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Abstract

This study conducts an analysis of the polar numerical noise in the barotropic shallow-water version of the Grid-point Atmo-

spheric Model of IAP LASG (GAMIL-SW) and provides a good solution to the problem. GAMIL-SW suffers from numerical

noise in the polar region in some ideal test cases, which is likely to be detrimental to the full physical model. The noise is

suspected to be related to the nonlinear advection term in the momentum equation. Thus, a new shallow-water model with

a vector-invariant form of the momentum equation is developed on the latitude-longitude grid to analyze the polar noise. It

is found that the version with meridional wind component staggered on the pole is free from noise, while the version with

zonal wind component staggered on the pole is still contaminated. By redefining the polar relative vorticity, the polar noise

is eliminated in the latter version. In addition, the test cases demonstrate that the new shallow-water model maintains the

properties of the original GAMIL-SW with respect to numerical accuracy and computational stability. This study helps to

identify appropriate governing equations to further develop the next generation of GAMIL dynamical core.
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Abstract15

This study conducts an analysis of the polar numerical noise in the barotropic shallow-16

water version of the Grid-point Atmospheric Model of IAP LASG (GAMIL-SW) and pro-17

vides a good solution to the problem. GAMIL-SW suffers from numerical noise in the18

polar region in some ideal test cases, which is likely to be detrimental to the full phys-19

ical model. The noise is suspected to be related to the nonlinear advection term in the20

momentum equation. Thus, a new shallow-water model with a vector-invariant form of21

the momentum equation is developed on the latitudelongitude grid to analyze the po-22

lar noise. It is found that the version with meridional wind component staggered on the23

pole is free from noise, while the version with zonal wind component staggered on the24

pole is still contaminated. By redefining the polar relative vorticity, the polar noise is25

eliminated in the latter version. In addition, the test cases demonstrate that the new shallow-26

water model maintains the properties of the original GAMIL-SW with respect to numer-27

ical accuracy and computational stability. This study helps to identify appropriate gov-28

erning equations to further develop the next generation of GAMIL dynamical core.29

Plain Language Summary30

The dynamical core describes the atmospheric motion and its thermodynamic state31

in a forecast model, acting like the engine of car. The dynamical core needs to numer-32

ically solve the governing equations, which involves considering various aspects, such as33

mathematical equations, numerical methods, a spherical grid and so on. Designing a shallow-34

water model is often the first step in designing a new generation of dynamical core. This35

paper describes a new shallow-water model with vector-invariant equations that differ36

from original model. The new model is designed to avoid the polar noise problem found37

in the original shallow-water model. By comparing the two models, the source of polar38

noise on the latitude-longitude grid is analyzed. Idealized experiments also demonstrate39

that the new shallow water model is able to overcome the polar noise problem and main-40

tains the computational performance of the original model.41

1 Introduction42

Atmospheric general circulation models (AGCMs) are one of the crucial tools for43

operational numerical weather prediction and climate modeling, and are one of the fun-44

damental components in Earth system models (ESMs) (Wang et al., 2009). At the heart45

of AGCMs is the dynamical core, which is responsible for solving the governing equa-46

tions of atmospheric dynamics and thermodynamics on the resolved scales (Thuburn,47

2008). Along with the advances in high-performance computing, substantial investments48

are being made in the development of the next generation of global non-hydrostatic high-49

resolution numerical models at modeling centers around the world (e.g., Skamarock et50

al., 2012; Satoh et al., 2014; Ullrich et al., 2017; Kühnlein et al., 2019). The Grid-point51

Atmospheric Model of IAP LASG (GAMIL) is an AGCM based on the finite-difference52

scheme, developed by the State Key Laboratory of Numerical Modeling for Atmospheric53

Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of Atmospheric Physics54

(IAP) of the Chinese Academy of Sciences (Wang et al., 2004; Wang & Ji, 2006). GAMIL55

is the atmospheric component in the coupled climate system model FGOALS-g (Flex-56

ible Global Ocean-Atmosphere-Land System model: grid-point version) (e.g., Yu et al.,57

2008; L. Li et al., 2013). However, as this model remains to solve the hydrostatic prim-58

itive equations, it is urgent to upgrade the model to a non-hydrostatic version for higher-59

resolution global weather forecast and climate modeling. In general, in the process of de-60

veloping atmospheric models, model developers tend to start from the shallow-water equa-61

tions, as they mimic the important features of the horizontal aspects of the dynamics62

(e.g., Thuburn, 2008; Thuburn & Cotter, 2012; Staniforth & Thuburn, 2012). Many for-63

mulations of the shallow-water equations on a rotating sphere are available. These for-64
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mulations are equivalent in the continuous case but lead to very different discretization65

forms. Moreover, the shallow-water equations have five basic conservative integrals, in-66

cluding three primary integrals (total mass, total absolute angular momentum and to-67

tal potential vorticity) and two quadratic integrals (total energy and total potential en-68

strophy) (Wang & Ji, 2003). If we want to simulate the continuous adiabatic friction-69

less governing equations faithfully, numerical methods should be applied to approximately70

conserve these integrals, particularly the quadratic ones, which is the necessary condi-71

tion for avoiding computational instability in a nonlinear system (Sadourny, 1975; Arakawa72

& Lamb, 1977, 1981).73

GAMIL uses the IAP variable transformation method (Zeng & Zhang, 1987; Zeng74

et al., 1989; Zhang, 1990) to convert the standard primitive equations to the quadratic75

conservation form, which ensures the conservation of total effective energy in the hydro-76

static model under spatial finite-difference discretization. The single-layer shallow-water77

version of GAMIL (GAMIL-SW) has many of the same properties as its hydrostatic ver-78

sion, such as anti-symmetric spatial operators, and total mass and total energy conser-79

vation. Consequently, various idealized test cases for the shallow-water model (e.g., Mc-80

Donald & Bates, 1989; Williamson et al., 1992; Bates & Li, 1997; Galewsk et al., 2004;81

Nair et al., 2005; Shamir & Paldor, 2016; Ferguson et al., 2019) can be applied to eval-82

uate the basic numerical schemes from multiple perspectives, for example, the model grid,83

prognostic equations, variable placement and numerical method. Williamson et al. (1992)84

proposed a standard suite of test cases for verifying numerical algorithms for solving the85

shallow-water equations on a sphere. We evaluated GAMIL-SW with the test case 5 of86

the suite and found that the polar noise is noticeable in this case. The unphysical noise87

is at the grid scale and propagates from the poles to the mid-latitudes. The noisy so-88

lution is likely to be detrimental in three-dimensional simulations when the physical pro-89

cesses are coupled within the dynamical core, for example, via advection and wave prop-90

agation. Therefore, this problem is critical and needs to be solved by designing suitable91

numerical methods for the dynamical core.92

The objective of this study is to analyze the polar noise and provide a solution to93

the problem. A number of approaches have been attempted without success. The ma-94

jor efforts in the early phase are in twofold. First, averaging in the calculation of Cori-95

olis terms due to the use of the Arakawa-C staggered grid was suspected, which may lead96

to grid-scale oscillations when the Rossby deformational radius is under-resolved, but97

this is not the case for the model resolution in this study. Second, we endeavored to add98

artificial diffusion or damping, a polar fast Fourier transform filter, a digital filter or a99

nonlinear diffusion to remove the noise. However, none of these approaches have been100

found to be effective. Nevertheless, during the investigations, two features were noticed.101

One is that the noise disappears when the nonlinear momentum advection terms are switched102

off, and the other is that the abrupt increase of the potential enstrophy may result from103

the noise. Therefore, the source of the noise is probably related to these two phenom-104

ena. On the basis of these observations, we turn to the vector-invariant form of the hor-105

izontal momentum equation, which bypasses the potential problematic discretization of106

nonlinear horizontal momentum transport (Skamarock et al., 2012). In addition, the spa-107

tial discretization can be designed to dissipate the potential enstrophy (i.e., the square108

of the potential vorticity) without violating the total energy conservation (Ringler et al.,109

2010).110

The remainder of this paper is organized as follows. Section 2 introduces the shallow-111

water equations in vector-invariant form, and the spatial discretization of the equations112

on the latitude-longitude (lat-lon) grid is described in detail in section 3. Section 4 dis-113

cusses the polar noise in the numerical experiments, and section 5 provides a summary114

and conclusion.115
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2 The shallow-water equations in vector-invariant form116

The standard nonlinear shallow-water equations, including the mass continuity equa-117

tion in flux form and momentum equation in advection form, can be expressed in vec-118

tor form as119

∂h

∂t
+∇ · (hu) = 0 (1)120

∂u

∂t
+ u · ∇u + fk× u = −g∇(h+ hs) (2)121

where h is the fluid thickness, u is the fluid velocity vector with components u and v in122

the longitudinal (λ) and latitudinal (ϕ) directions, respectively, and k is the local unit123

vertical vector. The other three parameters are the Coriolis parameter f = 2Ω sinϕ,124

gravity acceleration g, and bottom topography hs, in which Ω is the rotation rate of the125

Earth. The momentum advection term can be reformulated into a vector-invariant form126

by the so-called Lamb transformation (e.g., Gassmann & Herzog, 2008; Zängl et al., 2015)127

u · ∇u = ξk× u +∇(
1

2
u2) (3)128

There are two ways to write the vorticity terms129

(ξ + f)k× u and qk× hu (4)130

where q = (f + ξ)/h is the potential vorticity (PV), defined as the ratio between the131

absolute vorticity and the fluid thickness, and ξ = k · (∇×u) is the relative vorticity.132

As in Peixoto et al. (2018), the two vorticity terms can be referred to as the non-depth-133

weighted form and depth-weighted form, respectively. They are equivalent in the con-134

tinuous form, but are different for discretization. The depth-weighted form is flexible for135

designing a numerical scheme of potential enstrophy conservation or dissipation by in-136

troducing the PV (e.g., Sadourny, 1975; Burridge & Haseler, 1977; Arakawa & Lamb,137

1981; Takano & Wurtele, 1982; Arakawa & Hsu, 1990; Ringler et al., 2010). The non-138

depth-weighted form has been studied in some shallow-water models (e.g., Lin & Rood,139

1997; Tomita et al., 2001; Ringler & Randall, 2002; Wang & Ji, 2003; Bonaventura &140

Ringler, 2005) and adopted in certain baroclinic models (e.g., Lin, 2004; Skamarock et141

al., 2012; Zängl et al., 2015). In this study, the depth-weighted form is used in the new142

shallow-water model.143

By substitution, the vector-invariant form of the momentum equation can be writ-144

ten as:145

∂u

∂t
+ qhu⊥ +∇K = −g∇(h+ hs) (5)146

where K = u2/2 denotes the horizontal kinetic energy. hu and hu⊥ = hk× u denote147

the normal and tangential mass flux, respectively. The second term in the momentum148

equation (Equation (5)) involving q does not contribute to the change of total kinetic149

energy and is also known as the nonlinear PV flux or nonlinear Coriolis force. Through150

this term, potential enstrophy can be damped by employing a diffusive advection scheme151

for PV, such as the anticipated potential vorticity method (APVM) or the scale-selective152

dissipation method (Sadourny & Basdevant, 1985; Q. Chen et al., 2011).153

Thuburn et al. (2009) and Ringler et al. (2010) discussed at length a finite-volume154

approach used to model the shallow-water system on arbitrarily structured grid. In Thuburn155

et al. (2009), the linearized version of continuity equation (Equation (1)) and momen-156

tum equation (Equation (5)) was analyzed to derive a numerical method, called TRiSK157

(Thuburn & Cotter, 2012), mainly for the discretization of the Coriolis term on an ar-158

bitrarily structured orthogonal C-grid, which allows for representation of the stationary159

geostrophic modes in the linearized equations. The main result of Thuburn et al. (2009)160

is a set of weights for diagnosing the tangential velocity from the surrounding normal161
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Figure 1. Definition of elements in C-grid staggering on the lat-lon grid. i and j are the index

in the zonal and meridional direction over the primal cell, respectively. The primal cell (solid)

and the dual cell (dashed) are orthogonal, that is, the edges of primal cell are orthogonal to the

edges of dual cell. The areas of primal cell and dual cell are A|j and Av|j+ 1
2
, respectively. Av|+j

( Av|−j+1 ) is the overlapping area between the primal and dual cells, and Ae|j+1 (Ae|j+ 1
2

) is the

unique area associated with each edge e, which is the sum of two triangles on either side of the

edge. All areas A and edge lengths le are calculated in the spherical geometry, and the distance

between neighboring cells is set by de = 2Ae/le.

178

179

180

181

182

183

184

185

velocities. Ringler et al. (2010) further extended the TRiSK method to the nonlinear shallow-162

water equations on the spherical centroidal Voronoi tessellation (SCVT) mesh and for-163

mulated a spatial discretization that conserves the total energy and potential vorticity,164

as well as conserves or dissipates the potential enstrophy. Weller et al. (2012) investi-165

gated five quasi-uniform spherical grids by using the same TRiSK method to solve the166

shallow-water equations. However, although the TRiSK method is applicable to a wide167

variety of meshes theoretically, previous studies have utilized only quasi-uniform meshes,168

and the numerical accuracy of the method degrades to only first-order due to some un-169

wanted features of those grids, for example, the dual edges do not bisect the primary edges170

perpendicularly, and there are several pentagon cells different from the surrounding hexagon171

cells (e.g., Ringler et al., 2010; Skamarock et al., 2012; Weller et al., 2012). Motivated172

by these considerations, in this study, the shallow-water model in vector-invariant form173

is pursued on the regular lat-lon grid to solve the polar noise problem and achieve second-174

order accuracy.175

3 Spatial discretization of equations176

The Arakawa-C grid has good dispersion properties of the inertia-gravity wave and186

gives an accurate representation of the geostrophic adjustment process provided the ra-187

dius of deformation is well resolved (Arakawa & Lamb, 1977). The prognostic variables188

are discretized with the C-grid staggering as illustrated in Figure 1. The horizontal ve-189

locity normal to the cell edge (u and v) as a point-wise value is prognosed at the cell edges.190

The thickness field hi,j as a cell-averaged value is prognosed at the primal cell centers191

(i, j). All vorticity-related variables, including relative vorticity (ξi− 1
2 ,j+

1
2
), thickness (hvi− 1

2 ,j+
1
2
)192

and potential vorticity (qi− 1
2 ,j+

1
2
), are diagnosed or mapped from prognostic variables193

on the primal cell. In view of computational efficiency, all the time-independent values,194

including area, length, and distance, are pre-calculated and stored before the time in-195

tegration begins. The spatial discretization is a mixed finite-volume/finite-difference scheme,196

and the main calculations are described in the following subsections.197
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3.1 Divergence operator198

For the continuity equation (Equation (1)) in flux form, the divergence of mass flux199

can be simply discretized using the Gauss divergence theorem over a primal cell:200

∇ · (hu)i,j =
1

A|j
∑
e∈(i,j)

ĥeuele (6)201

where ue represents either u or v component of velocity at the edge point and positive202

flux is outward, A|j and le denote the area and the edge length of the primal cell, respec-203

tively. The thickness at the cell edge ĥe needs to be interpolated from the primal cell204

centers. The velocity divergence operator has second-order accuracy on the lat-lon grid205

because the velocity is centered on the primal cell edge, which is not likely the case for206

the Voronoi mesh. As a result, the accuracy of the mass flux divergence operator is de-207

termined by the interpolation approximation of the thickness at the cell edge. Midpoint208

interpolation ĥe = hi+hi+1

2 is used on a Voronoi grid in Ringler et al. (2010), i.e., the209

edge weight is 1/2. It has second-order accuracy because the edges bisect the lines be-210

tween the Voronoi generating points.211

However, the midpoint scheme decreases the interpolation accuracy for the edge212

thickness on the lat-lon grid. The edge weight used for the interpolation is not equal in213

the zonal and meridional directions. In the zonal direction, the two triangles at the west214

and east side of one longitude line are symmetric and equal to each other, for example,215

Ae|+j+1 is equal to Ae|−j+1. However, in the meridional direction, the area of the rectan-216

gular mesh changes with respect to latitude, thus the two areas at the north and south217

side of one latitude line are not equal, for example, Ae|+j+ 1
2

is not equal to Ae|−j+ 1
2

. Given218

the triangular area as weight, Weller et al. (2012) proposed an alternative interpolation219

for the non-Voronoi grid, which ensures the second-order accuracy of conservative map-220

ping between primal and dual meshes. For example, in Figure 1221

ĥei,j+ 1
2

=
Ae|+j+ 1

2

hi,j+1 +Ae|−i+ 1
2

hi,j

Ae|j+ 1
2

(7)222

Ae|+j+ 1
2

and Ae|−j+ 1
2

are the triangular areas at the north and south of the edge with Ae|j+ 1
2

=223

Ae|+j+ 1
2

+Ae|−j+ 1
2

. In addition, it should be noted that the two triangles in the zonal di-224

rection of one cell are exactly spherical triangles because each edge of the triangle is one225

part of a great circle line, for example, Ae|−j+1 and Ae|+j+1 , but the two triangles in the226

meridional direction of one cell are not spherical triangles because one edge of the tri-227

angle is part of the latitude line that is not a great circle except the Equator, for exam-228

ple Ae|−j+ 1
2

and Ae|+j+ 1
2

. Thus, care must be taken to calculate the area of triangles in229

the spherical geometry on the lat-lon grid.230

3.2 Discretization of normal gradient231

In the momentum equation (Equation (5)), to calculate ∂u/∂t one needs to dis-232

cretize the gradient of kinetic energy and geopotential on the cell edge. On the lat-lon233

grid, the edge of the primal cell is perpendicular to and bisected by the edge of the dual234

cell; hence, the second-order central finite-difference method can be implemented straight-235

forwardly. For example, on the edge point (i− 1
2 , j) , the gradient of geopotential in the236

zonal direction is calculated as237

∇h · ne =
hi+1,j − hi,j

dej
(8)238

where ne is the normal direction to edge e and dej is the zonal distance between hi,j and239

hi+1,j . This simple two-point central finite-difference on the lat-lon grid ensures that the240

gradient has second-order accuracy and is curl free around vertices.241
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3.3 Discretization of potential vorticity242

In the momentum equation (Equation (5)), to calculate ∂u/∂t one needs to inter-243

polate q, h, and u⊥ onto the u grid. This subsection describes the interpolation of q and244

h; how to calculate the tangential u⊥ is to be described in subsection 3.6. PV is defined245

as absolute vorticity divided by the thickness within the shallow-water model. On the246

staggered C-grid, it can be calculated at either the primal cell center where thickness is247

located or the dual cell center where relative vorticity is naturally calculated by apply-248

ing the circulation theorem to the surrounding u and v. Lin and Rood (1997) defined249

PV on the primal cell to ensure that PV is accompanied by a valid thickness equation.250

Sadourny (1975), Arakawa and Lamb (1981) and Ringler et al. (2010) defined PV on the251

dual cell instead of the primal cell to obtain the PV properties of compatibility and con-252

sistency. To avoid the creation of a null space in the divergence field (Skamarock, 2008;253

Ringler et al., 2010), we define PV on the dual cell center. First, the relative vorticity254

is discretized by applying Stokes’ circulation theorem over a dual cell:255

ξ = k · (∇× u) =
1

Av

∑
e∈EV (v)

uede (9)256

where Av denotes the area of one dual cell, e ∈ EV (v) denotes all edges of one dual257

cell, ue represents either u or v of velocity circulating one dual cell, and positive circu-258

lation is anticlockwise. de is the edge length of the dual cell. Second, thickness hv on the259

primal vertex needs to be interpolated from the surrounding cell centers; therefore, equa-260

tion (25) in Ringler et al. (2010) is applied. For example, in Figure 1261

hvi− 1
2 ,j+

1
2

=
1

Av|j+ 1
2

[
Av|+j (hi−1,j + hi,j) +Av|−j+1(hi−1,j+1 + hi,j+1)

]
(10)262

On the lat-lon grid, the overlapping area between the primal and dual cells is equal in263

the zonal direction, thus the same area weight Av|+j is used for both hi−1,j and hi,j , and264

the same area weight Av|−j+1 is used for both hi−1,j+1 and hi,j+1. Moreover, the area of265

the primal cell, dual cell, and the intersection are accurate calculations rather than ap-266

proximate ones in spherical geometry. Consequently, the sum of four overlapping areas267

in one primal cell is exactly equal to the area of the primal cell, and the sum of four over-268

lapping areas in one dual cell is exactly equal to the area of the dual cell. As a result,269

this interpolation scheme ensures that the divergence field on the dual mesh is compat-270

ible with the divergence field on the primal cell. In addition, on the lat-lon grid, the thick-271

ness over the primal and dual cells is located at the center of the primal and dual cells.272

These constraints on the lat-lon grid ensure that the interpolation operator has second-273

order accuracy (Thuburn & Cotter, 2012).274

After the calculation of PV on a dual cell, the next step is the interpolation of PV275

to the edge point from the dual cell for the nonlinear Coriolis force term. Two interpo-276

lation algorithms are used in this study. One is the midpoint scheme, which allows for277

the conservation of potential enstrophy. Another is APVM (Sadourny & Basdevant, 1985;278

Ringler et al., 2010), which leads to potential enstrophy dissipation as it is an upwind-279

biased estimate of the edge PV and provides an enstrophy sink.280

midpoint:qe =
qv1 + qv2

2
, (11)281

282

APVM:qe =
qv1 + qv2

2
− 1

2
ue · ∇eqδt (12)283

where qv1 and qv2 are the PV at two ends of one primal edge, ∇eq = ( ∂q∂x ,
∂q
∂y ) is the284

gradient of q at edge point and δt is the time step. On the lat-lon grid, for the u(v) point,285

∂q
∂y ( ∂q∂x ) can be directly calculated using the two endpoint PVs of one edge with the finite-286

difference method, while ∂q
∂x ( ∂q∂y ) needs to be interpolated from surrounding values that287

are calculated on the edge point. The interpolation method is the same as that of tan-288

gential velocity described in subsection 3.6. With respect to other kinds of APVM, re-289

fer to Weller (2012). In this study, the midpoint and APVM methods are applied.290
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3.4 Calculation of kinetic energy291

In the momentum equation (Equation (5)), if the kinetic energy is defined on the292

primal cell centers, the calculation of the kinetic gradient has second-order accuracy us-293

ing the central finite-difference method. The expression of kinetic energy in the discrete294

system is determined by the constraint of conservative exchange between potential and295

kinetic energy. Therefore, based on the calculation of thickness on the edge (Equation296

(7)), where the triangular area either side of each edge is the weight, the kinetic energy297

in terms of the normal velocities is derived (see Appendix). For example, in Figure 1298

Ki,j =
1

A|j

(
Ae|−j+ 1

2

v2i,j+ 1
2

+Ae|+j− 1
2

v2i,j− 1
2

+Ae|+j u2i+ 1
2 ,j

+Ae|−j u2i− 1
2 ,j

)
(13)299

where A|j = Ae|−j+ 1
2

+Ae|+j− 1
2

+Ae|+j +Ae|−j . This definition is the same as Weller et300

al. (2012) and more suitable for non-Voronoi grids. There are two points to note for the301

calculation of kinetic energy on the primal cell. First, the distance between cells is set302

by de = 2Ae/le instead of direct calculation in spherical geometry. In other words, the303

area associated with edge e and the edge length le are calculated in spherical geometry304

before the distance de is determined. Second, to ensure energetic consistency, the same305

area weight must be used for interpolation of thickness from cells to edges.306

3.5 Discretization of the nonlinear Coriolis term307

One of the requisites for total energy conservation is that the Coriolis force neither308

creates nor destroys kinetic energy as the Coriolis force is always orthogonal to the ve-309

locity vector. Under this constraint, the nonlinear Coriolis force term (or PV flux) is con-310

structed between the target and surrounding edges as follows, exactly as in Ringler et311

al. (2010)312 (
qhu⊥

)
e

=
1

de

∑
e′∈ECP (e)

wee′`e′ ĥe′ue′ q̃ee′ (14)313

where de is the distance between two neighboring primal cells that share edge e, e′ ∈314

ECP (e) denotes the four edges (v-grid for qhu and u-grid for qhv) belonging to the two315

primal cells that share edge e, and wee′ is the interpolation weight, which is specified in316

subsection 3.6. One symmetric formulation of q̃ee′ is (q̃e+ q̃e′)/2, where q̃e, q̃e′ are the317

PVs at the edge point remapped from PVs at the primal vertices. In this way, the sym-318

metry of the two q̃ terms along with the symmetry of remapping weight wee′ following319

Thuburn et al. (2009) ensure that the Coriolis term is energy conserving. An alterna-320

tive non-symmetric formulation of q̃ee′ is qe, which is directly defined on the edge using321

an interpolation scheme for the PV. This formulation does not guarantee that the non-322

linear Coriolis force is energetically-neutral, but it does give an accurate treatment of323

PV from a potential enstrophy perspective (Thuburn & Cotter, 2012; Ringler et al., 2010;324

Thuburn et al., 2014). In this study, the symmetric formulation is applied along with325

the midpoint (Equation (11)) and APVM schemes (Equation (12)) for the edge PV, which326

leads to inherent potential enstrophy conservation and dissipation, respectively.327

3.6 Calculation of weights and tangential velocity328

The weight wee′ used in the previous subsection is a key parameter because it is329

used to calculate the PV flux as well as the tangential velocities (vector quantities along330

edges). The weight wee′ is derived from the sum of area fractions for each cell vertex331

wee′ = ±(
1

2
−
∑
v

Aiv
Ai

) (15)332

where Aiv is the overlapping area between the dual cell around vertex v and the primal338

cell i, and the vs are the vertices in a walk between edge e and e′. The weights are pro-339

portional to the overlap area. For the detailed computational method, refer to Thuburn340
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et al. (2009) and Weller et al. (2012). As Thuburn et al. (2009) noted, the weight can341

be set to 1/4 on the lat-lon grid. The two options are provided in the new shallow-water342

model and the experiment results are similar, thus 1/4 is adopted at present.

ui+ 1
2 ,j

ui+ 1
2 ,j+1ui− 1

2 ,j+1

ui− 1
2 ,j

ûi,j+ 1
2

v̂i− 1
2 ,j

vi−1,j− 1
2

vi,j− 1
2

vi,j+ 1
2

vi−1,j+ 1
2

cos θj

cos θj+ 1
2

cos θj− 1
2

333

Figure 2. Illustration of reconstruction of tangential velocity at the edge points. It is ob-

tained using the tangential velocity flux divided by the length across the edge, and the tangential

velocity flux at (i, j + 1
2
) and (i− 1

2
, j) are averaged by using the neighboring four normal velocity

fluxes, respectively.

334

335

336

337

343

The tangential velocity can be reconstructed from neighboring normal components344

at the edges of the cells. The interpolation needs to ensure that the divergence of vec-345

tor field on the dual cell is a convex combination of the divergence on the primal cell:346

u⊥e =
1

de

∑
e′∈ECP (e)

wee′ le′ue′ (16)347

where ue′ denotes the normal velocity. Specifying the interpolation operator on the lat-348

lon grid, Figure 2 illustrates how to interpolate neighboring normal wind components349

(u and v) to the tangential wind components (û and v̂). With respect to the velocity flux350

and spherical coordinates, the tangential velocity flux is averaged by the surrounding four351

normal velocity fluxes, for example, as given by equation (17) and (18). By derivation,352

û is the four-point arithmetic mean from surrounding us, but for v̂, the interpolation needs353

to contain geometrical factors (cosϕ) due to grid intervals varying with latitude. The354

tangential velocity is calculated as follows355

a∆ϕûi,j+ 1
2

=
1

4
(a∆ϕui− 1

2 ,j+1 + a∆ϕui− 1
2 ,j

+ a∆ϕui+ 1
2 ,j+1 + a∆ϕui+ 1

2 ,j
) (17)356

357

a cosϕj v̂i− 1
2 ,j

=
1

4
(a cosϕj+ 1

2
vi−1,j+ 1

2
+a cosϕj− 1

2
vi−1,j− 1

2
+a cosϕj+ 1

2
vi,j+ 1

2
+a cosϕj− 1

2
vi,j+ 1

2
)

(18)358

and can be simplified as359

û = uλϕ (19)360

361

v̂ =
1

cosϕ
v cosϕϕ

λ

(20)362

where the overline with superscript indicates an equally weighted two-point average in363

the spatial direction (λ or ϕ) on the lat-lon grid (Thuburn & Staniforth, 2004; Thuburn364

et al., 2009).365

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

3.7 Calculation of potential vorticity on the pole366

As the staggered Arakawa C-grid is applied on the lat-lon grid, two different place-371

ments of prognostic variables at the poles are available (e.g., Thuburn & Staniforth, 2004),372

that is, u-at-pole and v-at-pole, as shown in Figure 3ab. These two placements result373

in different calculation of potential vorticity near the pole. The first placement needs to374

calculate one circle of PV at half a grid length to the pole, while each relative vorticity375

is calculated in one small sector by the u and v wind components using Stokes’ theorem.376

The second placement requires calculation of only one value of relative vorticity at the377

pole with a ring of u values closest to the pole using Stokes’ theorem.

u, h

u
h

u
h

hh

h

u, h

vv

q

q

qq

h

v v
q q

q

q

u

u

u

u v
hh

hh

q

(a) (b) (c)

367

Figure 3. Relative horizontal placement of (a) u-at-pole and (b) v-at-pole and (c) u-at-pole

but vorticity next to the pole is calculated using Stokes’ theorem used in the new shallow-water

model.

368

369

370

378

Another issue associated with the two variable placements is the size of the time379

step, because the maximum numerically stable time step for the finite-difference scheme380

is mostly limited by the zonal grid spacings on the lat-lon grid. Assuming the same Courant-381

Friedrichs-Lewy (CFL) number, CFL = c∆t/∆x, the time step ∆t will become smaller382

as zonal grid spacing ∆x becomes smaller under the condition of the same wave speed383

c. Therefore, with respect to the time step, the arrangement with v located at the pole384

is approximately half of that with u-at-pole. For this reason, the u-at-pole is preferred.385

But in the following tests, it is found that u-at-pole exhibits polar noises as in GAMIL-386

SW, therefore another PV calculation method is casted which also uses Stokes’ theorem387

on the circle of u as shown in Figure 3c to imitate v-at-pole. In this way, the degree of388

freedom of relative vorticity is reduced to one as in v-at-pole, which plays a smoothing389

role on the PVs around the pole.390

4 Analysis of polar noise and assessment of the new shallow-water model391

The spatial discretization of the vector-invariant form of the equations on the lat-392

lon grid is described in the previous section. Another important part is the temporal dis-393

cretization scheme in the evolution equations. In the following numerical experiments,394

the explicit second-order predictor-corrector method (Wang & Ji, 2006) is applied. The395

full discretized equations can be written in the following form:396

Fn+1 − Fn
∆t

= LF (21)397

where F = u, v, h, and L denotes the discrete spatial operator; thus, LF denotes the398

explicit time tendency. To solve the above equation, the predictor-corrector method needs399

three iterative calculations, including one predictor substep and two corrector substeps:400

F ∗ = Fn +
∆t

2
LFn (predictor) (22)401
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F ∗∗ = Fn +
∆t

2
LF ∗ (the first corrector) (23)402

Fn+1 = Fn + ∆tLF ∗∗ (the second corrector) (24)403

The first two substeps in the predictor-corrector integrator update the state from time404

level n to an intermediate time level, and the last substep obtains the state at the next405

time level n+ 1.406

In addition, as in Williamson et al. (1992), numerical errors are estimated quan-407

titatively by using two norm and infinity norm defined by408

`2(h) =

{
I
[
(h(λ, ϕ)− ht(λ, ϕ))

2
]}1/2

{I [ht(λ, ϕ)2]}1/2
(25)409

410

`∞(h) =
max |h(λ, ϕ)− ht(λ, ϕ)|

max |ht(λ, ϕ)| (26)411

where λ and ϕ are the longitude and latitude of the grid points, respectively, h is the model412

output, ht is the true solution if there is an analytic solution or a reference solution and413

I is a discrete approximation to the global integral414

I(h) =

∫ 2π

0

∫ π
2

−π2
h(λ, ϕ)a cosϕdϕdλ (27)415

In addition, when an analytic solution is not available, the simulation calculated by the416

National Center for Atmospheric Research (NCAR) Spectral Transform Shallow Water417

Model (Hack & R.Jakob, 1992; Worley & Toonen, 1995) is used for comparison.418

4.1 Zonal flow over an isolated mountain419

Test case 5 of Williamson et al. (1992) describes a zonal flow impinging on an iso-420

lated mountain with a conical shape. The surface or mountain height hs is given by hs =421

hs0(1 − r/R), where hs0 = 2000 m, R = π/9, and r2 = min[R2, (λ − λc)
2 + (ϕ −422

ϕc)
2]. The center of the mountain is located at λc = 3π/2, ϕc = π/6. The wind ve-423

locity and height field are similar to the steady-state geostrophic flow test case in sub-424

section 4.4, except α = 0, h0 = 5960 m and u0 = 20 m s−1.The initial steady shear-425

free westerly flow is in geostrophic balance with the geopotential height. As the flow im-426

pinges on the mountain, an imbalance between the Coriolis force and the pressure gra-427

dient is induced, generating large-amplitude inertia-gravity waves and Rossby waves. Af-428

ter 15 days of simulation, these waves spread around the globe (including the poles). The429

interaction between the sole forcing orography and the zonal flow lead to strong nonlin-430

earity (e.g., Ringler et al., 2011), which is particularly appropriate for assessing the ef-431

fectiveness of the numerical method in conserving integral invariants, such as total mass,432

total energy and total potential enstrophy (e.g., Nair et al., 2005).433

First, the geopotential height and the zonal velocity component simulated by GAMIL-441

SW at day 20 are shown in Figure 4. Observing the animation of the u, the grid-scale442

noise propagates out from the North Pole. Moreover, the propagation is in the merid-443

ional direction, which could not be filtered by the fast Fourier transform filter. There444

is, however, no noise in the geopotential height field during the same simulation. The445

evidence suggests that the wind field is more sensitive than the height field, which is prob-446

ably due to their different time tendencies. If the nonlinear momentum advection terms447

are switched off, the noise disappears in the wind field. This implies that the nonlinear448

momentum advection terms have an important role in the presence of noise. Second, as449

shown in Figure 5, the potential enstrophy increases abruptly when the waves arrive at450

the poles where the grid-scale noise appears, even if the global total energy is totally con-451

served over the 20 simulation days. This demonstrates that energy conservation alone452
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does not prevent the build-up of grid-scale oscillations, though does help to suppress non-453

linear instability (Thuburn, 2008). The potential enstrophy is approximately conserved454

before the presence of the noise, which raises the question of whether the noise can be455

suppressed by dissipating the potential enstrophy. Hence, for the two considerations, we456

decided to use the vector-invariant equations. This suite of equations does not explic-457

itly contain the nonlinear momentum advection terms and can be flexibly designed to458

dissipate potential enstrophy, as described in section 3. Replacing the anti-symmetric459

equations in the original GAMIL-SW with this suite of equations, the new shallow-water460

model is developed on the same lat-lon grid.

434

Figure 4. (a) Geopotential height field (contour line spacing is 500 gpm) and (b) zonal ve-

locity component (contour line spacing is 4 m s−1) at day 20 in the zonal flow over an isolated

mountain test case simulated by GAMIL-SW. The filled black circle represents the mountain.

435

436

437

438

Figure 5. Relative error of global total energy and total potential enstrophy within 20 days of

simulation by GAMIL-SW in the zonal flow over an isolated mountain test case.

439

440

461
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The simulation results of the new shallow-water model with the two variable place-462

ments of u-at-pole and v-at-pole for the same test case are shown in Figure 6. The mid-463

point scheme for interpolation of PV at the edge points is applied for the two simula-464

tions to exclude the influence of dissipation of potential enstrophy. The simulated u wind465

component with u-at-pole (Figure 6b) shows noise propagating from the pole when the466

waves arrive at the pole, which is similar to that of GAMIL-SW. This indicates that the467

nonlinear momentum advection is not the dominant source of polar noise. In contrast,468

the wind field simulated with the placement of v-at-pole generates no noise at all in the469

20 days of simulation (Figure 6a). The numerical schemes implemented in the two sim-470

ulations are identical except for the variable placement at the pole. Such a difference re-471

veals that the PV or relative vorticity should be well defined at the pole non-singularly472

(e.g., Lin and Rood, 1997). Figure 6c shows the result simulated with u-at-pole but rel-473

ative vorticity next to the pole is calculated using Stokes’s theroem (Figure 3c). It can474

be observed that the noises are prohibited to a large extent with this modification. This475

minor change to the calculation of PVs closet to the pole for u-at-pole results in an un-476

expected benefit of controlling the noise. Therefore, the noise probably belongs to the477

trapped modes due to the grid inhomogeneities near the pole on the lat-lon grid (Thuburn,478

2013). Further investigation should be conducted to fully reveal the mechanism of this479

kind of noise.480

In addition to not explicitly containing nonlinear momentum advection term, the491

vector-invariant equation allows for the dissipation of potential enstrophy. To examine492

the effect of APVM on the noise, the APVM scheme (equation (12)) is adopted in the493

new shallow-water model with u-at-pole. The simulated pattern of the u wind compo-494

nent (not shown) is almost identical to that of u-at-pole with the midpoint scheme. That495

is, the dissipation of potential enstrophy does not remove the noise. Moreover, the APVM496

does not suppress the increase of total potential enstrophy when the noise begins appear,497

although it does slow down the rate of increase relative to the midpoint scheme, as shown498

in Figure 7. In addition, as Thuburn et al. (2014) noted, the flow is weakly nonlinear dur-499

ing the first 15 days and the total potential enstrophy should be approximately conserved.500

However, in this study, the total potential enstrophy begins to increase once the noise501

is present at day 13. Therefore, the APVM does not have any positive effect on suppress-502

ing the noise in this case. The noise should belong to computational modes caused by503

the numerical scheme rather than the downscale cascade of potential enstrophy phys-504

ically (e.g., Arakawa & Hsu, 1990; Thuburn, 2008; Thuburn et al., 2014).505

4.2 Cross-polar rotating high-low506

To further investigate whether the above result is case dependent, the test case pro-507

posed by McDonald and Bates (1989) is evaluated, which simulates cross-polar flow with508

a geostrophically balanced initial state. This test has also been used by Giraldo et al.509

(2002), Nair et al. (2005) and Jablonowski et al. (2009), for example. The initial con-510

dition consists of a height field and the wind field (u, v) derived from the height field via511

geostrophic relationship. They are given by512

gh = gh0 + 2Ωav0 sin3 ϕ cosϕ sinλ (28)513

u = −v0 sinλ sinϕ(4 cos2 ϕ− 1) (29)514

v = v0 sin2 ϕ cosλ (30)515

where gh0 = 5.768×104 m2 s−2 and v0 = 20 m s−1. a and Ω are the radius and rota-516

tion rate of the Earth, respectively. It consists of a low and a high, which are symmet-517

rically located on the west and east side of the pole in the Northern Hemisphere (their518

positions are reversed in the Southern Hemisphere). The low and high rotate in a clock-519

wise direction around the North Pole and deform slightly. They exchange their positions520

after five days, and the slightly deformed pattern almost returns to the initial location521

after 10 days of integration. The maximum wind speed is near the pole and exhibits a522
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(a)

(b)

(c)

481

Figure 6. The zonal wind component at day 20 in the zonal flow over an isolated mountain

test case with placement of (a) v-at pole, (b) u-at pole without potential enstrophy dissipa-

tion and (c) u-at-pole but relative vorticity next to the pole is calculated as a single value using

Stokes’ theorem. The filled black circle represents the mountain.

482

483

484

485
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486

Figure 7. Relative error of global total potential enstrophy within 20 days of simulation using

the new shallow-water model with u-at-pole under the midpoint and APVM scheme in the zonal

flow over an isolated mountain test case. The increase in total potential enstrophy corresponds to

the presence of noise at about day 13.

487

488

489

490

strong gradient; thereby, this test is well suited for the analysis of polar noise, although523

this test case has no analytical solution.524

The numerical simulations are illustrated in Figure 8, which shows the u wind com-530

ponent at day 10 with different numerical schemes. It can be observed that the GAMIL-531

SW simulation shows grid-scale noise in the polar domain of about 30◦ (Figure 8a). Sim-532

ilarly, the new shallow-water model with u-at-pole also shows noise in the polar domain533

when using the midpoint scheme for interpolation of PV on the edge (Figure 8b), but534

if the ring of relative vorticity near the pole is calculated using Stokes’ theorem, the sim-535

ulation result (Figure 8c) is almost indistinguishable from the result of v-at-pole (Fig-536

ure 8d). There are no distortions in the flow pattern with the latter two numerical schemes,537

and the strong gradient near the pole can be well simulated at the same time. Moreover,538

the APVM dissipation of potential enstrophy is applied but the result is nearly identi-539

cal to that in Figure 8a without any improvement. The result of the v wind field shows540

the same situation and hence is not shown here. Therefore, this qualitatively compar-541

ative analysis verifies the conclusion from the previous subsection.542

On the basis of the analysis of polar noise in the two previous test cases, the fol-543

lowing conclusions are obtained. There are two variable placements on the pole for both544

GAMIL-SW and the new shallow-water model: u-at-pole and v-at-pole. Both of the two545

shallow-water models with the u-at-pole configuration exhibit polar noise in the same546

test cases, which demonstrates that the nonlinear momentum advection term is not the547

source of polar noise. The new shallow-water model with v-at-pole shows no noise, but548

that with u-at-pole exhibits polar noise and the noise disappears when the relative vor-549

ticity is calculated with one minor modification, which demonstrates that the numeri-550

cal treatment of relative vorticity or PV on the pole is important for controlling polar551

noise (e.g., Arakawa & Lamb, 1981; Lin & Rood, 1997). The noise in the new shallow-552

water model with u-at-pole was not alleviated by dissipation of potential enstrophy, which553

demonstrates that the noise is not produced from the physical cascade of potential en-554

strophy as some previous studies have suggested (e.g., Arakawa & Hsu, 1990; Thuburn,555
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525

Figure 8. Stereographic projections from the Equator to the North Pole of the zonal wind

component at day 10 simulated by (a) GAMIL-SW and by the new shallow-water model with (b)

u-at-pole, (c) u-at-pole but relative vorticity next to the pole is calculated using Stokes’s theorem

and (d) v-at-pole. Contour intervals are 3 m s−1.

526

527

528

529

2008; Ringler et al., 2010; Thuburn et al., 2014). The new shallow-water model with v-556

at-pole exhibits no noise, while GAMIL-SW with v-at-pole exhibits noise (figure not shown),557

which implies that the noise is relevant to the form of equations, numerical schemes, pole558

problem and so on. Overall, arranging the v velocity component located at the pole may559

be a good choice, although at the cost of a relatively small time-step size.560

4.3 Rossby-Haurwitz wave561

The previous two test cases analyzed the numerical polar noise. In the following,562

the performance of the new shallow-water model is shown in several test cases by com-563

parison with GAMIL-SW or the spectral model. Test case 6 of Williamson et al. (1992)564

consists of a Rossby-Haurwitz wave of zonal wavenumber 4. This type of wave is an an-565

alytic solution for the fully nonlinear non-divergent barotropic vorticity equation on a566

sphere and has also been widely used to test shallow-water models. Nevertheless, the Rossby-567

Haurwitz wave is actually unstable as a solution of the shallow-water equations that are568

analyzed by Thuburn and Li (2000), because small random perturbations in the initial569

conditions could result in long-term disruption. This was shown to be the case for a wide570

range of numerical models, including the spectral model, which usually apply diffusion571

or damping to simulate more stably (e.g., Whitehead et al., 2011; Lauritzen et al., 2011).572

Moreover, if the model chooses a grid that is not symmetrical across the Equator, the573
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disruption comes faster. However, the lat-lon grid naturally has the advantage of sym-574

metry across the Equator.575

A complete description of the test case is described in detail by Williamson et al.576

(1992). The initial height field is chosen to be in balance with the velocity field such that577

the initial velocity field is non-divergent. The minimum fluid height is 8000 m, which oc-578

currs at the poles, and the mean fluid height is 9523 m. In addition, the angular veloc-579

ity of this pattern moving from west to east can be calculated by580

ν =
R(3 +R)ω − 2Ω

(1 +R)(2 +R)
(31)

where R = 4 for the wavenumber, ω = 7.848×10−6 s−1 and Ω = 2π
86400 = 7.272×10−5581

s−1. With these parameters, the period is approximately 29.36 days for zonal wavenum-582

ber 4 of the Rossby-Haurwitz wave. Jakob et al. (1993) questioned how long the initial583

solution could be expected to remain stable. To address this question, they integrated584

a T42 model with the time step of 600 s for 60 days, and concluded that a viable numer-585

ical method should be able to maintain the wavenumber 4 structure for a minimum of586

14 days (Jakob-Chien et al., 1995). However, some studies selected different days for their587

assessment, such as 60, 14 or 10 days (e.g., Lin & Rood, 1997; Bonaventura & Ringler,588

2005; C. Chen & Xiao, 2008; X. Li et al., 2008; Ii & Xiao, 2010; Ringler et al., 2010).589

Figure 9 presents the height field after simulating three periods (88 days) using the594

spectral model, GAMIL-SW, and the new shallow-water model, respectively. The solu-595

tion of the spectral transform method can be considered as the reference solution because596

the initial flow field can be exactly represented by the basic functions that are spheri-597

cal harmonics (Lin & Rood, 1997). In fact, GAMIL-SW is able to maintain the basic pat-598

tern for as long as 100 days, and the new shallow-water model is also able to reach this599

level under certain conditions. Here, no attempt is made to obtain the longest simula-600

tion time because the spectral model maintains the wave for the longest time. Compared601

to the reference solution, both the new shallow-water model and GAMIL-SW simulate602

steadily for three periods, and the results are remarkably similar to the reference solu-603

tion, both in phase and amplitude, which demonstrates that the new shallow-water model604

maintains the computational performance of GAMIL-SW in this test case. Moreover,605

when the same equation and numerical schemes are applied on a SCVT grid symmet-606

rical with the Equator, the model is only able to accomplish the simulation without de-607

formation for about 40 days (Figure 9d). Therefore, in terms of this test case, the lat-608

lon grid has a natural advantage for simulating the zonally balance flow. This is also one609

of the main reasons why we still choose the lat-lon grid when design new dynamical core.610

611

4.4 Steady-state geostrophic flow612

Test case 2 of the standard shallow-water suite of Williamson et al. (1992) consists613

of a steady-state nonlinear zonal geostrophic flow. This test case measures the ability614

of the numerical scheme to maintain a large-scale geostrophic balance, which is an im-615

portant property of any numerical model for the atmosphere or ocean. Since an analyt-616

ical solution is available, the mesh convergence rate can be calculated by applying dif-617

ferent spatial resolutions. The initial conditions of the fluid depth and the eastward and618

northward components of velocity at longitude λ and latitude ϕ are619

gh = gh0 −
u0
2

(2aΩ + u0)(sinϕ cosα− cosλ cosϕ sinα)2 (32)620

u = u0(cosϕ cosα+ cosλ sinϕ sinα) (33)621

v = −u0 sinλ sinα (34)622

where gh0 = 2.94 × 104 m2 s−2 and u0 = 2πa/(86400 × 12) m s−1. The Coriolis pa-623

rameter is624

f = 2Ω(sinϕ cosα− cosλ cosϕ sinα) (35)625
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(a) (b)

(c) (d)

590

Figure 9. The height field simulated by (a) spectral model, (b) GAMIL-SW and (c) the new

shallow-water model at day 89, and (d) the vector-invariant form on a symmetrical SCVT grid at

day 40.

591

592

593

The parameter α is the angle between the axis of the flow orientation and the polar axis626

of the Earth sphere. We analyze here only the results with α = 0.627

The `2 and `∞ error norms calculated with the thickness field of the simulation af-634

ter 5 days by GAMIL-SW and the new shallow-water model are shown in Figure 10. The635

spatial resolutions are 2◦, 1◦, 0.5◦ and 0.25◦, and the corresponding time steps for the636

simulation are 240 s, 120 s, 60 s, and 30 s, respectively. In this test case with α = 0,637

the APVM scheme is equal to the midpoint scheme because the second term in the APVM638

will vanish because ue and ∇eq are perpendicular (Ringler et al., 2010). It can be ob-639

served that for resolution higher than 1◦, both `2 and `∞ error norms of the two mod-640

els converge with second-order accuracy and the convergence rate increases with increas-641

ing resolution. Comparing the error norms at the same resolution, the new shallow-water642

model generates smaller errors than GAMIL-SW. Moreover, with respect to the conver-643

gence rate, the vector-invariant equations on the lat-lon grid are better than the simi-644

lar equations and numerical method implemented on other unstructured grid, such as645

SCVT (Ringler et al., 2010). This suggests that the new shallow-water model meets the646

aim of achieving second-order accuracy. In addition, the low height field error also shows647

that the new shallow-water model maintains large-scale balance and has steady geostrophic648

modes without grid-scale oscillations, which is another proof that the lat-lon grid with649

physically perfect zonal symmetry is in favor of being computationally free of grid-scale650

oscillations for this kind of zonaly flow.651

4.5 Barotropically unstable zonal jet652

The last test case to be discussed concerns the growth of rapid barotropic insta-658

bility from a mid-latitude jet, in which the initial wind is zonally symmetric (see Galewsk659

et al., 2004, for detailed numerical description). Simulating the barotropically unstable660

jet with an initial small-amplitude perturbation is a challenging task for a quasi-uniform661

grid. As the jet is fast and narrow, numerical truncation errors arising from the misalign-662

ment of the jet with the grid would lead to perturbations that also produce instability663

in a similar manner to the initial perturbation (e.g., C. Chen & Xiao, 2008; Ringler et664

–18–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

2 ∘ 1 ∘ 0.5 ∘ 0.25 ∘

Resolution

10−7

10−6

10−5

10−4

ℓ 2
∘a

nd
∘ℓ ∞

∘e
rro

r∘n
or

m
s

slope=-1

slope=-2

ℓ2(new)
ℓ∞(new)
ℓ2(GAMIL− SW)
ℓ∞(GAMIL− SW)

628

Figure 10. Convergence rate of steady-state geostrophic flow as measured by the `2 and

`∞ norms based on the geopotential height. Norms of solid and dashed lines are computed by

the new shallow-water model and GAMIL-SW with respect to the analytic solution at day 5,

respectively. Lines of slope=−1(−2) represents the first- and second-order convergence rates,

respectively.

629

630

631

632

633

al., 2011; Weller et al., 2012). Therefore, the shallow-water model with a quasi-uniform665

grid generally needs higher resolution than the previous test cases to reduce the numer-666

ical truncation errors (e.g., Ii & Xiao, 2010; Thuburn et al., 2014). For the lat-lon grid,667

the numerical truncation errors are relatively small because the jet is essentially aligned668

with the grid. However, since the maximum velocity is around 80 m s−1 and the explicit669

time integration step is restricted by the pole problem of the lat-lon grid as well as there670

being no polar filter or other treatments at present, only the simulations of low spatial671

resolution 1◦ are shown. The vorticity field at different stages simulated by GAMIL-SW672

and the new shallow-water model with the same resolution are shown in Figure 11. Com-673

pared with Figure 4 in Galewsk et al. (2004) that simulated using the spectral model with-674

out diffusion, the envelope of the growing barotropic instability of the two models per-675

forms essentially identical to the reference. The dominant ridge-trough-ridge pattern with676

the same amplitude and phase are present in the two simulations.677

5 Summary and conclusion678

We have analyzed the polar noise found in the barotropic shallow-water version of679

GAMIL (GAMIL-SW) and provided a solution to the problem. A global mixed finite-680

volume/finite-difference shallow-water model with the vector-invariant equations on the681

same lat-lon grid is developed and evaluated, which is designed to maintain conserva-682

tion of total mass and total energy like GAMIL-SW and, in addition, to be able to con-683

serve potential vorticity and allows for the conservation or dissipation of potential en-684

strophy.685
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653

Figure 11. The time evolution of the relative vorticity field for the barotropically unsta-

ble zonal jet, simulated by (a) GAMIL-SW and (b) the new shallow-water model. Each panel

is 10◦N to 80◦N, 0◦ to 360◦ longitude centered at 90◦. The contour interval is 2 × 10−5 s−1,

negative contours are dashed and the zero contour is omitted.

654

655

656

657

First, focusing on the polar numerical noise, several approaches are attempted and686

tested. In the zonal flow over a mountain test case, compared with the GAMIL-SW, the687

new model with u-at-pole configuration presents polar noise, which demonstrates that688

the nonlinear momentum advection is not the root source of the noise but may has a trans-689

mission role. The new model with v-at-pole exhibits no polar noise at all, which implies690

that the calculation of PV or relative vorticity near the pole is crucial. In addition, the691

noise present on the new model with u-at-pole is prohibited completely if the ring of rel-692

ative vorticity closest to the pole is calculated using Stokes’ theorem. Furthermore, po-693

tential enstrophy dissipation is not able to suppress the noise. These analysis results are694

confirmed by another cross-polar flow test case. Thus, it is reasonable to argue that the695

polar noise is related to the form of the equation and numerical treatment of the pole696

on the lat-lon grid, and probably belongs to an unphysical mode that is not easy to over-697

come by potential enstrophy dissipation. Selecting the vector-invariant momentum equa-698

tion and v-at-pole configuration on the lat-lon grid is a better choice, although at the699

cost of an explicit time step for the finite-difference scheme.700

Second, the new model performs as well or better than GAMIL-SW on another three701

test cases. Rossby-Haurwitz waves can be simulated steadily for three circulations and702

the difference from the spectral model is indistinguishable, which is as well as GAMIL-703

SW and much better than the model with the same scheme applied on the quasi-uniform704

meshes. As expected, the same as GAMIL-SW, the new model converges to second-order705

accuracy in the geostrophic flow test case, and the error of the new model is less than706

that of GAMIL-SW in terms of absolute accuracy at the same resolution. The simula-707

tion results for a barotropically unstable zonal jet are nearly identical to the results of708

GAMIL-SW and the spectral model.709

Finally, our future goal is to develop a high-resolution atmospheric non-hydrostatic710

model. The development and assessment of the shallow-water model in this study has711

helped us to identify an appropriate horizontal momentum equation. Moreover, from the712

view point of computational efficiency associated with the convergence of meridians to-713

ward the pole on the lat-lon grid, a practical method for this issue will appear in a forth-714

coming paper.715
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Appendix A The Expression of Kinetic Energy in Discretization716

Omitting the nonlinear Coriolis force and potential gradient terms, the thickness717

and momentum equation in semi-discrete form can be written as718

∂hi
∂t

+
1

Ai

∑
e∈EC(i)

ne,iFele = 0, (A1)719

∂ue
∂t

+
1

de

∑
i∈CE(e)

−ne,iKi = 0 (A2)720

where ue denotes the normal velocity at the edge point; thus, Fe = ĥeue denotes the721

normal mass flux. e ∈ EC(i) denotes the edges that define the boundary of the primal722

cell, and i ∈ CE(e) denotes two primal mesh cells that share edge e. ne,i is an indi-723

cator following Ringler et al. (2010), which denotes the outward or inward normal flux724

Fe to the cell. Ki is the kinetic energy at the primal cell to be specified. The time derivate725

of discrete kinetic energy in one primal cell can be obtained by multiplying equation (A2)726

with AeFe727

Ae
∂

∂t

[
ĥeu

2
e

2

]
− Aeu

2
e

2

∂ĥe
∂t

+
AeFe
de

∑
i∈CE(e)

−ne,iKi = 0 (A3)728

Substituting the interpolation operator of ĥe =
∑

i∈CE(e)

Aie
Ae
hi into the second term of729

the above equation obtains:730

Ae
∂

∂t

[
ĥeu

2
e

2

]
− Aeu

2
e

2

∂

∂t

 ∑
i∈CE(e)

Aie
Ae

hi

+
AeFe
de

∑
i∈CE(e)

−ne,iKi = 0 (A4)

Summing the equation over all edges obtains:731

∑
e

Ae
∂

∂t

[
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2
e

2

]
−
∑
e

Aeu
2
e

2
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hi

+
∑
e

AeFe
de

∑
i∈CE(e)

−ne,iKi = 0 (A5)732

Using (A.4) in Ringler et al. (2010) and Ae = lede/2 defined in Weller et al. (2012), the733

sum of the third term is switched from over e to over i734

∑
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∂

∂t

[
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2
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hi

− 1

2

∑
i

KiAi
∑

e∈EC(i)

ne,iFele = 0 (A6)735

Substituting equation (A1) into the third term obtains:736

∑
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Then the second term is rearranged to give:738

∑
e
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∂
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ĥeu

2
e

2

]
−
∑
e

∑
i∈CE(e)

Aieu
2
e

2

∂hi
∂t

+
1

2

∑
i

KiAi
∂hi
∂t

= 0 (A8)739

Switching the summation sequence of the second term gives:740

∑
e
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To ensure that the second and third terms can be canceled, the discrete kinetic energy742

is derived as:743

Ki =
1

Ai

∑
e∈EC(i)

Aieu
2
e (A10)744

where Ai denotes the area of primal cell and Aie is the area weight of normal velocity745

(ue) within one primal cell.746
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ûi,j+ 1

2

v̂i− 1

2
,j

vi−1,j− 1

2

vi,j− 1

2

vi,j+ 1

2

vi−1,j+ 1

2

cos θj

cos θj+ 1

2

cos θj− 1

2



Figure 3.



u, h

u
h

u
h

hh

h

u, h

vv

q

q

qq

h

v v

q q

q

q

u

u

u

u
v

hh

hh

q

(a) (b) (c)



Figure 4.





Figure 5.





Figure 6.



(a)

(b)

(c)



Figure 7.





Figure 8.





Figure 9.



(a) (b)

(c) (d)



Figure 10.



2 ∘ 1 ∘ 0.5 ∘ 0.25 ∘

Resolution

10−7

10−6

10−5

10−4

ℓ 2
∘a

nd
∘ℓ ∞

∘e
rro

r∘n
or

m
s

slope=-1

slope=-2

ℓ2(new)
ℓ∞(new)
ℓ2(GAMIL− SW)
ℓ∞(GAMIL− SW)



Figure 11.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9
	Figure 10 legend
	Figure 10
	Figure 11 legend
	Figure 11

