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Abstract

While warming temperatures are known to increase atmospheric moisture capacity and heavy precipitation frequency; as

yet there is little evidence for corresponding increases in floods. This study comprehensively examines global changes in

multidimensional flood behaviors (magnitude, frequency, and duration), and aims to identify the possible mechanisms behind

the heavy precipitation and flood change dichotomy. Our global assessment shows that floods become more frequent but not

larger. Regionally, consistent changes can be observed among multidimensional flood behaviors, i.e., floods becoming larger in

magnitude, more frequent, and longer in duration in some regions (e.g., North Europe), while smaller, less frequent, and shorter

in other regions (e.g., South Australia). Attribution analysis indicates that spatial patterns of global flood trends are primarily

controlled by shifts in atmospheric circulation patterns, terrestrial water storage changes, and temperature increases. The dams

are crucial for reducing the floods, with the greatest impacts on flood magnitude, followed by flood frequency and duration.

Catchment characteristics (i.e., vegetation coverage, irrigation, and urbanization) regulate the response of flood changes to

changing environments.
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Key Points: 15 

 We perform a global assessment of trends in multidimensional flood behaviors 16 

(magnitude, frequency, and duration) 17 

 Global floods have become not larger but more frequent 18 

 Dams have the larger impacts on the flood magnitude, followed by flood frequency and 19 

duration 20 

  21 
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Abstract 22 

While warming temperatures are known to increase atmospheric moisture capacity and heavy 23 

precipitation frequency; as yet there is little evidence for corresponding increases in floods. This 24 

study comprehensively examines global changes in multidimensional flood behaviors 25 

(magnitude, frequency, and duration), and aims to identify the possible mechanisms behind the 26 

heavy precipitation and flood change dichotomy. Our global assessment shows that floods 27 

become more frequent but not larger. Regionally, consistent changes can be observed among 28 

multidimensional flood behaviors, i.e., floods becoming larger in magnitude, more frequent, and 29 

longer in duration in some regions (e.g., North Europe), while smaller, less frequent, and shorter 30 

in other regions (e.g., South Australia). Attribution analysis indicates that spatial patterns of 31 

global flood trends are primarily controlled by shifts in atmospheric circulation patterns, 32 

terrestrial water storage changes and temperature increases. The dams are crucial for reducing 33 

the floods, with the greatest impacts on flood magnitude, followed by flood frequency and 34 

duration. Catchment characteristics (i.e., vegetation coverage, irrigation, and urbanization) 35 

regulate the response of flood changes to changing environments. 36 

Plain Language Summary 37 

The global warming is expected to intensify hydrological cycle and makes the precipitation 38 

and extreme events increasing. This can often deceive people into thinking that floods and hence 39 

risk are raising. However, our knowledge about the global changes in multidimensional floods 40 

(i.e., magnitude, frequency, and duration) is still limited, restricted by spatial coverage and 41 

number of hydrological stations. Here we assessed the changes in multidimensional of floods at 42 

both global and regional scales during 1960-2017, based on combined dataset including more 43 

than 20,000 gauging stations worldwide. Our results indicate that global floods increase more 44 



 

widespread in frequency, but not the flood magnitude and duration. Then, we further investigate 45 

the reasons why the increased heave precipitation does not lead to corresponding increases in 46 

floods. Our findings shed new light on global multidimensional flood changes, which have 47 

important implications for climate change impact assessments and flood managements. 48 

 49 

1 Introduction 50 

Flooding is one of the most devastating natural disasters worldwide, resulting more than half 51 

of a million deaths over the past thirty years (CRED, 2015; Doocy et al., 2013; Lee et al., 2018). 52 

Any changes in river floods would have significant impacts on the design of flood protection 53 

measures and flood risk assessment (Bloschl et al., 2019) Thus, it is crucial to examine how river 54 

floods have changed over time (Mallakpourand Villarini, 2015). 55 

Although numerous progresses have been investigated in river flood changes over different 56 

regions, such as North America (Archfield et al., 2016; Hodgkins et al., 2019; Mallakpourand 57 

Villarini, 2015; Musselman et al., 2018; Slaterand Villarini, 2016), Europe (Hannaford et al., 58 

2013; Hodgkins et al., 2017), Australia (Liuand Zhang, 2017; Liu et al., 2018) and Asia 59 

(Delgado et al., 2010), there is still very limited knowledge about global flood changes. As 60 

previous regional studies often used different strategies to select stations, it is difficult to draw a 61 

solid conclusion regarding global pattern in flood changes. Furthermore, flood changes vary not 62 

only by regions but also by flood dimensions, e.g., flood magnitude, frequency, and duration. 63 

However, in the limited global assessments of river flood changes (Do et al., 2017; Milly et al., 64 

2002), only the peak-flow sampling technique (PF) has been adopted to extract flood 65 

magnitudes. It should note that there are some limitations by using PF alone: (1) only the 66 

changes in flood magnitude can be assessed; and (2) PF fixedly selects one flood event per year, 67 



 

even though multiple floods may occur within a single year (Liu et al., 2017). The peaks-over-68 

threshold sampling technique (POT), which identifies flood events using an optimized threshold 69 

value, allows us to obtain multiple floods within one year and extract the frequency and duration 70 

of floods (Archfield et al., 2016). Previously, based on the simulated runoff from satellite 71 

microwave and Water Balance Model outputs, Najibi and Devineni (2018) made a global 72 

assessment on flood frequency and duration. However, as stated by Najibi and Devineni (2018), 73 

there is a certain level of epistemic uncertainty in their results, limited by the imprecision in the 74 

estimation of floods from remote-sensing and model outputs. To our knowledge, no previous 75 

study has examined the global trends in multidimensional river floods (i.e., magnitude, 76 

frequency, and duration) based on the observed streamflow data from gauging stations. 77 

Moreover, few studies have addressed the possible causes behind flood changes across large 78 

spatial scale. 79 

Based on the Clausius-Clapeyron relationship, global warming will enhance the moisture 80 

holding ability of the atmosphere (Sillmann et al., 2013). As a result, increases in heavy 81 

precipitation were observed in many regions around the globe (Asadiehand Krakauer, 2015). 82 

However, several studies shown that there was little evidence of increases in floods, and most 83 

results indicated that decreases in flood events were more prevalent than increases in many 84 

regions (Archfield et al., 2016; Do et al., 2017; Mallakpourand Villarini, 2015; Sharma et al., 85 

2018). Therefore, there is an urgent need to understand why the increases in extreme 86 

precipitation have not resulted in flood increases. 87 

Flood changes may be caused by multiple climatological, meteorological, anthropogenic, and 88 

hydrological factors (Sharma et al., 2018). It has been suggested that rising temperatures 89 

intensify the soil moisture drying (Gu et al., 2019a; Gu et al., 2019b) and reduce terrestrial water 90 



 

storage (i.e., groundwater, lakes, and reservoirs) (Slaterand Villarini, 2016), which may lessen 91 

the antecedent soil moisture and in turn may decrease flood magnitude, frequency, and/or 92 

duration. Furthermore, variations in atmospheric circulation can lead to storm mechanism 93 

changes as well as changes in catchment wetness states (Lu et al., 2013; Wasko et al., 2015). In 94 

addition, large-scale anthropogenic activities, such as dams construction (Mallakpourand 95 

Villarini, 2015), have greatly impacted the hydrological cycle, which may even surpass climate 96 

change impacts in some regions (Sharma et al., 2018). In addition to the abovementioned factors, 97 

floods are also influenced by catchment characteristics, such as vegetation coverage, irrigation, 98 

and urbanization (Hettiarachchi et al., 2018; Johnson et al., 2016). Although these factors have 99 

been individually known to contribution to regional hydrological changes across different 100 

regions, their impacts on global flood changes remain largely obscure. Hence, Sharma et al. 101 

(2018) suggested that future studies should focus on the relationship of flood changes to a series 102 

of factors. 103 

Therefore, the main objectives of this study are to (1) examine the changes in 104 

multidimensional flood behaviors across the globe and (2) investigate the causes of global flood 105 

changes. Consequently, this study performs a global assessment of flood changes in the recent 106 

half century, considering multidimensional flood behaviors in magnitude, frequency and duration 107 

and using an integrated dataset with streamflow observations from more than 20,000 gauging 108 

stations worldwide (Figure 1). 109 

2 Data 110 

2.1 Hydrological data 111 

The selection of abundant high-quality streamflow data is crucial for the detection of 112 

hydrological changes (Shengand Wang, 2012). However, limited by the number of hydrological 113 



 

data, most studies concerning flood changes are restricted to regional or national scales. Here, we 114 

synthesized a global dataset consisting of 21,955 gauging stations with daily streamflow data 115 

(Figure 1), which was compiled from the following eight national and international sources: 116 

(1). 9180 stations from the National Water Information System of the US 117 

(https://waterdata.usgs.gov/nwis) and GAGES-II database (Falcone et al., 2010).  118 

(2). 4628 stations from the Global Runoff Data Centre (GRDC; http://grdc.bafg.de). 119 

(3). 3029 stations from the HidroWeb portal of the Brazilian Agência Nacional de Águas 120 

(http://www.snirh.gov.br/hidroweb). 121 

(4). 2260 stations from EURO-FRIEND-Water (http://ne-friend.bafg.de). 122 

(5). 1479 stations from the Canada National Water Data Archive (HYDAT; https://www. 123 

canada.ca/en/environment-climate-change). 124 

(6). 776 stations from the Commonwealth Scientific and Industrial Research Organization 125 

(CSIRO) and Australian Bureau of Meteorology (http://www.bom.gov.au/waterdata) 126 

(Zhang et al., 2013). 127 

(7). 531 stations from the Chilean Center for Climate and Resilience Research 128 

(http://www.cr2.cl/recursos-y-publicaciones/bases-de-datos/datos-de-caudales) and 129 

CAMELS-CL (Alvarez-Garreton et al., 2018). 130 

This streamflow dataset was initially filtered using the following four steps: (1) the stations 131 

with more than 15% missing daily observations were discarded; (2) the years with missing daily 132 

observations were deleted for each station; (3) the stations with record ended before 2000 were 133 

exclude; and (4) the stations with less than 30 years during 1960-2017 were generally exclude. 134 

To make the spatial distribution of stations more even across the globe, in the continent with the 135 

highest station densities, i.e., North America, only the stations with at least 50-year records were 136 

http://www.bom.gov.au/waterdata


 

considered; while in the continent with the low station densities, i.e., Asia and Arica, the stations 137 

with more than 25 years of data were considered. In China, the stations with more than 18-year 138 

records were considered, since most stations in China just have 18-year records. As a result, 139 

there are 6573 stations meeting the requirement, with mean record length of 50 years during 140 

1960-2017. 141 

2.2 Meteorological data and catchment characteristics 142 

Extreme precipitation, temperature, and catchment characteristics for each catchment were 143 

extracted to assess their impacts on flood changes. The daily precipitation dataset with 0.1 144 

degrees was obtained from Beck et al. (2019). The monthly temperature data were obtained from 145 

the Princeton Global Forcing (PGF) dataset (http://hydrology.princeton.edu/data.pgf.php). The 146 

following catchment characteristics were used for the causality analysis: irrigated fraction, land 147 

cover, normalized difference vegetation index (NDVI), population, reservoir capacity, 148 

topographic slope, surface elevation, and soil texture. See Table 1 for data source details. It’s 149 

worth to mention that the meteorological data and catchment characteristics for each catchment 150 

are the mean value over the entire contributing area, which were extracted by using the 151 

shapefiles of catchment boundary. 152 

In addition, the Dams were taken from the Global Reservoir and Dams (GRanD) dataset 153 

(http://globaldamwatch.org/data/#core_global). GRanD dataset includes 8,502 large dams with a 154 

capacity of larger than 0.1 km
2
, which includes 1480 dams designed for flood control. Although 155 

this dataset was integrated from various research institutes, it is hard to include overall dams 156 

across the globe. The number of dams (only these designed for flood control was considered) in 157 

each catchment was identified based on the shapefiles of catchment boundary. If there is one (or 158 



 

more) flood-control dam within the catchment boundary of a hydrological station, then we 159 

considered it as a dam-affected station. 160 

2.3 GRACE data 161 

The Gravity Recovery and Climate Experiment (GRACE) satellite pair provides global 162 

monthly terrestrial water storage change (TWSC) data, which has been deemed valuable for a 163 

wide variety of applications, such as groundwater monitoring (Niu et al., 2014), flood forecasting 164 

(Reager et al., 2014), and drought monitoring (Long et al., 2014). The GRACE data are 165 

expressed in centimeters of equivalent water thickness with a spatial resolution of 0.5° and have 166 

been available since 2002. Although the temporal coverage of GRACE is relatively limited, 167 

these data may provide valuable information for hydrological simulations and predictions 168 

(Slaterand Villarini, 2016). The GRACE dataset was processed by the Jet Propulsion Laboratory 169 

with improved signal recovery, which can be downloaded from the GRACE Tellus website 170 

(https://grace.jpl.nasa.gov/data/get-data/). The relationship of TWSC to flood changes was 171 

assessed by using the common coverage periods of TWSC and floods, that is, during 2001-2015. 172 

2.4 Atmospheric circulation data 173 

To analyze the potential effects of atmospheric circulation on flood changes, we obtained the 174 

complete meteorological reanalysis dataset from the National Centers for Environmental 175 

Prediction and the National Centre for Atmospheric Research (NCEP/NCAR) (Kalnay et al., 176 

1996). The NCEP/NCAR reanalysis dataset has been widely used in the global atmospheric 177 

circulation study, and this dataset was created through data assimilation with a state-of-the-art 178 

analysis/forecast system (Kalnay et al., 1996) and continually updated globally since 1948. We 179 

selected monthly horizontal wind and geopotential height at 850 hPa with a spatial resolution of 180 

https://grace.jpl.nasa.gov/data/get-data/


 

2.5°×2.5°, which is available at the NCEP/NCAR website 181 

(https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html). 182 

3 Methods 183 

3.1 Flood sampling 184 

We applied both PF and POT sampling to get the series of flood magnitude, frequency and 185 

duration based on the observed daily streamflow data. The PF sampling extract seasonal and 186 

annual flood magnitude with maximum values of streamflow. The POT sampling obtained flood 187 

frequency and duration by accounting flood events over a threshold, which helps to capture a 188 

wide of flood events that are not constrained by the time when floods occurred. By using several 189 

flood series extracted by different flood thresholds (with averages of 3, 2, 1 and 0.5 flood events 190 

per year), Liu and Zhang (2017) found that the flood thresholds have limited impacts on the 191 

results of flood changes. To extract enough flood events and avoid counting the same events 192 

twice, following the study of Mallakpour and Villarini (2016), we used an average of 2 floods 193 

events per year and a two-week time window to ascertain the flood thresholds for each station. 194 

Then, to obtain the seasonal flood frequency and duration, the flood events during each year 195 

were separated into different seasons, i.e., spring (March to May), summer (June to August), 196 

autumn (September to November), and winter (December to February). 197 

3.2 Trend analysis 198 

The Mann-Kendall test was used to examine the trend significant of floods at 95% confidence 199 

level (Hirschand Archfield, 2015). To investigate whether the percentage of stations showing 200 

significantly increase/decrease was significant, Mann-Kendall test combining with the bootstrap 201 

sampling were applied (Do et al., 2017; Ishak et al., 2013; Westra et al., 2013). The steps in this 202 

approach are as follows: 203 

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html


 

1. Resample with a replacement time series of floods to set up a new dataset with the same 204 

length but different year order; 205 

2. Apply the Mann-Kendall test to examine the resampled flood at 95% confidence level, and 206 

count the percentage of stations showing significant trend in increase and decrease; 207 

3. Repeat 2000 times for the above two steps to obtain the percentage distribution of stations 208 

with significant trend; 209 

4. Calculate the 95
th

 percentile of percentage distribution, which represents the percentage of 210 

stations showing significant trend by random chance at 95% confidence level. 211 

The percentage of significant trends assessed by observed datasets were compared to the 95
th

 212 

percentile of percentage distribution assessed by resampled datasets. The null hypothesis is 213 

rejected when the former larger than the later, implying the observed percentage is not simply 214 

due to random, but significant at 95% confidence interval (Do et al., 2017). In addition, a 215 

moving-blocks bootstrap was to applied to avoid the intra-block correlation among different 216 

stations (Kiktev et al., 2003). 217 

The flood trends were also assessed at the regional scale for the 17 subcontinents (Fig S1). 218 

The subcontinents were divided in the IPCC 5
th

 Assessment Report (http://www.ipcc-219 

data.org/guidelines/pages/ar5_regions.html), which were widely applied to regional and global 220 

studies (Gudmundsson et al., 2019; Lehmann et al., 2018). The regional trends were calculated 221 

by the mean magnitude of trends (𝑇̅) with consideration of all stations on each subcontinent. In 222 

addition, regional Mann-Kendall test (rkt) was applied to investigate the confidence level of 223 

regional trend for each subcontinent (Henseland Frans, 2006). To avoid the intra-block 224 

correlation among different stations, the correction for the correlation among blocks was used 225 

(Hirschand Slack, 1984). The significantly regional trend was identified when the two-sided p-226 

http://www.ipcc-data.org/guidelines/pages/ar5_regions.html
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value (after correction for the intra-block correlation) small than 0.05. The regional trend test 227 

was carried by using the freely available rkt in R language (Marchetto et al., 2013). 228 

4 Results 229 

4.1 Global pattern of flood trends 230 

A global assessment shows that multidimensional floods (magnitude, frequency, and duration) 231 

do not change uniformly and vary over different regions (Figure 2). Clustering of increasing 232 

trend in multidimensional floods can be observed over western Europe, northern Australia, 233 

northeastern coastal of North America, and southern Brazil, while decreasing trends are 234 

sporadically distributed in western North America, eastern Brazil, North China, and southern 235 

Australia. 236 

For flood magnitude, more stations show significantly decreasing trend (SDT) than 237 

significantly increasing trends (SIT), with the percentage of 10.1% for the former and 7.1% for 238 

the later. On the contrary, for flood frequency, there are more station with SIT than that with 239 

SDT, with 565 (8.6%) stations for the former, but 473 (7.2%) for the later. For flood duration, 240 

there is no obvious difference in the percentage of station showing SDT and SIT. By investing 241 

the flood changes across the central United States, Mallakpour and Villarini (2015) found that 242 

limited evidence of significant changes in flood magnitude, while strong evidence pointing to an 243 

and increasing flood frequency. Furthermore, Hirsch and Archfield (2015) concluded that global 244 

flood not higher but more often across the central United states. This finding is also true for the 245 

global flood changes (Figure 2 a-b). 246 

Owing to randomness, there will be a certain percentage of stations showing significant trends 247 

(Archfield et al., 2016). Therefore, we applied a moving blocks bootstrap to test the field 248 

significance of the percentages of stations showing significant trend. Figure 3 shows that all the 249 



 

percentages reject the null hypothesis of no changes in floods, implying the percentages are not 250 

caused by random changes and are significant at 95% confidence level. 251 

In most cases, the signs of regional flood trends are consistent in different flood dimensions 252 

(Figure 4). Consistent increasing regional trends in multidimensional floods are observed in 253 

Amazon, Central Europe, Canada/Greenland/Iceland, Central North America, East North 254 

America, North Europe and Southeastern South America. In contrast, consistent decreasing 255 

trends are detected in Alaska/N.W. Canada, North Australia, North-East Brazil, South 256 

Australia/New Zealand, West North America. These results are broadly consistent with the 257 

previous studies in different regions, such as Europe (Bloschl et al., 2019; Gudmundsson et al., 258 

2017; Stahl et al., 2012), America (Mallakpourand Villarini, 2015), Amazon (Marengo et al., 259 

1998), Southern Africa (Fanta et al., 2001), Australia (Ishak et al., 2013; Liuand Zhang, 2017).  260 

As for the mean changes in multidimensional floods during 1960-2017, regional trends range 261 

from an increase of 6.6% to a decrease of -16.7% per decade (Figure 4). In the regions with 262 

significant trends, the percentages of stations showing significant trend and the mean Sen-Theil 263 

slope are generally larger than the global average. These results imply that the regional trend can 264 

represent the general regional changes of flood to some extent. The strongest signal is observed 265 

in South Australia/New Zealand, where the regional trends of flood magnitude, frequency, and 266 

duration decrease by more than 9.5% per decade, and more than 19.5% of stations showing SDT 267 

(Table 2). In contrast, the regional trends of flood magnitude and duration in North Europe are 268 

significantly increasing, with more than 15% stations showing SID. These results indicate that 269 

flood magnitude is generally connected to flood frequency and duration, implying that the floods 270 

tend to be larger and more frequent and last longer in some regions, while smaller, less frequent 271 

and shorter in other regions.  272 



 

4.2 The impacts of climate conditions and TWSC on flood trends 273 

Since the floods result from the interaction between climate conditions (e.g., heavy 274 

precipitation, temperature, and atmospheric circulation), TWSC and catchments characteristics, 275 

here we investigated the spatiotemporal changes of these drives and their relationship to flood 276 

trends. 277 

Obviously, larger and more frequent heavy precipitation has been observed around the world 278 

(Figure 5a-b), which was also found by previous studies (Donat et al., 2016). However, this 279 

phenomenon is largely inconsistent with global patterns in flood changes. Although the floods 280 

are generally significantly correlated with heavy precipitation (Figure 6), many regions show 281 

inconsistent tends between heavy precipitation and floods. Overall, there are 45.0% catchments 282 

showing different changing direction in the trends between heavy precipitation and floods 283 

magnitude. For all the catchments (488) showing SIT in heavy precipitation, there are only 34 284 

(7.0%) catchments showing SIT in flood magnitude, while 23 (4.7%) catchments showing SDT. 285 

Therefore, although the heavy precipitation is usually considered as an important factor of flood 286 

generation, the changes in heavy precipitation have limited impacts on flood changes. This 287 

finding is consistent with the case in United States (Berghuijs et al., 2016). By investigating the 288 

dominant flood generating mechanisms across the United States, Berghuijs et al. (2016) found 289 

that heavy precipitation poorly explained the changes in flood. As a result, flood changes are 290 

usually affected by multiple driving factors (Hall et al., 2014). 291 

Besides, Figure 6d shows that higher temperatures tend to associate with decreasing floods in 292 

most catchments. There is enough evidence that warming temperatures lead to greater 293 

evapotranspiration and drier soils (Sheffieldand Wood, 2008), which reduces the antecedent soil 294 



 

moisture prior to floods. As a result, significantly increasing temperatures (Figure 6d) can lead to 295 

decreased flooding in most catchments.  296 

The changes in atmospheric circulation would transform the dominant mechanism of a storm 297 

(Lu et al., 2013) by changing the heavy precipitation frequency and antecedent soil moisture 298 

conditions (Mallakpourand Villarini, 2016), which may further result in flood changes (Liu et al., 299 

2018). Here, we examine the trends in the horizontal wind and 850 hPa geopotential height 300 

during the 1960-2017 period to investigate the possible impacts of atmospheric circulation 301 

changes on floods (Figure 7 and S3).  302 

As is well known, prevailing westerlies play a key role in controlling climatic changes in 303 

Europe. During spring and winter, which are the major flood seasons across Europe (Figure S4), 304 

northern Europe is covered by an anomalous low-pressure center (Figure 7a; 7c), while southern 305 

Europe and their adjacent waters are controlled by an anomalous high-pressure center. The 306 

intensive horizontal pressure gradient force enhances the prevailing westerlies and transports 307 

warmer and wetter moisture from the Atlantic to northern Europe (Figure 7b and 7d). In 308 

addition, the low-pressure center is also accompanied by an updraft, which promotes moisture 309 

convergence and triggers more moisture condensation (Najibi et al., 2019). As a result, 310 

significantly increasing trends in floods are detected in northern Europe. In contrast, southern 311 

Europe is covered by an anomalous high-pressure center, which drives weaker prevailing 312 

westerlies and goes against moisture transport, causing decreasing flood trends (Figure 2).  313 

Australia is controlled by an abnormal northerly wind, which results in warm-wet wind from 314 

the Pacific that covers northern Australia, while dry-heat wind from the arid inland covers 315 

southern Australia. As a result, distinct north-south differences in the flood trends are detected 316 

across Australia (Figure 2, see also Liuand Zhang, 2017). A similar pattern is also observed in 317 



 

Brazil. Eastern Brazil is controlled by the inland west wind, while southern Brazil is controlled 318 

by an east wind from the south Atlantic. This leads to decreasing floods in eastern Brazil and 319 

increasing floods in southern Brazil (Figure 2). The detected consistent spatiotemporal patterns 320 

regarding the relationships between variations in atmospheric circulation and flood trends 321 

confirm that the shifts in atmospheric circulation have a great influence on flood changes. 322 

Liquid water equivalent thickness measured by GRACE can be regarded as a proxy for 323 

regional TWSC (Slaterand Villarini, 2016). Interestingly, the flood changes in magnitude, 324 

frequency, and duration are generally consistent with the trends in TWSC (Figure 8), especially 325 

for the seasonal scale (Figure 9). Significantly increasing trends in floods are observed in the 326 

middle part of North America, where regional water storage changes also show increasing 327 

trends. On the other hand, significantly decreasing trends in floods over the middle part of 328 

southern America, southern Brazil, northern China, and southern Africa are also in line with the 329 

trend in TWSC. These results indicate that water storage changes are an important driver of flood 330 

changes. It should be noted that, limited by the record length of GRACE satellite, here the 331 

GRACE and flood trends are based on the periods of 2013-2016. Nevertheless, the spatial pattern 332 

in the flood trends showing in Figure 8 is broadly similar to that observed during 1960-2017 333 

(Figures 2). 334 

4.3 The impacts of catchment characteristics on flood trends 335 

To investigate the influence of dams on multidimensional flood changes, we summarized the 336 

percentages of stations showing significant trend among the stations include one or more dams 337 

that designed for flood control and completed /operational during 1960-2017. And then we 338 

applied the bootstrap approach to test the significant level of the percentages (Figure 10). In 339 

contrast to the case considering all stations (Figure 2), the percentages of dams-impacts stations 340 



 

with SIT in both magnitude, frequency and duration of flood are obviously smaller, with the 341 

percentage of 5.1%, 5.5%, and 8.8%, respectively; while that showing SDT are much larger, 342 

with the percentage of 20.4%, 13.2% and 12.1% respectively. In addition, the percentages of 343 

stations showing SIT in both flood magnitude and frequency are not significant. However, the 344 

percentages of stations showing SDT are significant at 95 confidence level, which implies that 345 

the null hypothesis of no changes in flood is rejected and the percentages are not caused by 346 

random chance. Interestingly, the dams have different impacts on flood magnitude, frequency, 347 

and duration. For flood magnitude, the percentages of stations showing SDT are four times larger 348 

than that showing SIT. For flood frequency and duration, however, these ratios are greater than 349 

two times and smaller than two times, respectively. These results indicate that the flood-control 350 

dams are indeed important for reducing flood, with the greatest impacts on flood magnitude, 351 

followed by flood frequency and duration. 352 

To investigate the impacts of other catchment characteristics on flood trends, in the following 353 

analyses, we mainly focus on flood changes in the catchments that exclude large dams. We 354 

stratify the stations with few dams’ impact into three groups with an equal number of stations 355 

(i.e., third quantiles) based on the values of each characteristic (Figure 11, S5 and S6). 356 

Significantly decreasing trends in multidimensional floods are more likely to occur in large 357 

catchments (Figure 11b, S5b and S6b), where the TWSC and evapotranspiration play more 358 

important roles (Ivancicand Shaw, 2015), particularly under a globally warming climate. In 359 

addition, the detected coverage area of storm events showed generally decreasing trends, which 360 

will further intensify the decreasing trends in large catchments (Chang et al., 2016; Wasko et al., 361 

2016). With the increase of elevation, the percentage of stations showing SIT (SDT) in 362 

multidimensional floods tends to decline (rise). Irrigation enhances evapotranspiration and 363 



 

reduces runoff prior to flood generation (Payero et al., 2008). Consequently, the percentages of 364 

stations showing SDT in the regions with high irrigation fraction are larger than that with low 365 

irrigation fraction (Figure 11d). At high latitudes, the percentages of stations showing significant 366 

increase in multidimensional floods are all obviously larger than that at low latitudes (Figure 367 

11e), which is supported by increasingly wet conditions in the high latitude, such as north 368 

Europe (Stahl et al., 2010; Stahl et al., 2012) and north Asia (Tananaev et al., 2016). In addition, 369 

global climate model also projected that the wetting condition at high latitudes will continue in 370 

the future (Greve et al., 2018). Urbanization not only changes catchment permeability and 371 

roughness (Sharma et al., 2018) but also modifies precipitation intensity (Gu et al., 2019c). As a 372 

result, the percentages of stations showing SIT rise with the increase of urbanized fraction. 373 

Catchment characteristics play an important regulating role in flood changes (Tanoue et al., 374 

2016). Overall, stations with SID in multidimensional floods are more likely to occur in the 375 

catchments with low elevation, higher latitude, low slopes, and/or high urbanization. In contrast, 376 

stations with SDT in multidimensional floods are usually in the catchments with high aridity 377 

indexes, high elevation, and/or high irrigation fraction (Figures 11, S4 and S5).  378 

5 Discussion and conclusions 379 

Although the impacts of flood disasters have risen in recent decades (Tanoue et al., 2016), the 380 

question of whether floods in different dimensions (e.g., magnitude, frequency, and duration) are 381 

increasing remains largely unanswered at the global level. A greater frequency (but not a greater 382 

amount) of floods has been detected in the central United States (Mallakpourand Villarini, 2015). 383 

However, a little evidence for increasing trends in flood frequency has been found in other 384 

regions around the globe. Therefore, the results of this study provide a systematic update to flood 385 

changes across the globe. Comparing existing global assessments (Do et al., 2017; Gudmundsson 386 



 

et al., 2019), the key progress resulting from this study is the consideration of multidimensional 387 

flood behaviors, as well as both the sign and magnitude of the trends; Moreover, the possible 388 

mechanisms of flood changes were investigated. 389 

The global assessment highlights that spatial patterns in the signs of trends are generally 390 

consistent across multidimensional flood behaviors, with larger magnitude, more frequent and 391 

longer in duration in some regions but smaller, less frequent and shorter in other regions. This 392 

finding largely agrees with the previous study (Gudmundsson et al., 2019), which shows that the 393 

entire streamflow distribution is changing upward or downward for different regions worldwide. 394 

For flood magnitude, there are more stations showing SDT than SIT, which is consistent with the 395 

results of previous studies (Do et al., 2017; Kundzewicz et al., 2014). However, for flood 396 

frequency, significantly increasing trends were detected in more stations. From a global 397 

perspective, this result verified the argument from Hirsch and Archfield (2015) that floods tend 398 

to be more frequent rather than larger in central United States. 399 

It is worth to mention that observed multidimensional flood trends may not continue in the 400 

future, since these changes may be also caused by the climate variability and human activities, 401 

rather than persistent climate change (Hodgkins et al., 2017). In addition, since the observed 402 

trends depend on the record period, the changing features of global floods may be different if the 403 

record period changed (Bloschl et al., 2019; Hall et al., 2014). However, our results are broadly 404 

consistent with previous studies in terms of regional flood changes and projected climate 405 

changes. For examples, previous studies have reported increasing floods in northern Europe 406 

(Bloeschl et al., 2017) and northern Australia (Liuand Zhang, 2017), while more decreasing 407 

floods were found in western North America (Whitfield, 2001) and southern Australia (Liuand 408 

Zhang, 2017). In addition, global climate models from CMIP5 ensemble suggest that the wetting 409 



 

conditions with the global warming were projected in many regions, such as northern North 410 

America, southern Brazil, northern Europe (Greve et al., 2018); however, increasing drying 411 

conditions were detected in southern North America, eastern Brazil, northern Mediterranean, 412 

southern Arica, and southern Australia (Greve et al., 2018). These results from isolated regional 413 

floods studies and global climate projections are broadly consistent with our findings. 414 

A clear spatiotemporal mismatch was detected globally between heavy precipitation and flood 415 

changes, that is, more increases in magnitude and frequency of heavy precipitation and the lack 416 

of corresponding increases in floods, even with outnumbered stations showing decreasing floods 417 

in most cases. Consequently, heavy precipitation is a crucial cause of flood formation but not 418 

flood changes. This finding implies that other hydroclimatic factors play a more important role in 419 

flood changes. Our findings reveal that globally multidimensional flood behaviors can be largely 420 

attributed to shifts in atmospheric circulation, TWSC, and dams’ regulation, as well as the 421 

impacts of reducing the antecedent moisture deduction through warming temperature, with land 422 

use changes regulating the flood response. 423 

The main limitation of this study is that the uneven distributed stations over the world and 424 

different temporal coverage of streamflow records for different stations, which may affect the 425 

results in the regional and global assessment to a certain degree. In addition, we investigate the 426 

the possible sources of the spatiotemporal changes in floods by qualitatively, rather than a 427 

quantitative attribution. However, the results of this study present an unprecedented insight into 428 

global-scale changes in multidimensional flood behaviors as well as their potential mechanisms. 429 

The results of this study are helpful for increasing our understanding of flood changes and their 430 

causes for climate change impact assessments and flood disaster prevention. 431 

 432 
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 616 

Figure 1. Maps showing the information of (a-e) global 21,955 hydrological stations and (f) the 617 

selected 6,852 stations. 618 

Figure 2. Maps of trends in the flood magnitude, frequency and duration. The red (blue) 619 

triangles represent the stations showing significantly increasing (decreasing) trends at the 620 

95% confidence level. 621 

Figure 3. The percentages of stations showing significantly increasing and decreasing trend in 622 

flood (a-b) magnitude, (c-d) frequency, and (e-f) duration. The histogram shows the 623 

percentages distribution of stations with significant trend obtained by 2000 bootstrap 624 

sampling. The dark gray dashed lines indicated the 95th percentile of percentages 625 

distribution. The red dots represent the percentages based on the observed dataset. 626 

Figure 4. Maps for regional-mean changes (%/decade) in flood magnitude, frequency and 627 

duration. The ‘S’ symbols represent regions with a significant trend at the 95% confidence 628 

level. 629 

Figure 5. Maps for the trends in heavy precipitation magnitude and frequency, mean 630 

precipitation and temperature. The red (blue) triangles indicate catchments with significant 631 

decreasing (increasing) trends at the 95% confidence level. 632 

Figure 6. Maps for the correlations among floods, heavy precipitation and temperature. Only the 633 

stations with significant correlation were presented. The colors for points represent 634 

correlation coefficients. The histogram shows the percentages of stations with significantly 635 

positive and negative correlation by using red and blue colors, respectively. 636 

Figure 7. Linear trends in the 850 hPa geopotential height (left panels) and horizontal wind 637 

(right panels) at the seasonal scale from 1960-2017 by using the NCEP/NCAR reanalysis 638 

data. 639 



 

Figure 8. Maps showing the trends in flood magnitude, frequency and duration, alongside trends 640 

in terrestrial storage change (TWS) in cm/yr during 2003-2016. The area in red (blue) 641 

presents a decreasing (increasing) trend in TWSC. The red (blue) points represent the 642 

stations showing significantly increasing (decreasing) trends in floods at the 95% 643 

confidence level. 644 

Figure 9. the same to figure 8, but for seasonal scale. 645 

Figure 10. The percentages of dams-impact stations that showing significantly increasing and 646 

decreasing trend in flood (a-b) magnitude, (c-d) frequency, and (e-f) duration. The 647 

histogram shows the percentages distribution of stations with significant trend obtained by 648 

2000 bootstrap sampling. The dark gray dashed lines indicated the 95th percentile of 649 

percentages distribution. The red dots represent the percentages based on the observed 650 

dataset. 651 

Figure 11. The differences in the percentages of stations (excluding the stations affected by 652 

dams) with significantly increasing and decreasing trends in flood magnitudes under 653 

different catchment characteristics. The L, M and H denotes the values smaller than first 654 

third, between the first and second third, and larger than the last third for each catchment 655 

characteristic. The intervals indicate the 5% and 95% uncertainties. 656 

 657 

Table 1. Global datasets used in extracting the catchment characteristics 658 

Variables Data sources Spatial resolution 

Irrigation 

Global Map of Irrigation Areas (GMIA) 

(http://www.fao.org/nr/water/aquastat/irrigationma

p/index10.stm) 

5 arcmin× 5 arcmin 

Land cover 
ESA GlobCover Version 2.3 

(https://www.edenextdata.com/?q=content/esa-
9 arcsec × 9 arcsec 



 

globcover-version-23-2009-300m-resolution-land-

cover-map-0) 

NDVI 

MODIS Vegetation Index Products 

(https://ecocast.arc.nasa.gov/data/pub/gimms/) 

(Buermann et al., 2002) 

7.5 arcsec × 7.5 

arcsec 

Population 

Gridded Population of the World (GPW) 

(http://sedac.ciesin.columbia.edu/data/set/gpw-v4-

population-count) 

30 arcsec × 30 

arcsec 

Slope and 

Elevation 

GTOPO30 global digital elevation model 

(http://www.temis.nl/data/gtopo30.html) and 

ViewFinder DEM 

(http://viewfinderpanoramas.org/) 

30 arcsec × 30 

arcsec 

Soil profile Soil grid (https://soilgrids.org) 
7.5 arcsec × 7.5 

arcsec 

 659 

Table 2. The percentage of stations showing significant increasing (decreasing) trends in flood 660 

magnitude, frequency and duration for different regions. 661 

NO. Regions LAB Stations Magnitude Frequency Duration 

1 Alaska/N.W. Canada ALA 112 4.5 (10.7) 8 (11.6) 10.7 (8) 

2 Amazon AMZ 148 13.5 (2.7) 11.5 (0) 10.1 (0.7) 

3 Central Europe CEU 526 12.7 (5.5) 5.7 (4.6) 7.8 (6.5) 

4 Canada/Greenland/Iceland 
CGI 133 

17.3 

(14.3) 
15 (6.8) 29.3 (10.5) 

5 Central North America CNA 1153 8.8 (8.5) 11.2 (7.8) 17.5 (7.7) 

6 East North America ENA 1309 5.7 (7) 10.9 (5.1) 6 (7.5) 

7 North Australia NAU 195 2.6 (1) 0 (4.1) 4.6 (2.6) 

8 North-East Brazil NEB 377 2.7 (15.4) 2.7 (9.3) 2.7 (18.8) 

9 North Europe NEU 382 15.2 (2.9) 16.2 (1.8) 17.5 (2.1) 

10 South Australia/New 

Zealand 
SAU 395 1.5 (21.8) 2 (19.5) 1.8 (23) 

11 Southeastern South America SSA 382 13.6 (4.2) 9.9 (3.1) 10.2 (4.5) 



 

12 West North America WNA 1298 4.3 (13.9) 6.2 (10.4) 5.4 (11.6) 

13 West Coast South America WSA 163 3.1 (11.7) 6.1 (3.1) 1.8 (6.7) 

 662 



Figure 1.



1910 1920 1930 1940 1950 1960 1970 1980

(a) Starting date

1980 1985 1990 1995 2000 2005 2010 2015

(b) Ending date

1 2 3 4 5 6 7 8

(c) Percentage of missing data (%)

30 60 90 120 150 180 210 240

(d) Maximum gap (day)

10 20 30 40 50 60 70 80

(e) Record length (year)

10 20 30 40 50 60 70 80

(f) Record length (year) for selected stations



Figure 2.



0

5

10

15
(%)

(a) Flood Magnitude

0

5

10

15
(%)

(b) Flood Frequency

0

5

10

15
(%)

(c) Flood Duration

Significant increase Significant decrease



Figure 3.



7.5

8.6

9.2

10.1

7.8

9.7

(e) Significant increase for duration (f) Significant decrease for duration

(c) Significant increase for frequency (d) Significant decrease for frequency

(a) Significant increase for magnitude (b) Significant decrease for magnitude

0 5 10 15 0 5 10 15

0

100

200

300

0

100

200

300

0

100

200

300

Percentage of stations with significant trend (%)

C
ou

n
ts

 (
20

00
 b

oo
ts

tr
ap

 s
am

p
le

s)



Figure 4.



S

S

S

S

S

S

S

S

(a) Flood Magnitude

S

S

S

S

S

S

(b) Flood Frequency

S

S

S

S

S

S

S

S

(c) Flood Duration

-10

-8

-6

-4

-2

0

2

4

6

8

10



Figure 5.



0

5

10
(%)

(a) Magnitude of heavy precipitation

0

5

10
(%)

(b) Frequence of heavy precipitation

0

5

10
(%)

(c) Mean precipitaiton

0

50

100
(%)

(d) Mean temperature

Significant increase Significant decrease



Figure 6.



0
20
40
60
80

(%)

(a) Magnitude in flood and heavy precipitation 

0
20
40
60
80

(%)

(b) Frequency in flood and heavy precipitation 

0
20
40
60
80

(%)

(c) Flood duration and heavy precipitation frequency

0
5

10
15
20

(%)

(d) Flood magnitude and temperature

-1 - -0.7
-0.7- - 0.5

-0.5 - -0.3
-0.3-0

0 - 0.3
0.3 - 0.5

0.5 - 0.7
0.7 - 1



Figure 7.



50°S

0°

50°N

-10

-6

-6

-6

-6 -6-2

-2
-2 -2

-2

2

2
2

2

2

2
2

2
2

2 2 2

2

2

2 2

2

26 6

6

6

10

-10 -8 -6 -4 -2 0 2 4 6 8 10 gpm/10y

(a) Geopotential height in winter

100°W 0° 100°E

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 m/s/10y

(b) Wind in winter

-10 -10-6 -6-2

-2

-2

-2

-2

-2

2

2

2 2

2

2

2

2

2 2

2

2

2

2

2

2

6 6 6
6

-10 -8 -6 -4 -2 0 2 4 6 8 10 gpm/10y

(c) Geopotential height in spring

50°S

0°

50°N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 m/s/10y

(d) Wind in spring

50°S

0°

50°N

-10-6 -6 -6 -2

-2

-2

2

2

2

2

2

2 2

2 26
6
10

-10 -8 -6 -4 -2 0 2 4 6 8 10 gpm/10y

(e) Geopotential height in summer

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 m/s/10y

(f) Wind in summer

100°W 0° 100°E

-10
-6 -6
-2

-2

-2 -2

2
2

2

2

2

2 2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

6

-10 -8 -6 -4 -2 0 2 4 6 8 10 gpm/10y

(g) Geopotential height in autumn

50°S

0°

50°N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 m/s/10y

(h) Wind in autumn



Figure 8.



(a) Magnitude

(b) Frequency

(c) Duration

< -4

-4

-3

-2

-1

0

1

2

> 2



Figure 9.



(a) Magnititude in spring (b) Frequency in spring (c) Duration in spring

(d) Magnititude in summer (e) Frequency in summer (f) Duration in summer

(g) Magnititude in autumn (h) Frequency in autumn (i) Duration in autumn

(j) Magnititude in winter (k) Frequency in winter (l) Duration in winter

< -4

-4

-3

-2

-1

0

1

2

> 2



Figure 10.



5.1

5.5

8.8

20.4

13.2

12.1

(e) Significant increase for duration (f) Significant decrease for duration

(c) Significant increase for frequency (d) Significant decrease for frequency

(a) Significant increase for magnitude (b) Significant decrease for magnitude

0 5 10 15 20 25 0 5 10 15 20 25

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

Percentage of stations with significant trend (%)

C
ou

n
ts

 (
20

00
 b

oo
ts

tr
ap

 s
am

p
le

s)



Figure 11.
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