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Abstract

We apply three different methods based on the analysis of the multi-component seismic data to detect seismovolcanic tremors

and other seismovolcanic signals, to propose an approach to classify them and to locate their sources. We use continuous

seismograms recorded during one year by 21 stations at the Piton de la Fournaise volcano (La Réunion, France). The first

method allows to detect seismovolcanic signals based on stability in time of the inter-components cross-correlations function.

Two other methods based on the simultaneous analysis of the whole network can be used to detect seismovolcanic signals

and to locate their sources. In a second approach, the seismic wavefield is analyzed by calculating the width of the network

covariance matrix eigenvalue distribution. The third method consists in performing the 3D back-projection of the inter-stations

crosscorrelations in order to calculate the network response function. Simultaneous analysis of the parameters measured by

the three different methods can be used to classify different types of seismovolcanic tremors. Our results demonstrate that all

three methods efficiently detect seismovolcanic tremors accompanying the 2010 eruptions and the preceding pre-eruptive seismic

swarms. Furthermore, methods 2 and 3 based on simultaneous analysis of the whole network detect a large number of volcanic

earthquakes. Our location results show that each seismovolcanic tremor is located in a distinct region of the volcano, close to

the eruptive site at a shallow depth and the preceding seismic crisis is located deeper at about the sea level under the summit

crater.
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1Institut des Sciences de la Terre, Université Grenoble Alpes, CNRS (UMR5275), Grenoble, France.
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Abstract

We apply three different methods based on the analysis of the multi-component seismic data

to detect seismovolcanic tremors and other seismovolcanic signals, to propose an approach

to classify them and to locate their sources. We use continuous seismograms recorded during

one year by 21 stations at the Piton de la Fournaise volcano (La Réunion, France). The25

first method allows to detect seismovolcanic signals based on stability in time of the inter-

components cross-correlations function. Two other methods based on the simultaneous

analysis of the whole network can be used to detect seismovolcanic signals and to locate

their sources. In a second approach, the seismic wavefield is analyzed by calculating the

width of the network covariance matrix eigenvalue distribution. The third method consists30

in performing the 3D back-projection of the inter-stations cross-correlations in order to

calculate the network response function. Simultaneous analysis of the parameters measured

by the three different methods can be used to classify different types of seismovolcanic

tremors. Our results demonstrate that all three methods efficiently detect seismovolcanic

tremors accompanying the 2010 eruptions and the preceding pre-eruptive seismic swarms.35

Furthermore, methods 2 and 3 based on simultaneous analysis of the whole network detect

a large number of volcanic earthquakes. Our location results show that each seismovolcanic

tremor is located in a distinct region of the volcano, close to the eruptive site at a shallow

depth and the preceding seismic crisis is located deeper at about the sea level under the

summit crater.40

Index terms:

• 0520 - Data analysis: algorithms and implementation

• 4302 - Geological natural hazards

• 7280 - Volcano seismology

• 8419 - Volcano monitoring45

Keywords:

• Geophysic

• Volcano seismology

• Seismovolcanic tremors

• Cross-correlations methods50

• Network-based methods
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• Piton de la Fournaise volcano

1 Introduction

Volcanic activity is generally accompanied by a large spectrum of seismic signals from

pre-eruptive seismic swarms to seismovolcanic co-eruptive tremors (e.g., McNutt & Roman,55

2015). The generation of seismic waves in volcanoes might be related either to the re-

lease of mechanical stresses within the volcanic edifices and underlying crust (e.g., Roman

& Cashman, 2006) or to the movement of magma and related hydrothermal fluids and to

their complex interactions with solid rock (e.g., Chouet, 1996). The interpretation of these

signals and the quantification of their source mechanisms allow us to better understand60

the oscillatory behavior of volcanic systems and provide information about the underlying

physical processes. Thus, seismovolcanic data play a fundamental role in observing and un-

derstanding ongoing processes within active volcanic systems and are critical for monitoring

volcanoes and anticipating their eruptive behavior.

Collection of the seismological data on volcanoes is rapidly advancing because of the65

modern technological developments. More and more volcanoes are equipped with net-

works composed of several very sensitive and broadband seismographs recording contin-

uous data and transmitting them in real time to volcano observatories and more broadly.

Archived continuous data sets and real-time data streams from several volcanoes are avail-

able through main international data centers and data collecting systems such as IRIS70

(https://ds.iris.edu/ds/nodes/dmc/), OFFEUS/EIDA (http://www.orfeus-eu.org/data/eida/),

etc. This rapid increase in data quality, quantity, and availability opens new opportunities

for the seismovolcanic monitoring.

At the same time, a full exploration of information contained in seismovolcanic data

is a very challenging problem. Many of the methods used in today’s volcano seismology75

are inherited from the past and were initially developed for a manual or weakly automated

analysis of very light data streams. Single-station and/or event counting approaches remain

dominantly used in the seismic volcano monitoring. These approaches have a significant

advantage of being simple and robust making their implementation possible in the majority

of volcano observatories suffering from the lack of resources and infrastructure. At the same80

time, even with massive implementation of these simple methods, the information contained

in the seismovolcanic data remains very poorly used.
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A full and coherent exploration of the information provided by modern seismovolcanic

monitoring facilities requires a more systematic usage of advanced network-based methods.

Most advanced volcanic observatories are developing computing infrastructure that allows85

”in situ” implementation of such methods. In a case of less well equipped observatories, the

data streams can be transmitted to larger regional or national (and eventually international)

data analysis centers where advanced algorithms required significant computing power can

be applied. The results of such advanced seismological analysis can be then re-transmitted

back to the observatories to be incorporated with other collected data and information for90

evaluation of the state of the volcanoes.

Network-based seismological method are recognized as having a large potential for im-

proving volcano monitoring because of their capacity to detect signals different from ”reg-

ular” earthquakes and to locate/characterize their sources. The main idea of the network-

based analysis is, instead to try to detect signals at individual records, to characterize the95

level of spatial coherence of a wavefield as it is recorded by the ensemble of instruments.

As a result, they do not generate discrete catalogs of events but continuous functions rep-

resenting the properties of the recorded wavefields and, in favorable conditions, can be

”back-propagated” to characterize the emitting sources.

Network-based methods are particularly well adapted for analysis of seismovolcanic100

tremors (e.g., McNutt & Nishimura, 2008) that are part of the long-period (LP) seismicity

(Chouet, 1996). These ground vibrations with a sustained amplitude lasting from minutes

to months, characterized by a low-frequency content (0.5 - 5 Hz) accompany eruptions

and are often synonymous with the arrival of magma at the subsurface and the first signs

of degassing. Therefore, they are a key element in volcano monitoring and a thorough105

study of these signals could allow us to bring new information about volcanic system and

to develop new methods of eruption forecasting. They can be caused by several volcanic

processes including magma-hydrothermal interactions and magmatic degassing (e.g., Chouet

& Matoza, 2013) but their physical origin is poorly understood and the study of their source

is part of the current challenges of the modern volcanic seismology.110

The network-based methods can be also useful in characterizing volcanic earthquakes.

In some cases, their time resolution can be enhanced to resolve individual events. Alterna-

tively, smoothed network-response functions can be considered as proxies to the properties of

the swarms composed of many earthquakes and to infer their approximate source locations.
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Network signal analysis is a very large family of methods (Rost & Thomas, 2002) and115

several of them have been used in volcano seismology. Different methods are based on their

own sets of assumptions, resulting in different network-response functions with different

detection capabilities and resolutions (in space, time, and frequency domains). Simulta-

neous application of different network-based methods can provide us with complementary

information necessary to detect and to identify different types of volcanic activity. Testing120

this multi-method approach was the main motivation for our present work. We focused

on three different methods and looked to applied them to a dataset from a volcano with

well known activity. For this reason, we selected Piton de la Fournaise (PdF) volcano (La

Reunion island, France). This volcano is one of the most active in the world and is systemat-

ically observed by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) with125

different monitoring techniques and, in particular, with a modern network of broadband

seismographs.

The first of the tested methods is new (has been developed in this study) and explores

the stability of inter-components cross-correlations to detect tremors. In a simplest case,

it can be used in a single-station mode. The two other methods are existing inter-stations130

cross-correlations network-based approaches described by Seydoux, Shapiro, De Rosny, et al.

(2016) and by Droznin et al. (2015). The latter has been modified here to be computed on a

3D grid. We compare these three methods in term of volcano-seismic signals detection. We

also show how the simultaneous analysis of the parameters measured by the three different

methods can be used to separate the different types of detected signals, which suggests a135

potential application to classify them. Moreover we will also present locations of sources

detected by the network-based methods. The location method is from Soubestre et al. (2019)

but here the temporal resolution is enhanced to study the pre-eruptive seismic crises. Thus,

another motivation of our study is to show how these methods can be applied to follow the

pre-eruptive seismic processes and seismovolcanic tremor activity through time and space.140

We analyze the data recorded by the PdF seismic network during the 2010 year when

three eruptions occurred (see Figure 1 for the positions of eruptive fissures and associated

lava flows):

• the January eruption that lasted 11 days from 02.01.2010 to 12.01.2010 with the

eruptive fissure located on the west part of the summit cone, inside the Dolomieu145

crater

–5–



manuscript submitted to JGR: Solid Earth

• the October eruption that lasted 17 days from 14.10.2010 to 31.10.2010 with the

eruptive site located in the south flank of the volcano

• the December eruption that lasted about 15 hours between the 09.12.2010 and

the 10.12.2010 with the eruptive site located in the northwestern part of the caldera.150

These three eruptions were preceded by pre-eruptive seismic crises and accompanied by

seismovolcanic tremors starting at the onset of the eruption. Examples of seismograms and

of real-time seismic amplitude measurements (RSAM) (Endo & Murray, 1991) during the

January and October eruptions are shown in Figure S1.

Piton de la Fournaise volcano and its seismic network are introduced in section 2.155

Then, a rapid description of its seismovolcanic tremors is made in section 3. The methods

applied in this study are described in section 4, with the obtained results presented in

section 5 and discussed in section 6.

Figure 1: Color shaded relief map of the Piton de la Fournaise volcano, located on the

southeast part of La Réunion island. The bottom left inset shows the location of La Réunion

island in the Indian Ocean. Seismic stations used in this study are represented with white

inverted triangles. Black dots stand for the position of the eruptive fissures corresponding

to the January, October and December 2010 eruptions, located at the west part of the

summit cone, south flank and northwest flank respectively. Red lines stand for the lava

flows associated with these eruptions.

–6–



manuscript submitted to JGR: Solid Earth

2 Piton de la Fournaise volcano and the seismic monitoring system

La Réunion is a volcanic island located in the southwest of the Indian ocean in the160

Marscarene Basin (Figure 1). Based on dating and geodynamic reconstruction, its volcanism

is thought to have a hot spot origin and being generated by the same mantle plume that

produced the Deccan Trapp about 65 Ma ago (Courtillot et al., 1986). The head of this

mantle plume would have been passed beneath La Réunion about 5 Ma and would be now

located 300 km southwest of the island (Bonneville, 1990). Tsekhmistrenko et al. (2018)165

present a high resolution body-wave tomography of the whole mantle column beneath the

western Indian Ocean providing a more complex view of the plume beneath La Réunion.

Their model reveals that the upwelling shows considerable tilt in the lower mantle instead

of being near-vertical and splits into branches near the surface.

The Piton de la Fournaise volcano (PdF) is an intraplate shield basaltic volcano of170

Hawaiian type located in the southeast part of the island. It is 2631 m high and active since

about 530 ka. Throughout its existence, this volcano has been marked by the formation of

successive concentric calderas, the latest being the Enclos Fouqué, formed about 4500 years

ago (Bachèlery, 1981), in which there is a summit cone of 400 m high and 3 km wide at its

base with two craters: the Bory crater and the Dolomieu crater, this latter being the most175

active one.

The PdF is considered as one of the most active volcanoes in the world, with approxi-

mately one eruption occurring every 9 months in average. Thus, its very frequent eruptions

weakly dangerous for the population (97% of the recent eruptions occured within the unin-

habited caldera) make it an ideal natural laboratory to study active volcanic processes.180

Geodetic and seismic data suggest the presence of a shallow magma reservoir around

2500 ± 1000 m below the PdF summit craters (Staudacher et al., 2016). However, the exact

geometry of storage zones and their possible inter-connections are still debated. While Lénat

and Bachèlery (1990) suggested the presence of small magma pockets scattered between the

summit and the sea level, Peltier et al. (2008) inferred from geodetic data a single magma185

reservoir located above the sea level, regularly recharged by a deeper source.

Since the installation of the volcano observatory of PdF (Observatoire Volcanologique

du Piton de la Fournaise - OVPF) in 1979, the seismic network has evolved from a small

number of short period stations recording on a triggered basis, to a modern network com-

–7–
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bining broadband and short period sensors and recording continuously (Battaglia et al.,190

2016). In 1999, there were 19 short period stations in the network, mostly installed near

the summit and around the volcano. In May 1999, the continuous recording appeared with

storage on CD-ROMs and the network was completed after the 2007 Dolomieu crater col-

lapse, including up to six broadband 3-component stations by the middle of 2009. Since

October 2009, 15 broadband stations located on the volcano were installed as part of the195

Understanding Volcano project (UnderVolc) (Brenguier et al., 2012; Brenguier, 2014), in

addition to the existing seismic network. Figure 1 shows the 21 broadband 3-component

stations present in 2010 that we use in this study.

3 seismovolcanic tremor of Piton de la Fournaise volcano

The PdF seismovolcanic tremors are generally co-eruptive, starting when the eruption200

begins, and disappearing at the end. It is characterized by a relatively broad spectrum

around 0.5-10 Hz (Battaglia & Aki, 2003).

The signals generated by seismovolcanic tremors are generally emergent, without any

clear onset. This implies a lack of seismic phase identification and prevents the use of tra-

ditional strategies for seismovolcanic tremor source location. Therefore this is necessary205

to develop new methods better suited for its analysis. Battaglia and Aki (2003) proposed

a method based on seismic amplitudes for locating events. They showed that once cor-

rected for station sites effects using coda site amplification factors, the spatial distribution

of amplitudes shows smooth and simple contours for events including LP events and seismo-

volcanic tremor. Following this approach, Battaglia et al. (2005b) located sources of several210

co-eruptive seismovolcanic tremors at the PdF and found that they better correlated with

the position of the eruptive vents for the 5-10 Hz band, suggesting a generation directly

located at the eruptive site. While for frequency above 1.5 Hz, the seismovolcanic tremor

sources are generally found at shallow depth, they suggest that lower frequencies could be

related to deeper processes rather than directly by the eruption observed at the surface.215

Taisne et al. (2011) used a similar method to study the PdF pre-eruptive seismic crises.

4 Methods

Most of volcano observatories monitor seismovolcanic tremor in real-time based on

measuring their amplitudes at a single reference station located near the volcano (e.g., Endo

& Murray, 1991). The idea of this approach is that the position of the seismovolcanic tremor220
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source remains more-or-less stable in time and that the amplitude of the seismic signal can

be considered as a proxy of the intensity of the seismovolcanic tremor generating processes.

This single station/component approach can be developed further with using the spectral

shape of the signal (instead of its averaged amplitude) leading to a better discrimination of

different phases of seismovolcanic tremor (Unglert & Jellinek, 2015; Unglert et al., 2016).225

One of the main difficulties of single component approaches is that they cannot be used

to get information about the spatial location and extent of the source. In particular, this

might result in difficulties with distinguishing seismovolcanic tremors from other types of

processes leading to increased seismic amplitudes such as, for example, meteorological and

anthropogenic noises.230

In this paper we systematically use and compare methods based on correlations of

signals to perform detection and location of seismovolcanic signals. We first briefly describe

the data pre-processing used in all analyses considered in this paper. Then, we introduce

a single-station method aimed at detecting long-acting sources based on stability of inter-

components cross-correlations. In a next step, we consider methods based on simultaneous235

analysis of the whole network of receivers. Our approach is different from the antenna-

type detection of seismovolcanic tremors based on small-aperture arrays and plane-wave

approximation for measuring slowness and azimuth of incoming wave (e.g., Goldstein &

Chouet, 1994; Métaxian et al., 2002; Haney, 2014). We rather consider a geometry where

the source of seismic radiation is located within the network. It implies that the moveouts are240

not described with plane waves but with a wave propagation from a point source (cylindrical

wave in a case of surface waves and ray-predicted times for body waves). In this case, it has

a strong imprint on inter-stations cross-correlations (e.g., Shapiro et al., 2006; Ballmer et al.,

2013; Droznin et al., 2015). In volcanic environments these cross-correlations can be used to

detect seismovolcanic signals and to locate their source. Here we apply two network-based245

methods. First, we use the representation of ensemble of inter-stations cross-correlations

in terms of network covariance matrix suggested by Seydoux, Shapiro, De Rosny, et al.

(2016); Seydoux, Shapiro, de Rosny, and Landes (2016); Seydoux et al. (2017) and used by

Soubestre et al. (2018, 2019) to study seismovolcanic tremors. Second, we adapt on a 3D

grid the approach of Droznin et al. (2015) that backproject the cross-correlations envelops250

in time using a 1D S-wave velocity model to detect seismovolcanic signals and we follow the

approach described in Soubestre et al. (2019) to locate their sources.

–9–
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We are focusing on the information contained in the time-variations of the signal

phase differences between stations. We also consider the instrument response of the seismic

stations to be stable over time and, therefore, do not consider instrument correction. We255

then further apply the pre-processing usually performed in ambient-noise interferometry

(e.g., Shapiro & Campillo, 2004; Shapiro et al., 2005; Bensen et al., 2007).

The data are stored in 24-hours-long time-series in SAC down-sampled from 100 to 20

samples per second. We apply demeaning, linear detrending and bandpass filtering between

1 and 10 Hz. Then, a spectral whitening is applied followed by a temporal normalization260

according to Bensen et al. (2007).

4.1 Single-station inter-components cross-correlations

We present here a new method to detect some seismovolcanic signals including seis-

movolcanic tremors based on the stability of the inter-components cross-correlations at a

single station. Let us consider a wavefield generated by a seismovolcanic tremor source265

that remains at the same location and with a constant source mechanism. As argued by

Droznin et al. (2015); Soubestre et al. (2018), the cross-correlation of such a wavefield be-

tween two receivers will remain stable in time and can be used as a ”fingerprint” of this

particular source. This principle also holds for a cross-correlation between two components

of the same receiver and we use this property to design a simple single-station seismovol-270

canic tremor detector. We start with computing inter-components cross-correlations CCi,j

(i, j = E,N,Z) in moving windows of length ∆t and shifted by ∆t/2. We then compute

correlation coefficients between cross-correlation waveforms from consecutive time windows

and take the mean value of 6 consecutive computations. The obtained functions cc6i,j pro-

vides us with estimation of the stability of the cross-correlation waveforms that, in turn,275

is related to existence of stable seismovolcanic tremor source. In our case we use moving

windows of length ∆t = 200 s to compute inter-components cross-correlations and therefore

the cc6i,j functions correspond to a short-term estimation of the cross-correlation waveforms

stability over 700 s. The cc6i,j function is represented in the part 5.1. This method allows

us to detect seismovolcanic tremor activity by using only one components pair of a single280

seismic station. In order to improve the seismovolcanic tremor detection results, we can

first average the three cc6i,j functions obtained from the three components pairs of one single

station, and then average the previous functions on several stations.

–10–
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4.2 Inter-station single-component cross-correlations: covariance matrix

spectral width285

We use the method proposed by Seydoux, Shapiro, De Rosny, et al. (2016) where

an ensemble of inter-stations cross-correlations is computed in the frequency domain (also

called network covariance matrix). This matrix is decomposed on the basis of its eigenvectors

associated with real positive eigenvalues. The main idea behind this method is to consider

that the rank of the covariance matrix (number of non-zero eigenvalues) is related to the290

the number of independent signals composing the wavefield and then of independent seismic

sources. A single source would generate a rank 1 covariance matrix, and this rank would

increase with the number of independent sources. However, because of the presence of

seismic noise (generated by ocean micro-seismic, wind, etc) and instrumental electronic

noise in the data, it is complicated to estimate the effective rank of the covariance matrix295

and the number of independent sources can not be directly inferred. In addition, as the

covariance matrix is estimated from a finite number of windows, this may reduce the ability

to capture the independent seismic signals. Nevertheless, the width of the covariance matrix

eigenvalues spectrum (σ(f) called spectral width) can be used as a proxy for the number

of independent seismic sources composing the wavefield (Seydoux, Shapiro, De Rosny, et300

al., 2016). Thus, this spectral width is high when it corresponds to ambient seismic noise

produced by distributed sources, while it is low when it corresponds to a spatially coherent

signal produced by a single localized source, such as seismovolcanic tremor and volcano-

tectonic earthquakes (VTs).

Following Seydoux, Shapiro, De Rosny, et al. (2016), we start by cutting the daily

traces into a number of overlapping time windows that we call averaging windows. Then,

each averaging window is cut into M overlapping subwindows of length δt such that ∆t =

Mrδt, where ∆t is the length of the averaging time window and r the overlapping ra-

tio that is 0.5 on our case. We apply a taper on the data prior to calculate the Fourier

transform on the subwindow to avoid sharp windows, that is why the signal segments are

overlapped with a factor of 50 % in order not to loose any information located in consec-

utive windows. We then collect the array data vector from the N seismic stations u(f)

as u(f) = [u1(f), u2(f), ..., uN (f)]T and compute the outer product u(f)u†(f) within each

subwindow, where † stands for the Hermitian transpose. Then the covariance matrix C(f)

–11–
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is estimated on any averaging window from M consecutive subwindows

C(f) = 〈u(f)u†(f)〉∆t =
1

M

M∑
m=1

um(f)u†
m(f), (1)

with um(f) the data Fourier spectra vector in the subwindow m. Note that the inverse305

Fourier transform of equation 1 is the inter-station single-component cross-correlations es-

timated over the M subwindows.

This calculation can be extended on consecutive averaging window, over the whole year

2010 with M = 50 and δt = 40 s. We note that δt must be long enough for the seismovolcanic

tremor seismic wave to have time to propagate through the entire network. We thus obtain

1000 s long windows that overlap with a 50 % factor. The obtained covariance matrix is

Hermitian and positive semi-definite, so it can be decomposed on the basis of its complex

eigenvectors vn associated with real positive eigenvalues λn:

C(f) =

N∑
n=1

λn(f)vn(f)v†
n(f). (2)

Then eigenvalues are arranged in decreasing order and the covariance matrix spectral width

is computed as a function of frequency as:

σ(f) =

∑N
i=1(i− 1)λi(f)∑N

i=1 λi(f)
. (3)

4.3 Inter-station single-component cross-correlations: network response

and source location

Detection of seismovolcanic signals from full rank inter-stations310

cross-correlations matrix: We follow the approach of (Droznin et al., 2015) who devel-

oped a 2D source-scanning algorithm based on the stacks of inter-stations cross-correlations

envelopes, in order to detect seismovolcanic tremors and to locate their sources. This method

is based on an assumption that seismovolcanic tremor source is relatively shallow and that

seismic energy propagates toward the stations along the surface. The differential travel315

times of signals emerging in inter-stations cross-correlations are then interpreted in terms

of surface wave (2D) propagation in order to find the geographical location of the seismo-

volcanic tremor source. Here we apply this method in a 3D grid in order to locate also

deeper seismovolcanic sources such as VTs. The location is done by performing a 3D grid

search with tested sources spaced 200 meters apart. We first compute the inter-stations320

cross-correlations (we only use the vertical component seismograms) between all pairs of

available stations. We therefore end up with 210 pairs of cross-correlations when data from

–12–
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the 21 stations are available. The next step consists in computing the smoothed envelopes

of the cross-correlation waveforms. This is done by computing the absolute value of the

analytic signal derived from the Hilbert transform and by performing a convolution with a325

3 s long Gaussian window. Then, for every tested source position in our 3D grid we com-

pute travel times for all stations using a 1D S-wave velocity model of the PdF volcano from

Mordret et al. (2015) (shown in Figure S2) by considering that seismovolcanic tremors and

their cross-correlations are dominated by S waves (Soubestre et al., 2019). We note that the

weak S-wave velocities observed in the near-surface layers constituted of poorly consolidated330

volcanic materials (Figure S2) are consistent with the horizontal wave propagation velocity

that we can estimate as seen in Figure S3 by performing a linear regression between the max-

ima of the smoothed cross-correlations envelopes. The Figure S3 represents the smoothed

cross-correlations calculated between the UV05 station (the closest available station to the

January eruptive center) and all the others available stations for the day 03.01.2010. We335

chose the UV05 station because we assume that the source of the seismovolcanic tremor

is located close to the January eruptive center and its position is stable. The red line is

the result of the linear regression whose slope corresponds to a horizontal wave propagation

velocity of 700 m/s. We also observe similar velocities for other days with seismovolcanic

tremor activity.340

Then, for every point r = xex + yey + zez, each cross-correlation envelop Si,j is

shifted by the time difference needed for the wave to travel from the tested source to the

two stations i and j and we finally compute the network response R(r) by stacking at zero

lag time the value of the shifted envelopes for all stations pairs as:

R(r) =

N∑
i=1

N∑
j=i+1

Si,j [ti(r)− tj(r)] (4)

with N the number of stations and ti(r) the travel time between the tested source and the

station i. This network response (called likelihood afterwards) characterizes the likelihood

of location of a seismic source in a particular position. Finally, we calculate the normalized

maximum network response called NRF afterwards for Network Response Function

NRF (n) = 100× Rmax(n)−Rmin(n)

Rref
(5)

for every day of the 2010 year, where n is the day number and Rref a normalization coef-

ficient chosen as an average of Rmax − Rmin over the October 2010 eruption, the longest

period of seismovolcanic tremor activity during the year. The function defined in such a way

maximizes when most of its values are concentrated in the vicinity of the main maximum,
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i.e., in a case of a strong localized source. The NRF is then used as a proxy for signal345

detection. The obtained detection results are shown in section 5.1.

Location of seismovolcanic sources from low rank inter-stations

cross-correlations matrix: This location method (described in Soubestre et al. (2019))

is similar to the 3D source-scanning algorithm described in the previous part but here we

focus on the dominant wavefield. To do that, we focus on the first eigenvector of the350

network covariance matrix containing information about the location and the mechanism

of the dominating seismovolcanic tremor source. The first eigenvector represents the most

coherent part of the wavefield and acts as a de-noising operator. We show in the Figure S4

a comparison between the cross-correlation functions (CCFs) from the full recorded seismic

wavefield (left pannel) and the CCFs extracted from the first eigenvector filtered covariance355

matrix (right pannel). We note that this filtering based on covariance matrix decomposition

increases the signal-to-noise ratio and we therefore use it to improve our location results as

it can be seen in Soubestre et al. (2019).

The filtered covariance matrix C̃(f) is obtained from the complex outer product of

the first eigenvector v1(f) with himself :

C̃(f) = v1(f)v†1(f). (6)

Then, the time-domain filtered cross-correlations are retrieved by performing the inverse

Fourier transform of C̃(f), and smoothed to obtain their envelopes, as explained in the360

previous section.

After the smoothing, each cross-correlation envelope is shifted by the time difference

between travel times from every tested point of the 3D grid to the two considered stations.

The network responses are then obtained by stacking the value at zero lag-time of shifted

cross-correlations envelopes using equation (4). In order to better visualize the location

result, a normalized network response R̃(r) is computed

R̃(r) =
R(r)−Rmin

Rmax −Rmin
(7)

with Rmax and Rmin the absolute maximum and minimum of R(r). The obtained location

results are shown in section 5.2.

We tested different values of the Gaussian window width used to smooth the cross-

correlations reconstructed from the first covariance matrix eigenvector. We make our tests on365

four hours of the day 15.10.2010 during the October seismovolcanic tremor between 15h and
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19h, when inter-components cross-correlations remain stable. We thus stack the obtained

cross-correlations computed in 1000 s windows during these four hours. We compute their

envelopes by testing different values of smoothing Gaussian window width and normalize

them by their maxima. We then perform a 3D back-projection of these obtained cross-370

correlations envelopes and compute the maximum likelihood value for each tested value of

the smoothing Gaussian window width. We show in Figure S5 the maximum likelihood

value as a function of the smoothing Gaussian window width. We chose a Gaussian window

width value of 1.5 s, corresponding to the corner of the curve in Figure S5 pointed by the red

dashed lines, beyond which the maximum likelihood value no longer increases significantly.375

5 Results

5.1 Detection of seismovolcanic tremors and other types of seismic activity

Figure 2a shows the result of the cc6i,j function (described in section 4.3) for the N

- Z components pair of station UV12. We note that we can detect the three eruptive

seismovolcanic tremors (highlighted in red in the figure) only with one components pair380

of a single station. We can then improve these detection results by averaging the three

cc6i,j functions obtained from the three components pairs and we show an example for the

UV12 station in the Figure 2b. In order to improve the signal-to-noise ratio we perform

an average over several stations. We show in Figure 2c the result averaged over 12 stations

(36 components) whose continuous records without significant interruption are available385

through the whole year 2010. We represent some zoom of this station-averaged cc6i,j function

in Figure 6a, 7a and 8a in which we can observe the high values associated to the seismic

crises preceding the three eruptions. In addition to the seismovolcanic tremors and to their

preceding seismic swarms, we can also observe high values of the function (highlighted in

orange in Figure 2) at the beginning of September when an increase of the seismovolcanic390

activity is detected and the 23.09.2010 when a dyke intrusion occurred without leading to

an eruption (Roult et al., 2012).

Figure 3a shows the covariance matrix spectral width (equation 3) computed on 1000

s long overlapping time windows for every frequency, this can be seen as a time-frequency

representation of the wavefield recorded by the whole network highlighting the coherent395

signals. Figure 3b represents the average of this spectral width on the frequency-band 1-5
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Figure 2: Seismovolcanic activity detection from inter-components cross-correlations at a single station.

The three red areas highlight the January, October and December eruptions while the two orange areas

highlight an increase of seismovolcanic activity at the beginning of September and seismovolcanic activity

linked to a dyke intrusion the 23.09.2010. (a) Correlation coefficient function cc6i,j computed for the N - Z

components pair of the UV12 seismic station. (b) Average of the three correlation coefficient functions cc6i,j

obtained for the three components pairs of the UV12 seismic station. (c) Average of the averaged function

represented in (b) on 12 seismic stations whose data availability is stable and identical over the 2010 year

(UV01 to UV14, without UV04 and UV06). High values of this correlation coefficient function are also

observed during the seismic crises preceding the three eruptions and zoom are provided in Figures 6a, 7a

and 8a.
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Hz. This function represents another network-based detector and all three seismovolcanic

tremors can be identified with lower values of the spectral width.

Figure 3c shows the NRF (equation 5) computed every day (time resolution similar

to Droznin et al. (2015)). This allows us to detect the January and October seismovolcanic400

tremors (red areas in the figure). However we can not detect the December seismovolcanic

tremor here because of the temporal resolution. Figure 3d shows the same function computed

with a finer time resolution, i.e., in 1000 s long time windows. We can now detect the three

seismovolcanic tremors and we also observe that the NRF becomes more sensitive to the

high-seismicity periods.405

In addition to the seismovolcanic tremors highlighted in red, we can also detect two

other periods of high seismic activity highlighted in orange in the figure. A first one from the

beginning of September corresponding to an increase in the seismicity prior to the October

eruption and the second one at the end of December that are followed by an increase of

the micro seismicity under the summit since the beginning of the year 2011 (OVPF, 2011).410

The pre-eruptive seismic crises corresponding to each eruption are also well detected (see

the zoom in the Figures 6b-c, 7b-c and 8b-c).

We note that most of the high values observed in the correlation coefficient function

and NRF and low values for the spectral width correspond to known volcanic activities

highlighted in red for eruptions or orange for earthquakes and injection. However the origin415

of others remains unidentified to date (during April for example) and it can correspond

to noise or some previously undetected volcanic activity. While the computation of the

NRF requires an a-priori on the medium velocity, there is no a-priori for the spectral width

calculation. Despite this, the two network-based methods result in a similar first-order

information and we observe an anti-correlation when seismovolcanic tremor sources produce420

high value of the NRF and low value of σ(f). Also, by comparing the Figures 2 and 3 we

note that while the two network-based detectors catch the same seismovolcanic signals, the

correlation coefficient function doesn’t detect the seismicity during September (except at

the beginning and during the dyke intrusion the 23.09.2010) and at the end of December.
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Figure 3: Seismovolcanic activity detection from inter-stations cross-correlations. The red areas highlight

periods of detected seismovolcanic tremors while orange areas highlight periods of high seismic activity in

September and at the end of December. (a) Covariance matrix spectral width computed for every frequency

on overlapping 1000 s long time windows. The two horizontal dashed black lines stand for the lower and

upper limits of the covariance matrix spectral width averaging. (b) Average of the covariance matrix spectral

width in the frequency band 1-5 Hz. (c) Network response function (equation 5) computed every day. (d)

Network response function computed on 1000 s long time windows. In order to limit the impact of the

missing stations on the functions (a), (b) and (d), we normalize them by the number of functional stations

for each day.
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Figure 4: Average spectral width as a function of the network response function. Colors correspond

to different clusters of events. The three seismovolcanic tremors are represented with color gradations

from lightest to darkest in order to observe their evolution over time. Red colors stand for the January

seismovolcanic tremor with corresponding spectral width and network response represented in Figures 6b

and 6c respectively. Green colors stand for the October seismovolcanic tremor as represented in Figures 7b

and 7c. Blue colors stand for the December seismovolcanic tremor (see Figures 8b and 8c). Grey points

correspond to noise. Purple colors stand for the earthquakes occurring during the 2010 year. Cyan colors

correspond to the October and December seismic crises while the January seismic crisis is represented with

fuchsia colors. And the September dyke intrusion is represented by orange points.

A more detailed comparison of two network-based methods is shown in Figure 4 that425

represents the average spectral width as a function of the NRF. We can see different trends

corresponding to clusters of different seismic events. This allows to clearly differentiate the

January and October seismovolcanic tremors represented by red and green colors respec-

tively, as the January seismovolcanic tremor is characterized by lower values of the network

response function (see also Figures 6b, 6c, 7b and 7c). December seismovolcanic tremor can430

also be seen in Figure 4 with blue colors, with similar values of the network response func-

tion but higher values of the average spectral width than the October seismovolcanic tremor

(see also Figure 8b and 8c). We notice that we can thus separate the summit seismovolcanic

tremor (occurring in January) from the two flank seismovolcanic tremors occurring in the

South and North-West flanks in October and December, respectively. We also observe a435

different temporal evolution for the January and October seismovolcanic tremor. January
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seismovolcanic tremor is characterized by very low values of spectral width at the beginning

of the eruption (very light red in Figure 4) and it evolves until reaching values equivalent to

that of seismic noise (dark red in Figure 4). Conversely the October seismovolcanic tremor

begins with intermediate values of spectral width (very light green in Figure 4), then it ends440

with very low spectral width values (dark green in Figure 4) and finally the spectral width

becomes higher and higher until the eruption is completely over.

Another trend is distinguishable in Figure 4 with more scattered points represented

in purple which mostly correspond to the earthquakes occurring during the 2010 year. The

September dyke intrusion is represented by orange points. Cyan colors correspond to the445

October and December seismic crises while the January seismic crise is represented with

fuchsia colors because we see that it is characterized by different values of NRF and spectral

width. Grey points in the top left corner of Figure 4, characterized by low values of network

response and high values of average spectral width, correspond to seismic noise during the

whole year. We also note a few points on the bottom left of the Figure 4, characterized by450

very low values of the average spectral width, that correspond to a few hours in the end of

November where there was a technical problem and several stations were down.

Finally, we can also make a 3-D comparison between the station-averaged cc6i,j function

(whose zoom during eruptions are shown in Figures 6a, 7a and 8a), the NRF and the spectral

width as seen in Figure 5. Before comparing all the three functions, we re-calculated the455

NRF and the spectral width with 200 s long overlapping windows and we computed a

moving average between 6 consecutive windows. In addition to the separation between

summit and flank seismovolcanic tremors, we can also distinguish the intrusion occurring

for a few hours on 23.09.2010 ((Roult et al., 2012)) represented with orange points colored

in orange. Moreover, we can on the one hand distinguish the pre-eruptive seismic swarms460

from the others VTs colored in purple and on the other hand distinguish the January seismic

swarm colored in fuchsia from the October and December seismic swarms colored in cyan.
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Figure 5: 3D comparison between the station-averaged cc6i,j function labeled as ”correlation coefficient”,

the NRF and the average spectral width. Grey colors stand for the seismic noise, purple colors stand for

the earthquakes. The January, October and December seismovolcanic tremors are represented by red, green

and blue colors respectively. The orange color stands for the dyke intrusion occurring in September, Fuchsia

colors stand for the January pre-eruptive seismic crise and Cyan colors stand for the October and December

pre-eruptive seismic crises.
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Figure 6: Zoom on the January eruption and its pre-eruptive seismic swarm for (a) the station-averaged

cc6i,j coefficient correlation function, (b) the spectral width and (c) the NRF. The red color stands for

the January seismovolcanic tremor activity and the fuchsia color stand for the corresponding pre-eruptive

seismic crisis, following the color code of the Figures 4 and 5.
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Figure 7: Zoom on the October eruption and its pre-eruptive seismic swarm for (a) the station-averaged

cc6i,j coefficient correlation function, (b) the spectral width and (c) the NRF. The green color stands for the

October seismovolcanic tremor activity and the cyan color stands for the corresponding pre-eruptive seismic

crisis, following the color code of the Figures 4 and 5.
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Figure 8: Zoom on the December eruption and its pre-eruptive seismic swarm for (a) the station-averaged

cc6i,j coefficient correlation function, (b) the spectral width and (c) the NRF. The blue color stands for the

December seismovolcanic tremor activity and the cyan color stands for the corresponding pre-eruptive seismic

crisis, following the color code of the Figures 4 and 5.

5.2 Location of seismovolcanic tremor sources

Figure 9 shows the seismovolcanic tremor sources location results in 3D based on the

extraction of the dominant wavefield (as explained in the part 4.3, using a Gaussian window465

width of 1.5 s to smooth the CCFs and a 1D S-wave velocity model from Mordret et al.

(2015). We calculate the daily covariance matrix by setting M = 50 and δt = 40 s to end up

with 1000 s long windows that overlap with a 50% factor. Figure 9 shows the seismovolcanic

tremor sources location results corresponding to the January eruption (9a), the October
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eruption (9b) and the December eruption (9c). We define a 3D grid with points spaced470

every 200 m in order to compute the likelihood function that is then normalized using the

equation (7). For Figures (9a) and (9b) we stacked the 1000 s overlapping windows for the

entire days 03.01.2010 and 15.10.2010, respectively, while we stacked them only for the 15

hours of eruption between the day 09.12.2010 and 10.12.2010 for Figure (9c). We observe

that the seismovolcanic tremors seem to be located directly under the eruptive fissure for475

these three eruptions.
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Figure 9: Normalized likelihood functions R̃ calculated from the covariance matrix first eigenvectors for

(a) the day 03.01.2010, (b) the day 15.10.2010 and (c) the 15 hours of the December eruption between days

09.12.2010 and 10.12.2010. The black stars stand for the location of the source with the maximal likelihood

value and the white dot points for the eruptive sites. 3D location are performed using a 1D S-wave velocity

of the PdF volcano from (Mordret et al., 2015).
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5.3 Pre-eruptive swarms

To focus on details of volcano-tectonic (VT) events occurring in the observed pre-

eruptive seismic swarms we modify the temporal normalization of the data and instead of

applying the running absolute mean normalization (following Bensen et al. (2007); Seydoux,480

Shapiro, De Rosny, et al. (2016)), we divide the traces (once spectral whitening is applied)

by their mean absolute deviation (MAD). We also enhance the temporal resolution of the

covariance matrix analysis and modified the parameters introduced in the part 4.2, by setting

M = 25 and δt = 16 s. As a result, the covariance matrix spectral width is computed in

200 s long overlapping time windows. Figure 10 shows the result of such enhanced seismic485

event detection and location during the first day of the October eruption (14.10.2010) with

pre-eruptive seismic crisis and the seismovolcanic tremor starting at 15:00. We can clearly

distinguish discrete VT events occurring in the seismic crisis in Figure 10a in difference with

the continuous following seismovolcanic tremor.

Then we perform a 3D location by focusing on the first eigenvector of the covariance490

matrix computed for this day. We stack 10 consecutive 200 s long overlapping windows, to

end up with a location point every 1000 s. Figure 10b shows the source depth as a function

of time and the Figure 10c represents the source depth as a function of the latitude with

the symbol colors corresponding to the windows central times.

We observe that VT events occurring since the beginning of the day and during the495

seismic crisis are located under the summit dome between ± 1 km around the sea level

which is quite in agreement with what is typically observed for pre-eruptive swarms at

PdF. For example Schmid (2011) located VT events from the 14.10.2010 seismic swarms

beneath summit crater between 500 m below sea level and 1000 m above sea level. Then

the seismicity seems to migrate toward the eruption site in the south flank for October500

eruption. Using template matching and relocation techniques, Duputel et al. (2019) show

a clear correlation between pre-eruptive earthquake locations and the azimuth of eruptive

sites which is consistent in our case with the presence of VT earthquakes in the southern

branch of the summit cone before the migration.
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Figure 10: (a) Zoom on the covariance matrix spectral width calculated on 200 s overlapping time

windows during the day 14.10.2010, first day of the October eruption. Red line stands for the beginning

of the eruption. The white frame corresponds to the zoom represented in the Figure 11a. (b) 3D location

of the detected seismic signals on 1000 s time window during the day 14.10.2010, the depth is represented

as a function of time and the red vertical dashed line stands for the eruption beginning. (c) Same location

width the depth as a function of latitude with the color representing the windows central times. The black

triangle at the surface stands for the eruptive site position.

In Figure 11a, a zoom of the spectral width is represented for the day 14.10.2010 be-505

tween 09:30 (beginning of the seismic swarm main part) and 15:30 (10 minutes after the

eruption onset). Figure 11b shows an example of a 3D location on a 200 s long window of
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a VT event occurring at 10:30, situated 1 km above the sea level under the summit cone.

In addition to the seismovolcanic tremor and VT events constituting the pre-eruptive seis-

mic swarm, the computation of the covariance matrix spectral width allows also to detect510

another type of recently discovered seismic swarm of events characterized by a very high

frequency content (called HF swarm) (De Barros et al., 2013). As stated by Roult et al.

(2012), the classical sequence of events preceding an eruption at PdF is: a first increase

of VT events, a swarm of VT with larger magnitudes, then a seismically quiet or low in-

tensity sequence with small number of VT events linked to magma migration followed by515

the seismovolcanic tremor onset and the eruptive fissure opening. During the quiescent pe-

riod between the swarm and the seismovolcanic tremor, De Barros et al. (2013) identified a

swarm of HF events the 14.10.2010 since 13:00, located in the area of the eruptive fracture

in the south flank and interpreted as a response of the shallow part of the edifice to the

stress changes due to the dike propagation. We can observe in the Figure 11a some coherent520

signals between the end of the VT swarm and the seismovolcanic tremor, in particular from

14:00 to 15:00, for frequencies larger than 3 Hz. We represent in Figure 11c an example of

a 3D location on a 200 s long window of a HF event occurring at 14:10. There is therefore a

migration of the seismicity from the pre-eruptive seismic swarm under the summit cone at

the sea level toward a HF swarm superficially near the future eruptive site more than one525

hour before the eruption.
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Figure 11: (a) Zoom of the covariance matrix spectral width the day 14.10.2010 between the beginning

of the seismic swarm main part (09:30) and 10 minutes after the eruption onset. The two black arrows

show the timing of the two events with locations shown in (b) and (c). The two vertical dashed black lines

stand for the beginning and the end of the VT swarm main part. Then there is a phase of low intensity

seismicity with a small number of VT events. During this phase the lateral migration of the dike begins

and we can observe a coherent high-frequency swarm. The red vertical dashed line marks the onset of the

seismovolcanic tremor and associated eruption. (b) Likelihood functions R̃ calculated from the covariance

matrix first eigenvectors, the day 14.10.2010 for a VT event at 10:30 and (c) for a HF event that is part to

the high-frequency seismic swarm. –30–
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6 Discussion and conclusions

In this paper, we tested methods that use the phase information contained in continuous

seismic signals to study seismovolcanic tremors. First, we introduced a new method of530

detection of seismovolcanic tremors based on stability of inter-components cross-correlations

at a single station. In a next step, we systematically compared this new method with two

previously proposed network-based methods by applying all three methods to continuous

data recorded by stations of the Piton de la Fournaise (PdF) volcano observatory seismic

network during 2010. The second method based on the network covariance matrix has been535

previously applied to the dataset used in this paper by Seydoux, Shapiro, De Rosny, et al.

(2016). However, in this previous paper the time resolution of the analysis was relatively low

(one day), and here we increased it to be able to detect individual volcanic earthquakes. The

third method called ”network response function” (Droznin et al., 2015) has been applied for

the first time to the PdF data and in a 3D grid considering a 1D S-wave velocity model.540

All three methods have been demonstrated to be very sensitive to seismovolcanic

tremors and detected all three eruptive seismovolcanic tremors that occurred during 2010.

They are also capable to detect strong pre-eruptive seismic swarms. In addition to this,

the two network-based methods detect a large number of volcanic earthquakes and, in

particular, the significant increase of seismicity during the month preceding the October545

2010 PdF eruption as seen in Figure 3. This seismicity increase is well correlated with the

measured decrease of seismic velocity that is interpreted to be linked to the volcanic edifice

deformation induced by magma pressure build-up and injection (Brenguier et al., 2012).

The ”single-station inter-components cross-correlations” method can be implemented

on volcanoes monitored by a small number of stations. Among the two network-based550

methods, the ”covariance matrix” detector has some advantage because it does not require

a-priori information about the wave propagation velocity. Additional advantage of network

based-methods is their ability to locate seismovolcanic tremor sources. In the case of a net-

work with significant number of well distributed stations, the 3D location based on ”spatially

filtered” cross-correlations (reconstructed from dominant covariance matrix eigenvector) can555

be done. Apart from the seismic data quality, the accuracy of such location depends on the

knowledge of the internal velocity structure of the volcano. In this paper, the tests were

limited to location with using a 1D S-wave velocity model. In principle, wave propagation

in 3D velocity models can be easily incorporated. Permana et al. (2019) used a similar
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method to locate seismovolcanic tremor using a 1-D S wave model as in Soubestre et al.560

(2019) (except that they do not focus on a dominant seismovolcanic tremor source by filter-

ing by the first eigenvector of the covariance matrix). They simulate seismovolcanic tremor

sources by combining multiple VTs and show that they are determined with location errors

of approximately 1 km or less.

Moreover, with pushing their time resolution, the discussed method could bring insight565

on the complexity of the eruption dynamics as shown in Figures 6,7,8. For example, we

observe in Figures 4 and 6b that for the January seismovolcanic tremor, the spectral width

is very low at the beginning and becomes larger and larger over time until it reaches a value

equivalent to that corresponding to seismic noise. Conversely, for the October eruption we

see in Figure 7b a more complicated temporal evolution for the spectral width that could570

reveal a more complex dynamic. By comparing with Figures 7a and 7c, we observe two main

changes occurring at the same time from days 19.10.2010 and 27.10.2010, that are linked with

intensification of the seismovolcanic tremor amplitude visible on the RSAM measurement

in Figure S1. Thus such methods can also be useful to monitor the seismovolcanic tremor

intensity.575

Another interesting prospective is to use the results of the multi-component analysis as

input for algorithms of machine learning (ML), to build advanced approaches for detection

and classification of different seismovolcanic signals to be used in monitoring the activity

and eruptive behavior of volcanoes. Figures 4 and 5 show that, in the space of parameters

determined with the multi-component methods, different types of seismovolcanic activity are580

separated and form relatively well defined clusters. It suggests that ML could be applied

with this kind of ”features” determined from the data of the PdF seismic network. Previous

applications of machine learning to the PdF seismological data used features derived from

individual sensors to study volcanic earthquakes (Hibert et al., 2017; Maggi et al., 2017) and

seismovolcanic tremors (Ren et al., 2019). The eventual advantage of multi-station features585

is that they incorporate inter-locations phase differences and are, therefore, sensitive to the

location and the mechanism of the signal sources.
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(https://doi.org/10.15778/RESIF.YA2009) are available from the RESIF data center. This

is IPGP contribution number XXXX.
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hotspot) inferred from deformation and geochemical data. Earth Planet. Sci. Lett.,

270, 180–188. doi: 10.1016/j.epsl.2008.02.042

–35–



manuscript submitted to JGR: Solid Earth

Permana, T., Nishimura, T., Nakahara, H., Fujita, E., & Ueda, H. (2019). Reliability

evaluation of volcanic tremor source location determination using cross-correlation690

functions. Geophysical Journal International, 220(2), 1300-1315. doi: 10.1093/gji/

ggz523

Ren, C. X., Peltier, A., Ferrazzini, V., Rouet-Leduc, B., Johnson, P. A., & Brenguier, F.

(2019). Machine learning reveals the seismic signature of eruptive behavior at piton

de la fournaise volcano.695

Roman, D. C., & Cashman, K. V. (2006). The origin of volcano-tectonic earthquake swarms.

Geology, 34(6), 457-460. doi: 10.1130/G22269.1

Rost, S., & Thomas, C. (2002). Array seismology: Methods and applications. Reviews of

Geophysics, 40(3), 2-1-2-27. Retrieved from https://agupubs.onlinelibrary.wiley

.com/doi/abs/10.1029/2000RG000100 doi: 10.1029/2000RG000100700

Roult, G., Peltier, A., Taisne, B., Staudacher, T., Ferrazzini, V., & Di Muro, A. (2012).

A new comprehensive classification of the Piton de la Fournaise activity spanning the

1985-2010 period. Search and analysis of short-term precursors from a broad-band

seismological station. J. Volcanol. Geotherm. Res., 241, 78–104.

Schmid, A. (2011). Quelle prédictibilité pour les éruptions volcaniques ? de l’échelle705
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