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Abstract

We investigate the steady dynamical response of the atmosphere on the equatorial β-plane to a steady, localized, mid-tropospheric

heating source at the equator. Expanding Gill (1980)’s seminal work, we vary the latitudinal and longitudinal scales of the

diabatic heating pattern while keeping its total amount fixed. We focus on characteristics of the response which would be

particularly important if the circulation interacted with the hydrologic and energy cycles: the overturning circulation and

the low-level wind. In the limit of very small scale in either the longitudinal or latitudinal direction, the vertical energy

transport balances the diabatic heating and this sets the intensity of the overturning circulation. In this limit, a fast low-level

westerly jet is located around the center of diabatic heating. With increasing longitudinal or latitudinal scale of the diabatic

heating, the intensity of the overturning circulation decreases and the low-level westerly jet decreases in maximum velocity and

spatial extent relative to the spatial extent of this heating. The associated low-level eastward mass transport decreases only

with increasing longitudinal scale. These results suggest that moisture-convergence feedbacks will favor small-scale equatorial

convective disturbances while surface-heat-flux feedbacks would favor small-scale disturbances in mean westerlies and large-scale

disturbances in mean easterlies. Part˜II investigates the case of off-equatorial heating.
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ABSTRACT

We investigate the steady dynamical response of the atmosphere on the

equatorial β -plane to a steady, localized, mid-tropospheric heating source at

the equator. Expanding Gill (1980)’s seminal work, we vary the latitudinal

and longitudinal scales of the diabatic heating pattern while keeping its total

amount fixed. We focus on characteristics of the response which would be

particularly important if the circulation interacted with the hydrologic and en-

ergy cycles: the overturning circulation and the low-level wind. In the limit

of very small scale in either the longitudinal or latitudinal direction, the ver-

tical energy transport balances the diabatic heating and this sets the intensity

of the overturning circulation. In this limit, a fast low-level westerly jet is

located around the center of diabatic heating. With increasing longitudinal or

latitudinal scale of the diabatic heating, the intensity of the overturning circu-

lation decreases and the low-level westerly jet decreases in maximum velocity

and spatial extent relative to the spatial extent of this heating. The associated

low-level eastward mass transport decreases only with increasing longitudinal

scale. These results suggest that moisture-convergence feedbacks will favor

small-scale equatorial convective disturbances while surface-heat-flux feed-

backs would favor small-scale disturbances in mean westerlies and large-scale

disturbances in mean easterlies. Part II investigates the case of off-equatorial

heating.
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1. Introduction30

Gill (1980, hereafter G80)’s seminal work aimed to provide a very simple model of the Walker31

circulation that results from the longitudinal distribution of diabatic heating in the tropics, with32

maxima of convective heating over the three equatorial land masses or archipelagos – Amazonia,33

Africa and the Maritime Continent (Krueger and Winston 1974) – as well as monsoon circula-34

tions resulting from off-equatorial regional diabatic heating. G80 showed that the damped, linear,35

baroclinic dynamical response of the tropical atmosphere to a localized, steady, mid-tropospheric36

diabatic heating reproduces the main features of these circulations.37

This simple model has become one of the main frameworks to understand tropical circulations38

and its solutions are now commonly called Gill circulation. A generalisation of G80’s work at-39

tempted to simulate the seasonal mean flow realistically (Zhang and Krishnamurti 1996), with40

some success. The relevance of G80’s work to the atmospheric circulation associated with El Niño41

Southern Oscillation was also revealed soon after the publication of the original article (Pazan and42

Meyers 1982; Philander 1983). Later studies of the dynamical pattern associated with the Madden-43

Julian Oscillation (MJO) (Madden and Julian 1971; Zhang 2005) revealed that this pattern is es-44

sentially G80’s equatorially symmetric solution (Hendon and Salby 1994; Kiladis et al. 2005).45

Very recently, this framework has shown promise to understand the observed pattern of tropical46

precipitation in detail (Adam 2018) and the superrotation on tide-locked exoplanets (Showman and47

Polvani 2010, 2011; Pierrehumbert and Hammond 2019). Because of this widespread relevance,48

G80’s model has come to be considered foundational, and is used as a test for further theoretical49

development (e.g., Bretherton and Sobel 2003).50

One of the main caveat of G80’s original model is that it only considers mid-tropospheric dia-51

batic heating, typically released by condensation associated with deep convection. An alternative52
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framework considers surface sensible heating that ties surface air temperatures to sea surface tem-53

peratures, and the corresponding model has shown a dominant role of the surface in driving the54

pattern of surface convergence, particularly in the tropical Eastern Pacific (Back and Bretherton55

2009), hence making G80’s model less relevant to the Walker circulation than initially concluded.56

Nevertheless, as pointed by Neelin (1989), G80’s model can be interpreted as a surface-forcing57

model and the two models differ only by the thermodynamic normalization scales and parameters.58

The pattern and sensitivities of the Gill circulation are therefore also relevant to the surface-forcing59

model.60

G80 mostly focused on two cases, with latitudinal distributions of diabatic heating for which61

there are simple analytical solutions: one symmetric about the equator, the other antisymmetric.62

G80 and Heckley and Gill (1984) presented a few additional cases with little analysis. But, obser-63

vations document diabatic heating patterns with a wide range of horizontal scales and latitudinal64

locations and we have yet to understand the sensitivity of the Gill circulation to these parameters.65

The present work aims to understand how the equatorially symmetric Gill circulation depends on66

the latitudinal and longitudinal scales of the imposed diabatic heating, with a particular focus on67

characteristics of the circulation that, in the real world, interact with the energy cycle: the ver-68

tical, overturning circulation which is associated with moisture transport and latent heat release,69

and the surface wind which modulates the surface turbulent heat fluxes. Part II investigates the70

off-equatorial case (Bellon and Reboredo 2021).71

In Section 2, we present the solutions to the Matsuno-Gill equations (Matsuno 1966, G80), as72

well as the f -plane case. Section 3 presents some solutions as well as the scale sensitivity of the73

overturning circulation and low-level wind. Section 4 summarizes our findings and concludes. For74

brevity, we will refer to ”imposed diabatic heating” simply as ”heating” in the next sections.75
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2. Method76

In this section, we summarize the Matsuno-Gill equations and the method of solution by decom-77

position in parabolic cylinder functions. We present semi-analytical solutions for a more general78

case than in G80, i.e., applicable to heating of varied horizontal extents and we also derive the79

asymptotes for small zonal extent of the heating.80

a. The Matsuno-Gill equations81

The Matsuno-Gill equations describe the steady first-baroclinic dynamical response of the trop-82

ical atmosphere to prescribed mid-tropospheric heating. They are equivalent to the steady-state,83

linear, shallow-water equations with damping terms in the zonal-momentum and continuity equa-84

tions. The linear approximation and the neglect of the momentum damping in the meridional85

direction (the so-called ”longwave approximation”) are evaluated in the supplementary material86

using simplified versions of the Quasi-equilibrium Tropical Circulation Models (QTCM) (Neelin87

and Zeng 2000; Zeng et al. 2000; Lintner et al. 2012) and they are deemed acceptable for large-88

scale circulations and realistic amplitudes of heating. Using mid-tropospheric temperature in the89

continuity equation instead of pressure (as in G80) or depth of the layer (as in the shallow-water90

equations), the Matsuno-Gill equations write:91

εu− 1
2

yv = −∂xT, (1)

1
2

yu = −∂yT, (2)

εT +∂xu+∂yv = Q, (3)
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with (u,v) the horizontal baroclinic velocity (i.e., the difference between upper-tropospheric and92

lower tropospheric velocity), T the mid-tropospheric temperature, and Q the heating. All variables93

are non-dimensional; in particular, distances are normalized by the equatorial radius of deforma-94

tion, which is about 1000 km. These equations are equivalent to Equations (2.6), (2.8), and (2.12)95

in G80. The Matsuno-Gill equations have proven successful in explaining observed tropical vari-96

ability in large part because the gravity-wave phase speed, which is the normalizing scale for97

velocity, is fairly uniform in the tropics as a result of the fairly uniform gross moist stability (Yu98

et al. 1998). We take the value of the damping rate ε from G80: ε = 0.1, which corresponds to99

a damping time scale of 2.5 days. This damping rate was at times assessed to be too large (e.g.,100

Battisti et al. 1999) and Stechmann and Ogrosky (2014) suggest that the Walker circulation can be101

modeled with no damping at all, if only the longitudinal anomaly of heating is imposed and the102

meridional wind is known. However, other studies suggest that such a large value is justified, in103

particular because of convective momentum transport (Lin et al. 2005, 2008; Iipponen and Donner104

2021). The sensitivity of the Gill circulation to ε is related to that of the zonal scale Lx, as we105

show in Section 2.d.106

The non-dimensional upward mid-tropospheric vertical velocity is equal to the non-dimensional107

baroclinic divergence and can be written:108

w = ∂xu+∂yv = Q− εT. (4)

If the damping term −εT is interpreted as a local, diabatic, thermodynamic response to the im-109

posed heating Q, this equation expresses a balance between vertical advection and diabatic heat-110

ing known as weak-temperature-gradient approximation (Sobel and Bretherton 2000), although111

Bretherton and Sobel (2003) interpreted the damping term differently.112
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G80’s framework assumes that the atmospheric response to the heating has a smaller scale than113

the planetary scale so that longitudinal and latitudinal boundaries can be considered infinite. The114

QTCM experiments in the supplementary material, which use realistic boundary conditions, show115

that this assumption is suitable for realistic horizontal extents of the heating on the Earth. This116

might not hold for larger extents or on exoplanets.117

b. Solutions to cylinder-mode forcing118

G80 presented some analytical solutions to Equations (1)-(3) for heating patterns that follow:119

Q(n) = F(x)Dn(y) with n ∈ N, (5)

and F a half-period of cosine function in a limited range of longitude:120

F(x) =


k cos(kx) for |x|< Lx,

0 for |x|> Lx,

with k =
π

2Lx
, (6)

and Dn a parabolic cylinder function of degree n, i.e., the product of a polynomial of degree n and121

an exponential that limits the latitudinal extent of significant heating:122

D0 = exp
(
−y2

4

)
,

D1 = yexp
(
−y2

4

)
, (7)

Dn+1 = yDn−nDn−1, ∀n > 0.

We will also use D−1 = D−2 = 0 to write generalized equations. Appendix A documents some of123

the properties of these parabolic cylinder functions that we will also call latitudinal modes. Note124
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that our function F differs from the function F in G80 by a factor k which we introduced to make125

the integral of F over the longitude independent of Lx.126

The method of solution as described in G80 introduces two new variables q and r that combine127

T and u in Equations (1)-(3) as:128

q = T +u, (8)

r = T −u. (9)

For each forcing Q(n) = F(x)Dn(y) following a latitudinal mode, the solutions (q(n),v(n),r(n)) can129

be written as the sum of two additive components (Gill 1980; Heckley and Gill 1984; Abramowitz130

and Stegun 1964), (q(n,1),v(n,1),r(n,1)) and (q(n,2),v(n,2),r(n,2)), in which q(n,1) is proportional to131

Dn(y) and q(n,2) ∝ Dn+2(y), v(n,1) ∝ Dn−1(y) and v(n,2) ∝ Dn+1(y), r(n,1) ∝ Dn−2(y) and r(n,2) ∝132

Dn(y):133

q(n) = q(n,1)+q(n,2) = q(n)n (x)Dn(y)+q(n)n+2(x)Dn+2(y),

v(n) = v(n,1)+ v(n,2) = v(n)n−1(x)Dn−1(y)+ v(n)n+1(x)Dn+1(y), (10)

r(n) = r(n,1)+ r(n,2) = r(n)n−2(x)Dn−2(y)+ r(n)n (x)Dn(y).

The functions of longitude x in the first component are solutions of:134

dq(n)n

dx
− (2n−1)εq(n)n = −(n−1)F(x), (11)

v(n)n−1 = 2nεq(n)n −nF(x), (12)

r(n)n−2 = nq(n)n . (13)
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And in the second component, they are solutions of:135

dq(n)n+2

dx
− (2n+3)εq(n)n+2 = −F(x), (14)

v(n)n+1 = 2(n+2)εq(n)n+2−F(x), (15)

r(n)n = (n+2)q(n)n+2. (16)

Solving Equations (11) and (14) for q(n)n and q(n)n+2 yields the complete solution q(n) since Equations136

(12), (13), (15) and (16) give v(n)n−1, v(n)n+1, r(n)n−2, and r(n)n as functions of q(n)n and q(n)n+2. The solutions137

detailed in G80 are for n = 0 (symmetric heating) and n = 1 (antisymmetric heating).138

For n = 0, the longitudinal dependence of the first component can be written:139

{ε2 + k2}q(0)0 =



0 if x <−Lx,

εk cos(kx)+ k2 sin(kx)+ k2 exp[−ε(x+Lx)] if |x|< Lx,

2k2 cosh(εLx)exp{−εx} if x > Lx;

(17)

for n = 1:140

q(1)1 = 0; (18)

and for n > 1:141
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(2n−1)2ε2 + k2

n−1
q(n)n =



2k2 cosh[(2n−1)εLx]exp[(2n−1)εx] if x <−Lx,

(2n−1)εk cos(kx)− k2 sin(kx)+ k2 exp[(2n−1)ε(x−Lx)] if |x|< Lx,

0 if x > Lx.

(19)

Note that only q(0)0 is non-zero east of the heating region (x > Lx), and zero west of it (x < −Lx).142

All other components extend west of the heating region.143

It is clear from the similarity of Equations (11) and (14) and from the same boundary and con-144

tinuity conditions that apply to q(n)n and q(n)n+2 that the longitudinal dependence of the second com-145

ponent can be written, for all n:146

q(n)n+2 =
1

n+1
q(n+2)

n+2 . (20)

To get back to the physical non-dimensional variables, we use T (n) = (q(n)+ r(n))/2 and u(n) =147

(q(n)− r(n))/2. The first component of the solution is, for n = 0:148

u(0,1) = T (0,1) =
1
2

q(0)0 (x)D0(y),

v(0,1) = 0;

 (21)

for n = 1:149

u(1,1) = T (1,1)
1 = 0,

v(1,1) =−F(x)D0(y);

 (22)

for n > 1, it is150
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T (n,1) =
1
2

q(n)n (x)[Dn(y)+nDn−2(y)],

u(n,1) =
1
2

q(n)n (x)[Dn(y)−nDn−2(y)],

v(n,1) = n[2εq(n)n (x)−F(x)]Dn−1(y);


(23)

And the solution for the second component is, for all n:151

T (n,2) =
1
2

q(n)n+2(x)[Dn+2(y)+(n+2)Dn(y)],

u(n,2) =
1
2

q(n)n+2(x)[Dn+2(y)− (n+2)Dn(y)],

v(n,2) = [2(n+2)εq(n)n+2(x)−F(x)]Dn+1(y).


(24)

Following from Equation (20), it is straightforward that the second component of the temperature152

and zonal wind response to heating along Dn has the same pattern as the first component of the153

response to heating along Dn+2: T (n,2) = T (n+2,1)/(n+1) and u(n,2) = u(n+2,1)/(n+1).154

Both components’ contributions to the mid-tropospheric vertical velocity can be written:155

w(n,m) =
1
2

F(x)Dn(y)− εT (n,m), (25)

for all n and for m = 1 or 2.156

Note that:157

1. Only the first component of the solution for n = 0 extends beyond x = Lx in the longitudinal158

direction. It is associated with no meridional wind and has a Kelvin-wave structure as noted159

in G80.160
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2. All other components have a Rossby-wave structure with gyres meridionally aligned in the161

region x < Lx, with a westward extent that decreases with n. On each side of the equator,162

cyclonic and anticyclonic gyres alternate in the poleward direction.163

c. More general forcing164

Because of the variety of scales of diabatic heating in the tropics, it is of interest to understand165

the dynamical response to heating with a wide range of horizontal extents from the synoptic to166

the planetary scale. The present work expands on the results of G80 by studying the response to167

heating Q with a similar shape as in G80 (half-period cosine in the longitudinal direction, Gaussian168

in the meridional direction), but with varying longitudinal and latitudinal extents (this Part I), and169

latitude (Part II).170

Let’s start with the same longitudinal distribution as in G80 and a very general latitudinal distri-171

bution:172

Q = F(x)D(y), (26)

with F(x) in the form given by Equation (6), and D(y) a bounded function of y.173

With inner product 〈 f ,g〉=
∫

f gdy, Dn functions form an orthogonal basis (Dn)n∈N. The norm174

of each Dn is
√

n!
√

2π . Any bounded function D can be decomposed in a series on the basis175

(Dn)n∈N:176

D(y) =
∞

∑
n=0

an(Ly)Dn(y). (27)

It follows that Q can also be written as a series of Q(n)
n∈N:177

Q =
∞

∑
n=0

anQ(n)F(x). (28)
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Because the Matsuno-Gill equations are linear, the solution to the steady, linear equation set178

(1)-(3) forced by Q = F(x)D(y) can be determined semi-analytically as a series of the solutions to179

heating patterns with latitudinal distributions Dn:180

T =
∞

∑
n=0

anT (n),

u =
∞

∑
n=0

anu(n), (29)

v =
∞

∑
n=0

anv(n).

We will study the cases of a Gaussian latitudinal distribution of Q of varying latitudinal extent181

centered on latitude y0:182

D(y) =
1
Ly

exp

(
−(y− y0)

2)

4L2
y

)
. (30)

With such a formulation, the heating Q is a ”patch” of heating centered on (x,y) = (0,y0). This183

patch is close to circular for Lx = 3Ly. By design, the maximum heating varies with Lx and Ly in184

k/Ly so that the total heating provided to the atmosphere is independent of the longitudinal and185

latitudinal scales:186

[Q] =
∫ +Lx

−Lx

∫ +∞

−∞

Qdxdy = 4
√

π, (31)

with the brackets [·] indicating global integration. This allows us to isolate the sensitivity to the187

scales independently from that to a change in global energy input.188
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In this Part I, we focus on heating symmetric with respect to the equator, i.e. with y0 = 0. The189

coefficients an are:190

a2n =
1

2nn!

(
L2

y−1
L2

y +1

)n√
2

L2
y +1

, (32)

a2n+1 = 0. (33)

In practice, since the infinite sum in Equation (27) is convergent, it can be approximated by191

a finite sum up to a value m following a convergence criterion (Cauchy 1821). The conver-192

gence criterion requires to set a positive error of tolerance η for which any index l > m satisfies193

||∑l
n=0 an(Ly)Dn(y)−∑

l−1
n=0 an(Ly)Dn(y)||6 η . This value m will differ for different values of Ly.194

For example, setting η = 0.001, one mode is enough for the trivial case where Ly = 1, whereas195

for Ly = 0.5 we need 10 modes to meet the error criterion, and more modes are needed for smaller196

Ly. Heckley and Gill (1984) used the same approach to study the transient response to a very197

localized heating. The results on the Gill circulation presented in this article are the finite-sum198

approximations of the semi-analytical solutions (Eq. 29), except in the case of the limit Lx → 0199

for which we can find analytical expressions.200

d. Limits for heating with small longitudinal extent201

Here, we explore the asymptotic solutions for Lx → 0, but this is also relevant for the limit202

ε→ 0. Indeed, it is easy to write the solutions in Equations (17)-(20) as functions of εLx and x/Lx203

(using k = π/(2Lx)), with no other dependency on ε or Lx. This means that the sensitivity of the204

solutions to ε is the same as the sensitivity to Lx, except that the patterns scale zonally with Lx.205

All the characteristics of the circulation that we study will actually have identical sensitivities to ε206

and to Lx.207
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We focus on the interval −Lx ≤ x ≤ Lx. Outside this interval, qualitatively, there is subsidence,208

but there is no simple expression for the solutions. Note that this limit is identical to the limit209

ε → 0 if we consider the zonal coordinate x/Lx (see Section 2.a).210

As pointed in G80, the damping in the meridional-momentum equation is negligible only if211

εk << 1. In the limit Lx → 0, this is not verified, so the limit of the Gill circulation for Lx → 0212

is not well-described by the Matsuno-Gill equations. Nevertheless, the supplementary material213

shows that meridional-momentum damping has a small impact on the Gill circulation down to214

Lx = 0.075 (or about 70 km), i.e. down to the smallest synoptic scales. Therefore, for large-215

scale circulations, the asymptote of the solution to the Matsuno-Gill equations for Lx→ 0 is still216

relevant.217

In this limit, k→+∞ and we have:218

q(0)0 ∼ 1+ sinkx,

q(n)n ∼ (n−1)(1− sinkx) for n > 0, (34)

q(n)n+2 ∼ (1− sinkx) for all n,

for |x| ≤ Lx. Noting that:219

Dn +nDn−2 = − 1
n−1

(Dn−nyDn−1) for n > 1 and

Dn+2 +(n+2)Dn = Dn + yDn+1,

15



we can write the temperature responses to cylindrical forcing as follows:220

T (0,1) ∼ 1
2
(1+ sinkx)D0(y),

T (1,1) ∼ 0

T (n,1) ∼ −1
2
(1− sinkx) [Dn(y)−nyDn−1(y)] for n > 1, (35)

T (n,2) ∼ 1
2
(1− sinkx) [Dn(y)+ yDn+1(y)] .

By combining the odd-n latitudinal modes using Equation (7), we can further write:221

T (0) ∼ 1
2
(1− sinkx) y2 D0(y)+D0(y), (36)

T (n) ∼ 1
2
(1− sinkx) y2 Dn(y) for n > 0. (37)

By multiplying T (n) by an and summing over n, we get the asymptote of the solution T for Lx→ 0:222

T ∼ 1
2
(1− sinkx) y2 D(y)+a0D0(y). (38)

This result is valid for any bounded function D, not only the Gaussian distribution given in Equa-223

tion (30). A scale analysis reveals the first order for w: εT = O(D), while Q = O(D/Lx) so that224

εT << Q and:225

w∼ k cos(kx)D(y) = Q, (39)

which expresses a balance between heating and transport.226
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The asymptotes for the zonal and meridional winds can be obtained using Equations (1) and (2):227

u ∼ −2(1− sinkx)
[

D(y)+
y
2

dD
dy

]
+a0D0(y), (40)

v ∼ −k cos(kx)yD(y), (41)

valid for any bounded function D. For heating following a Gaussian distribution symmetric about228

the equator (Eq. (30) with y0 = 0), which is the case of interest in this Part I, Equation (40) further229

simplifies into:230

u∼−2(1− sinkx)

(
1− y2

4L2
y

)
D(y)+a0D0(y), (42)

which is negative around the heating center, indicating upper-tropospheric easterlies and low-level231

westerlies in this region. The zonal wind is maximum on the equator at the western boundary of232

the heating region (x = −Lx), and it decreases both eastward and poleward, eventually changing233

sign.234

If Ly→ 0 as well, all the results above hold, and the last term on the right-hand side of Equation235

(42) is negligible: the equatorial zonal wind scales with 1/Ly and the jets extends in longitude all236

the way to the eastern boundary of the heating region (x = Lx) and in latitude to y =±2Ly on both237

sides of the heating center. This limit shows that the Gill response is zonally asymmetric even238

for scales that are much smaller than the equatorial radius of deformation: it is characterized by a239

westerly low-level jet at the heating center. This suggests significant limitations on the approach240

considering that small systems in the equatorial regions are well approximated by non-rotating241

systems.242
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e. A baseline: the f -plane case243

The zonal asymmetry which is characteristic of the Gill circulation results from the β effect.244

This calls for a further evaluation of this effect. To do so, we also present some elements of the245

solution on an f -plane. In this case, the solution is a damped inertio-gravity wave. Equations for246

momentum and continuity reduce to:247

w = − ε

ε2 + f 2 ∆T, (43)

T =
1
ε

Q+
1

ε2 + f 2 ∆T, (44)

in which ∆ is the Laplacian operator. In the equatorial case, f = 0, i.e. rotation is neglected, and248

the solution is a damped gravity wave, in which the horizontal wind is exclusively divergent.249

These equations make clear that, in the absence of any circulation, the temperature response250

is the direct thermodynamic response Q/ε . Vertical energy transport appears as a diffusive term251

∆T/(ε2 + f 2) that damps temperature gradients and makes the equilibrium temperature response252

to heating spatially smoother than the heating itself. Both the ascending motion and diffusive253

effect are larger in the equatorial case ( f = 0) than in the off-equatorial case ( f 6= 0).254

Scale analysis allows us to establish the limits of this solution for small horizontal extent of255

the heating, if Lx → 0 (or Ly → 0, since this set of equations is isotropic). If the scaling of the256

temperature is T , the scaling of the diffusive term on the right hand side of Equation (44) is:257

1
ε2 + f 2 ∆T ∼ 1

ε2 + f 2
T

L2
x
>> T , (45)
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Consequently, the term on the left-hand side of Equation (44) is negligible, and this equation shows258

a balance between vertical transport and heating w∼Q in the limit of very small horizontal extents259

of the heating, like in the Gill circulation.260

3. Results261

a. Temperature and wind response262

Here, we present the features of the solutions in terms of temperature, surface winds and mid-263

tropospheric vertical motion for heating distributions Q with a few different horizontal extents.264

Figure 1 depicts contours of temperature perturbation and surface velocity field for the Gill cir-265

culation forced by heating of different meridional scales, but with the same total, horizontally266

integrated heating [Q]: Ly = 1 (equatorial radius of deformation, Fig. 1a), Ly = 1/2 (Fig. 1b), and267

Ly = 1/4 (Fig. 1c), with a fixed aspect ratio so that Lx = 3Ly (corresponding to a heating pattern268

close to circular). Figure 2 shows the corresponding contours of mid-tropospheric vertical velocity269

together with contours of heating. Figures 1a and 2a are almost identical to the symmetric forcing270

presented in G80, the only difference being the longitudinal extent: Lx = 3 here while G80 showed271

solutions for Lx = 2.272

As expected, the Gill circulation exhibits Kelvin-wave easterlies east of the heating region and273

cyclonic gyres straddling the equator west of it, with maxima of temperature at the center of the274

gyres (Fig. 1). As the horizontal extent of the heating is decreased, winds get stronger, especially275

the equatorial westerly jet between the gyres, and the off-equatorial temperature maxima move276

closer to the equator, they even merge for small Ly (Fig. 1). As the horizontal extent of the heating277

is decreased, the maximum vertical speed increases faster than the maximum heating, which scales278

with L−1
x L−1

y , and the vertical speed pattern becomes more similar to that of the heating (Fig. 2).279
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Overall, the meridional extent of the response decreases. The eastward extent of the temperature280

and horizontal-wind response increases and the westward extent decreases slightly with decreasing281

horizontal extent of heating (Fig. 1). This reveals a decrease in the Rossby-wave response in the282

west, while the Kelvin-wave response expands eastward. The latter corresponds to an increase in283

the projection of D on D0 with decreasing Ly, which is consistent with the expression of a0 (see284

Eq. (27)).285

b. Overturning Circulation286

One of the most important characteristics of a tropical circulation is its overturning mass flux, be-287

cause of its potential interaction with the hydrologic cycle. We define the intensity of the overturn-288

ing circulation Γ as the upward vertical mass flux integrated over the horizontal domain (which,289

by mass conservation, is the same as the downward vertical mass flux integrated over the domain):290

Γ =
∫∫

w>0
wdxdy. (46)

Γ can be computed numerically using the expression of w in Equation (25).291

Figure 3a shows the intensity Γ of the overturning circulation, as a function of the characteristic292

extents of heating Lx and Ly. For Lx→ 0 or Ly→ 0, Γ has the same limit. As shown in Section293

2.d, in the limit Lx → 0, w ∼ Q > 0 in the heating region and by spatial integration, Γ ∼ [Q]. It294

appears that Γ has the same limit for Ly→ 0.295

The f -plane case described in Section 2.e sheds some light on this: the damped inertio-gravity296

wave presents the same limit for w ∼ Q for Lx or Ly→ 0, and therefore also Γ ∼ [Q]. For small-297

scale heating, the heating Q and the local temperature response to this heating Q/ε are very peaked298

at the center of heating, the diffusive transport is therefore very efficient at reducing the tempera-299
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ture response, so efficient that the resulting temperature perturbation is negligible compared to Q300

and the main balance is between vertical energy transport and heating (w ∼ Q). We hypothesize301

that the physical mechanism is the same in the Gill circulation for both Lx→ 0 and Ly→ 0.302

Γ decreases with increasing Lx and Ly, in a similar fashion for both scales (for Ly = 1, the sensi-303

tivity to Lx is also documented in Iipponen and Donner (2021)). There are two factors contributing304

to this:305

• First, even without rotation (i.e., the f -plane case detailed in Section 2.e with f = 0) Γ de-306

creases with increasing horizontal extent of the heating. Indeed, as the horizontal extent in-307

creases, Q becomes spatially smoother because [Q] is fixed. As a result, the diffusive effect of308

large scale transport becomes less efficient at damping the temperature response. w = Q−εT309

becomes smaller, and by spatial integration, this decrease is transmitted to Γ. A similar sen-310

sitivity to zonal scale and vertical scales was found by Iipponen and Donner (2021) for a311

non-rotating, meridionally averaged model of the Walker circulation.312

• Rotation increases the sensitivity of the overturning circulation to the horizontal extent of the313

heating pattern. Indeed, Figure 1 shows that rotation creates gyres straddling the equator,314

which are mostly rotational, while the damped gravity wave is exclusively divergent. The315

poleward flow associated with these gyres compensates most of their equatorward flow and316

we expect the meridional wind to contribute little to the divergence of the horizontal wind317

and upward motion. We can also propose an energetic interpretation of this sensitivity1. The318

energy source of the system is the heating, and the sinks are the kinetic energy loss through319

Rayleigh friction and the thermal energy loss through Newtonian cooling, the sum of which320

is proportional to the total energy (kinetic plus thermal). Assuming the global thermal energy321

1The supplementary material shows that our quasi-analytical solutions to the linear equations with the longwave approximation are very sim-
ilar to the numerical solutions to the full non-linear, energy-conserving equations, which shows that our equations approximately satisfy energy
conservation and energy-based reasoning is sound.
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(and thermal energy loss) does not vary significantly with rotation, the global kinetic energy322

should be similar with and without rotation. Without rotation, all kinetic energy corresponds323

to divergent motion while in the rotating case part of it is associated with rotational motion324

and the kinetic energy of divergent motion is smaller than without rotation. We can therefore325

expect the divergent flow to be weaker with rotation than without.326

A more quantitative understanding of Γ can be hindered by the fact that the domain of integration327

in Equation (46) is determined by the field w itself, which we know only as a sum. But Figure 2328

suggests that the upward motion is limited to a region between −Lx and Lx in longitude, with a329

meridional extent that scales with Ly. We find that Γ can be approximated by the integral Γ∗ of w330

over the domain ( [−Lx,Lx],[−4Ly,4Ly] ), with the latitudinal bounds corresponding to twice the331

e-folding distance of D:332

Γ∗ =
∫ 4Ly

−4Ly

∫ Lx

−Lx

w dxdy≈ Γ. (47)

Approximating Γ by Γ∗ introduces an error that is small (< 5 %) for most relevant values of333

Lx and Ly, but becomes larger is both Lx and Ly are large. It is up to 16%, for the maximum334

values we have considered (Lx,Ly) = (6,2); nevertheless, combinations of such large values of Lx335

and Ly are outside the observed range (Lx = 6 corresponds to more than a quarter of the Earth’s336

circumference and Ly = 2 to heating that extend to the extratropics in both hemispheres), and Γ∗337

is therefore a reasonable approximation to Γ for realistic extents of Q. This approximation allows338

us to decompose the intensity of the overturning circulation into the sum of contributions from the339

different latitudinal modes:340

Γ∗ =
∞

∑
n=0

Γ
(2n)
∗ =

∞

∑
n=0

Γ
(2n,1)
∗ +Γ

(2n,2)
∗ , (48)
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with Γ
(2n,1)
∗ and Γ

(2n,2)
∗ the contributions of the first and second part of the response to the projec-341

tion of the heating latitudinal distribution D on the nth symmetric latitudinal modes D2n, i.e., a2n342

multiplied by the response to heating in the form F(x)D2n(y).343

Γ
(2n,i)
∗ = a2n

∫ 4Ly

−4Ly

∫ Lx

−Lx

w(2n,i) dxdy, (49)

for i = 1,2. Appendix B shows that we can write these contributions as:344

Γ
(2n,1)
∗ = γ2n(Lx) f2n(Ly)+ [1− γ2n(Lx)]g2n,1(Ly) (50)

Γ
(2n,2)
∗ = γ2n+2(Lx) f2n(Ly)+ [1− γ2n+2(Lx)]g2n,2(Ly) (51)

with the variation in Lx given by the series of functions γ2n:345

γ0 =
1
2q(0)0 (Lx) =

1
2

1+ e−2εLx

1+ ε2l2
x

,

γ2n =
1
2

q(2n)
2n (−Lx)

2n−1 = 1
2q(2n−2)

2n (−Lx) =
1
2

1+ e−2(4n−1)εLx

1+(4n−1)2ε2l2
x

for n > 0, (52)

with lx = 1/k = 2Lx/π; and the variation in Ly given by:346

f2n = a2n(Ly)I2n with I2n =
∫ 4Ly

−4Ly

D2n dy, (53)

g2n,1 = − 8n
4n−1

a2n(Ly)D2n−1(4Ly), and (54)

g2n,2 =
4

4n+3
a2n(Ly)D2n+1(4Ly). (55)

Figure 4 shows these functions for n≤ 5. In terms of amplitude, Γ∗ is dominated by the response347

of mode n = 0, because the differences f0− g0,1 = f0 and f0− g0,2 are the largest, and because348
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γ0’s decrease with increasing Lx is the slowest of all γ2n. But in terms of sensitivity to Lx and Ly,349

modes with larger n contribute significantly.350

Since γ2n(0) = 1, Γ
(2n,i)
∗ (0,Ly) = f2n for all n and i = 1,2; we can establish that:351

Γ∗(0,Ly) = 2
∫ 4Ly

−4Ly

∞

∑
n=0

a2nD2n dy = 2
∫ 4Ly

−4Ly

Ddy = erf(2)[Q], (56)

which is a good approximation to Γ(0,Ly) = [Q] (erf(2)≈ 0.995). This limit is independent of Ly,352

which is consistent with Figure 3a. Γ∗ also appears to tend towards a value close to [Q] for Ly→ 0.353

With γ2n → 0 for Lx → ∞, each contribution Γ
(2n,i)
∗ tends towards g2n,i for Lx → ∞. Figure 4a354

shows the functions γ2n for n from 0 to 5. The decrease of γ0 with Lx results from the sensitivity355

of the diffusive effect of large-scale circulation described above (since the first component of the356

response to D’s projection onto D0 is a damped Kelvin wave, Γ
(0,1)
∗ is not affected by rotational357

effects). The decay of γ2n with Lx is increasingly fast with increasing n, which means that the358

larger n (and the larger i), the faster the convergence of Γ
(2n,i)
∗ towards its limit g2n,i for Lx→ ∞.359

A more intricate latitudinal structure of heating (i.e., a larger n) yields a stronger sensitivity of360

the circulation response to Lx. We can attribute this change in sensitivity to the effect of rotation:361

for larger n, the heating pattern has extrema further from the equator, where the effect of rotation362

is larger and temperature anomalies generate circulations that are increasingly rotational and less363

and less convergent, creating less vertical motion.364

From its value for Lx = 0 independent of Ly (see Eq. (56)), the decrease of Γ∗ with Lx is365

determined by the circulation responses to heating along D2n, f2n(Ly) for Lx = 0 and g2n,i(Ly)) for366

Lx→∞. The sensitivity of these functions f2n and g2n,i to Ly result from (i) the change in projection367

of D onto the latitudinal modes D2n, given by a2n, and (ii) the extension of the horizontal domain368
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of integration ( [−Lx,Lx],[−4Ly,4Ly] ) with Ly. Figures 4b-d show functions f2n(Ly) and g2n,i(Ly).369

We can distinguish two domains:370

• Ly ≥ 1: for Ly = 1, D = D0 – this is the case described in G80. For increasing Ly > 1, D371

is less and less peaked at the equator; it projects increasingly on higher-and-higher-n Dn372

while projecting less and less on D0, as shown in Figure 4b. Because of the exponential373

decay of Dn(4Ly) with increasing Ly, g2n,1 and g2n,2 are negligible in this range of Ly (see374

Fig. 4c,d); for the same reason, I2n is similar to its limit I∞
2n

2 for Ly → ∞. As a result,375

Γ
(2n,i)
∗ ≈ γ2(n+i−1)(Lx)a2n(Ly)I∞

2n and its variation with Ly is mostly determined by the376

variation of a2n (see Fig. 4b,c,d), with a decreasing contribution of mode 0 and an increasing377

contribution of higher and higher n modes for increasing Ly. Considering the sensitivity of378

the functions γ2n,i(Lx) to n explained above, the decrease of Γ∗ with Lx is therefore larger for379

larger Ly. Since Γ∗ is independent of Ly for Lx = 0, this explains the sensitivity of Γ∗ to both380

Lx and Ly.381

382

• Ly < 1, there is still a strong influence of the response of mode n = 0 and the influence of383

modes with larger n is complex. For Ly close to zero, both a2n(0) and I2n ≈ 8LyD2n(0) al-384

ternate sign as (−1)n (see Eqs. (27) and (A5)), so f2n is positive for all n. But f2n− g2n,1385

is negative for n > 0 which means that the contributions to the circulation Γ
(2n,1)
∗ increases386

with increasing Lx. f2n− g2n,2 is positive and Γ
(2n,2)
∗ decreases with increasing Lx and com-387

pensates the increase of Γ
(2n,1)
∗ . For Ly closer to 1, f2n, g2n,1, g2n,2, and their differences388

can change sign for n > 0 since D2n and D2n±1 changes sign at least once over the interval389

[−4Ly,4Ly], resulting in an increase of the contributions Γ
(2n,i)
∗ with increasing Lx in intervals390

where a2n( f2n−g2n,i)< 0. These contributions in these intervals reduce the sensitivity of Γ∗391

2I∞
2n =

√
π(2n)!

2n−1n!
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to Lx and, since Γ∗(0,Ly) is a constant, Γ∗ for Lx 6= 0 is larger for reduced sensitivity to Lx,392

i.e., for smaller Ly.393

Despite this overall complexity, it appears clearly that the two components of the response to heat-394

ing along D0 are the main contributors to Γ∗ and its sensitivity. This is because in this mode, the395

Kelvin-wave pattern and the Rossby-wave pattern both contribute to low level wind convergence396

in the region of ascent through the easterlies at the eastern boundary (for the first component) and397

westerlies at the western boundary (for the second component). By contrast, the two components398

for modes with n > 0 are opposite close to the equator, with gyres that circulate in opposite direc-399

tions, and there is a significant amount of compensation between components of the response to400

heating along D2n with n > 0.401

Thanks to the continuity equation, we can also decompose Γ∗ into the sum of a contribution402

from the meridional wind (v integrated over the boundary at y = ±4Ly) and a contribution Γ∗u403

from the zonal wind (u integrated over the boundaries at x = ±Lx). And each contribution Γ
(2n,i)
∗404

can also be decomposed in the same way:405

Γ∗ = Γ∗u +Γ∗v and Γ
(2n,i)
∗ = Γ

(2n,i)
∗u +Γ

(2n,i)
∗v

Because u(0,1)(−Lx) = 0 and u(2n,i)(Lx) = 0 for all n > 0 or i = 2, the contribution from the zonal406

wind at the eastern border results exclusively from the damped Kelvin wave extending eastward407

from the heating region, while the contribution from the zonal wind at the western border results408

from a combination of damped Rossby waves. By integrating u given in Equations (21)-(24), we409
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can write (see last paragraph of Appendix B):410

Γ
(2n,1)
∗u = γ2n(Lx) [ f2n(Ly)− (4n−1)g2n,1(Ly)] , (57)

Γ
(2n,2)
∗u = γ2n+2(Lx) [ f2n(Ly)+(4n+3)g2n,2(Ly)] , (58)

and we can compute Γ∗u by summing over n. Figure 3b shows that except for small Ly, Γ∗u is411

the dominant contribution to Γ∗. The smaller contribution of the meridional wind Γ∗v results from412

the partial compensation between the equatorward and poleward branches of the gyres. And the413

westerly low-level zonal flow into the ascending region through its western boundary, which is414

also part of these gyres, contributes very significantly to the overturning circulation. In the limit415

Lx→ 0, Γ∗ ≈ Γ∗u. Section 2.d also shows that, in this limit, w ∼ Q; this means that the region of416

ascent is the region of heating which extends to infinity in the latitudinal direction, so that there is417

no flow at the meridional boundaries:418

Γu ∼ Γ∼ [Q] and Γv ∼ 0 (59)

irrespective of Ly: this result is valid for both Γ and its approximation Γ∗.419

Figure 3c shows that the contribution Γ
(0.1)
∗u of the damped Kelvin wave represents a significant420

fraction of Γ∗ (and Γ∗u) except for small Ly. This relative contribution is larger than 60% for large421

Lx, which is consistent with the results in Iipponen and Donner (2021, see their Figure 4), and it422

can be as low as one third for small Lx and large Ly, which shows the importance of the low-level423

westerly jet associated with the damped Rossby waves for small Lx, even away from the limit424

Ly→ 0.425
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c. Equatorial westerly jet426

The main feature of the zonal asymmetry of the Gill circulation is the low-level westerly jet427

located at and around the heating center, which does not exist in the f -plane case. This feature is428

of particular interest for the potential coupling of circulation with explicitly modeled diabatic pro-429

cesses. Since such a low-level jet can modulate the surface turbulent heat fluxes, it could influence430

tropical intraseasonal variability (Sobel et al. 2008, 2010) and contribute to horizontal moisture431

advection which is thought to contribute to the eastward propagation of tropical intraseasonal dis-432

turbances (Maloney et al. 2010; Leroux et al. 2016). The two cyclonic gyres that extend west of433

the heating center on both sides of the equator interact constructively to create this jet. As can be434

seen in Figure 1, as the scale of the heating decreases, the gyres become smaller, faster, and closer435

to the equator, which accelerates the low-level westerly jet and decreases its latitudinal extent. For436

infinitely small heating, the jet is infinitely fast at the equator, as established in Section 2.d.437

As metrics of this jet, we will study the low-level wind speed at the heating center: uo =−u(0,0)438

(u describes the first baroclinic mode, so that low-level winds have the opposite sign), the zonal439

extent of the jet xu defined as the zonal coordinate at which u changes sign along the x-axis:440

u(xu,0) = 0, the meridional extent of the jet yu defined as the positive meridional coordinate at441

which u changes sign along the y-axis: u(0,yu) = 0, and the integrated intensity of the jet: U =442

−
∫ yu
−yu

u(0,y)dy, which describes the low-level eastward mass transport around the equator. Figure443

5 shows the sensitivity of these four metrics as a function of Lx and Ly.444

The low-level equatorial wind uo at the heating center decreases with both Lx and Ly (see Fig.445

5a). It tends towards zero for large Lx or large Ly, and towards infinity if both Lx and Ly tend446

towards zero. We can also decompose uo into a sum of contributions from the different modes:447
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uo =
∞

∑
n=0

u(2n)
o =

∞

∑
n=0

(
u(2n,1)

o +u(2n,2)
o

)
, (60)

with u(2n,1)
o and u(2n,2)

o the contributions of the first and second components of the response to448

the projection of the heating latitudinal distribution D on the nth symmetric latitudinal mode D2n.449

Appendix C shows that there is a significant compensation between u(2n,2)
o and u(2n,1)

o for n > 0450

because the two gyres straddling the equator have opposite rotation (cyclonic v.s. anticyclonic) in451

the two components. We can write:452

u(2n)
o = ν2n(Lx)h2n(Ly), (61)

with the variation in Lx (respectively, Ly) encapsulated in the series of functions ν2n (resp., h2n):453

ν0(Lx) = −1
2

q(0)0 (0)+
3
2

q(0)2 (0),

ν2n(Lx) = −
(

n− 1
4

)
q(2n)

2n (0)
2n−1

+

(
n+

3
4

)
q(2n)

2n+2(0), for n > 0. (62)

454

h0(Ly) = a0(Ly)D0(0) =

√
2

1+L2
y
,

h2n(Ly) = 2a2n(Ly)D2n(0) =
(2n)!
(2nn!)2

(
1−L2

y

1+L2
y

)n√
8

1+L2
y
, for n > 0. (63)

Figure 6 shows the functions ν2n and h2n for n≤ 5. These show that the response to the forcing455

along D0 is the largest contribution to uo except for Lx and Ly→ 0, but most latitudinal modes do456

contribute to the sensitivity of uo to Lx and Ly. The functions ν2n include the two compensating457

effects of u(2n,1)
o and u(2n,2)

o . As a result of this compensation, ν2n(0) = 1 is independent of n, and458
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ν2n decreases towards 0 for Lx→ ∞. This decrease is faster for larger n, similarly to the functions459

γ2n which describe the sensitivity of Γ∗ to Lx.460

The functions h2n describe the sensitivity of u(2n)
o to Ly, which is essentially dominated by the461

sensitivity of a2n in terms of amplitude (see the similarity between Figs. 4b and 6b), but D2n(0)462

contributes to the sign: D2n(0)’s sign is given by (−1)n, while a2n is given by ((1−L2
y)/(1+L2

y))
n;463

as a result, h2n is positive for all n if Ly < 1 and for even n if Ly > 1; it is negative for odd n if464

Ly > 1. As in the case of Γ∗, we find this distinction between two regimes on each side of Ly = 1:465

• For Ly ≤ 1, all latitudinal modes interact constructively to strengthen the low-level westerly466

jet. The amplitudes of functions h2n decrease with Ly. For all n > 0, h2n and its (n− 1)467

first derivatives are zero at Ly = 1; h2n also slowly decreases with increasing n for Ly = 0468

(h2n(0) = (1− (2n)−1)h2n−2(0)). h0 is different, first because h0(1) = 1 (case with D = D0),469

and also because h0(0) is not larger than h2(0): this results from the specificity of the470

first component of the response to heating along D0, i.e., the damped Kelvin wave, which471

decreases the low-level westerly jet more efficiently than a competing gyre. The decrease472

of all h2n with Ly in this regime results from the decrease in the amplitudes of projection473

coefficients a2n with Ly (see Fig. 4b), which results directly from the smoother latitudinal474

distribution of heating with larger Ly. Moreover, the decrease in |a2n| with Ly is larger for475

larger n, so that the relative contribution to uo from latitudinal modes with large n decreases476

with Ly, which decreases its sensitivity to Lx.477

478

• For Ly > 1, there is still a strong influence of the response of mode n = 0, and the influence479

of modes with larger n is complex. Because h2n changes sign for each increment in n, there is480

considerable compensation between the contributions from successive latitudinal modes. For481
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even n, h2n > 0 and u(2n)
o decreases with increasing Lx; for odd n, h2n < 0 and u(2n)

o increases482

with increasing Lx (|u2n
o | decreases), which reduces the sensitivity of uo to Lx. The sensitivity483

of |h2n| to Ly is still controlled by that of a2n. The projection coefficient a0 decreases as484

(1+ L2
y)
−1, and, for n > 0, a2n increases from zero for Ly = 1 to a maximum for a value485

of Ly that increases with n, because D projects more and more onto latitudinal modes that486

have significant amplitude further and further away from the equator as Ly increases. As a487

result, the contribution to uo from latitudinal modes with n > 0 comes largely from a subset488

of modes with similar n, with significant compensation between them, and as a result, its489

sensitivity to Ly results mostly from the contribution of the latitudinal mode n = 0. For490

Ly→ ∞, the contributions of latitudinal modes with larger and larger n get relatively larger,491

but all projections coefficients a2n tend rapidly to zero, so that uo also tends to zero.492

Figure 5c shows the eastward longitudinal extent xu of the low-level westerly jet normalized493

by Lx. For small Lx and Ly, xu ∼ Lx, which means that the westerly jet extends over the whole494

heating region at the equator. xu decreases with Ly and increases significantly less than Lx if Lx495

is increased. For very large Lx or Ly, xu tends towards zero (not shown), which means that the496

zonal flow becomes more symmetrical in longitude with respect to the heating center, with low-497

level westerlies to the west and easterlies to the east. Figure 5d shows, on the other hand, that498

the latitudinal extent yu of the low-level westerly jet increases mostly with Ly. For Lx → 0, yu499

scales like 2Ly for Ly→ 0 and this scaling is approximately valid for larger values of Ly as long as500

Lx→ 0: the region of westerlies scales in latitude with the heating region. For Lx > 0, yu is small501

but non-zero for Ly = 0 and the latitudinal widening of the region of westerlies with increasing Ly502

is less pronounced than for Lx→ 0. As a result, while yu increases slightly with increasing Lx for503

Ly→ 0, it decreases with Lx for Ly > 0.7. The sensitivities of yu and uo help explain that of the504
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intensity U of the low-level westerly jet shown in Figure 5b: as the velocity uo at the center of505

the jet decreases with Ly, its latitudinal extent yu increases, and as a result, U is not very sensitive506

to Ly. On the other hand, U decreases with Lx because of the dominant influence of uo. Using507

Equation (42) in Section 2.d, we can confirm the following scalings in the limit Lx,Ly→ 0:508

uo ∼
2
Ly

, (64)

xu ∼ Lx, (65)

yu ∼ 2Ly, and (66)

U ∼ 2
√

π erf(1)+4e−1. (67)

Note that the maximum westerly wind is located at the equator, west of the heating center (not509

shown). It is furthest from the heating center, at (−Lx,0) for Lx→ 0 (see Section 2.d).510

4. Summary and conclusion511

In this article, we explore the scale sensitivity of the equatorial Gill circulation, focusing on512

characteristics of this circulation likely to couple it with the energy cycle: we study the sensitivity513

of the overturning circulation intensity (total upward/downward mass flux), which interacts with514

cloud processes, and the characteristics of the low-level westerly flow, which influences turbulent515

surface heat fluxes. In all our cases, we impose the same horizontally-integrated diabatic heating516

in order to understand how the dynamical response of the atmosphere depends on how spatially517

concentrated this diabatic heating is. In this Part I, we study the case of diabatic heating symmetric518

about the equator (Part II studies asymmetric cases).519

We find that the intensity of the overturning circulation decreases with both the longitudinal and520

the latitudinal extents of the diabatic heating. Part of this sensitivity can be explained by the dif-521
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fusive effect of vertical energy transport on temperature perturbation; as a result, this perturbation522

T is spatially smoother than the diabatic heating Q. This diffusive effect is less efficient for large523

horizontal scales of the heating than small scales, because the anomalies of T directly forced by524

Q are smoother. This also means that the vertical motion is smaller for large scales than for small525

ones. This sensitivity is enhanced by the influence of rotation, which causes the rotational part526

of the horizontal winds to be larger, as evidenced by the off-equatorial gyres west of the heating527

region. Since the imposed diabatic heating powers both the divergent and rotational circulations, a528

stronger rotational winds result in weaker divergent winds and a less intense overturning circula-529

tion. These results suggest that the coupling of the Gill circulation with the energy and hydrologic530

cycle would result in a stronger moisture-convergence feedback for small heating regions than for531

large ones.532

As for the low-level westerly jet in the region of diabatic heating, we find that for most metrics, it533

is relatively smaller and weaker for large horizontal scales than for small ones. The velocity at the534

center of the jet decreases with increasing scales, the latitudinal and longitudinal extents of the jet535

increase with increasing scales, but less than the latitudinal and longitudinal scales of the diabatic536

heating. The total zonal mass flux in this jet decreases with the longitudinal scale of the diabatic537

heating and its sensitivity to the latitudinal scale is small. Overall these results suggest that, in538

the heating region, the coupling with surface turbulent heat fluxes would result in a decrease of539

surface fluxes in easterlies and an increase in westerlies via the wind-induced surface heat flux540

mechanism. Over most of the tropics where trade winds are dominant, this creates a negative541

feedback to a diabatic-heating perturbation. Over the equatorial Indian Ocean where winds are542

westerlies, this would create a positive feedback. The amplitude of this feedback would be larger543

for small heating regions than for large ones.544

33



Whether the amplitude and pattern of these moisture-convergence and surface-flux feedbacks545

would allow to sustain or enhance a circulation is beyond the scope of this article since it would546

require explicit coupling with the hydrologic and energy cycles; all our results provide insights547

into the scale sensitivity of such feedbacks.548

Our results are significant in general for the steady or slowly evolving tropical circulations,549

for which the dynamical response is very similar to the steady response. In particular, they are550

relevant for the MJO, the fundamental mechanisms of which are still debated (Yano and Tribbia551

2017; Rostami and Zeitlin 2019; Zhang et al. 2020, and references therein). While the dynamical552

signature of the MJO resembles the symmetric solution described in G80, its latitudinal scale is553

smaller, and the scale sensitivity of the overturning circulation combined with its coupling to the554

hydrologic cycle might contribute to explaining the MJO scale selection. Also, the MJO convective555

disturbances do grow in the equatorial westerlies of the Indian Ocean, and some studies have556

suggested that these background winds are crucial to their development (Sobel et al. 2008, 2010;557

Maloney et al. 2010; Leroux et al. 2016), particularly because of wind-induced surface-heat-flux558

feedback described above, but also because of horizontal moisture advection; the scale sensitivity559

of the low-level westerly jet suggests that such mechanisms are particularly active for perturbations560

of small horizontal extent, e.g., during the development of MJO disturbances.561

The observed MJO and interannual climate variability provide multiple opportunities to evaluate562

whether the scale dependency of observed circulations responding to equatorial heating follows563

the sensitivity predicted by the Gill circulation. This will be the topic of further work.564
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APPENDIX A569

A few properties of the parabolic cylinder functions Dn570

The parabolic cylinder functions Dn are defined by the recursive Equation (7). They also verify,571

as pointed out by G80 (their Equations (3.7) and (3.8)):572

dDn

dy
+

y
2

Dn = nDn−1, (A1)

dDn

dy
− y

2
Dn = −Dn+1, (A2)

and they are solutions of the differential equations:573

d2Dn

dy2 +

(
n+

1
2
− y2

4

)
Dn = 0. (A3)

D2n are even functions and D2n+1 are odd functions of y. We have:574

D2n+1(0) = 0 =
dD2n

dy
(0), (A4)

D2n(0) = −(2n+1)D2n−2(0) =
(
−1

2

)n (2n)!
n! =−dD2n+1

dy
(0). (A5)

Using Equations (A1) and (A2), we can also write:575

∫ Y2

Y1

Dn+1 dy = n
∫ Y2

Y1

Dn−1 dy−2 [Dn(Y2)−Dn(Y1)] . (A6)

APPENDIX B576

Contributions of the latitudinal modes to Γ∗577
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By using the expressions of w(2n,i) (i = 1 or 2) in Equation (25) combined with the expressions of578

T (2n,i) from Equations (23) and (24) we can write Γ
(2n,i)
∗ as:579

Γ
(2n,1)
∗ = a2n

(
I2n−

ε

2

∫ Lx

−Lx

q(2n)
2n dx

[
I2n +2nI2n−2)

])
, (B1)

Γ
(2n,2)
∗ = a2n

(
I2n−

ε

2

∫ Lx

−Lx

q(2n)
2n+2 dx

[
I2n+2 +(2n+2)I2n)

])
, (B2)

for all n. We have used
∫ Lx
−Lx

F dx = 2 and introduced the notation I2n =
∫ 4Ly
−4Ly

D2n dy for n≥ 0 and580

I−2 = 0.581

The differential Equations (11) and (14) yield the following expressions for the integrals of the582

functions q(2n)
2n(+2):583

ε

∫ Lx

−Lx

q(0)0 dx = 2−q(0)0 (Lx), (B3)

ε

∫ Lx

−Lx

q(2n)
2n dx =

1
4n−1

[
4n−2−q(2n)

2n (−Lx)
]

for n > 0, (B4)

and ε

∫ Lx

−Lx

q(2n)
2n+2 dx =

1
4n+3

[
2−q(2n)

2n+2(−Lx)
]

for all n, (B5)

in which we have used q(0)0 (−Lx) = 0, q(2n)
2n (Lx) = 0 for n > 0, and q(2n)

2n+2(Lx) = 0 for all n.584

Equation (A6) yields:585

I2n−2 =
1

2n−1
(I2n +4D2n−1(4Ly)) and I2n+2 = (2n+1)I2n−4D2n+1(4Ly). (B6)
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Using Equations (B3)-(B6), Equations (B1) and (B2) can be rewritten:586

Γ
(0,1)
∗ =

q(0)0 (Lx)

2
a0I0, (B7)

Γ
(2n,1)
∗ =

q(2n)
2n (−Lx)

4n−2
a2nI2n−

8n
4n−1

a2nD2n−1(4Ly)

(
1−

q(2n)
2n (−Lx)

4n−2
)

)
for n > 0, (B8)

Γ
(2n,2)
∗ =

q(2n)
2n+2(−Lx)

2
a2nI2n +

4
4n+3

a2nD2n+1(4Ly)

(
1−

q(2n)
2n+2(−Lx)

2
)

)
for all n. (B9)

By replacing q(2n)
2n by its expression from Equations (17) and (19), and using q(2n)

2n =587

(2n−1)q(2n−2)
2n , Γ

(2n,i)
∗ can be written as in Equations (50) and (51).588

589

The contribution Γ
(2n,i)
∗u to Γ

(2n,i)
∗ from the zonal flow is simply the integral of the zonal velocity590

u(2n,i) over the zonal boundary of the the rectangle (2Lx,8Ly) where it is not zero, multiplied by591

±a2n. Using Equations (21), (23), and (24), it can be written as:592

Γ
(0,1)
∗u =

a0

2
q(0)0 (Lx)I0 = Γ

(0,1)
∗ , (B10)

Γ
(2n,1)
∗u = −a2n

2
q(2n)

2n (−Lx) [I2n−2nI2n−2] for n > 0, (B11)

Γ
(2n,2)
∗u = −a2n

2
q(2n)

2n+2(−Lx) [I2n+2− (2n+2)I2n] for all n. (B12)

The last two can be simplified using Equation (B6) into:593

Γ
(2n,1)
∗u =

q(2n)
2n (−Lx)

4n−2
a2n [I2n +8nD2n−1(4Ly)] for n > 0, (B13)

Γ
(2n,2)
∗u =

q(2n)
2n+2(−Lx)

2
a2n [I2n +4D2n+1(4Ly)] for all n. (B14)
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By replacing q(2n)
2n by its expression from Equations (17) and (19), and using q(2n)

2n = (2n−594

1)q(2n−2)
2n , Γ

(2n,i)
∗u can be written as in Equations (57) and (58).595

APPENDIX C596

Contributions of the latitudinal modes to uo597

By using the expressions of u(2n,i) (i = 1 or 2) in Equations (23) and (24) we can write u(2n,i)
o as:598

u(0,1)o = −a0

2
q(0)0 (0)D0(0), (C1)

u(2n,1)
o = −a2n

2
q(2n)

2n (0) [D2n(0)−2nD2n−2(0)] for n > 0, (C2)

u(2n,2)
o = −a2n

2
q(2n)

2n+2(0) [D2n+2(0)− (2n+2)D2n(0)] for all n (C3)

Using Equation (A5), we can express the linear combinations of latitudinal modes at y = 0 as599

proportional to D2n(0):600

u(2n,1)
o = −a2n

2
q(2n)

2n (0)
4n−1
2n−1

D2n(0), (C4)

u(2n,2)
o =

a2n

2
q(2n)

2n+2(0)(4n+3)D2n(0), (C5)

for all n. u(0,1) is the westward wind associated with the Kelvin-wave response. u(2n,1)
o is the601

westward equatorial branch of the anticyclonic gyres along the equator for n > 0 and u(2n,2)
o is602

the eastward equatorial branch of the cyclonic gyres along the equator. They both scale with n603

and there is considerable compensation between them; therefore it does not provide any insight to604

present them independently. Their sum yields Equation (61).605
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FIG. 1: Solutions for the Gill circulation: temperature response (contours) and low-level velocity
(vectors) for (a) Ly = 1 (equatorial radius of deformation), (b) Ly = 1/2, and (c) Ly = 1/4. In all
cases, Lx = 3Ly.
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FIG. 2: Forcing and solution for the Gill circulation: heating (dashed lines) and mid-tropospheric
vertical velocity (solid lines) for (a) Ly = 1, (b) Ly = 1/2, and (c) Ly = 1/4. In all cases, Lx = 3Ly.
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FIG. 3: (a) Intensity Γ of the overturning circulation; the letters ”a”, ”b”, and ”c” indicate the
cases shown in Figures 1 and 2, and ”G80” indicates the case discussed in G80 (contours interval
0.5); (b) Contribution Γ∗u of the zonal flow to the overturning circulation (in % of Γ∗); and (c)
Contribution Γ

(0,1)
∗u of the easterly flow to the overturning circulation (in % of Γ∗).
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FIG. 4: Functions determining the sensitivity of the contribution Γ
(2n,i)
∗ to the longitudinal extent

Lx and Ly of heating for n≤ 5: (a) γ2n(Lx) gives the variation of Γ
(2n,1)
∗ and Γ
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∗ from the f2n

for Lx = 0 to, respectively, g2n,1 and g2n,2 for Lx→ ∞; (b) a2n the projection coefficient of D on
the latitudinal mode D2n, normalized by |a2n(0)/a0(0)|; (c) f2n (thick lines) and g2n,1 (thin lines)
give the limits of Γ
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FIG. 5: Characteristics of the equatorial westerly jet in the Gill circulation: (a) westerly zonal
velocity at the origin uo; the letters ”a”, ”b”, and ”c” indicate the cases shown in Figures 1 and 2
and ”G80” indicates the case discussed in G80; (b) Intensity U of the jet; (c) Zonal extent xu of
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