
P
os
te
d
on

16
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
1
71
3.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Near-real-time matched-filtering for the development of dense

earthquake catalogs during sequences of seismicity

Chamberlain Calum1, Townend John2, and Gerstenberger Matt3

1Victoria University of Wellington
2Victoria University Wellington
3GNS Science-Institute of Geological and Nuclear Sciences Ltd

November 16, 2022

Abstract

Conventional earthquake detection methods suffer significant degradations in completeness during high-rate sequences such

as aftershock sequences or volcanic swarms. Missed earthquakes during the early periods of aftershock sequences can affect

aftershock forecasts and hazard estimates. Missed events during volcanic unrest sequences can impact rate estimations, leading

to the sequence being mis-characterized. Much recent work has addressed how matched-filters can be used to overcome some

aspects of catalog incompleteness during high-rate sequences, by detecting similar events using cross-correlation. Here we

describe the application of open-source (GPL v3.0) software to the near-real-time implementation of matched-filter earthquake

detection. Our software (RT-EQcorrscan) is written in Python, and leverages the extensive Obspy package, as well as EQcorrscan

and Obsplus to provide matched-filter methods and database handling respectively. RT-EQcorrscan is designed to be modular,

so that users can readily utilize only the components they require, or make use of pre-built command-line utilities controlled by

simple that can handle thousands of templates over tens of channels of seismic data within the processing capacity (memory

and CPU usage) of a standard desktop personal computer. Detections are made within a few seconds of data arriving, with

latency due to data delivery and a requirement for full network move-out. At the same time, RT-EQcorrscan has an overarching

“Reactor” module to listen to a web-service and respond to new events. If an event occurs that meets user-defined criteria, the

Reactor will initiate a near-real-time matched-filter process encompassing the region surrounding the trigger event. Subsequent

trigger events in different regions can also be handled with threaded operations. This system is backed-up by a constantly

updating template database built on Obsplus, allowing groups of templates to be rapidly deployed. In this presentation we will

discuss the key implementation details, as well as showcasing some examples of the system in operation.

1



21

Matched- lter 

detection: write 

detections to disk

Reactor

Listener

Daemon thread: Listener

While alive, recheck 

every n seconds

RealTimeClient RealTimeTribe

event_trigger

Download new 

events, add to 

shared catalog

Main

thread

While alive, keep checking the shared catalog

No trigger

Trigger

Daemon thread: RealTimeTribeDaemon thread: RealTimeClient

Collect loop - keep 

FIFO bu er of data 

in shared memory

While alive, keep 

updating bu er

TemplateBank

Look-up suitable 

pre-computed Tribe

R
e
-e

n
te

r 
e
v
e
n
t_

tr
ig

g
e
r 

lo
o
p
, 

k
e
e
p
 

re
c
o
rd

 o
f 

te
m

p
la

te
s
 i
n
 u

s
e

Serve bokeh real-

time streaming plot
Daemon thread: plotting

While alive, repeat 

detection every m

seconds

While alive, keep 

updating plot

Are enough 

data in bu er?

Yes

No: recheck 

every o seconds

Multiple RealTimeTribes can be used in 

parallel - checking for triggers continues 

in the main thread
Generate dense matched- lter derived

catalogues in near real-time

React to trigger events (e.g. large

magnitude or high-rate)

Run thousands of templates in < 8GB RAM

Well-suited to:

Aftershock sequences, 

Swarms, 

Volcanic unrest, 

Repeating earthquakes,

Low-frequency earthquakes


