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Abstract

We investigate the steady dynamical response of the atmosphere on the equatorial β-plane to a steady, localized, mid-tropospheric

heating source. Following Part I which investigated the case of an equatorial diabatic heating, we explore the sensitivity of the

Gill circulation to the latitudinal location of the heating, together with the sensitivity to its horizontal scale. Again, we focus

on characteristics of the response which would be particularly important if the circulation interacted with the hydrologic and

energy cycles. In the off-equatorial case, the intensity of the overturning circulation has the same limit as in the equatorial case

for small horizontal extent of the diabatic heating, which is also the limit in the non-rotating case and the ƒ-plane case. The

decrease in this intensity with increasing horizontal scale of the diabatic heating is slightly faster in the off-equatorial case than

in the equatorial case, but slower than in the ƒ-plane case, which shows that the β effect disrupts the rotational motion.

The low-level westerly jet is more intense than in the equatorial case, with larger maximum wind and eastward mass transport

that tend to infinity for small horizontal extent of the diabatic heating. While the latitudinal extent of the jet is not very

sensitive to the latitude of the diabatic heating, it is not symmetric with respect to the latitude of the diabatic-heating center,

unlike in the equatorial case: it extends further equatorward than poleward of the diabatic-heating center. It also extends

further eastward than in the equatorial case.
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Key Points:5

• The off-equatorial circulation exhibits a weaker overturning circulation than the6

equatorial circulation except for a localized heating.7

• This circulation exhibits a faster low-level westerly jet than the equatorial circu-8

lation, particularly for a localized heating.9

• The low-level westerly jet is asymmetric with respect to the latitude of the heat-10

ing, extending further equatorward than poleward.11
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Abstract12

We investigate the steady dynamical response of the atmosphere on the equatorial β-13

plane to a steady, localized, mid-tropospheric heating source. Following Part I which in-14

vestigated the case of an equatorial diabatic heating, we explore the sensitivity of the15

Gill circulation to the latitudinal location of the heating, together with the sensitivity16

to its horizontal scale. Again, we focus on characteristics of the response which would17

be particularly important if the circulation interacted with the hydrologic and energy18

cycles. In the off-equatorial case, the intensity of the overturning circulation has the same19

limit as in the equatorial case for small horizontal extent of the diabatic heating, which20

is also the limit in the non-rotating case and the f -plane case. The decrease in this in-21

tensity with increasing horizontal scale of the diabatic heating is slightly faster in the22

off-equatorial case than in the equatorial case, but slower than in the f -plane case, which23

shows that the β effect disrupts the rotational motion. The low-level westerly jet is more24

intense than in the equatorial case, with larger maximum wind and eastward mass trans-25

port that tend to infinity for small horizontal extent of the diabatic heating. While the26

latitudinal extent of the jet is not very sensitive to the latitude of the diabatic heating,27

it is not symmetric with respect to the latitude of the diabatic-heating center, unlike in28

the equatorial case: it extends further equatorward than poleward of the diabatic-heating29

center. It also extends further eastward than in the equatorial case.30

Plain Language Summary31

While Part I focuses on the dynamical response to steady diabatic heating at the32

equator, this study investigates the influence of the latitude of the diabatic heating on33

the characteristics of the circulation. For the same finite horizontal extent of diabatic34

heating, the dynamical response to off-equatorial diabatic heating has a weaker overturn-35

ing circulation than in the equatorial case. Low-level westerly winds are also stronger36

for off-equatorial diabatic heating than in the equatorial case, and they are located equa-37

torward of the heating center. Our results suggest a more complex coupling of the cir-38

culation with the energy and water cycle in the off-equatorial case than in the equato-39

rial case: this coupling would result in feedbacks with larger amplitudes for an off-equatorial40

diabatic heating than for an equatorial heating, but less colocated with the initial forc-41

ing.42

1 Introduction43

Gill (1980, hereafter G80)’s seminal work showed that the damped, linear, baro-44

clinic dynamical response of the tropical atmosphere to a localized, steady, mid-tropospheric45

diabatic heating reproduces the main features of tropical circulations. G80’s study aimed46

to provide a very simple model of the Walker circulation resulting from equatorial re-47

gional diabatic heating as well as monsoon circulations resulting from off-equatorial heat-48

ing. Indeed, monsoon circulations exhibit distinct features compared to circulations in49

response to equatorial forcing, and in particular a change of direction of low-level winds50

forming a monsoon jet (Ramage, 1971; Joseph & Raman, 1966) which significantly af-51

fects the hydrologic cycle.52

In the context of slow intraseasonal oscillations (30-60 days), for which the circu-53

lation can be considered in quasi-equilibrium with the diabatic heating, the off-equatorial54

Gill circulation is particularly relevant to the monsoon intraseasonal oscillation (also called55

northward-propagating, boreal-summer intraseasonal oscillation, see Goswami, 2005, for56

a review). Although the main mechanisms of this intraseasonal oscillation are still de-57

bated (Jiang et al., 2004; Bellon & Srinivasan, 2006; Bellon & Sobel, 2008a; Boos & Kuang,58

2010; Kang et al., 2010; Sharmila et al., 2013; Gao et al., 2019), moisture-convergence59

feedback and wind-induced surface heat fluxes are expected to play major roles in the60

development and propagation of the convective disturbances. A better theoretical un-61
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derstanding of the off-equatorial Gill circulation is therefore useful to improve our grasp62

of the dynamical features susceptible to impact these feedbacks.63

G80 focused on two cases: the simplest case with diabatic heating symmetric about64

the equator and the simplest case with diabatic asymmetric about the equator. G80 con-65

sidered that the monsoon circulation was well represented by the sum of these two cases;66

but monsoon circulations are probably better depicted by the dynamical response of the67

tropical atmosphere to a simple off-equatorial diabatic heating rather than by the response68

to this sum of two heating patterns (Wu et al., 2009), and extending G80’s work to study69

this response is the motivation of this article. We base a lot of the present work’s deriva-70

tions and results on those in Reboredo and Bellon (2020, hereafter Part I), in which we71

looked at the sensitivity of the Gill circulation to the latitudinal and longitudinal extents72

of an equatorial diabatic heating.73

In Section 2, we present some specifics of the off-equatorial case on the equatorial74

β-plane and the solutions on a local f -plane. Section 3 presents some solutions as well75

as the scale sensitivity of the overturning circulation and of the low-level wind to the size76

and location of the diabatic heating. Section 4 summarizes our findings and concludes.77

2 Method78

We use the analytical results of Part I (Sections 2.1 and 2.2), and we apply them79

to a more general diabatic heating distribution, with the same shape but centered on a80

latitude y0 rather than systematically on the equator:81

Q = F (x)D(y), (1)

with:82

F (x) =

{
k cos(kx) for |x| < Lx,

0 for |x| > Lx,
with k =

π

2Lx
, (2)

D(y) =
1

Ly
exp

(
− (y − y0)2

4L2
y

)
. (3)

The case y0 = 0 is the focus of Part I, and similarly the heating pattern is close to cir-83

cular for Lx = 3Ly. Again, the total heating (or total energy input) imposed to the at-84

mosphere is independent of the longitudinal and latitudinal scales:85

[Q] = 4
√
π, (4)

with the brackets [·] indicating global integration.86

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

As in Part I, D can be decomposed in a series on the basis of cylinder functions87

(Dn)n∈N:88

D(y) =

∞∑
n=0

an(Ly, y0)Dn(y),

with a0 =

√
2

L2
y + 1

exp

(
− y20

4(L2
y + 1)

)
,

a1 =
y0 a0
L2
y + 1

,

and an =
y0 an−1 + (L2

y − 1) an−2

n (L2
y + 1)

for n > 1. (5)

(6)

Indeed, for y0 = 0, this expression of an reduces to the expressions of a2n and a2n+189

given in Part I.90

As shown in Part I, the solution to Gill’s steady, linear equation system forced by91

diabatic heating Q = F (x)D(y) can be written as an infinite sum (see Eqs. (38)-(40)92

in Part I) of the solutions (T (n), u(n), v(n)) to the diabatic heatings Q(n) = F (x)Dn(y)93

(see Eqs. (24)-(31) in Part I). In practice, we approximate the infinite sum by a finite94

sum up to a value n = m set by a convergence criterion (Cauchy, 1821, see Part I). As95

for the vertical speed, it can be obtained using w = Q− εT = ∂xu+ ∂yv.96

2.1 A baseline: the f-plane case97

As in Part I, we can compare the Gill circulation to the case with uniform effect98

of rotation, i.e. on an f plane with the value of f determined by the latitude of the cen-99

ter of the diabatic heating y0: f = y0/2. The system reduces to a damped inertio-gravity100

wave. Equations (4) and (5) from Part I reduce to:101

w = − ε

ε2 + f2
∆T, (7)

T =
1

ε
Q+

1

ε2 + f2
∆T. (8)

Again, the vertical energy transport associated with the circulation appears as a diffu-102

sive term that modulates the direct thermodynamic response Q/ε, as in the non-rotating103

case (f = 0) presented in Part I. Also, the large-scale transport damps temperature gra-104

dients, and the equilibrium temperature response to a diabatic heating is spatially smoother105

than the diabatic heating itself. Compared to the non-rotating case (f = 0), this dif-106

fusive term is smaller, and the temperature response therefore less smooth. The effect107

of rotation creates a baroclinic, cyclonic circulation around temperature maxima, addi-108

tionally to the divergent flow:109

u = − ε

ε2 + f2
∂T

∂x
− f

ε2 + f2
∂T

∂y
, (9)

v = − ε

ε2 + f2
∂T

∂y
+

f

ε2 + f2
∂T

∂x
, (10)

in which the first term on the right-hand side is the divergent component of the wind110

ans the second is the rotational component, and it is straightforward that these compo-111

nents are perpendicular.112

The damped inertio-gravity wave response to a forcing described by Equation (1)113

can be obtained by using the Fourier decomposition of the latitudinal dependence of Q;114

if we have:115

–4–
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D(y) =
1√
π

∫ +∞

−∞
cos (`y′) e−`

2Ly
2

d`, (11)

with y′ the latitudinal coordinate with the origin at the center of the diabatic heating:116

y′ = y − y0; as in the non-rotating case in Part I, we can write the equilibrium tem-117

perature response as a Fourier decomposition:118

T =
1√
π

∫ +∞

−∞
T`(x) cos (`y′) e−`

2Ly
2

d`, (12)

each function T` is solution to:119

λ2T` − ∂xxT` =
ε2 + f2

ε
F (x), (13)

with λ2 =
(
ε2 + f2 + `2

)
. This second-order linear differential equations can be solved120

for x < −Lx, |x| < Lx, and x > Lx. The solutions to the corresponding homoge-121

neous equation are e±λx, and a particular solution proportional to cos (kx) for |x| < Lx122

is easily found. By using continuity conditions at x = ±Lx and evanescent conditions123

for x −→ ±∞, the general solution can be derived:124

λ2 + k2

ε2 + f2
T` =

{
k
ε cos (kx) + k2

ελ e
−λLx cosh (λx) if |x| < Lx,

k2

ελ cosh (λLx) e−λ|x| if |x| > Lx.
(14)

The corresponding winds can be decomposed via Fourier decomposition as well:125

u =
1√
π

∫ +∞

−∞

[
Uδ` (x) cos (`y′) + Uζ` (x) sin (`y′)

]
e−`

2Ly
2

d`,

v =
1√
π

∫ +∞

−∞

[
Vδ` (x) sin (`y′) + Vζ` (x) cos (`y′)

]
e−`

2Ly
2

d`, (15)

w =
1√
π

∫ +∞

−∞
W`(x) cos (`y′) e−`

2Ly
2

d`,

with126

(
λ2 + k2

)
Uδ` =

{
k2 sin (kx)− k2 e−λLx sinh (λx) if |x| < Lx,

sgn(x)k2 cosh (λLx) e−λ|x| if |x| > Lx,
(16)

127

Uζ` =
f`

ε2 + f2
T`, (17)

Vδ` =
ε

f
Uζ` , (18)

Vζ` = −f
ε
Uδ` , (19)

and128

λ2 + k2

ε2 + f2
W` =

{
`2+k2

ε2+f2 k cos (kx)− k2

λ e
−λLx cosh (λx) if |x| < Lx,

−k
2

λ cosh (λLx) e−λ|x| if |x| > Lx.
(20)

The superscripts “δ” and “ζ” indicates, respectively, the divergent and rotational com-129

ponents of the horizontal wind.130

–5–
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Compared to the case without effect of the Earth rotation (f = 0, the damped131

gravity wave presented in Part I), each contribution T` is larger, so the total tempera-132

ture anomalies will be larger, but the exponential decay of the anomalies outside the heat-133

ing region is faster. This results from a weaker redistribution by transport due to a slower134

vertical speed resulting from a smaller divergent component of the wind. The rotational135

component of the wind increases with f (it is zero in the non-rotating case, for f = 0).136

2.2 Limits for small zonal extent of the heating137

Here, we explore the asymptotic solutions for Lx → 0, focusing on the interval138

−Lx ≤ x ≤ Lx. Outside this interval, there is no simple expression for the infinite sums139

or integrals of exponentially decreasing modes which are solutions. Qualitatively, there140

is subsidence outside of [−Lx, Lx] in both the β-plane and the f -plane cases.141

Damped inertio-gravity wave:142

For Lx → 0, k → +∞, and143

T` ∼ ε2+f2

ελ , (21)

Uδ` ∼ sin kx, Uζ` ∼
f`

ελ
,

Vδ` ∼ `
λ , Vζ` ∼ −

f

ε
sin kx, (22)

W` ∼ k cos kx.

It follows through the inverse Fourier transforms that:144

uδ ∼ sin (kx)D(y), (23)

w ∼ k cos (kx)D(y) = Q, (24)

i.e., at first order the Newtonian cooling is negligible in front of the diabatic heating and145

advective cooling. The ascending region is therefore the same as the diabatic heating re-146

gion. And the divergence is dominated by the contribution of the zonal wind: w ∼ ∂xuδ.147

Off-equatorial Gill circulation:148

Equations (58)-(61) established in Part I are valid for all latitudinal distribution149

D of diabatic heating:150

T ∼ 1

2
(1− sin kx) y2D(y) + a0D0(y), (25)

u ∼ −2 (1− sin kx)

[
D(y) +

y

2

dD

dy

]
+ a0D0(y), (26)

v ∼ −k cos (kx) y D(y), (27)

w ∼ k cos (kx)D(y) ∼ Q, (28)

for |x| < Lx in the limit Lx → 0.151

In the case of an off-equatorial Gaussian (Eq. (3)) of interest here, and in the limit152

Ly → 0, we can simplify the expression for the zonal wind:153

u ∼ −2 (1− sin kx)

[
1− y(y0 − y)

4L2
y

]
D(y) + a0D0(y), (29)

2.3 Additional experiments154

As in Part I, we also used both a linear and a non-linear versions of the QTCM on155

a β-plane (Sobel & Neelin, 2006; Bellon & Sobel, 2008b, 2010; Bellon, 2011) reduced to156

–6–
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its baroclinic structure to verify our results by integrating the simplified QTCM in time157

from an initial state of rest until it reaches a steady state (after about 15 days of sim-158

ulation). With both the linear and non-linear, simplified QTCM versions, we obtained159

very similar results to our analytical derivations, which gives us high confidence in our160

results. In particular, the similarity of these simulations with the semi-analytical solu-161

tions confirms the validity of the longwave approximation and the fact that the linear162

system behaves like the non-linear, energy-conserving system within a realistic range of163

forcing. The differences between these additional experiments and our semi-analytical164

results are so small (below 2%) that we only present our analytical work in the follow-165

ing section.166

3 Results167

3.1 Temperature and wind response168

We present here the features of the solutions in terms of temperature, surface winds169

and mid-tropospheric vertical motion for a few cases with diabatic heatings of different170

horizontal extents centered away from the equator, for both the f -plane case (damped171

inertio-gravity wave) and the equatorial β-plane case (Gill circulation). In all cases, the172

horizontally integrated heating [Q] is the same. Figure 1 depicts contours of tempera-173

ture perturbation and surface velocity field for the damped inertio-gravity wave forced174

by heating with meridional scale Ly = 1 (one equatorial radius of deformation, Fig. 1a,c)175

and Ly = 1/2 (Fig. 1b,d), centered at y0 = 1 (Fig. 1a,b) and y0 = 2 (Fig. 1c,d).Figure176

2 shows the corresponding contours of mid-tropospheric vertical velocity together with177

contours of heating. Figures 1a,b and 2a,b in Part I show the corresponding figures for178

the same pattern of diabatic heating centered at the equator (y0=0). Figures 3 and 4179

show the same fields for the Gill circulation (i.e., on the β-plane) forced by the same di-180

abatic heating distributions. Figures 3a,b and 4a,b in Part I show the corresponding fig-181

ures for the same pattern of diabatic heating centered at the equator (y0=0).182

In all cases, we set Lx = 3Ly so that isolines of diabatic heating are close to cir-183

cular near its maximum. We have investigated cases with different ratios Lx/Ly and found184

that the sensitivity of the off-equatorial Gill circulation to the aspect ratio of the diabatic-185

heating region is similar to the equatorial case discussed in Part I; in particular, the rel-186

ative sensitivity of the global metrics of the circulation (intensities of the overturning cir-187

culation and the low-level westerly jet) to the latitude of the heating center is almost in-188

dependent of the aspect ratio of the diabatic-heating region. We show the main results189

for Lx = 1.5Ly and Lx = 6Ly in Appendix A, and we will focus on the case Lx =190

3Ly in the main text of this article.191

The damped inertio-gravity wave exhibits a near-circular, warm mid-tropospheric192

temperature perturbation collocated with the heating, which forces a cyclonic gyre with193

surface wind essentially tangent to the isolines of temperature (Fig. 1). This shows that194

the flow is mostly rotational and almost geostrophic. Still, there is a divergent compo-195

nent to the horizontal flow that results in ascent almost collocated with the heating (Fig.196

2). The solution of the β-plane differs significantly, from the f -plane solutions: the off-197

equatorial Gill circulation exhibits a strong rotational gyre, but it is located poleward198

and westward of the diabatic heating, and not as circular; the Gill circulation also ex-199

hibits Kelvin-wave easterlies east of the heating and a weak cyclonic gyre in the other200

hemisphere (Fig. 3). Compared to the equatorial case (Fig. 3a,b in Part I), the gyre next201

to the heating is faster and a stronger westerly jet develops between the equator and the202

center of the diabatic heating, similar to the observed monsoon jets; the Kelvin-wave east-203

erlies and the gyre in the other hemisphere are weaker.204

As expected, the temperature and wind fields are symmetric in latitude and lon-205

gitude for the damped inertio-gravity wave (Figs. 1 and 2), while the symmetry is bro-206

–7–
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Figure 1: Solutions for the damped inertio-gravity wave (f -plan case): (non-dimensional)
temperature response (contours) and low-level velocity (vectors) for (a) (y0, Ly) = (1, 1)
, (b) (y0, Ly) = (1, 1/2), (c) (y0, Ly) = (2, 1), and (d) (y0, Ly) = (2, 1/2); in all cases,
Lx = 3Ly; temperature contours are at (0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7).
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Figure 2: Forcing and solution for the damped inertio-gravity wave (f -plan case): di-
abatic heating (dashed contours) and mid-tropospheric vertical velocity (solid con-
tours) for (a) (y0, Ly) = (1, 1) , (b) (y0, Ly) = (1, 1/2), (c) (y0, Ly) = (2, 1), and (d)
(y0, Ly) = (2, 1/2); in all cases, Lx = 3Ly. Contour spacing: 0.1 in (a) and (c), 0.4 in (b)
and(d); black for w = 0.
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Figure 3: Solutions for the Gill circulation: (non-dimensional) temperature response
(contours) and low-level velocity (vectors) for (a) (y0, Ly) = (1, 1) , (b) (y0, Ly) = (1, 1/2),
(c) (y0, Ly) = (2, 1), and (d) (y0, Ly) = (2, 1/2); in all cases, Lx = 3Ly; temperature
contours are at (0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7).

ken in the Gill circulation (Figs. 3 and 4) due to the change of Coriolis parameter with207

latitude.208

As the latitude of the diabatic heating y0 is increased, the damped-inertio-gravity-209

wave gyre moves poleward and becomes faster, and the temperature maximum increases210

(Fig. 1), by one order of magnitude compared to the non-rotating case presented in Part211

I (which corresponds to the equatorial f -plane case, for y0 = 0). Figure 2 shows that212

upward motion, and therefore the divergent component of the horizontal wind, decreases213

with a poleward displacement of the diabatic heating. Advective cooling by ascent, which214

damps the temperature perturbation in the diabatic-heating region, decreases with this215

slowing of the upward motion, which explains the much larger temperature anomaly. This216

is consistent with the diffusive effect of vertical energy transport on temperature per-217

turbation and its scaling in (ε2+f2)−1 discussed in Section 2.1 that yields a decrease218

with increasing y0. The rotational wind scales with f/(ε2+f2), while the divergent wind219

scales with ε/(ε2+f2) (see Eqs. (9)-(10)), which explains the increase in the speed of220

the gyre with increasing y0, and the decrease in ascending motion. We can also follow221

the same energy reasoning as in Part I, since energy conservation appears well approx-222

imated by the linear system (see Section 2.3): in our equation system, thermal energy223

and kinetic energy have the same dissipation rate ε and the only source of energy is the224

imposed diabatic heating; the global energy (i.e., sum of thermal and kinetic energy in-225

tegrated over the whole atmosphere) is therefore set by [Q]/ε. This means that the larger226

the solution’s temperature perturbation, the larger the share of global energy in the ther-227

mal reservoir and the smaller the solution’s kinetic energy. In the damped inertio-gravity228

wave, the rotational and divergent winds are perpendicular, which means that the ki-229

netic energy can be decomposed in the sum of a rotational-wind component and a divergent-230

wind component, each proportional to the square of the corresponding wind. For a given231

kinetic energy, the larger the rotational component, the smaller the divergent compo-232

nent. The ratio between the amplitudes of the rotational and divergent wind is f/ε (see233

Eqs. (9)-(10)), which shows that the fraction of kinetic energy that is due to rotational234

wind increases in f2. Indeed, an increase in the effect of rotation (i.e., an increase in f235

= y0/2) increases the rotational wind and therefore the fraction of the global energy stored236

as rotational kinetic energy. This reduces the divergent kinetic energy, the divergent wind,237

and the associated vertical motion. As a result, the advective cooling is less efficient at238

–9–
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Figure 4: Forcing and solution for the Gill circulation: diabatic heating (dashed con-
tours) and mid-tropospheric vertical velocity (solid contours) for (a) (y0, Ly) = (1, 1) , (b)
(y0, Ly) = (1, 1/2), (c) (y0, Ly) = (2, 1), and (d) (y0, Ly) = (2, 1/2); in all cases, Lx = 3Ly.
Contour spacing: 0.1 in (a) and (c), 0.4 in (b) and(d); black for w = 0, red for w < 0.

reducing the direct effect of the diabatic heating on temperature (Q/ε), the temperature239

perturbation is larger, and the fraction of global energy stored as thermal energy increases,240

which reduces the kinetic energy (i.e. further reduces the divergent kinetic energy and241

moderates the increase in the rotational kinetic energy).242

As the diffusive effect of energy transport on temperature is larger for small hor-243

izontal extents Lx and Ly of the diabatic heating than for large extents, the reduction244

of this effect with increasing y0 is stronger for small Lx and Ly (Figs 1b,d and 2b,d) than245

for large extents (Figs 1a,c and 2a,c).246

In the off-equatorial Gill circulation, the gyre near the diabatic-heating maximum247

and the associated temperature maximum exhibit a similar sensitivity to the latitude248

of the diabatic heating y0 as in the damped inertio-gravity wave (Fig. 3). In particular,249

the off-equatorial westerly jet becomes faster. The gyre in the other hemisphere and the250

equatorial, Kelvin-like easterlies weaken with increasing y0, which can be attributed to251

decrease the amplitude of diabatic heating in the equatorial region with increasing y0.252

But the vertical motion is much less sensitive to y0 than in the damped inertio-gravity253

wave (Fig. 4), particularly for small horizontal extents of the diabatic heating. In this254

off-equatorial Gill circulation, subsidence is preferentially west and poleward of the heat-255

ing maximum, and more so for large y0 and large extents of the heating.256

3.2 Overturning circulation257

As in Part I, we investigate the intensity of overturning circulation, because of its258

relevance to the coupling between dynamics and the hydrologic cycle. We define the in-259

tensity of the overturning circulation Γ as the upward vertical mass flux integrated over260

the horizontal domain (which, by mass conservation, is the same as the downward ver-261

tical mass flux integrated over the domain):262

Γ =

∫∫
w>0

w dxdy. (30)
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Γ can be computed numerically using the expression of w in Equation (20) above and263

Equations (30)-(32) from Part I.264

Figure 5a shows the intensity Γ of the overturning circulation for the f -plane case,265

as a function of the characteristic latitudinal extent Ly and the latitude y0 of the cen-266

ter of the heating. In all cases, the longitudinal extent of the heating is still proportional267

to the latitudinal extent: Lx = 3Ly, so that Ly controls the horizontal extent of the268

diabatic heating in both directions. For the damped inertio-gravity wave, Γ decreases269

with both Ly and y0, in a similar fashion except along the axes. For y0 = 0, the sen-270

sitivity of Γ is that of the damped gravity wave studied in Part I (the decrease with Ly271

corresponds to the decrease along the diagonal of Figure 5a in Part I). In Section 2.2,272

we established that the ascending motion’s asymptote in the limit Ly → 0 is the dia-273

batic heating: w ∼ Q, and it follows that Γ ∼ [Q], independent of the heating-center274

latitude y0, as in the case of the damped gravity wave and the equatorial Gill circula-275

tion (see Part I). For large latitude y0 = 2 and extent Ly = 2, Γ is 90% smaller than276

its value for Ly = 0. Compared to Γ for the damped gravity wave (case y0 = 0), Γ277

for the damped inertio-gravity wave is the same for Ly = 0 but much smaller for large278

Ly, as illustrated in Figure 5b.279
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Figure 5: (a) Intensity Γ of the overturning circulation in the f-plane case; the letters
”a”, ”b”, ”c”, and ”d” indicate the cases shown in Figures 1 and 2; (b) Ratio of Γ to its
value in the non-rotating case y0 = 0 (in % of Γ(y0 = 0)); in all cases, Lx = 3Ly.
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These sensitivities are a direct consequence of the changes in w commented in the280

previous section (see also Fig. 2): w is smaller for larger Ly and larger f because of the281

smaller transport feedback on the direct, local temperature response Q/ε to diabatic heat-282

ing Q, which results in a smaller difference w = Q−εT . This smaller vertical speed w283

translates into a weaker overturning circulation Γ through spatial integration, although284

it is unclear how the region of ascent changes with Ly and y0. Figure 2 illustrates this285

point: the longitude/latitude aspect ratio of the ascending region appears to change with286

y0.287

Figure 6a shows the intensity Γ of the overturning circulation for the β-plane case,288

as a function of the latitude of the heating center y0 and the characteristic horizontal289

extent of the heating Ly (still with Lx = 3Ly). For this off-equatorial Gill circulation,290

Γ decreases with Ly by up to 60% as in the equatorial case (for y0 = 0, analyzed in de-291

tail in Part I). Γ also decreases slightly with y0; Figure 6b shows Γ as a percentage of292

its value in the equatorial case (for y0 = 0), which confirms that Γ only decreases by293

at most 15% for y0 going from 0 to 2. For Ly → 0, Γ is independent of y0; as we es-294

tablished in Section 2.2, w ∼ Q, and Γ ∼ [Q] in this limit, as in the equatorial case,295

in the damped inertio-gravity and gravity waves.296

Part I shows that, in the equatorial case, Γ is less intense for the Gill circulation297

than for the damped gravity wave for Lx and Ly > 0. The corresponding analysis for298

the off-equatorial case is to compare Γ for the Gill circulation and for the damped inertio-299

gravity wave. Figure 6c shows their ratio, and we find the sensitivity analyzed in Part300

I along the axis y0 = 0. For diabatic heating close to the equator, Γ is more intense in301

the damped inertio-gravity wave than in the Gill circulation; but Γ decreases fast with302

increasing y0 (for Ly 6= 0) for the damped inertio-gravity while it decreases only slightly303

for the Gill circulation. As a result the overturning circulation of the Gill circulation be-304

comes larger than for the damped inertio-gravity wave for a threshold in y0 between 0.3305

and 0.7, depending on the value of Ly (see thick black line in Fig. 6c). For small y0, the306

Coriolis parameter f is small and the effect of rotation as well: the damped inertio-gravity307

wave is very similar to the damped gravity wave; for the same y0, the Gill circulation308

includes very significant rotational effect because the non-dimensional Coriolis param-309

eter y/2 is significant away from the equator and as a result Γ is smaller than in the damped310

inertio-gravity wave. For large y0, the β effect disrupts the regular gyre of the damped311

inertio-gravity wave: the winds react differently to the temperature gradients south and312

north of the diabatic heating and β convergence distorts the symmetry of the temper-313

ature field through vertical advection. Following energy considerations detailed in the314

previous section, this yields a weaker rotational wind for the off-equatorial Gill circula-315

tion than for the damped inertio-gravity wave, and a faster divergent wind associated316

with a more intense overturning circulation.317

Figure 4 suggests that most of the upward motion is limited to a region between318

−Lx and Lx in longitude, with a meridional extent that scales with Ly, as in Part I. We319

find that Γ can be approximated by the integral Γ∗ of w over the domain ( [−Lx,Lx],[y0−320

4Ly,y0 + 4Ly] ), with the latitudinal bounds corresponding to twice the e-folding dis-321

tance of D:322

Γ ≈ Γ∗ =

∫ y+

y−

∫ Lx

−Lx

w dxdy, (31)

with y− = y0 − 4Ly and y+ = y0 + 4Ly. Approximating Γ by Γ∗ introduces an error323

which is small for most of the domain of (y0,Ly) values considered here, but it is signif-324

icant, up to 20% for extended diabatic heating away from the equator (large Ly and y0).325

This approximation allows us to analyze the contribution of the different cylinder modes326

to the sensitivity of the overturning circulation; it can be decomposed in a series:327

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Γ∗ =

∞∑
n=0

Γ
(n)
∗ =

∞∑
n=0

Γ
(n,1)
∗ + Γ

(n,2)
∗ , (32)

with Γ
(n,1)
∗ and Γ

(n,2)
∗ the contributions of the first and second part of the response to328

the projection of the diabatic heating Q on the nth cylinder function Dn, i.e., an mul-329

tiplied by the response to a diabatic heating in the form F (x)Dn(y).330

Γ
(n,i)
∗ = an

∫ y+

y−

∫ Lx

−Lx

w(n,i) dx dy, (33)

for i = 1, 2. Appendix A shows that we can write these contributions as:331

Γ
(n,1)
∗ = γn(Lx)fn(y0, Ly) + [1− γ2n(Lx)] gn,1(y0, Ly) (34)

Γ
(n,2)
∗ = γn+2(Lx)fn(y0, Ly) + [1− γn+2(Lx)] gn,2(y0, Ly) (35)

with the variation in Lx given by the series of functions γn:332

γ0 = 1
2q

(0)
0 (Lx) =

1

2

1 + e−2εLx

1 + ε2l2x
,

γ1 = 1, (36)

γn = 1
2
q(n)
n (−Lx)
n−1 = 1

2q
(n−2)
n (−Lx) =

1

2

1 + e−2(2n−1)εLx

1 + (2n− 1)2ε2l2x
for n > 0,

with lx = 1/k = 2Lx/π; and the variation in y0 and Ly given by:333

fn = an(Ly)In with In =

∫ y+

y−
Dn dy, (37)

gn,1 = − 2n

2n− 1
an(Ly)

[
Dn−1(y+)−Dn−1(y−)

]
, and (38)

gn,2 =
2

2n+ 3
an(Ly)

[
Dn+1(y+)−Dn+1(y−)

]
. (39)

All these functions are consistent with the expressions given in Part I for y0 = 0. Since334

γn(0) = 1, fn are the values of both Γ
(n,1)
∗ and Γ

(n,2)
∗ for Lx = 0. For Lx →∞, γn →335

0 and Γ
(n,i)
∗ → gn,i for i = 1, 2. We also have I1 = −2 [D0(y+)−D0(y−)], which yields336

g1,1 = f1.337

Since γn(0) = 1, Γ
(n,i)
∗ = fn for all n and i = 1, 2 in the limit Lx → 0, and we338

can establish by integration that Γ∗ is an excellent approximation of Γ (as in the equa-339

torial case):340

Γ∗(0, Ly, y0) = 2

∫ y+

y−

∞∑
n=0

anDn dy = 2

∫ y+

y−
Ddy = 4

√
π erf(2) = erf(2)[Q], (40)

which is independent of y0 and a good approximation of Γ(0, Ly, y0) = [Q].341

Figures 7 shows some functions γn(Lx) (for n even, these functions are also shown342

in Figure 8a of Part I). All but γ1 tend to zero for Lx → ∞, and their decay is faster343

for larger n. For all n 6= 1, Γ
(n,i)
∗ decreases from fn for Lx = 0 to gn,i for Lx → ∞344

(with i = 1, 2). They converge faster towards their asymptotes for larger n; this is ex-345

plained in Part I by the increasing effect of rotation on circulations forced by diabatic346

heating along cylinder functions Dn of increasing n, which have maxima increasingly far347

from the equator in regions of increasingly large Coriolis parameter. The increasing ef-348

fect of rotation weakens the overturning circulation and increases the temperature per-349
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turbation. γ1 is an exception: it is constant as a result of the zero temperature pertur-350

bation: T (n,1) = 0, independent of Lx. This means that the contribution Γ
(1,1)
∗ will vary351

exclusively with Ly and y0.352

Figures 8-10 show the functions fn, gn,1, and gn,2 for n ≤ 5. The functions f2n,353

g2n,1, and g2n,2 shown in Figure 8c-d of Part I correspond to the axis y0 = 0 in the first354

column of Figures 8-10. For small y0 and/or large Ly, the intensity of the simulation is355

dominated by the contributions for n = 0 since f0 is significantly larger than the other356

fn, and γ0 and γ2 make the contributions of the two components decay slowly towards357

g0,1 = 0 and g0,2 (Figs. 7, 8a, and 10a); this is similar to the equatorial case. For larger358

y0 and Ly < 1, the contributions for n = 1 become dominant instead, and more so359

for large Lx since γ1 = 1 is constant (Figs. 7, 8b, and 10b). But the modes with larger360

n do contribute to the sensitivity of Γ to Lx, Ly, and y0. Note that the limit of Γ∗ for361

Lx → 0 gives us a constraint on the sum of all fn:
∑∞
n=0 fn = erf(2)[Q], independent362

of Ly and y0. For n > 1, we can distinguish the domain Ly ≤ 1 from the Ly > 1.363

• For Ly > 1: for n odd, fn, gn,1, and gn,2 decay rapidly towards zero as Ly in-364

creases (Figs. 8c-f, 9c-f, and 10c-f): this is a result of the decrease of an with in-365

creasing Ly and the fact that the Dn with n odd are odd functions of y, and com-366

pensations between the positive and negative segments of Dn contribute to reduce367

In. For n even, fn are similar to the case y0 = 0 (see Part I for details): they in-368

crease from zero at Ly = 1, reach a maximum and slowly decrease to zero for Ly →369

∞. The maximum value of fn decreases with n and the value of Ly at which fn370

reaches this maximum increases with n. As the sum of all fn is constant, this means371

the decrease of f0 with increasing Ly is compensated by fn with increasingly large372

n. For Lx > 0, the contributions from these modes decrease like γn and γn+2,373

which decrease faster for larger n, and as a result the decrease of Γ∗ with increas-374

ing Lx is faster for larger Ly, and creates a decrease of Γ∗ with Ly for Lx > 0.375

In this range of Ly, this decrease is very similar across the range of y0 under con-376

sideration. To summarize, an increase in Ly results in larger projections of D onto377

cylinder functions Dn with larger n, which cause dynamical responses that are weaker378

in terms of divergent circulation due to the increasing influence of rotation.379

• For Ly ≤ 1, the influence of modes with n > 1 is complex, with multiple com-380

pensations, and there is a stronger sensitivity to y0. A few points can be made:381

– For all y0, we can see that all fn ≥ 0 for small Ly, and it is zero if y0 is a root382

of Dn. This is because the projection coefficient an is proportional to the cylin-383

der function Dn for Ly → 0:384

an ≈
√

2

n!
Dn(y0),

and we have the following asymptotes:385

In ∼ 8Dn(y0)Ly and fn ∼
8
√

2

n!
Dn(y0)2Ly ≥ 0.

In the limit Lx → 0, all modes contribute positively to Γ∗ for small Ly. The386

asymptotes of functions gn,1 and gn,2 are proportional to Dn(y0), so they are387

zero for values of y0 (among others) that also cancel fn.388

– In the small-to-intermediate range of y0, for n > 1, the integral In changes within389

an interval of Ly included in ]0 1[ because the sign of the function Dn is oppo-390

site to Dn(0) for most of the interval [y− y+]. In terms of sensitivity to Lx and391

Ly, this causes large compensations between modes and between components392

of the modes in terms of sensitivity. For small y0, it is very similar to the equa-393

torial case (see Part I for details), with all gn,1 and gn,2 contributing positively394

to Γ∗ in the limit Lx →∞; furthermore gn,1 > fn and gn,2 < fn, which means395

that the contributions Γn,1∗ decrease the sensitivity of Γ∗ to Lx while the con-396
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tributions Γn,2∗ decrease this sensitivity: there is a compensation between the397

contributions of the two components’ gyres to the divergent circulation.398

– For large y0 (larger than the largest root of Dn), Dn ∼ yn exp−y2/4 is pos-399

itive over the interval [y−, y+], so its integral In is positive. We also have:400

an ∼
y0
n

n!(L2
y + 1)n

√
2

L2
y + 1

> 0,

which yields fn = anIn ≥ 0 for all Ly. In, and therefore fn, increases for in-401

creasing small Ly (with In = 0for Ly = 0) and an, and therefore fn, tends402

to zero for large Ly. This asymptotic behavior is visible within the range of y0403

plotted in Figure 8 for n ≤ 3. For these large values of y0, D projects increas-404

ingly on Dn of larger n (since an scales with y0
n), and its sensitivity to the hor-405

izontal extent increases due to the larger influence of rotation on the dynam-406

ical response to heating along Dn with larger n.407

Despite this overall complexity, it appears clearly that the two components of the408

cylinder modes n = 0 and n = 1 are the main contributors to Γ∗, because of large fn,409

small gn,2, and because γn decreases slowly (or not at all) with Lx. For mode n = 0,410

Kelvin-wave and Rossby-wave pattern both contribute to convergence in the region of411

heating. For mode n = 1, the first component is exclusively divergent and contributes412

to a large part of the cross equatorial flow. For n > 1 the sensitivity of the first and413

second components Γ
(n,1)
∗ and Γ

(n,2)
∗ partially offset each other for small Ly.414

Thanks to the continuity equation, we can also decompose Γ∗ into the sum of a con-415

tribution from the meridional wind (v integrated over the boundary at y = y± and a416

contribution Γ∗u from the zonal wind (u integrated over the boundaries at x = ±Lx).417

And each contribution Γ
(n,i)
∗ can also be decomposed in the same way:418

Γ∗ = Γ∗u + Γ∗v and Γ
(n,i)
∗ = Γ

(n,i)
∗u + Γ

(n,i)
∗v

Because u(0,1)(−Lx) = 0 and u(n,i)(Lx) = 0 for all n > 0 or i=2, the contribution419

from the zonal wind at the eastern border results exclusively from the damped Kelvin420

wave extending eastward from the heating, while the contribution from the zonal wind421

at the western border results from a combination of damped Rossby waves. By integrat-422

ing u using Equations (24)-(31) in Part I, we can write:423

Γ
(n,1)
∗u = γn(Lx) [fn(y0, Ly)− (2n− 1)gn,1(y0, Ly)] , (41)

Γ
(n,2)
∗u = γn+2(Lx) [fn(y0, Ly) + (2n+ 3)gn,2(y0, Ly)] , (42)

and we can obtain Γ∗u by summing over n. Note that Γ
(1,1)
∗u = 0, as expected, since f1 =424

g1,1. Figure 6d shows that Γ∗u is the dominant contribution to Γ∗, above 90% for most425

of the parameter range under consideration, and even slightly above 100% for a signif-426

icant parameter range, with little sensitivity to y0. As in the equatorial case, the con-427

tribution Γ∗v from the meridional wind is small and can be negative, as shown in Fig-428

ure 6f because of the compensation between the branches of the gyres in opposite direc-429

tions. Within the contribution of the zonal wind, we can distinguish that of the damped430

Kelvin wave Γ
(0.1)
∗u , which is also the contribution from the eastern boundary at x = Lx.431

Figure 6e shows that Γ
(0.1)
∗u is negligible for small Ly; this is consistent with the asymp-432

tote for Lx → 0 (see Eq. (29), with Lx = 3Ly) in which the zonal wind is zero at x =433

Lx. It increases with increasing Ly, up to 60% of Γ∗ for large Ly where it becomes larger434

than the contribution from the western boundary (above 60% of Γ∗). While the merid-435

ional contribution Γ∗v to Γ∗ is small and in places negative (see Fig. 6f), the contribu-436

tion Γ
(1,1)
∗v of the purely meridional flow for n = 1 is positive and Figure 6g shows that437
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it can account for a significant fraction (up to 50%) of Γ∗ for heating away from the equa-438

tor.439

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 6: (a) Intensity Γ of the overturning circulation for the β-plane case; the letters
”a”, ”b”, ”c”, and ”d” indicate the cases shown in Figures 3 and 4; (b) Ratio of this in-
tensity to that in the equatorial case ((y0 = 0); (c) Ratio of the intensity of the overturn-
ing circulation in the β-plane case to that in the f -plane case; (d) Contribution Γ∗u of the
zonal flow to the approximated overturning circulation Γ∗ (in % of Γ∗); (e) Contribution

Γ
(0,1)
∗u of the easterly flow to the approximated overturning circulation Γ∗ (in % of Γ∗); (f)

Contribution Γ∗v of the meridional flow to the approximated overturning circulation Γ∗
(in % of Γ∗); and (g) Contribution Γ

(1,1)
∗v of the first component of the mode n = 1 (purely

meridional flow) to the approximated overturning circulation Γ∗ (in % of Γ∗); in all cases,
Lx = 3Ly.
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Figure 7: Functions γn determining the sensitivity of the contribution Γ
(n,i)
∗ to the longi-

tudinal extent Lx of the diabatic heating for n ≤ 5, n = 10, and n = 20.
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Figure 8: Functions fn determining the sensitivity of Γ
(n,i)
∗ (i = 1, 2) in the limit for

Lx = 0 to the latitude of the y0 of the diabatic heating and its latitudinal extent Ly, for
n ≤ 5.
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Figure 9: Functions gn,1 determining the sensitivity of Γ
(n,1)
∗ in the limit for Lx → ∞

to the latitude of the y0 of the diabatic heating and its latitudinal extent Ly, for n ≤ 5.
g0,1 = 0 and g1,1 = f1 are not shown.
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Figure 10: Functions gn,2 determining the sensitivity of Γ
(n,2)
∗ in the limit for Lx → ∞ to

the latitude of the y0 of the diabatic heating and its latitudinal extent Ly, for n ≤ 5.
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3.3 Equatorial westerly jet440

While the damped inertio-gravity wave has no horizontal wind at the center of the441

diabatic heating, the β effect creates a low-level westerly jet in the Gill circulation. If442

a coupling with surface thermodynamics is activated, this jet will decrease the surface443

turbulent heat fluxes if the background surface wind is easterly, for example in trade winds;444

it will increase the surface fluxes if the background wind is westerly, in the equatorial445

the Indian Ocean or in monsoon jets. The resulting modulation of surface fluxes has been446

pointed out as a potential energy source for tropical intraseasonal variability (Bellon &447

Sobel, 2008a, 2008b; Sobel et al., 2008, 2010) and a important mechanism for their cou-448

pling with the surface ocean (Maloney & Sobel, 2004; Bellon et al., 2008). In the off-equatorial449

case, the westerly jet is not symmetric with respect to the central latitude of the diabatic450

heating (see Fig. 3), it results mainly from the cyclonic circulation around the heating451

and reaches its maximum equatorward of the heating maximum. As can be seen in Fig-452

ure 3, as the horizontal scale of the heating decreases, the main gyre becomes smaller453

and faster, which accelerates the low-level westerly jet; as the latitude of the heating in-454

creases, the jet accelerates as well.455

The low-level westerly wind uo at the center of the heating was studied in details456

for the equatorial case in Part I; for the off-equatorial case, its sensitivity to the latitude457

of the heating center y0 is small and its sensitivity to the horizontal extent of the heat-458

ing Lx and Ly is similar to the equatorial case (see Fig 9a in Part I). This is consistent459

with wind-induced turbulent surface fluxes acting as an energy source for disturbances460

in regions of mean westerlies. But uo is not as relevant in the off-equatorial case as in461

the equatorial case: while in that case uo is the maximum westerly wind on the y-axis,462

in the off-equatorial case this maximum wind uM is equatorward of the heating center.463

Figure 11a shows the sensitivity of this maximum wind: it increases with the latitude464

y0 of the center of diabatic heating, but mostly it increases with decreasing horizontal465

extent Ly, and tends towards infinity for Ly → 0. Part I showed that, for y0 = 0, uM =466

uo ∼ 2/Ly; Appendix B shows that uM diverges faster for y0 6= 0:467

uM ∼
1√
2e

y0

Ly
2 . (43)

Figure 11b shows the latitudinal shift of this maximum low-level westerly wind along the468

y-axis (uM = u(0, y0 + y′uM
)). For large Ly (> 1), the latitude of the wind maximum469

is mostly sensitive to y0: the further poleward the center of heating, the further the wind470

maximum from the center of heating. For small Ly, the latitude of the wind maximum471

is mostly sensitive to Ly: it converges towards y0 for very small Ly (Appendix B shows472

that y′uM
∼ −
√

2Ly for Ly → 0).473

As in Part I, we also investigate the integrated intensity of the jet U = −
∫
u<0

u(0, y)dy,474

the longitudinal extent of the jet xu along the x-axis, and characteristic latitudinal ex-475

tent of the jet yu along the y-axis. Because the jet is not symmetric in latitude with re-476

spect to the center of heating, the latitudinal extent yu is the average between the pole-477

ward and equatorward extents:478

yu =
1

2

(
yu

+ − yu−
)
, with u(0, yu

−) = u(0, yu
+) = 0 and yu

− < y0 < yu
+.

In addition, we introduce a measure of the asymmetry of the jet, the equatorward asym-479

metry index Eu, which measures how much more than half the jet is equatorward of the480

heating center (Eu = 0 corresponds to a jet symmetric about the latitude y0 of the heat-481

ing center, Eu = 1 to a jet entirely equatorward of the heating center):482
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Figure 11: Characteristics of the equatorial westerly jet in the Gill circulation: (a) maxi-
mum westerly zonal velocity uM on the y-axis ; the letters ”a”, ”b”, and ”c” indicate the
cases shown in Figures 3 and 4; (b) equatorward latitudinal shift −y′uM

of the maximum
westerly zonal velocity; (c) intensity U of the jet; (d) zonal extent xu of the jet normalized
by Lx; (e) meridional extent yu of the jet; (f) equatorward asymmetry index Eu of the jet.

Eu = 2
y0 − yu−

yu
− 1.

Figure 11c shows the sensitivity of the intensity U of the jet to y0 and Ly. The sen-483

sitivity of U is similar to that of uM, with an increase of U with increasing y0, but mostly484

an increase of U with decreasing Ly. For Ly → 0, U is finite if y0 = 0 (see Part I),485

but if y0 6= 0, U ∼ y0/Ly (see Appendix B), which tends towards infinity. Figure 11e486

shows the latitudinal extent yu of the jet along the y-axis; it is not very sensitive to y0487

and scales roughly with the horizontal extent Ly of the heating for moderate and large488

values of Ly. For Ly → 0, Appendix B shows that this linear scaling breaks down: yu ∼489

Ly
√
−2 lnLy. Compared to the equatorial case in which the scaling of the maximum wind490

uM =∼ 2/Ly and that of the latitudinal extent of the jet yu ∼ 2Ly provide a finite491

upper bound for U , in the off-equatorial case there is no such upper bound: both the scal-492

ing of the wind maximum uM ∼ y0/(
√

2eLy
2) and that of the jet’s latitudinal extent493

yu ∼ Ly
√
−2 lnLy increase faster or decrease slower with decreasing Ly than in the494

equatorial case, and both effects explain the divergence of U for Ly → 0. The scaling495

of yu results from the slow convergence of the equatorward boundary yu
− of the west-496

erly jet towards y0 for Ly → 0, as can be seen from the asymmetry index Eu in Fig-497

ure 11f: Eu → 1 for y0 6= 0 and Ly → 0, which means that the jet extends exclu-498
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sively equatorward of y0 in this limit. The jet is symmetric (Eu = 0) in the equatorial499

case (y0 = 0), and the asymmetry of the jet increases with increasing y0. It also de-500

creases with increasing Ly for small Ly, but this sensitivity becomes non-linear at larger501

Ly.502

Finally, Figure 11d shows the eastward longitudinal extent xu along the x-axis of503

the low-level westerly jet, normalized by Lx. For small Ly (and Lx, since the ratio Lx/Ly504

is fixed), xu ≈ Lx, which means that the westerly jets extends over the whole region505

of diabatic heating at the equator, irrespective of y0 (see Appendix B). xu/Lx decreases506

with Ly but more so in the equatorial case than in the off-equatorial case: for y0 = 2,507

this decrease is twice slower than for y0 = 0508

In summary, compared to the equatorial case presented in Part I, the low-level west-509

erly jet in the off-equatorial case:510

• has about the same latitudinal extent yu except for small horizontal extents of the511

diabatic heating for which yu does tend towards zero for Ly → 0, but slower than512

in the equatorial case;513

• is about as fast at the heating center, but faster at its maximum wind speed, and514

causes a larger low-level eastward mass transport. These differences are markedly515

larger for small horizontal extents of the diabatic heating;516

• is asymmetric with respect to the latitude of the heating center y0, extending fur-517

ther equatorward than poleward, with its maximum wind speed equatorward of518

the heating center. For small horizontal extents of the diabatic heating, the jet519

is almost exclusively equatorward of the heating center;520

• extend further eastward than in the equatorial case.521

In terms of sensitivity to the horizontal extent of the heating, the difference is signifi-522

cant in terms of the normalized longitudinal extent of the westerly jet (same limit for523

Ly → 0, but less sensitivity to increasing Ly) and in terms of the maximum speed uM524

and intensity U for small horizontal scales (larger scaling for Ly → 0).525

4 Summary and Conclusion526

In this article, we explore the scale sensitivity of the off-equatorial Gill circulation527

(Part I studies the equatorial case), keeping the horizontally-integrated diabatic heat-528

ing fixed in order to understand how the spatial spread of the diabatic heating influences529

the dynamical response of the tropical atmosphere. In our analysis, we focus on char-530

acteristics of this circulation likely to couple it with the energy cycle: intensity of the531

overturning circulation (linked to cloud moist processes) and characteristics of the low-532

level westerly flow (linked to turbulent surface heat fluxes). We also compare our solu-533

tions to the dynamical response on an f -plane, which is a damped inertio-gravity wave.534

We find that the intensity of the overturning circulation Γ decreases slightly with535

increasing latitude of the diabatic-heating center y0, except for very small horizontal ex-536

tent of the heating for which it is independent of y0 and the same as in the damped (inertio-537

)gravity wave. In other words, the sensitivity of Γ to the horizontal extent of the heat-538

ing increases slightly with y0. Compared to the inertio-gravity wave response, the Gill539

circulation is much less sensitive to y0 for non-zero horizontal extent of the diabatic heat-540

ing. As a result, for y0 below a fairly low threshold Γ for the Gill circulation is more sen-541

sitive to the horizontal extent of the diabatic heating, and therefore smaller, than for the542

damped inertio-gravity wave, as in the equatorial case (see Part I); but above this thresh-543

old, Γ for the Gill circulation is less sensitive to the horizontal extent of the diabatic heat-544

ing, and therefore larger, than for the damped inertio-gravity wave (see Fig. 6c). In the545

equatorial or near equatorial cases, the β effect introduces some effect of rotation which546

creates rotational circulations. As argued in Part I and Section 3.1 from an energy per-547
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spective, the conversion of thermal energy to kinetic energy in rotational circulations is548

at the expense of the divergent circulation and reduces the overturning circulation. In549

off-equatorial cases, the same effect of rotation is particularly apparent in the damped550

inertio-gravity wave, with a strong rotational circulation symmetric with respect to the551

heating center. In these cases, the β effect breaks the symmetry by causing accelerations552

that are not symmetric with respect to the heating center, create secondary divergent553

circulations, and weaken the rotational circulation to the benefit of the overall divergent554

circulation.555

The overturning circulation results mostly from the convergence of the zonal wind,556

with a large contribution of the Kelvin-wave component for large-scale diabatic heating.557

The meridional contribution tend to be small and can be negative, despite a significant558

positive contribution of the meridional-only, n = 1, component for significantly off-equatorial559

diabatic heating. Also, the region of ascent is less and less colocated with the region of560

diabatic heating as the latitude of the heating increases. Overall the sensitivity of the561

Gill circulation indicates that its coupling with the hydrologic cycle would create a weaker562

moisture-convergence feedback in the off-equatorial case compared to the equatorial case.563

The low-level westerly jet intensifies as the diabatic heating is shifted poleward. At564

the same time the position of maximum wind respective to the heating center shifts equa-565

torward. For small-scale heating, the jet extends entirely equatorward of the heating cen-566

ter, its latitudinal extent is very small, its maximum speed and the eastward low-level567

mass transport tend to infinity. This sensitivity of the low-level westerly jet is consis-568

tent with the monsoon low-level jet (Joseph & Raman, 1966) being faster than the equa-569

torial westerlies in the Indian Ocean during other seasons. It also explains the large in-570

traseasonal variability of this monsoon jet (Joseph & Sijikumar, 2004) in response to the571

intraseasonal variability of convection. The low-level westerly jet impacts turbulent sur-572

face fluxes, increasing them in westerlies and decreasing them in easterlies, and the in-573

tensity of this jet suggests a large impact. The combination of the seasonal monsoon jet574

and an intraseasonal westerly jet south of northward-propagating convective disturbances575

has been suggested as a growth mechanism for the boreal-summer monsoon intraseasonal576

oscillation (Bellon & Sobel, 2008a, 2008b; Sobel et al., 2010) and as a large component577

of its coupling with the ocean (Sengupta et al., 2001; Roxy & Tanimoto, 2007; Bellon578

et al., 2008; Gao et al., 2019, among others). Our results suggest that, over mean west-579

erlies, the wind-induced surface fluxes are larger and extend to a larger fraction of the580

heating region for small convective disturbances than for large convective disturbances,581

favoring the development of small disturbances. And the sensitivity of these wind-induced582

surface fluxes to the increasing latitude of the diabatic heating is similar to the sensi-583

tivity to decreasing horizontal extent of the heating, except for their latitudinal extent.584

But the influence of this jet and its sensitivity on convective disturbances is not straight-585

forward: the region of westerlies is increasingly asymmetric with respect to the heating586

center with decreasing horizontal extent of the diabatic heating, which favors equator-587

ward propagation of a convective disturbance or slows poleward propagation in wester-588

lies. The complex combination of sensitivities should have some bearings on the devel-589

opment, scale, and propagation of monsoon intraseasonal oscillation events worthy of fur-590

ther investigation.591

–24–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Appendix A Sensitivity to the Aspect Ratio Lx/Ly592

This appendix investigates the sensitivity of the integrated metrics of the overturn-593

ing circulation and the low-level westerly jet Γ and U to changes in the aspect ratio of594

the diabatic-heating region. Since isolines of heating are close to circular for Lx = 3Ly,595

which is the case discussed in the main text, we set Lx = 3aLy and document the sen-596

sitivity of our main results to a. Figure A1 shows the ratio of the intensity Γ of the over-597

turning circulation in the off-equatorial case to its intensity in the equatorial case (y0 =598

0) for different aspect ratios of the heating region: a = 1/2 (Fig. A1a) and a = 2 (Fig.599

A1b); the case a = 1 is shown in Figure 6b. It appears that the sensitivity of Γ to the600

latitude of the heating varies little with the aspect ratio of the region of heating. In all601

cases, the intensity of the overturning circulation for Lx → 0 is Γ = [Q], independent602

of both Ly and y0; for large Lx and Ly, the normalized decrease of Γ with increasing y0603

is similar in all cases. There is one difference in the scale for which this decrease with604

y0 is fastest: while it is for Ly ≈ 1.3 for a = 1/2, it is for a smaller Ly ≈ 0.5 for a =605

2.606

Figure A1: Ratio of the intensity Γ of the overturning circulation in the off-equatorial
case to its intensity in the equatorial case (y0 = 0) for (a) a = 1/2 and (b) a = 2
(Lx = 3aLy); the case a = 1 is shown in Figure 6b.

Figure A2 shows that the sensitivity of the intensity of the westerly mass trans-607

port U exhibits a very similar sensitivity to the latitude of the heating y0. The normal-608

ized increase of U with y0 is essentially independent from a.

Figure A2: Ratio of the intensity U of the low-level westerly jet in the off-equatorial case
to its intensity in the equatorial case (y0 = 0) for (a) Lx = 1.5Ly, (b) Lx = 3Ly, and (c)
Lx = 6Ly.

609
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Appendix B Contributions of the Cylinder Modes to Γ∗610

By using the expressions of w(n,i) (i = 1 or 2) (Eq. (32) in Part I) combined with611

the expressions of T (n,i) (Eqs. (30) and (31) in Part I), we can write Γ
(n,i)
∗ as:612

Γ
(n,1)
∗ =

an
2

(∫ Lx

−Lx

F dx In − ε
∫ Lx

−Lx

q(n)n dx
[
In + nIn−2)

])
, (B1)

Γ
(n,2)
∗ =

an
2

(∫ Lx

−Lx

F dx In − ε
∫ Lx

−Lx

q
(n)
n+2 dx [In+2 + (n+ 2)In]

)
, (B2)

for all n. We have introduced the notation In =
∫ y+
y− Dn dy for n ≥ 0 and I−1 = I−2 =613

0.614

The integral of F is 2 and the differential Equations (18) and (21) in Part I yield615

the following expressions for the integrals of the functions q
(n)
n(+2):616

ε

∫ Lx

−Lx

q
(0)
0 dx = 2− q(0)0 (Lx), (B3)

ε

∫ Lx

−Lx

q
(1)
1 dx = 0, (B4)

ε

∫ Lx

−Lx

q(n)n dx =
1

2n− 1

[
2n− 2− q(n)n (−Lx)

]
for n > 1, (B5)

and ε

∫ Lx

−Lx

q
(n)
n+2 dx =

1

2n+ 3

[
2− q(n)n+2(−Lx)

]
for all n, (B6)

in which we have used q
(0)
0 (−Lx) = 0, q

(1)
1 = 0, q

(n)
n (Lx) = 0 for n > 1, and q

(n)
n+2(Lx) =617

0 for all n.618

Equation (A6) in Part I yields:619

In−2 =
1

n− 1

(
In + 2

[
Dn−1(y+)−Dn−1(y−)

])
and In+2 = (n+ 1)I2n − 2

[
Dn+1(y+)−Dn+1(y+)

]
.(B7)

Using Equations (B3)-(B7), Equations (B1) and (B2) can be rewritten:620

Γ
(0,1)
∗ =

q
(0)
0 (Lx)

2
a0I0, (B8)

Γ
(1,1)
∗ = a1I1, (B9)

Γ
(n,1)
∗ =

q
(n)
n (−Lx)

2n− 2
anIn −

2n

2n− 1
an
[
Dn−1(y+)−Dn−1(y−)

](
1− q

(n)
n (−Lx)

2n− 2
)

)
for n > 1,(B10)

Γ
(n,2)
∗ =

q
(n)
n+2(−Lx)

2
anIn +

2

2n+ 3
an
[
Dn+1(y+)−Dn+1(y−)

](
1−

q
(n)
n+2(−Lx)

2
)

)
for all n.(B11)

By replacing q
(n)
n by its expressions (Eqs. (24)-(26) in Part I), and using q

(n)
n = (n −621

1)q
(n−2)
n , Γ

(n,i)
∗ can be written as in Equations (34) and (35).622

The contribution Γ
(n,i)
∗u to Γ

(n,i)
∗ from the zonal flow is simply the integral of the623

zonal velocity u(n,i) over the zonal boundary of the the rectangle (2Lx, 8Ly) where it is624

not zero, multiplied by ±an. Using the expressions of u(n,i) (Eqs. (24)-(31) in Part I),625
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it can be written as:626

Γ
(0,1)
∗u =

a0
2
q
(0)
0 (Lx)I0 = Γ

(0,1)
∗ , (B12)

Γ
(1,1)
∗u = 0, (B13)

Γ
(n,1)
∗u = −an

2
q(n)n (−Lx) [In − nIn−2] for n > 1, (B14)

Γ
(n,2)
∗u = −an

2
q
(n)
n+2(−Lx) [In+2 − (n+ 2)In] for all n. (B15)

The last two can be simplified into (using Eq. (A6) in Part I):627

Γ
(n,1)
∗u =

q
(n)
n (−Lx)

2n− 2
an
(
In + 2n

[
Dn−1(y+)−Dn−1(y−)

])
for n > 1, (B16)

Γ
(n,2)
∗u =

q
(n)
n+2(−Lx)

2
an
(
In + 2

[
Dn+1(y+)−Dn+1(y−)

])
for all n. (B17)

By replacing q
(n)
n by its expression from Equations (24)-(26) in Part I, and using q

(n)
n =628

(n− 1)q
(n−2)
n , Γ

(n,i)
∗u can be written as in Equations (41) and (42).629

Appendix C Characteristic of the Jet for Ly → 0630

In this appendix, we focus on the limit of the solution for Ly (and Lx) → 0 in the631

off-equatorial case (y0 6= 0). From Equation (29), which gives the expression of the zonal632

baroclinic wind field for Lx → 0, it is clear that along the x axis, the zonal wind is neg-633

ative (westerly in the low-troposphere) for x ≤ xu, with:634

xu =
1

k
arcsin

(
1− a0

2
Ly

)
→ Lx for Ly → 0, (C1)

since a0 →
√

2 exp
(
−y

2
0

4

)
and k = π/2Lx.635

Along the y-axis, the baroclinic zonal wind can be written:636

u(0, y) = −2

(
1− y(y − y0)

4Ly
2

)
D(y) + a0D0(y); (C2)

for Ly → 0, it is westerly around the heating center (uo < 0) and it is easterly for y =637

0. There is no straightforward solution for the latitude of sign change or maximum of638

ux=0. But we can see that for small Ly the westerly jet becomes narrow and close to y0,639

so we can look for solutions in the form of a asymptotic development:640

y′ =

∞∑
n=1

bnLy
n, (C3)

For u(0, y) = 0, this yields one solution:641

yu
+ = y0 +

4

y0
Ly

2 − 2
√

2

y0
e−

y2
0
2 Ly

3 +O
(
Ly

4
)
, (C4)

and it is unsuccessful to determine yu
− (because yy′ < 0 in the range of y of interest,642

and the first parenthesis on the right-hand side in Eq. (C2) is always larger than 1). By643

a careful study of the scalings of the different terms in Equations (C2), we can find the644

following asymptotic solution:645
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yu
− = y0 − 2

√
2Ly

(
L+

1

4L

[
ln (Ly0) +

y20
2

])
, (C5)

with L =
√
− lnLy.646

For Lx → 0, we can obtain an expression for U using Equation (26) to integrate647

u(0, y) by parts over the interval [yu
− yu

+]: And we will have:648

U = yu
+D

(
yu

+
)
−yu−D

(
yu
−)+√π [erf

(
y′u

+

2Ly

)
− erf

(
y′u
−

2Ly

)
+ a0 erf

(
yu

+

2

)
− a0 erf

(
yu
−

2

)]
,

(C6)
and taking the limit for Ly → 0 (using the asymptotic development of yu

+ and yu
−

649

above), we get:650

U =
y0
Ly
−
√
π +O (LLy) . (C7)

As for the maximum westerly wind, it is located at y = yuM
where:651

0 =
du(0, y

dy
=

1

2Ly
2

[
3y′ + y

(
1− y′2

2Ly
2

)]
D(y)− a0

2
yD0(y), (C8)

in which we used y′ = y − y0 for simplicity.652

Looking for an asymptotic expansion following Equation (C3), we find:653

yuM
= y0 −

√
2Ly +

3

y0
Ly

2 +
3
√

2

4y02
Ly

3 +

[
2 exp

(
1

2
− y0

2

4

)
− 12

y03

]
Ly

4 +O
(
Ly

5
)
, (C9)

which yields:654

uM =
1√
2e

y0

Ly
2 −

2√
eLy
− 1

2
√

2ey0
−
√

2e−
y2
0
2 +O (Ly) . (C10)
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