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Abstract

Arctic sea-ice extent (SIE) has declined drastically in recent decades, yet its evolution prior to the satellite era is highly uncertain.

Studies using SIE observations find little variability prior to the 1970s; however, these reconstructions are based on limited data,

especially prior to the 1950s. We use ensemble Kalman filter data assimilation of surface air temperature observations with Last

Millennium climate model simulations to create a fully gridded Arctic sea-ice concentration reconstruction from 1850–2018, and

investigate the evolution of Arctic SIE during this period. We find a decline of ˜1.25 x 106 km2 during the early 20th-century

warming (1910-1940). The 25-year trends during this period are ˜33-38% smaller than the satellite era (1979-2018) but almost

twice as large as previous estimates. Additionally we find that variability of SIE on decadal timescales prior to satellite era is

˜40% greater than previously estimated.
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Key Points:5

• Data assimilation is a skillful technique for reconstructing Arctic sea-ice extent6

during the satellite era.7

• Reconstructed sea ice shows large decline in total Arctic sea-ice extent during the8

early 20th-century warming (1910–1940).9

• Trends in total Arctic sea-ice extent during the satellite era are ∼33–38 % greater10

than during the early 20th-century warming.11
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Abstract12

Arctic sea-ice extent (SIE) has declined drastically in recent decades, yet its evo-13

lution prior to the satellite era is highly uncertain. Studies using SIE observations find14

little variability prior to the 1970s; however, these reconstructions are based on limited15

data, especially prior to the 1950s. We use ensemble Kalman filter data assimilation of16

surface air temperature observations with Last Millennium climate model simulations17

to create a fully gridded Arctic sea-ice concentration reconstruction from 1850–2018, and18

investigate the evolution of Arctic SIE during this period. We find a decline of ∼1.25 x10619

km2 during the early 20th-century warming (1910–1940). The 25-year trends during this20

period are ∼33-38% smaller than the satellite era (1979–2018) but almost twice as large21

as previous estimates. Additionally we find that variability of SIE on decadal timescales22

prior to satellite era is ∼40% greater than previously estimated.23

Plain Language Summary24

Arctic sea ice is an important part of the climate system, serving as the interface25

between the ocean–atmosphere system. Arctic sea ice has undergone rapid declines in26

recent decades, prompting the question of whether there have been changes of similar27

magnitude in the past. To answer such questions, a long record of sea ice is necessary,28

but spatially and temporally complete satellite observations are only available starting29

in 1979. Previous studies combining sea ice observations from various sources during the30

Instrumental Era (1850–2014) found little variability in sea-ice extent prior to the satel-31

lite era, but data availability is limited prior to the 1950s. Here we create an indepen-32

dent estimate of Arctic sea ice from 1850–2018 using a data assimilation approach that33

blends more abundant temperature observations with data from climate models. Our34

results show substantial loss of sea ice between 1910–1940, with a rate that is about ∼33-35

38% less than what has been observed in satellite observations. These results reinforce36

previous findings that the current trend is unprecedented in duration since 1850, but also37

that sea-ice variability prior to 1979 is ∼40% larger than previously estimated.38

1 Introduction39

Arctic sea ice is one of the most rapidly changing components of the climate sys-40

tem, affecting surface albedo and modulating ocean–atmosphere interaction through sur-41

face fluxes. Large declines in sea ice can impact local ecosystems, human communities,42

and the global climate system (Meier et al., 2014). Documenting and understanding decadal–43

centennial variability in sea ice is limited by the availability of high-quality observations,44

which are only spatially and temporally complete during the satellite era (1978–present)45

(Fetterer et al., 2017). Furthermore, given the presence of strong radiative forcing dur-46

ing this period, it is difficult to partition the relative role of natural variability (e.g. Ding47

et al. (2017); England et al. (2019)) and radiative forcing (Notz & Marotzke, 2012) on48

the rapid Arctic sea ice declines observed in the satellite record. In order to estimate the49

natural variability of sea ice, a longer record is needed. Here we introduce a novel method50

to reconstruct sea ice cover from 1850–present, using data assimilation (DA), numeri-51

cal model data, and observations of surface air temperature (SAT).52

The longest Arctic sea-ice extent (SIE) observation-based reconstruction combines53

various sea ice observation types, ranging from satellite data to shipping records, to ex-54

tend Arctic sea ice records back to 1850 (Walsh et al., 2017). The Walsh et al. (2017)55

reconstruction shows little SIE variability before 1970, particularly on decadal to multi-56

decadal timescales. However, the fidelity of this dataset is limited by gaps in observa-57

tion availability, particularly before 1953 and during winter months (see below and Sup-58

porting Information Figure S1).59
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Although direct observations of sea ice are limited in space and time, instrumen-60

tal observations of SAT are much more abundant. Polar, hemispheric and global mean61

SAT, both in observations and climate models, are known to be tightly coupled to sea62

ice variability on annual and longer timescales (e.g. Gregory et al. (2002); Armour et al.63

(2011); Mahlstein and Knutti (2012); Olonscheck et al. (2019)). Observations show that64

global-mean SAT was relatively stable between 1850–1900 (Morice et al., 2012), which65

may explain low decadal sea ice variability in the Walsh et al. (2017) record. However,66

during the early 20th century (1900–1940), an anomalous warming event is well docu-67

mented across Northern Hemisphere high latitudes (e.g. Hegerl et al. (2018)). The mag-68

nitude of this early 20th century warming (ETCW) was largest during winter months69

(Semenov, 2007; Overland et al., 2004) and similar in spatial structure to that observed70

in the late 20th century.71

Interestingly, the Walsh et al. (2017) record of Arctic SIE shows much less decline72

during the ETCW than during the satellite record, with one period of decline of ∼0.573

x 106 km2 between 1920-1945 followed by a recovery of ∼0.5 x 106 km2 between 1945–74

1950 (see below). The peak loss in Walsh et al. (2017) also lags the period of largest ETCW75

temperature anomalies seen in observations, which together with the modest decline in76

SIE suggests a weak relationship between temperature and sea ice during the ETCW.77

In this paper we investigate the relationship between temperature and sea ice during the78

Instrumental Era using satellite observations, reanalysis, and the Walsh et al. (2017) re-79

construction. Then we use a DA framework to construct a new independent Arctic sea80

ice reconstruction using more abundant SAT observations. We then explore the decline81

of sea ice during the ETCW, and compare the ETCW decline to that observed and re-82

constructed in the satellite era.83

2 Temperature and sea ice in the Instrumental Era84

We begin by analyzing the relationship between Arctic SAT derived from the Had-85

CRUT4.6.0.0 dataset (HadCRUT, Morice et al. (2012)) and SIE from Walsh et al. (2017).86

We partition the analysis in two ways: by season (April–August and September–March)87

and by time period (pre- and post-1953 for Walsh et al. (2017), plus the satellite era (1979–88

2017)), in order to investigate the effect of observation availability on the Walsh et al.89

(2017) record. We find that the relationship between SAT and SIE from the Walsh et90

al. (2017) and satellite observations generally agree from 1953–present, but differ greatly91

before 1953 (Figure 1).92

Figure 1 shows that the relationship between SAT and SIE is linear in the satel-93

lite record in both seasons, with R2=0.76 (September–March) and 0.85 (April–August).94

The Walsh et al. (2017) record also shows a linear relationship for both seasons between95

1953–2013, with a similar slope during winter (Figure 1b) and a slightly steeper slope96

during summer (Figure 1a), both not statistically different from the slope determined97

with satellite observations at the 95% confidence level. In contrast, the earlier part of98

the Walsh et al. (2017) record, between 1850–1952, exhibits a much lower SIE–SAT sen-99

sitivity in summer relative to the satellite era (Figure 1a) and almost no SIE–SAT sen-100

sitivity in winter (Figure 1b). Since SAT is a primary driver of sea ice variability (Olonscheck101

et al., 2019), the inconsistent relationship between these two time periods in the Walsh102

et al. (2017) record suggests either a strong nonlinearity in this relationship during the103

ETCW, or that the reconstruction underestimates SIE-SAT sensitivity.104

There are at least two possible hypothesis for the reduced sensitivity of SIE-SAT105

in Walsh et al. (2017) before 1953. Firstly, the sensitivity of sea ice to temperature may106

be mean-state dependent, such that in colder, thicker, sea-ice regimes (which may have107

existed in the Arctic during the late 19th and early 20th century) sea ice may be less sen-108

sitive to changes in temperature. However, model simulations of sea-ice sensitivity to tem-109

perature for different mean states (Armour et al., 2011; Mahlstein & Knutti, 2012) do110

–3–
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Figure 1. Arctic SAT (averaged north of 65◦N , derived from HadCRUT) and total SIE in

both the satellite data between 1979-2017 (in red) and the Walsh et al. (2017) data set between

1850 to 1952 (in gray) and 1953 to 2013 (in black). Anomalies are relative to 1979-2013.

not support this hypothesis. A second hypothesis is that the reduced sensitivity of sea111

ice to temperature may simply be due to the fact that there are significantly fewer ob-112

servations available to the Walsh et al. (2017) analysis prior to 1953 (as illustrated in113

Supporting Information Figure S1).114

The fidelity of sea-ice reconstructions has broader implications, as they are used115

for boundary conditions in reanalysis products. The widely-used sea surface tempera-116

ture and sea ice concentration HadISST2 product (Titchner & Rayner, 2014) incorpo-117

rates an earlier version of the Walsh et al. (2017) sea-ice reconstruction (Walsh & Chap-118

man, 2001), which is based largely on climatology for the first half of the 20th century.119

Atmospheric reanalysis during the 20th century such as ERA-20C (Poli et al., 2016) com-120

monly use HadISST2 as a boundary condition. Figure 2 shows temperature trends in121

ERA-20C and the station-based HadCRUT (which uses no infill or interpolation). While122

HadCRUT shows the large magnitudes and spatial extent of SAT trends during the ETCW,123

in some locations comparable to the that during the recent satellite-era warming, ERA-124

20C shows minimal trends across the Arctic. The NOAA/CIRES 20th Century reanal-125

ysis (Compo et al., 2011) shows even larger biases than ERA-20C (see Supporting In-126

formation Figure S2).127

We postulate that these atmospheric reanalysis biases in simulating the ETCW are128

strongly influenced by the small inter-annual sea-ice variability in Walsh and Chapman129

(2001) that serve as boundary conditions. This hypothesis is consistent with Semenov130

and Latif (2012), who find that the ETCW cannot be simulated with an atmospheric131

model forced with HadISST1.1 (Rayner, 2003) boundary conditions, which show little132

sea-ice variability prior to 1950. Thus improving sea-ice reconstructions has broad im-133

plications, especially for studying high latitude climate variability.134

To this end, we exploit the linear relationship between SAT and Arctic SIE evi-135

dent in Figure 1 and in the literature (Mahlstein & Knutti, 2012) to reconstruct sea ice136

using a DA approach. Other approaches have exploited this relationship to reconstruct137

sea ice in the 20th century using linear regression models. For example, Connolly et al.138

(2017) use pre-satellite temperature trends to re-calibrate sea-ice data sources from three139

regions in the Arctic and find that sea ice retreated after the 1910s and advanced after140

the mid 1940s, though the magnitude of these changes are small relative to the satellite141

–4–
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Figure 2. Temperature trends from ERA-20C are shown in shading and that from HadCRUT

overlaid as shaded dots for both the early 20th century (1912–1940, left) and satellite era (1979–

2010, right).

era. Alekseev et al. (2016) use the relationship between summer SAT and SIE to recon-142

struct total Arctic SIE with a linear regression model, finding a decline of total Arctic143

SIE of ∼2 x 106 km2 between 1900–1940 followed by a recovery that peaked around 1970.144

The main benefit of the DA approach described here is the use of high quality 2 mair145

temperature observations with a robust framework for uncertainty quantification (see146

Section 3). Moreover, the results provide fully-gridded, spatially consistent climate fields147

that can be used as boundary conditions for models and to probe the dynamics associ-148

ated with sea-ice variability.149

3 A new sea-ice reconstruction using data assimilation150

3.1 Data Assimilation approach151

DA aims to optimally combine spatial data with noisy and sparse observations, re-152

sulting in a better estimate of climate fields. Generally, DA updates a prior estimate,153

an initial ‘best guess’, of the climate state with new information from observations. DA154

allows point-wise observations of temperature to influence broader spatial regions of other155

climate variables, like sea ice, based on the covariance relationships derived from the prior.156

The prior estimate and observations are weighted based on their relative uncertainty, yield-157

ing continuous fields.158

To reconstruct Arctic sea ice we use an offline (Oke et al., 2002) ensemble Kalman159

filter approach to combine Last Millennium climate model simulations (Schmidt et al.,160

2011; Taylor et al., 2012) with temperature observations. The prior, xb, is an ensemble161

of 200 random years drawn from these Last Millennium simulations (more details are162

provided in Section 3.2). The update to this prior estimate uses annually averaged tem-163

perature observations, y, weighted as y −Hxb (the ‘innovation’),164

xa = xb + K(y −Hxb). (1)

–5–
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The innovation weight that results in the analysis, xa, is given by the Kalman gain,165

K = BHT(HBHT + R)−1, (2)

where B is the error covariance matrix of the prior, R is the error covariance matrix of166

the observations, and T is the transpose operator. Matrix H maps the prior to the ob-167

servations by selecting grid-point data in the prior nearest to the observations. The Kalman168

gain spreads the new information from temperature observations both spatially and to169

other climate variables, weighted by the relative uncertainty of each. We sample tem-170

perature observations from instrumental datasets every 10◦ latitude and longitude, cho-171

sen to ensure the observation errors are uncorrelated and therefore R is diagonal. This172

assumption allows us to use serial observation processing, which assimilates observations173

one at a time, simplifying implementation of spatial covariance localization as described174

below.175

To solve (1), we employ a square-root ensemble Kalman filter (Whitaker & Hamill,176

2002), which updates the ensemble mean and the perturbations from the ensemble mean177

separately. The Kalman gain used in the update equation for the ensemble perturbations178

(K̃) is adjusted by a constant α to yield the correct posterior covariance matrix. There-179

fore, K̃ = αK, where, for a single observation, i,180

α =

(
1 +

√
Rii

HBHT
ii + Rii

)−1

, (3)

where ii denotes the matrix diagonal entry in the ith row and column.181

As is standard practice in ensemble DA, we reduce the effect of spurious long-distance182

covariances using covariance localization (e.g. Hamill et al. (2001)), applying the Gaspari-183

Cohn fifth order polynomial function (Gaspari & Cohn, 1999) with a localization radius184

(the distance from observations set to zero influence) of 15,000 km.185

Kalman filter methods rely on the covariance in the prior ensemble between tem-186

perature and the variables of interest (here, sea ice concentration, SIC). Climate mod-187

els tend to underestimate the sensitivity of Arctic sea-ice loss to temperature (Rosenblum188

& Eisenman, 2017; Winton, 2011; Stroeve et al., 2007). To address this low-sensitivity189

bias, we inflate the sea-ice perturbations from the prior ensemble-means for the simu-190

lations used here, MPI and CCSM4 Last Millennium simulations (see Section 3.2), by191

a factor of 1.8 and 2.6, respectively. The inflation factors are determined empirically by192

goodness of fit to the observed sea-ice trend during the satellite era. Sensitivity of the193

results to the localization radius and inflation factor is explored below and in the Sup-194

porting Information (see figures S4 and S5).195

Since the Kalman filter method assumes Gaussian distributions, and SIC has a range196

of 0–100%, unphysical values of xa outside this range may occur. Therefore, SIC values197

outside the lower and upper end of this range are adjusted to 0% and 100%, respectively.198

3.2 Data Sources199

A 200-member prior ensemble of both SAT and SIC fields are randomly drawn from200

fully forced Last Millennium model simulations spanning the years 850–1849 CE (Schmidt201

et al., 2011; Taylor et al., 2012) (tests with a 1000-member prior ensemble revealed small202

differences in Arctic SIE reconstructions, R2 >0.97, from the less computationally ex-203

pensive case with a 200 member prior ensemble). Results using the Community Climate204

System Model version 4 (CCSM4, Last Millennium simulation (Landrum et al., 2013))205

and Max Planck Institute for Meteorology (MPI-ESM-P, Last Millennium simulation (Taylor206

et al., 2012)) models are used to determine the sensitivity of the sea-ice reconstructions207

to climate-model prior, and thus the sensitivity of the results to model physics and sea-208

ice–temperature covariance structure. All model output is regridded to a ∼ 2◦x2◦ grid.209

–6–
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Sensitivity to the choice of instrumental temperature record is tested using three210

different products: HadCRUT, Berkeley Earth (BE, (Rohde et al., 2013)), and NASA211

Goddard Institute for Space Studies (GISTEMP, (Hansen et al., 2010)). An estimate of212

the uncertainty in these observations is required when using an ensemble Kalman filter213

approach (i.e., R in Equations 2 and 3), and HadCRUT is the only product that pro-214

vides uncertainty estimates. Various ways of calculating R were tested, (see Support-215

ing Information), but in order to use all three products, and for simplicity, we use an un-216

certainty estimate of 0.4 K2, which is the area-weighted mean error variance provided217

by HadCRUT.218

4 Arctic sea-ice reconstructions219

We first reconstruct annual Arctic SIC for 1850–2018 by assimilating HadCRUT220

SAT with a prior ensemble drawn from the MPI Last Millennium simulation. Figure 3221

shows annual Arctic SIE (total area with SIC greater than or equal to 15%) derived from222

the gridded SIC reconstructions. The timeseries is the mean of 5 independent iterations223

that each use a different 200 member prior ensemble, in order to take into account the224

uncertainty due to sampling error. Our reconstruction compares well with satellite ob-225

servations (Figure 3) with R2 value of 0.89, detrended R2 value of 0.43, and coefficient226

of efficiency (see Supporting Information Equation 1) of 0.89 between 1979–2017. The227

trend during this period is well captured in the reconstructions with a value of −0.052228

± 0.012 x 106 km2/year compared to −0.055 x 106 km2/year in satellite observations.229

Inter-annual variability is overestimated, with a detrended standard deviation of 0.21 x230

106 km2 in the satellite observations and 0.28 x 106 km2 in the reconstruction during231

1979–2017.232

Figure 3. Reconstructed Arctic SIE from DA (blue), Walsh et al. (2017) (black), and satellite

observations (red). For our reconstructions annually averaged HadCRUT temperature data was

assimilated with a prior ensemble drawn from the MPI Last Millennium simulation. Anomalies

are centered about 1979–2013.

–7–
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The most notable feature of our reconstruction before the satellite era is the SIE233

decline during the ETCW, with a total loss of about 1.25 x 106 km2 between 1910–1940234

compared to ∼2.0 x 106 km2 lost between 1979–2017 in satellite observations. Between235

1930–1950, our reconstruction also shows ∼0.5 x 106 km2 less SIE than in the Walsh et236

al. (2017) SIE record (see Figure 3), and the ETCW minimum occurs approximately eight237

years earlier than in Walsh et al. (2017). Between 1850–1900 our reconstruction shows238

a slow increase in SIE, reaching a maximum just after 1900, as opposed to the Walsh et239

al. (2017) record which shows maximum SIE in the 1960s. Overall, prior to the satel-240

lite era our reconstruction shows greater decadal variability compared to the Walsh et241

al. (2017) record, which has relatively constant Arctic SIE between 1850–1970. Prior to242

the satellite era (1850–1979) our reconstruction has a time-series standard deviation of243

310,000 km2 whereas the Walsh et al. (2017) record has standard deviation of 220,000244

km2. Though our reconstructions are annually resolved, they generally agree with the245

summer reconstructions of Arctic SIE in Alekseev et al. (2016).246

4.1 Trends and variability247

Next, we investigate the magnitude and significance of Arctic SIE trends during248

the ETCW relative to the satellite era. In our reconstructions, the SIE decline in the ETCW249

is shorter lived (∼25–30 years) than that in the satellite era (∼40 years), thus we inves-250

tigate the distribution of 25-year trends for both the satellite era and ETCW.251

Figure 4 shows the distribution of trends calculated for each ensemble member (from252

reconstructions using both MPI and CCSM4 model priors) for all possible 25-year seg-253

ments during the satellite era (1979–2017) and the ETCW (1910–1940). The distribu-254

tion of all 25-year trends between 1979–2017 for both Walsh et al. (2017) and satellite255

observations are also shown as boxplots below the distributions. For the Walsh et al. (2017)256

record, ETCW trends were calculated between 1918–1948 and are also shown as a box-257

plot (we use a later window for a fair comparison since the minimum SIE occurred 8 years258

later in Walsh et al. (2017)). The median 25-year trend found in the Walsh et al. (2017)259

record during the ETCW of −0.18 x 106 km2/year falls at the 98th and 99th percentiles260

of the MPI and CCSM4 model prior reconstructions, respectively. We note that our re-261

constructions slightly underestimate the mean 25-year trend in the satellite era. How-262

ever, when comparing these two time periods in our reconstructions, the satellite era trends263

are ∼33–38% greater than the ETCW trends.264

4.2 Sensitivity of results265

Our reconstruction of SIE depends on the gridded temperature product assimilated266

(and associated errors), on the climate model prior, and on sample-error mediation in267

the DA (localization length scale and ensemble variance inflation factor). A range of choices268

for these aspects have been tested, with details provided in the Supporting Information.269

Overall we find that the choice of observational dataset and model prior make little dif-270

ference to pan-Arctic indices (see Figure S3 in Supporting Information), but that vari-271

ance inflation and spatial localization have a larger affect.272

With an offline DA approach, all temporal variability in the reconstruction comes273

from the observations. Thus, increasing the localization radius and the ensemble vari-274

ance inflation of sea ice relative to temperature, both increase the influence of temper-275

ature observations, which is realized as larger temporal variability (Figure S4 and S5 in276

Supporting Information). The results indicate a trade-off between capturing decadal vari-277

ability versus inter-annual variability. For the MPI prior assimilated with HadCRUT tem-278

perature, a localization length scale of 15,000 km leads to the best reconstructed trend279

for nearly all inflation factors, so we chose to use this localization length scale. Given280

a localization length scale of 15,000 km, the skill metrics are best for an inflation fac-281

tor of 1.8. For a prior drawn from the CCSM4 Last Millennium simulation and HadCRUT282

–8–
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Figure 4. The distribution of all possible 25-year trends in Arctic SIE during the satellite era

(1979–2017) and ETCW (1910–1940) for 5 prior iterations, each containing 200 ensemble mem-

bers. The probability density functions show reconstructed SIE trends using MPI as the model

prior (blue) and CCSM4 (brown). Below the histograms, the spread of trends calculated in the

Walsh et al. (2017) record (black) and satellite observations (red) are displayed as box plots. The

ETCW for the Walsh et al. (2017) record was calculated between 1918–1948.

observations, the same localization length scale of 15,000 km was used and an inflation283

factor of 2.6 gave the best skill scores. Overall, these experiments show that a range of284

values of localization and ensemble inflation result in skillful reconstructions relative to285

satellite observations, and similar reconstructions of sea ice for earlier time periods.286

5 Conclusions287

The relationship between SIE and SAT is linear during the satellite era in obser-288

vations, but we find that this relationship is much weaker or even absent in the Walsh289

et al. (2017) record of SIE prior to the 1950s. This lower sensitivity of SIE to SAT in290

the Walsh et al. (2017) record is plausibly due to a lack of high quality sea-ice observa-291

tions, especially during fall and winter and prior to 1953. We have also found that 20th292

century atmospheric reanalysis underestimate the magnitude of the ETCW (1910-1940)293

in the Arctic. Since previous versions of the Walsh et al. (2017) dataset are used as bound-294

ary conditions for 20th-century atmospheric reanalysis, we speculate that the low vari-295

ability of SIE in Walsh et al. (2017) could be a reason atmospheric reanalysis do not fully296

capture the ETCW, but leave exploration of this hypothesis to future work.297

We exploit the relationship between SAT and SIC using an ensemble Kalman fil-298

ter data assimilation approach to produce a new sea-ice reconstruction. This method op-299

timally combines temperature observations and model data from Last Millennium sim-300

ulations to yield skillful Arctic sea-ice reconstructions with annual resolution. Valida-301

tion against satellite observations yields an R2-value of 0.89 and coefficient of efficiency302

of 0.89. Prior to the satellite era, our reconstructions show Arctic SIE loss of ∼1.25 x303

–9–
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106 km2 during the ETCW, which is greater than the ETCW loss of ∼0.75–1.0 x 106304

km2 estimated in Walsh et al. (2017), yet smaller than the SIE loss during the satellite305

era of ∼2.0 x 106 km2. The reconstructed 25-year trends of SIE indicate that the rate306

of sea-ice loss during the ETCW was about ∼33–38% smaller than the 25-year trends307

during the satellite era.308

Overall, these reconstructions show more inter-annual variability in SIE than in Walsh309

et al. (2017) during the Instrumental Era with standard deviation ∼40% (∼90,000 km2)310

greater between 1850–1979, a significant part due to the ETCW. The ETCW has been311

ascribed to a combination of anthropogenic forcing and strong natural variability (Fyfe312

et al., 2013; Delworth, 2000; Wood & Overland, 2009; Beitsch et al., 2014). Here we find313

that during the satellite era, Arctic sea-ice loss was larger and longer lasting than dur-314

ing the ETCW, which implies that the current declines likely necessitate external an-315

thropogenic forcing, as previous results have shown (Ding et al., 2017; Kay et al., 2011;316

Notz & Marotzke, 2012). Future work will extend this approach to reconstructing sea-317

sonal variability and sea-ice thickness to further our understanding of sea ice during the318

Instrumental era.319
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1. Data availability in Walsh et al 2017

Walsh et al. (2017) uses sea ice observations from a ranked list of 12 different sources.

When none of these observation types are available at a given time, temporal interpolation

(for a single month of missing data) or analog based methods to fill in missing data (for

periods with more than one month missing) are used. In Figure S1 we plot the percentage
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of longitude ocean grid cells with an observation available for each month separated into

two seasons from 1850–2013. The vertical green lines indicate April and September of

1953 respectively. Before March of 1953 there is very little spatial coverage of sea ice

observations in the winter months (September–March). Data coverage in the summer

months (April–August) is also very low (<40% on average) before May of 1901 and then

returns to full coverage intermittently between 1902–1953.

2. The early 20th century warming in reanalysis

Figure S2 shows a comparison between annually averaged Arctic (north of 70N) mean

temperature observations from HadCRUT and reanalysis data (NOAA-20C and ERA-

20C) during the 20th century. Between 1953–2011 there is good agreement between Had-

CRUT and ERA-20C with an R2-value of 0.85 and R2-value of 0.41 between HadCRUT

and NOAA-20C. In contrast before, 1953 these two records diverge with an R2-value of

0.27 and 0.01 respectively. Particularly from 1900–1953, ERA-20C temperature anomalies

hover just below 0◦C and NOAA-20C shows very cold anomalous temperatures of around

-3◦C, while HadCRUT increases from approximately -2◦C to 1◦C over the same time pe-

riod. These discrepancies illustrate that neither of these reanalysis products capture the

early 20th century warming.

3. Sensitivity of data assimilation results

Here, we quantify the sensitivity of our reconstructions to the choice of gridded tem-

perature product assimilated (and their errors), climate model prior, and sample-error

mediation in the DA (localization length scale and ensemble variance inflation factor).
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3.1. Sensitivity to the observations

To test the sensitivity to the choice of assimilated observations, we assimilate three

temperature products: HadCRUT, GISTEMP and Berkeley Earth (BE). The original

temperature measurements used to create these products are mostly the same, and the

main difference is the amount of interpolation (or infill) from grid cells with observations

to grid cells with no observations for GISTEMP and BE. Reconstructions using all three

temperature products are shown in Figure S3. The skill of the reconstruction during the

satellite period is slightly higher when HadCRUT is assimilated, as measured by the R2

values and coefficient of efficiency. Overall the source of the temperature observations

has little effect on the overall variability of the reconstructions, with R2 values with

satellite data ranging from 0.82–0.89 for the MPI prior and 0.79–0.89 for the CCSM4

prior (described below). This is expected given the overall agreement among temperature

products (e.g. (Rohde et al., 2013)).

For all of these experiments, an observed uncertainty of (R in Equation 2) 0.4 K2 is used

for all three products as explained in the main manuscript. Other uncertainty estimates

tested include: (1) using the annually averaged diagonal elements of the error covariance

matrix provided with HadCRUT, and (2) using the variance across all three datasets at

each point. Method (1) is ideal, but can only be applied to HadCRUT which has fewer

data points than GISTEMP and BE because it does not use interpolation. For method

(2) the variance across these datasets is very small, given that they often use the same

original temperature observations. This led to an over-weighting of observations in the
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Kalman gain and a SIE reconstruction with an inter-annual variability much larger than

the satellite record.

3.2. Sensitivity to the prior

We use the MPI and CCSM4 Last Millennium simulations to test the sensitivity of

the results to the choice of model prior. Figure S3 shows Arctic SIE from these two

experiments (note that we use different inflation factors of 1.8 and 2.6 for the MPI and

CCSM4 priors respectively, see below). Results show differences in inter-annual variability,

but overall the decadal variability and the timing and magnitude of the ETCW are in

close agreement (Figure S3). MPI-based reconstructions show slightly higher correlation

with satellite data, with R2=0.82–0.89, as compared to CCSM4-based reconstruction,

with R2=0.79–0.89.

3.3. Sensitivity to sample error: prior inflation and localization

The prior ensemble-perturbation inflation factor and prior spatial localization length

scale are both determined empirically based on correlations with the trend in Arctic SIE

in satellite observations, and correlation and coefficient of efficiency with satellite obser-

vations between 1979–2017. A series of experiments are performed with inflation factors

ranging from 1.6–2.0 (incremented by 0.1) for the MPI prior and 2.3–2.7 (incremented

by 0.1) for the CCSM4 prior. For each inflation factor, reconstructions are performed for

localization radii of 5,000, 7,500, 10,000, 15,000, 20,000, and 25,000 km. As the basis of

comparison, the trend, detrended variance, correlation and coefficient of efficiency with

respect to satellite observations between 1979–2017 are determined across all iterations

and ensemble members for each of the 30 parameter combinations (see Figure S4 and S5).
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Increasing the localization length scale and the ensemble inflation of sea ice relative to

temperature, both increase the temporal variance and trend in the reconstructions of SIE

(Figures S4, S5). The results indicate that there is not only a trade-off between capturing

the trend versus the inter-annual variability, but that there are various parameter com-

binations that show similar performance. Overall, all experiments described above using

HadCRUT observations resulted in R2 values greater than 0.86 and CE greater than 0.77

for MPI and R2 values greater than 0.76 and CE greater than 0.62 for CCSM4.

4. Verification Statistics

To test the performance of our reconstructions we use both R2 value (correlation coeffi-

cient squared) and coefficient of efficiency against satellite observations. The coefficient of

efficiency (CE), like the correlation coefficient, measures the synchronicity in the variabil-

ity of two datasets, but also quantifies mean bias and the difference in variance between

the two datasets. This is a much stricter skill metric. Its maximum value is 1.0 and

it is unbounded in the negative direction. A CE value of zero occurs when the sum of

squared errors is equal to the variance in the verification data. Generally, positive CE

values represent skill. It is defined as:

CE = 1 −
∑n

i (vi − xi)
2∑n

i (vi − v̄)2
. (1)

Here v is the verification value and x is the value being evaluated (the reconstructed

value).
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Figure S1. Shown is the data availability incorporated into the Walsh et al. (2017)

Arctic sea ice record separated by two seasons over time. The color indicates the percent-

age of ocean longitude grid cells with an observation available at each latitude for each

month. The vertical green lines indicate April 1953 and September 1953 respectively.
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Figure S2. Arctic (north of 70N) mean surface air temperatures anomalies from

HadCRUT, NOAA-20C, and ERA-20C. The vertical gray line indicates the year 1953,

when availability of observations of sea ice in the Arctic decline substantially in the Walsh

et al. (2017) record. Anomalies are centered about 1979-2011.
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Figure S3. Total Arctic SIE reconstructed using priors drawn from two models (MPI

and CCSM4 Last Millennium simulations) and three temperature datasets (HadCRUT,

GISTEMP, and BE). For all experiments a localization length scale of 15,000 km is used

and an inflation factor of 1.8 for MPI and 2.6 for CCSM4. The 97.5 and 2.5 percentiles

of the ensemble spread are shown in blue and brown shading.
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Figure S4. Verification statistics for 30 reconstructions performed using MPI as a model

prior, HadCRUT observations, and different combinations of localization length scales (y-

axis) and inflation factors (x-axis) are shown. Trends and detrended variances during the

satellite era are shown in the two boxes on the left and the values observed in the satellite

record (Fetterer et al., 2017) are shown in the column on the right. The correlation and

coefficient of efficiency of these reconstructions when compared with (Fetterer et al., 2017)

are shown in the two boxes on the right.
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Figure S5. Verification statistics for 30 reconstructions performed using CCSM4 as

a model prior, HadCRUT observations, and different combinations of localization length

scales (y-axis) and inflation factors (x-axis) are shown. Trends and detrended variances

during the satellite era are shown in the two boxes on the left and the values observed in the

satellite record (Fetterer et al., 2017) are shown in the column on the right. The correlation

and coefficient of efficiency of these reconstructions when compared with (Fetterer et al.,

2017) are shown in the two boxes on the right.

January 9, 2020, 3:47am


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4

