quantified by the difference 303 

in NSE values from the simulated runoff using the climate inputs at two consecutive timescales.  304 

Quantifying the role of climate variability in this study uses NSE because it is an indicator for 305 

evaluating the overall model behavior with an emphasis on the timing and shape of the 306 

hydrograph which reflects the sensitivity of runoff to climate fluctuations.  Additionally, NSE 307 

can be applied to runoff at different timescales.  A consistent index across timescales helps 308 

systematically compare the roles of each climate variability on runoff at multiple timescales.  309 

The role of each climate variability in terms of ∆NSE is normalized by the NSE value resulting 310 

from daily climate, shown in the following equation:   311 

𝜌i,j = 
NSEi,j - NSEi+1, j

NSE1,j
                                                              (12) 312 
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where 𝜌i,j represents the relative role of the ith (i = 1, 2, 3) timescale climate variability on the jth 313 

(j = 1, 2, 3) timescale runoff.  For example, Figure 4a shows the flow chart for quantifying the 314 

roles of different climate variabilities (i = 1 for daily climate variability, i = 2 for monthly 315 

climate variability, and i = 3 for inter-annual climate variability) on the daily runoff (j = 1).  The 316 

role of daily climate variability on the daily runoff is quantified as the difference in NSE from the 317 

model driven by daily climate (e.g., Figure 3a) and by monthly climate (e.g., Figure 3b), i.e., 318 

NSE1,1 − NSE2,1.  The role of monthly climate variability on daily runoff is quantified as the 319 

difference in NSE from the model driven by monthly climate (Figure 3b) and by inter-annual 320 

climate (Figure 3c), i.e., NSE2,1 − NSE3,1.  Likewise, the role of inter-annual climate variability 321 

on the daily runoff variability is quantified as the difference in NSE driven by inter-annual 322 

climate (Figure 3c) and by mean climate (Figure 3d), i.e., NSE3,1 − NSE4,1.  Note that, since 323 

NSE4,j represents the performance of the model forced with the mean annual climate, the model 324 

runoff will approach the observed long-term mean causing the NSE to be very close to zero.  325 

Recall, a value of “0” for NSE means that a model can only simulate the mean of the observed 326 

data.  Similarly, the roles of the climate variabilities at the three timescales on monthly runoff (j 327 

= 2), and annual runoff (j = 3) are quantified based on Equation (12). 328 

2.5.2 Mean annual water balance 329 

Following Milly [1994], the roles of climate variabilities on the mean annual water 330 

balance are defined as their contributions to the total runoff generation and are quantified 331 

through the runoff differences with different forcing inputs.  In addition to the climate variability, 332 

the roles of the long-term mean climate and soil water storage capacity with its spatial variability 333 

are evaluated for the mean annual water balance in order to compare to the results of other 334 
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studies.  The total mean annual runoff in each catchment is decomposed into 5 components, as 335 

follows:  336 

Q
total

 = Q
D

 + Q
M

 + Q
I
+ Q

S
 + Q

L
                                             (13) 337 
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2
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 QM = Q
2

− Q
3
                                                          (14-2) 339 

 QI = Q
3

− Q
4
                                                          (14-3) 340 

 QS = Q
4

− Q
5
                                                          (14-4) 341 

 QL = Q
5
                                                                (14-5) 342 

where Q
1
 (=Q

total
), Q

2
, Q

3
, and Q

4
 are the simulated mean annual runoffs forced by daily climate 343 

(Figure 3a), monthly climate (Figure 3b), inter-annual climate (Figure 3c), and long-term mean 344 

climate (Figure 3d), respectively.  Q
1
~ Q

4
 are the simulated runoffs from the water balance 345 

model with spatially variable storage capacity.  Q
5
 (or Q

L
) is the simulated runoff forced by 346 

mean climate without considering the spatial variability of soil water storage capacity and having 347 

a uniformly distributed storage capacity that is large enough so that no saturation excess runoff 348 

occurs.  Therefore,  Q
D

 ,  Q
M

,  Q
I
,  Q

S
,  QL are the 5 components of the total mean annual runoff, 349 

which are caused by daily climate variability, monthly climate variability, inter-annual climate 350 

variability, storage capacity with its spatial variability, and long-term mean climate, respectively.  351 

The contribution of each component is normalized by the total mean annual runoff: 352 

𝜌component = 
Qcomponent

Qtotal

                                                              (15) 353 
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where Q
component

 represents the components of total runoff as mentioned in Equation (13); 354 

𝜌component  represents the relative role of each component on mean annual runoff.  The 355 

decomposition process and the role quantification process for the mean annual runoff are shown 356 

in Figure 4b. 357 

 358 

3. Results and discussion  359 

3.1 Model performance  360 

The calibrated parameters for 12 catchments (locations shown in Figure 10) are listed in 361 

Table 1.  Values of the shape parameter (a) for these catchments are close to the upper limit (i.e., 362 

2).  Considering all catchments used in the study, the shape parameter values ranges from 1.85 to 363 

1.90 for 4 catchments, with the remaining catchments having a value greater than 1.90, 364 

indicating an “S” shape of the cumulative distribution function (CDF) for soil water storage 365 

capacity [Wang, 2018].  The “S” shape of a CDF curve consists of both a convex and a concave 366 

segment, which introduces more flexibility for simulating runoff generation under different 367 

wetness conditions [Jayawardena and Zhou, 2000]. 368 

The NSE values for the daily, monthly, and annual runoffs during calibration and 369 

validation periods are shown in Figure 5a and Figure 5b.  Generally, NSE is greater at coarser 370 

timescales.  The average NSE during the calibration (validation) period is 0.61 (0.61), 0.85 371 

(0.83), 0.90 (0.85) for the daily, monthly, and annual runoff, respectively.  During validation, 372 

52% of catchments have an NSE value greater than 0.6 for daily runoff, 77% of catchments have 373 

an NSE value greater than 0.8 for monthly runoff, and 61% of catchments have an NSE value 374 

greater than 0.85 for annual runoff.  A comparison between the observed mean annual runoff and 375 
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simulation is presented in Figure 5c for all study catchments.  The relative error for the 376 

validation period is 5.9% on average, and the root mean square error is 33.0 mm/year. 377 

The percent bias (PBIAS) is calculated as well for evaluating the model performance.  It 378 

is expected that the PBIAS will be small in all catchments during calibration period because the 379 

volumetric fit efficiency (VFE) effectively controls the model bias and it accounts for 50% of the 380 

weight in the objective function for calibration.  Results show that the average PBIAS during the 381 

calibration period is -0.13%.  Only 5 catchments have an absolute value of PBIAS between 0.5% 382 

and 5%, with all other catchments having an absolute value of PBIAS smaller than 0.5%.  The 383 

cumulative probability of the PBIAS during validation is shown in Figure 5d.  The PBIAS during 384 

validation is larger compared to that during calibration, while still acceptable, the average PBIAS 385 

is -0.28% for all the catchments.  Eight-seven percent of the catchments have a PBIAS within 386 

±10%, indicating that no significant bias exists in the model [Moriasi et al., 2007; Gupta et al., 387 

2009].  The relatively larger model bias during the validation period in this study probably is 388 

ascribed to the decreasing runoff ratio (the ratio between mean annual runoff and mean annual 389 

precipitation) in most of the catchments, even though the catchments selected in this study are 390 

relatively less influenced by climate change and human activities compared to other MOPEX 391 

catchments.  As for the 11 catchments with a bias larger than 10% during the validation period, 392 

the runoff ratio is changed by 16.3% on average, which is higher than that from the other 393 

catchments (9.5%).  Note that the model performance is not dependent on the catchment 394 

drainage area (see Figure S1 in the Supporting Information). 395 

The model performance is satisfactory for the daily, monthly, annual, and mean annual 396 

water balance considering its parsimonious model structure [Perrin et al., 2001; McIntyre et al., 397 

2005; Moriasi et al., 2007; Wang et al., 2009].  To compare the model performance with other 398 
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models, HyMOD [Moore, 1985] was used for all study catchments.  The performance of the two 399 

models are shown in Figure S2 of the Supporting Information.  The comparison shows that our 400 

model is superior to HyMOD in simulating the daily and monthly runoff, and has a similar 401 

efficiency in simulating the annual runoff.  The average bias in simulating runoffs using the new 402 

conceptual model is smaller than the bias from HyMOD.  Note that in the Supporting 403 

Information, the model used in this study is referred to as PDM-CN model for simplification 404 

since our model is a probability distributed model (PDM), and the distribution function for soil 405 

water storage capacity used in this model leads to the SCS-CN method [Wang, 2018].   406 

3.2 The roles of climate variabilities on runoff  407 

The relative roles of different climate variabilities on the runoff at different timescales for 408 

the 82 study catchments are presented in Figure 6.  In the daily runoff, the average relative role 409 

of daily variability is the largest, accounting for 50.2% of the daily runoff variability (Figure 6a).   410 

Monthly climate variability has the second most contribution, explaining 40.9% of the daily 411 

runoff variability (Figure 6a).  The relative role of inter-annual variability is much smaller, only 412 

explaining 8.9% of the daily runoff variation.  The dominant contribution of the erratic rain 413 

pattern of storminess calls for daily climatic data when simulating daily runoff.  However, daily 414 

data are not fully accessible in many catchments, therefore, making it difficult to accurately 415 

simulate the daily runoff.  Additionally, the high contribution of the monthly variability indicates 416 

strongly monthly characteristics in daily rainfall events and significant storage variation at the 417 

daily scale resulting from the monthly climatic fluctuations.  Flashiness is one of the most 418 

marked characteristics of daily runoff, thus the Richards-Baker flashiness index (R-B Index) 419 

[Baker et al., 2004] is calculated for daily runoff during the validation period (1999-2015) to 420 

further present the sensitivity of daily runoff to different climate variabilities.  Runoff with a 421 



20 

 

larger R-B Index experiences a larger day-to-day variation.  The results show that the R-B Index 422 

for the simulated runoff with daily climate input is 0.25 on average among the study catchments, 423 

and is reduced to 0.02 when using monthly climate input.  There is almost no flashiness in the 424 

simulated runoff when inter-annual climate is used, and there is no flashiness in runoff using 425 

mean climate since the catchment reaches a steady state.  Figure 7a shows a three-year daily 426 

runoff hydrograph with different climate inputs for Smith River in California (USGS gage 427 

number: 11532500).  The remarkable difference in flashiness of the simulated runoff modeled 428 

with different climate inputs further manifests the essential role played by daily climate 429 

variability on daily runoff.  Additionally, monthly climate variability generally determines the 430 

shape of daily runoff at the monthly scale, and it is also a key component for daily runoff 431 

variation.  432 

In the monthly water balance, the role of monthly climate variability is the largest, on 433 

average explaining 75.5% of the variation in monthly runoff (Figure 6b).  The roles of daily and 434 

inter-annual climate variability are much smaller, contributing 6.9% and 17.6% of the monthly 435 

runoff variation, respectively.  The central role of monthly climate variability on the monthly 436 

water balance is also supported by the Pardé coefficient, which is an indicator for identifying the 437 

mean seasonal flow regime [Pardé, 1933].  Figure 7b shows the distribution of the Pardé 438 

coefficient for Smith River.  The runoff seasonality is almost fully determined by the monthly 439 

climate variability since other climate variabilities explain less variation in monthly runoff.  The 440 

overwhelming control of the monthly climate variability on the monthly runoff variability 441 

reduces the difficulty in model prediction compared to the daily timescale because monthly 442 

climatic data are more accessible.  The much smaller role of the daily variability indicates that 443 

the irregular effects of daily storminess are smoothed out at the monthly scale by the soil water 444 
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storage capacity.  This is supported by Wang et al. [2011] which found that the daily forcings did 445 

not improve the performance of the monthly water balance much, through comparing a monthly 446 

water balance model with two daily water balance models in simulating the monthly runoff.  447 

Figure 8a shows the relative role of monthly climate variability on monthly runoff variation as a 448 

function of climate aridity index.  In wetter areas, more variance in monthly runoff could be 449 

explained by the monthly climate variability than in drier areas.  However, the monthly climate 450 

variability still explains more than half of the variation in monthly runoff for drier catchments. 451 

In the annual water balance, the inter-annual climate variability explains the most 452 

variation (81.5% on average) in the inter-annual runoff (Figure 6c).  The monthly climate 453 

variability also has a considerably contribution (17.4%).  However, the impacts of daily 454 

variability are further diluted in the annual runoff compared to that in the monthly runoff.  Figure 455 

7c shows the simulated annual runoff in Smith River with different climate inputs.  The power of 456 

inter-annual climate variability over annual runoff can also be reflected by the coefficient of 457 

variation (CV) of simulated annual runoff.  The CV value increases from 0, when using mean 458 

climate, to 0.0155 using annually variable climate and does not change much with smaller 459 

timescale climate inputs indicated by Figure 7c.  Figure 8b shows that the relative contribution of 460 

inter-annual climate variability on the annual runoff variation is larger in wetter catchments than 461 

in drier catchments.  In some humid catchments, the contribution of the inter-annual variability is 462 

up to 100%.  Figure 8c shows a positive relationship between the relative role of monthly climate 463 

variability on the annual runoff and the climate aridity index.  Therefore, the impact of monthly 464 

variability is larger in drier regions.  This result generally agrees with the result from Milly and 465 

Dune [2002], which found that the inter-annual variance in runoff was explained more by annual 466 

climate anomalies than by seasonality, especially in humid catchments.  Figure 8b and 8c show 467 
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the significant controls of the mean annual climate (in terms of climate aridity index) on the 468 

relative sensitivity of annual runoff to different climate variabilities.  The large scatter in Figure 469 

8b-c indicates that other catchment characteristics also have contribution in determining the 470 

relative role of climate variability.  Figure 8d shows the relationship between the total 471 

contribution of climate variability on the annual runoff and climate aridity index with colors 472 

indicating base flow indexes.  The base flow index is estimated by base flow separation using a 473 

recursive digital filter based on Eckhardt [2005].  The total contribution of climate variability in 474 

each catchment is computed as the standard deviation of ∆𝑄 normalized by ∆𝑃 in annual time 475 

series, where ∆𝑄 is the difference between the runoff using mean annual climate (Figure 3d) and 476 

runoff using daily climate (Figure 3a).  Since the initial condition and the total annual 477 

precipitation depth are same for the different climate patterns (e.g., Figure 3a and Figure 3d), the 478 

runoff difference is caused by climate variabilities, including the daily, monthly, and inter-annual 479 

variability.  As shown in Figure 8d, the catchments within the red dashed rectangle have a 480 

relatively larger base flow index.  This suggests that catchments experiencing the same climate 481 

regime, and a larger base flow index will tend to receive less impacts from climate variations due 482 

to the filtering effect of groundwater.  Groundwater has a longer residence time than surface 483 

water and diminishes the effects of climate variation observed in runoff.  The buffering effects of 484 

groundwater against climate fluctuations in the study catchments are not as strong as that in the 485 

semi-arid catchments, seen in Istanbulluoglu et al. [2012].  The relative smaller effect of 486 

groundwater on the runoff resilience in the study catchments is further indicated by a weak 487 

relation between the base flow index and the Hurst exponent (H), an indicator for the long-term 488 

memory of runoff [Hurst, 1951], as shown in Figure 8d-1.  A runoff time series with 𝐻 = 0.5 is 489 

known as a Brownian time series (i.e., there is no autocorrelation), a range of 0.5 < 𝐻 ≤ 1  490 
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suggests a long-term memory of runoff, and 𝐻 < 0.5  suggests an anti-persistent time series 491 

[Hurst, 1951].   The points in Figure 8d-1 and 8d-2 are catchments within the range 0.5 < 𝐻 ≤492 

1.  Compared to Figure 8d-1, a stronger relationship between the annual precipitation Hurst 493 

exponent and the annual runoff Hurst exponent is found in Figure 8d-2, implying a stronger 494 

dependence between precipitation and runoff variation in the study catchments.   495 

Figure 6d shows the relative roles of each climate variability on the mean annual runoff.  496 

Note that the values in Figure 6d are not supposed to be compared with values of relative roles 497 

from the water balances at smaller timescales (Figure 6a-c), because the method to calculate the 498 

relative roles of climate variability on the mean annual runoff is different.  Among different 499 

climate variabilities, monthly climate variability is the most important, contributing 64.7%, on 500 

average, to the part of mean annual runoff that generated by climate variabilities.  It should be 501 

pointed out that the inter-annual climate variability also plays a substantial role in the mean 502 

annual runoff, contributing 22.2%, on average, to the climate variability-generated mean annual 503 

runoff.  This result supports a previous research in Li [2014], which showed that the inter-annual 504 

variability of precipitation and potential evapotranspiration reduces the mean annual 505 

evapotranspiration based on a stochastic soil moisture model.  The reduction in evaporation ratio 506 

can reach 8-10% for the range of precipitation and potential evapotranspiration variability used 507 

in the study, which means that the inter-annual climate variability promotes the runoff 508 

generation.   509 

Figure 6 shows that at the daily, monthly, and annual timescales, the variation in runoff is 510 

largely determined by the climate variability at the same temporal scale.  Specifically, for the 511 

annual runoff, the inter-annual variability plays the most important role, and so on.  Following 512 

this pattern, the long-term climate condition (in terms of climate aridity index) should be most 513 
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important for the long-term mean annual water balance; this claim has been widely confirmed in 514 

other studies [Budyko, 1958, 1974; Milly, 1994; Zhang et al., 2001; Yang et al., 2008; Gentine et 515 

al., 2012].   516 

The relative roles of climate variability have also been evaluated based on simulation 517 

results from HyMOD.  The results from the model developed in this paper and that based on 518 

HyMOD are summarized in Table S1 and S2, respectively.  It shows that the results from these 519 

two models are consistent.  It is possible that a different combination of weights in the objective 520 

function could lead to different model efficiency.  However, the relative contribution of each 521 

climate variability is normalized by the model behavior from the daily climate as shown in 522 

Equations (12) and (15), which suggests an insensitivity of the relative effects of climate 523 

variability to the weights used in calibration.  Moreover, Table S3 in the Supporting Information 524 

shows the results of the relative roles of climate variability based on the simulation results with 525 

the parameters calibrated by NSE only (not using VFE).  As shown in Table S1 and Table S3, no 526 

noticeable difference is observed between the results from the two calibration objective functions 527 

(i.e., NSE and VFE versus NSE only).     528 

3.3 Budyko framework 529 

In addition to the climate variability, the direct contributions of the mean climate and soil 530 

water storage capacity are also evaluated in the mean annual water balance (Figure 9).  Among 531 

all the factors, the mean climate is the dominant factor controlling the precipitation partitioning, 532 

contributing 57.6 %, on average, to the mean annual runoff.  The soil water storage capacity with 533 

its spatial variability is the second contributing factor and contributes on average 30.3% of the 534 

mean annual runoff.  The spatial heterogeneity of soil water storage not only promotes the runoff 535 

generation directly but also suppresses the evaporation over the catchment as shown in Figure 2.  536 
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The impact of daily storminess on the mean annual water balance is small for the study 537 

catchments.  This result is similar to Reggiani [2000] who found that the storminess has an 538 

almost negligible effect on the mean annual water balance when infiltration excess runoff is 539 

negligible.    540 

Figure 10 shows how the mean annual evaporation ratio (i.e., 
E

P
) for the 12 catchments in 541 

Table 1 deviates from the asymptotes in the Budyko framework.  Each data point in Figure 10 542 

(except for the observation) is a simulated evaporation ratio using the indicated forcing for each 543 

catchment.  When neglecting climate variability and soil water storage capacity as well as its 544 

spatial heterogeneity, the mean annual evaporation of a catchment is the highest (red circles), 545 

falling on the asymptotes (dashed black lines).  In a catchment with a climate aridity index 546 

smaller than 1, the evaporation is equal to the potential evapotranspiration.  Conversely, a 547 

catchment with a climate aridity index larger than 1, the evaporation is equal to precipitation.  A 548 

horizontal line with 
E

P
 = 1, is referred to as the upper bound in this paper (dashed dotted red line) 549 

which is not possible exceeded at the mean annual scale because of mass balance principle.  The 550 

deviation from the upper bound (dashed dotted red line) to the asymptotes (dashed black lines) 551 

could be interpreted as the direct contribution of mean climate to mean annual runoff.  This 552 

deviation decreases to 0 when the aridity index is greater than 1.  It suggests that the mean 553 

climate has direct contribution to mean annual runoff only in catchments with a climate aridity 554 

index less than 1, although the mean climate can play roles in runoff generation in drier areas 555 

through the coevolution with other catchment properties such as the soil water storage capacity 556 

and vegetation.  Soil water storage capacity and climate variability promote runoff generation, 557 

therefore, the evaporation ratio further deviates from the asymptotes when more factors are 558 
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considered and eventually approaches the observed value when all factors are considered [Milly, 559 

1994; Westhoff et al., 2016].   560 

The contribution of each catchment characteristic to the mean annual runoff versus 561 

climate aridity index (
Ep

P
) is shown in Figure 11.  It is apparent that the direct contribution of 562 

mean climate decreases with climate aridity index and is 0 for catchments when the climate 563 

aridity index is equal to or larger than 1 (Figure 11a).  Other catchment characteristics including 564 

the storage capacity interact with the local climate, therefore, a clear pattern would also be found 565 

between the relative role of the spatially variable storage capacity with the climate aridity index 566 

(Figure 11b).  The contributions of storage capacity and climate variabilities increase as climate 567 

becomes drier (Figure 11b, c, d).  The scatter in Figure 11 suggests that the contribution of each 568 

component is not only dependent on the mean annual climate but also other unconsidered factors 569 

(e.g., sub-daily rainfall variability and topography). 570 

3.4 A unified framework for water balance models 571 

The developed daily water balance model provides a unified framework for modeling 572 

runoff at different timescales.  For the traditional daily, monthly, annual, and long-term water 573 

balance models, the timescale of climate inputs is same as that of runoff to be modelled (Figure 574 

12).  For example, monthly water balance models [Thomas, 1981; Makhlouf and Michel, 1994] 575 

take monthly precipitation and potential evapotranspiration as the inputs as shown in Figure 12-576 

b1.  Model complexity and parameter uncertainty is a trade-off during model development 577 

[Perrin et al., 2001; Zhang et al., 2008].  Generally, as the model timescale becomes coarser, the 578 

model performance is not sacrificed in return for simpler model complexity [Jothityangkoon et 579 

al., 2001].  But the model complexity as well as the number of parameters should be flexible in 580 

different catchments and based on different research purposes.  Assuming the residence time for 581 
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the quick storage tank is much less than one month, the monthly water balance model is obtained 582 

by removing the routing of quick storage as shown in Figure 12-b2 (i.e., kd=1 in Equations 8-4 583 

and 8-5) and the equations for the remaining components are same as those of daily water 584 

balance model.  The monthly water balance model shown in Figure 12-b2 has a similar 585 

performance as the ‘abcd’ model (see Figure S3 in Supporting Information), which is a state-of-586 

the-art monthly water balance model with 4 parameters [Thomas, 1981].  In Equation (3), 587 

precipitation is partitioned into soil wetting and runoff; whereas, in the ‘abcd’ model, the sum of 588 

precipitation and initial storage is partitioned into runoff and the sum of ending storage and 589 

evaporation.  However, Equation (3) with 𝑆0 = 0 leads to the same functional form as the ‘abcd’ 590 

model for calculating runoff.  Assuming that the residence time for the slow storage tank is less 591 

than one year, the routing of slow storage could be removed, resulting in the two-parameter (a, 592 

Sb) annual model as shown in Figure 12-c2 (i.e., kd =1 in Equations 8-4 and 8-5, and kb=1 in 593 

Equations 8-6 and 8-7).  Driven by annual precipitation and potential evapotranspiration (Figure 594 

12-c1), the annual water balance model calculates annual soil wetting (and runoff as 𝑃 − 𝑊) by 595 

Equation (3) and annual evaporation by Equation (7).  The soil water storage carryover in the 596 

annual water balance model is considered through the initial storage in Equation (3).   597 

Since soil water storage carry-over is not necessary for long-term water balances, the 598 

mean annual water balance model is obtained by removing the initial soil water storage (i.e., 599 

𝑆0 = 0) as shown in Figure 12-d2.  Equation (3) becomes: 600 

𝑊 =
𝑃+𝑆𝑏−√(𝑃+𝑆𝑏)2−2𝑎𝑆𝑏𝑃

𝑎
                                                  (16) 601 

Dividing by 𝑃 on both sides of the equation, Equation (16) leads to a one-parameter Budyko-602 

type equation [Wang and Tang, 2014].  Substituting Equation (16) into Equation (7) and dividing 603 

𝑃 on both hand sides, one obtains: 604 
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𝐸

𝑃
=

𝛷−1+1−√(𝛷−1+1)2−2𝑎𝛷−1

𝑎
∙

𝐸𝑝

𝑃
+Φ−√(

𝐸𝑝

𝑃
+𝛷)

2

−2𝑎𝛷
𝐸𝑝

𝑃

𝑎
     (17) 605 

where 𝛷 =
𝑆𝑏

𝑃
 is soil storage index.  Equation (17) shows that 

𝐸

𝑃
 is a function of 

𝐸𝑝

𝑃
, 𝛷, and 𝑎.  606 

This mean annual water balance model can be interpreted as the two-stage precipitation 607 

partitioning [L’vovich, 1979].  At the first stage, a portion of precipitation is partitioned to soil 608 

wetting; at the second stage, a portion of soil wetting is partitioned into evaporation.  If all the 609 

precipitation becomes soil wetting at the first stage (i.e., 𝑃 = 𝑊), the two-stage partitioning is 610 

simplified as a one-stage partitioning (i.e., precipitation is partitioned into evaporation and runoff 611 

directly).  For the one-stage partitioning, the available water for evaporation is precipitation, and 612 

the average soil water storage capacity (i.e., 𝑆𝑏) in Figure 12-d2 is set as 𝑃.  Correspondingly, 613 

Equation (7) becomes the one-parameter Budyko equation [Wang and Tang, 2014]: 614 

𝐸

𝑃
=

𝐸𝑝

𝑃
+1−√(

𝐸𝑝

𝑃
+1)

2

−2𝑎
𝐸𝑝

𝑃

𝑎
      (18) 615 

The five-parameter daily water balance model (Figure 12-a), which unifies the 616 

probability distributed model and the SCS-CN method [Wang, 2018], can be easily modified to a 617 

coarser modeling timescale by removing unnecessary components (Figures 12-b, 12-c, and 12-618 

d).  The equations for the common components among different timescale models remain the 619 

same.  The four-parameter monthly model (Figure 12-b) is obtained by removing the routing of 620 

quick flow; and the two-parameter annual model (Figure 12-c) is obtained by further removing 621 

the routing of slow flow; and the two-parameter mean annual model (Figure 12-c) is obtained by 622 

neglecting initial storage (Equation 17) in the annual model.  The two-parameter mean annual 623 

model can be further simplified as a one-parameter Budyko model (Equation 18).  However, the 624 

HyMOD cannot lead to the Budyko model by the same simplification.  It should be noted that 625 
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the common parameters (e.g., 𝑎) among the different timescale models (Figure 12) have different 626 

values due to the timescale effect [Deng et al., 2018].  To avoid the effect of climate timescale 627 

on model parameters, precipitation and potential evapotranspiration at the daily time step (Figure 628 

3) can be used for modelling runoff at different timescales.  In this case, the common parameters 629 

for modeling runoff at different timescales have the identical values. 630 

 631 

4. Conclusion  632 

A new conceptual hydrological model was developed based on a new distribution 633 

function for describing the spatial variability of soil water storage capacity which leads to the 634 

SCS curve number method.  In this study, the spatial variability of the soil water storage was 635 

assumed to have impacts on both runoff generation and evaporation.  Parameters (5 in total) were 636 

calibrated using the SCE-UA algorithm with the objective function being the weighted 637 

combination of Nash-Sutcliffe efficiencies and volumetric fit efficiencies from daily, monthly, 638 

and annual runoff.   The relative effects of climate variabilities (i.e., temporal variabilities of 639 

precipitation and potential evapotranspiration), on the runoff at different timescales were 640 

evaluated by comparing the simulated runoff with different timescale climate data.   The results 641 

show that at the daily, monthly, and annual scales, runoff variation is mostly influenced by the 642 

climate variability at the same timescale.  As for the mean annual runoff, monthly climate 643 

variability is the predominant contributor among all the climate variabilities, and our study 644 

confirms that inter-annual climate variability affects the mean annual runoff considerably.  The 645 

roles of the mean climate and soil water storage capacity with its spatial variability were also 646 

quantified for the mean annual runoff.  The mean climate is the direct contributor to mean annual 647 

runoff only in humid catchments.  The soil water storage capacity and climate variabilities play 648 
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more important roles in contributing the mean annual runoff in drier regions.  The daily water 649 

balance model built in this study provides a unified framework which unifies water balances at 650 

different timescales.   651 

It should be noted that this study only tried to investigate the relative roles of different 652 

climate variabilities in a broader sense, while other catchment characteristics are not explored 653 

thoroughly but are also important to the water balance.  This study helps gain insight into the 654 

general control of the climatic fluctuations on the water balance.  While, the results from this 655 

paper are more applicable to humid catchments since the model developed is a saturation excess 656 

model.  Infiltration excess runoff regime will be incorporated in future research.   657 
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Figure captions:  919 

Figure 1: The structure of the daily water balance model which unifies the probability distributed 920 

model (PDM) and SCS curve number method.  C is soil water storage capacity at a point; 𝐹(𝐶) 921 

is the fraction of the catchment area for which the storage capacity is less than or equal to 𝐶; 𝑆0 922 

is the initial soil water storage; P is the precipitation which is partitioned into is the soil wetting 923 

(W) and runoff (R); E is the actual evaporation; 𝛾 is the partitioning parameter of runoff between 924 

the direct runoff (𝑅𝑑) and groundwater recharge (𝑅𝑔); 𝑆𝑑 and 𝑆𝑔 are the storages in the quick 925 

storage tank and slow storage tank, respectively; 𝑘𝑑 and 𝑘𝑏 are the runoff coefficients of direct 926 

runoff and base flow, respectively; 𝑄𝑑, 𝑄𝑏, and 𝑄 are the flow rates of direct runoff, base flow, 927 

and total runoff at the catchment outlet, respectively. 928 

 929 

Figure 2: Evaporation is calculated based on the cumulative distribution function of soil water 930 

capacity when (a) the entire catchment is saturated and (b) the catchment is partially saturated. 931 

 𝑆𝑏  is the average soil water storage capacity over the catchment; 𝐸𝑝  is the potential 932 

evapotranspiration; 𝐸𝑠 is the average evaporation over the catchment when the entire catchment 933 

is saturated.  934 

 935 

Figure 3: Examples of different temporal patterns of climate inputs for Caney River in Kansas 936 

(USGS gage number: 07172000) during the period of 2000-2002: (a) daily climate; (b) monthly 937 

climate; (c) inter-annual climate; and (d) mean climate.  The blue solid line represents 938 

precipitation (P) and the red dashed line represents potential evapotranspiration (Ep). 939 

 940 
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Figure 4: The flow charts for quantifying: (a) the relative effects of different climate variabilities 941 

on the daily runoff; (b) the relative effects of different components on the mean annual runoff.  𝜌 942 

denotes the effects of climate variability or other catchment characteristics considered in this 943 

study;  Q
D

 ,  Q
M

,  Q
I
,  Q

S
,  Q

L
 are the 5 components of the total mean annual runoff that caused 944 

by the daily climate variability, monthly climate variability, inter-annual climate variability, 945 

storage capacity with its spatial variability, and long-term mean climate, respectively. 946 

 947 

Figure 5: The performance of the water balances at different timescales: (a) NSE of the runoffs 948 

during the calibration period, (b) NSE of the runoffs during the validation period, (c) a 949 

comparison of the observed and calculated mean annual runoff during the validation period, and 950 

(d) the cumulative distribution of model bias during the validation period. 951 

 952 

Figure 6: The relative roles of climate variability on runoff variabilities at the (a) daily, (b) 953 

monthly, (c) annual, and (d) mean annual scales. 954 

 955 

Figure 7: Controls of different timescale climate variabilities on (a) daily runoff during 2010-956 

2012; (b) mean Pardé coefficient for each month during the 2000-2015; and (c) annual runoff 957 

during 2000-2015 in Smith River, California (USGS gage number: 11532500).  958 

  959 

Figure 8: (a) The relationship between the relative role of monthly climate variability on monthly 960 

runoff and climate aridity index (Ep/P); (b) the relationship between the relative role of inter-961 

annual climate variability on annual runoff and Ep/P; (c) the relationship between the relative 962 

role of monthly climate variability on annual runoff and Ep/P; and (d) the relationship between 963 
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the sensitivity of annual runoff to climate variabilities and the Ep/P with base flow index 964 

indicated by the colors of the dots, and with two insets showing (d-1) the relationship between 965 

the Hurst exponent of runoff and the base flow index, and (d-2) the relationship between the 966 

Hurst exponents of runoff and that of precipitation.  967 

 968 

Figure 9: The relative roles of daily, monthly, inter-annual climate variability, mean climate, soil 969 

water storage capacity and its spatial variability on the mean annual runoff across the 970 

catchments. 971 

 972 

Figure 10:  The effects of soil water storage capacity and its spatial variability, mean climate, 973 

inter-annual climate variability, monthly climate variability, and daily climate variability on the 974 

mean annual evaporation ratio (E/P) in the Budyko framework.  975 

 976 

Figure 11: The relationships between the climate aridity index (Ep/P) and the relative roles of (a) 977 

mean climate, (b) soil water storage capacity and its spatial variability, (c) inter-annual climate 978 

variability, (d) monthly climate variability, and (e) daily climate variability on the mean annual 979 

runoff. 980 

 981 

Figure 12: Climate inputs at different timescales (left column) and their corresponding water 982 

balance model structures (right column): (a) daily model; (b) monthly model; (c) annual model; 983 

(d) mean annual model. 984 

 985 
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Table 1: The ranges and units of parameters for the daily water balance model [Kollat et al., 986 

2012; Wang, 2018], and the calibrated parameter values for 12 selected catchments (locations 987 

shown in Figure 10). 988 

Index 

USGS 

gage 

number 

Parameter and range 

Sb [mm] a [-] 𝛾 [-] kb [day-1] kd [day-1] 

[50-1500] (0-2) [0-1] [0-0.14) [0.14-1] 

(1) 11532500 1366.7 1.9979 0.8689 0.0002 0.2509 

(2) 12027500 775.2 1.9841 0.9989 0.1388 0.1741 

(3) 03512000 581.3 1.9396 0.6140 0.0306 0.2703 

(4) 03161000 531.5 1.9726 0.5727 0.0069 0.2788 

(5) 03574500 370.7 1.9866 0.9990 0.1324 0.2540 

(6) 03109500 410.3 1.9631 0.9990 0.1133 0.2042 

(7) 03269500 335.9 1.9464 0.5782 0.0052 0.2554 

(8) 05520500 295.1 1.9439 0.3364 0.0122 0.1402 

(9) 07186000 441.0 1.9858 0.9988 0.1376 0.2928 

(10) 06894000 293.9 1.9403 0.9999 0.0829 0.3735 

(11) 08033500 878.7 1.9888 0.0014 0.0810 0.1628 

(12) 07172000 235.6 1.9419 0.9989 0.1345 0.3622 

 989 
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 991 

Figure 1: The structure of the daily water balance model which unifies the probability distributed 992 

model (PDM) and SCS curve number method.  C is soil water storage capacity at a point; 𝐹(𝐶) 993 

is the fraction of the catchment area for which the storage capacity is less than or equal to 𝐶; 𝑆0 994 

is the initial soil water storage; P is the precipitation which is partitioned into is the soil wetting 995 

(W) and runoff (R); E is the actual evaporation; 𝛾 is the partitioning parameter of runoff between 996 

the direct runoff (𝑅𝑑) and groundwater recharge (𝑅𝑔); 𝑆𝑑 and 𝑆𝑔 are the storages in the quick 997 

storage tank and slow storage tank, respectively; 𝑘𝑑 and 𝑘𝑏 are the runoff coefficients of direct 998 

runoff and base flow, respectively; 𝑄𝑑, 𝑄𝑏, and 𝑄 are the flow rates of direct runoff, base flow, 999 

and total runoff at the catchment outlet, respectively. 1000 
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 1002 

Figure 2: Evaporation is calculated based on the cumulative distribution function of soil water 1003 

capacity when (a) the entire catchment is saturated and (b) the catchment is partially saturated. 1004 

 𝑆𝑏 is the average soil water storage capacity over the catchment; 𝐸𝑝 is the potential 1005 

evapotranspiration; 𝐸𝑠 is the average evaporation over the catchment when the entire catchment 1006 

is saturated.  1007 

1008 
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1009 

  1010 

Figure 3: Examples of different temporal patterns of climate inputs for Caney River in Kansas 1011 

(USGS gage number: 07172000) during the period of 2000-2002: (a) daily climate; (b) monthly 1012 

climate; (c) inter-annual climate; and (d) mean climate.  The blue solid line represents 1013 

precipitation (P) and the red dashed line represents potential evapotranspiration (Ep). 1014 
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1016 

 1017 

Figure 4: The flow charts for quantifying: (a) the relative effects of different climate variabilities 1018 

on the daily runoff; (b) the relative effects of different components on the mean annual runoff.  𝜌 1019 

denotes the effects of climate variability or other catchment characteristics considered in this 1020 

study;  Q
D

 ,  Q
M

,  Q
I
,  Q

S
,  Q

L
 are the 5 components of the total mean annual runoff that caused 1021 

by the daily climate variability, monthly climate variability, inter-annual climate variability, 1022 

storage capacity with its spatial variability, and long-term mean climate, respectively. 1023 
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 1026 

 1027 

Figure 5: The performance of the water balances at different timescales: (a) NSE of the runoffs 1028 

during the calibration period, (b) NSE of the runoffs during the validation period, (c) a 1029 

comparison of the observed and calculated mean annual runoff during the validation period, and 1030 

(d) the cumulative distribution of model bias during the validation period. 1031 
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1033 

 1034 

Figure 6: The relative roles of climate variability on runoff at the (a) daily, (b) monthly, (c) 1035 

annual, and (d) mean annual scales. 1036 

 1037 
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 1038 

 1039 

 1040 
Figure 7:  Controls of different timescale climate variabilities on (a) daily runoff during 2010-1041 

2012; (b) mean Pardé coefficient for each month during the 2000-2015; and (c) annual runoff 1042 

during 2000-2015 in Smith River, California (USGS gage number: 11532500). 1043 
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1045 

 1046 

Figure 8: (a) The relationship between the relative role of monthly climate variability on monthly 1047 

runoff and climate aridity index (Ep/P); (b) the relationship between the relative role of inter-1048 

annual climate variability on annual runoff and Ep/P; (c) the relationship between the relative 1049 

role of monthly climate variability on annual runoff and Ep/P; and (d) the relationship between 1050 

the sensitivity of annual runoff to climate variabilities and the Ep/P with base flow index 1051 

indicated by the colors of the dots, and with two insets showing (d-1) the relationship between 1052 

the Hurst exponent of runoff and the base flow index, and (d-2) the relationship between the 1053 

Hurst exponents of runoff and that of precipitation.  1054 

 1055 
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 1056 

Figure 9: The relative roles of daily, monthly, inter-annual climate variability, mean climate, soil 1057 

water storage capacity and its spatial variability on the mean annual runoff across the 1058 

catchments. 1059 
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 1061 

Figure 10: The effects of soil water storage capacity and its spatial variability, mean climate, 1062 

inter-annual climate variability, monthly climate variability, and daily climate variability on the 1063 

mean annual evaporation ratio (E/P) in the Budyko framework.  1064 
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1066 

1067 

            1068 

Figure 11:  The relationships between the climate aridity index (Ep/P) and the relative effects of 1069 

(a) mean climate, (b) soil water storage capacity and its spatial variability, (c) inter-annual 1070 

climate variability, (d) monthly climate variability, and (e) daily climate variability on the mean 1071 

annual runoff. 1072 
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 1073 

Figure 12: Climate inputs at different timescales (left column) and their corresponding water 1074 

balance model structures (right column): (a) daily model; (b) monthly model; (c) annual model; 1075 

(d) mean annual model. 1076 

 1077 
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