Knowledge Inventory of Foundational Data Products in Planetary Science

Jason R. Laura¹

¹United States Geological Survey

November 22, 2022

Abstract

Some of the key components of any Planetary Spatial Data Infrastructure (PDSI) are the data products that end-users wish to discover, access, and interrogate. One precursor to the implementation of a PSDI is a knowledge inventory which catalogs what products are available, from which data producers, and at what initially understood data qualities. We present a knowledge inventory of foundational PSDI data products: geodetic coordinate reference frames, elevation or topography, and orthoimages or orthomosaics. Additionally, we catalog the available gravity models that serve as critical datums for the assessment of spatial location, spatial accuracy, and ultimately spatial efficacy. We strengthen our previously published definitions of foundational data products to assist in solidifying a common vocabulary that will improve communication about these essential data products.

Knowledge Inventory of Foundational Data Products in Planetary Science

J. R. Laura¹

 $^1 \mathrm{United}$ States Geological Survey, Astrogeology Science Center

Key Points:

3

4

5

8

9

10

- This work identifies over 100 foundational data products for the solar system.
- This work describes criteria for orthoimage and orthomosaic products to be considered foundational.
- Foundational data product metadata, including internal accuracy and interoperability are reported.

Corresponding author: J. R. Laura, jlaura@usgs.gov

11 Abstract

Some of the key components of any Planetary Spatial Data Infrastructure (PDSI) are 12 the data products that end-users wish to discover, access, and interrogate. One precur-13 sor to the implementation of a PSDI is a knowledge inventory which catalogs what prod-14 ucts are available, from which data producers, and at what initially understood data qual-15 ities. We present a knowledge inventory of foundational PSDI data products: geodetic 16 coordinate reference frames, elevation or topography, and orthoimages or orthomosaics. 17 Additionally, we catalog the available gravity models that serve as critical datums for 18 the assessment of spatial location, spatial accuracy, and ultimately spatial efficacy. We 19 strengthen our previously published definitions of foundational data products to assist 20 in solidifying a common vocabulary that will improve communication about these essen-21 tial data products. 22

23 1 Introduction

The ultimate goal of a Planetary Spatial Data Infrastructure (PSDI) (Laura et al., 24 2017) is to have spatial data be discoverable, accessible, and usable by the non-spatial 25 expert; spatial data should just work. The average planetary scientist does not currently 26 have unencumberd access to systems to discover and access homogenized spatial data 27 with reported spatial accuracies and fitness-of-use information without requiring process-28 ing which needs spatial expertise. The cost of this processing is non-trivial (Malik & Fos-29 ter, 2012) and numerous terrestrial Spatial Data Infrastructures (SDIs) and clearinghouses 30 have been developed to address these issues (Arctic SDI Working Group on Strategy, 2015; 31 Craglia, 2010; Crompvoets et al., 2004). 32

Laura et al. (2018) proposed a framework for the development of a PSDI and iden-33 tified them as an example of a complex adaptive system (e.g. Grus et al., 2010). Those 34 efforts were top-down and described broad functional and organizational requirements 35 for the successful development of a PSDI. A bottom-up approach can be employed (e.g. 36 Rajabifard et al., 2002) where a PSDI is composed of five elements: users, policies, stan-37 dards, access networks, and data. By adopting this view, we conceptually isolate data 38 as an independent component, and identify those products necessary to bootstrap a PSDI 39 implementation. The first step in creating a data centric view of a PSDI is to understand 40 what data are available. 41

The creation, development, and retention of institutional knowledge that supports successful operations is a critical activity (van Donk & Riezebos, 2005). A knowledge inventory is a systematic cataloging of the knowledge currently retained within an organization (van Donk & Riezebos, 2005). This information can bootstrap the creation of foudational data products where gaps are identified (Archinal, Laura, Kirk, et al., 2017) and seed geoportals (Maguire & Longley, 2005; Beyer et al., 2018) with rapidly available data in order to drive the development in a user-centric direction.

In this work, we refine existing definitions of foundational data products, and we identify candidate spatial products as foundational data products. In the course of this effort we detail the criteria used to asses whether a product is foundational, describe the methods used to locate these products, and enumerate a body-by-body listing, creating a knowledge inventory.

⁵⁴ 2 Defining Foundational Data Products

Laura et al. (2017) identify three classes of foundational planetary data products: geodetic coordinate reference frames, topography, and orthoimages. Members of the planetary science community have written abstracts, book chapters, and given presentations seeking to clarify the definition of a planetary foundational data product (e.g. DellaG- iustina et al., 2018; Laura et al., 2018; Archinal, Laura, Becker, et al., 2017; Dickson &
 Ehlmann, 2019).

Laura et al. (2017, 2018) assert that defining a product as foundational is based 61 on two criteria. The first criteria is that foundational data products must facilitate or 62 allow for rigorous spatial error assessment and reporting. In order to apply and draw con-63 clusions from spatial analysis methods one must understand the impact of random and 64 systematic errors in their data sets as these errors propagate through any subsequent anal-65 ysis. Sources of spatial error must be accounted for in the interpretation of analysis re-66 sults. Without knowledge of the spatial efficacy of the data, it is quite possible to draw 67 erroneous conclusions using robust statistical methods. The second criteria is that foun-68 dational data products must have the widest possible scope of impact across the sub-69 set of the planetary sciences making use of spatial data. 70

The interpretations and conclusions drawn from these observational studies in plan-71 etary sciences frequently depend upon the ability to make geographic and geometric com-72 parisons to processes that have been observed terrestrially. Therefore, the accuracy and 73 associated error of the observed information is of critical importance when seeking to draw 74 conclusions. Orthoimages are the only products that are rigorously transformed from 75 direct observations into a geospatial context that maintains accurate spatial relationships. 76 We assert that all other derived products, while of critical importance for some aspects 77 of planetary science, do not have both a scope of impact as deep or broad as the three 78 aforementioned foundational data products and the ability to quantify spatial accuracy 79 to report spatial efficacy. 80

81

98

2.1 Geodetic Coordinate Reference Frame

A defined and agreed upon geodetic coordinate reference is the foundation upon which geospatial analysis rests (Drewes, 2009). The reference frame is a method used to communicate the precise location of something in relation to an agreed upon origin (Archinal et al., 2018).

As described in Laura et al. (2017), the International Astronomical Union (IAU) 86 Working Group on Cartographic Coordinates and Rotational Elements (Archinal et al., 87 2018) defines the geodetic coordinate reference frame for all major bodies in the Solar 88 System. This includes the definition of North, a prime meridian, and an equator (thereby 89 defining a horizontal datum), as well as the definition of some shape or shape approx-90 imation (thereby defining a vertical datum). By adopting the IAU recommendations, com-91 munication about spatial locations and spatial relationships is possible because all users 92 are communicating using the same system. We note that gravity models can be stored 93 in a different system (principal axis), but conversion is possible to the broadly used IAU-94 recommended system. In instances where common geodetic coordinate reference frames 95 are not adopted or are mixed, the potential for unintended spatial errors to occur is sig-96 nificantly increased. 97

2.2 Elevation

We look to Maune et al. (2007) to tighten the previously provided (Laura et al., 99 2017, 2018) definitions for foundational elevation data sets. Tightening the definition is 100 critical to avoid confusion in how heights are reported and due to an increased number 101 of missions collect data from small bodies and derive foundational data products, e.g., 102 (Barnouin et al., 2019). Elevation data sets report a series of heights relative to an un-103 derlying datum. Three classes of heights are (1) orthometric height, (2) ellipsoidal height, 104 or (3) Cartesian height. Normally, the reported height is the orthometric height, or the 105 distance along a plumb line between some surface point and a defined geoid (Vaníček 106 et al., 2012; Maune et al., 2007). Where the geoid is an equipotential gravity derived sur-107

face that is a product of the distribution of mass within the body. On Earth, the geoid 108 approximates mean sea level. Since the geoid is derived from an underlying gravity model 109 the accuracy of the geoid is directly impacted by the knowledge of the underlying den-110 sity of the surface; even on Earth the densities of the surface are not entirely known (Vaníček 111 et al., 2012). These ellipsoidal heights are the distance, along a perpendicular plumb line, 112 between the surface and a best fit bi- or tri-axial ellipsoid. If the orthometric height (H) 113 and the ellipsoidal height (h) are known, the good height (N) can be computed as N =114 h - H. Finally, Cartesian heights are the distance from a center of mass or center of fig-115 ure defined origin and a surface point, generally reported as the Z component in a stan-116 dard 3D Cartesian coordinate system. 117

Reporting and interpreting heights for small and irregular bodies is more problem-118 atic than for large, roughly spherical bodies. First, the accuracy of reported orthome-119 tric heights can be significantly impacted by the estimation of a geoid. For small, irreg-120 ular bodies, assumptions such as uniform density can lead to significant error in the geoid. 121 Additionally, rapid variation in the geoid and potentially non-correlated changes in the 122 already irregular shape can make interpretation of orthometric heights challenging. Sec-123 ond, bi- or tri-axial ellipsoid approximations of the overall shape are not sufficiently ac-124 curate to yield comparable heights across the body. Third, the irregular shape of the body 125 also make comparisons of Cartesian heights outside local regions of rough topographic 126 homogeneity non-intuitive. The challenges in creating, interpreting, and using founda-127 tional elevation data product for small, irregular bodies have not precluded their creation. 128 Below, we identify elevation data sets reporting orthometric heights that we suspect are 129 being using and interpreted most commonly in local spatial regions, as well as shape mod-130 els reporting Cartesian heights that we believe are being primarily used for global to-131 pography and general shape comparisons. 132

Once a vertical datum is selected, topographic data (collected using lidar, radar, or derived from Infrared (IR), Near Infrared (NIR), and visible data using photoclinometry, stereophotoclinometry, and/or stereophotogrammetry techniques) can be placed into local, regional, and global contexts. In instances where lidar data are collected, these data frequently become proxy products for the geodetic coordinate reference frame, e.g., Lunar Orbiter Laser Altimeter (LOLA) as the product used to define the lunar geodetic coordinate reference frame.

2.3 Orthoimages

140

The third kind of foundational data products are orthoimages. Orthoimages are 141 derived from remotely sensed images (IR, NIR, Visible Spectrum (VIS)) that are geo-142 metrically corrected for topography and sensor orientation (tilt). Thrower and Jensen 143 (1976) state that 'orrespondent the state of 144 data might be both more accurately measures and communicated because of the spe-145 cial attributes of the orthophoto map, namely, the image of an aerial photograph and 146 the metric qualities of a controlled line map'. Orthoimages are planimetrically correct 147 (Greeley & Batson, 2007; Jensen, 2009), and can be used to measure geographic distances, 148 shapes, angles, and areas for features that are independent of topography (Jensen, 2009). 149 An example of a planimetric feature that is frequently considered in the planetary sci-150 ences would be an impact crater. The shape, bounding ellipse, angles of orientation along 151 the semi-major axis, or distance between features are all independent of the underlying 152 topography. In fact, removal of topographically induced error is essential to quantify the 153 true geometric properties of the feature. 154

The accuracy of orthoimages are highly correlated to the accuracy of the underlying DEM or shape model that is used for topographic correction. This is because each pixel of the unrectified image is projected to the surface, a surface elevation is extracted from the DEM, and the pixel value interpolated into the correct value. Errors in the Dig-

ital Elevation Model (DEM), or errors in image to DEM co-registration translate into 159 errors in look vector intersection. These errors result in interpolated values that are in-160 correct. Differences in resolution between image data and topographic data (e.g. a 6 m/pixel 161 image and a 463 m/pixel DEM) result in orthoimages that are only truly orthorectified 162 over the longest wavelength surface features. When assessing orthoimages for accuracy 163 and fitness of use, understanding the accuracy and provenance of the underlying DEM 164 is essential. Data products definable as orthoimages range from those orthrectified to a 165 spherical body representation to those orthorectified to a high resolution DEM. 166

167 Occluded features in an image are those which are not visible due to a particular image geometry. In the terrestrial case, orthoimages of urban areas exhibit occlusion when 168 features are blocked by a tall object (e.g. buildings). In the planetary case, occlusion is 169 evident in images with highly oblique observation angles, when image limbs are in view, 170 and on irregularly shaped bodies. A classic orthoimage will either interpolate the occluded 171 areas, resulting in image smear, or fill the unobserved areas with null data. If multiple 172 observations of the same feature are acquired with different viewing geometries, an or-173 thoimage which minimizes these occluded areas can be created. 174

In addition to supporting robust computation of geographic relationships, orthoimages are also critical for photometry and spectroscopy. Hapke (1981) identifies phase, the angle between the sun and the sensor at a given geographic location (pixel), as impacting observed reflectance spectra. Uncorrected topographic relief directly impacts the shape of the observed reflectance spectra. Accurate topographic and sensor orientation is necessary to help achieve the highest possible accuracy in the observed reflectance spectra.

Orthoimages are essential data products derived from DEMs and remotely sensed image data. The act of orthorectification corrects for relief and sensor orientation induced error in order to have a planimetrically correct, two-dimensional, representation of the observed scene. Orthoimages allow for accurate measurement of distances, morphologies, areas, and geographic relationships. The ability to assess these relationships is a cornerstone to being able to perform accurate assessment of the fitness-for-use of a given data product.

¹⁸⁹ 2.4 Gravity Models

Gravity models are not foundational data products themselves, but are an important component in their creation. We include them in our knowledge inventory because accurate gravity models serve to improve the spatial efficacy of all spatial data.

Gravity models acquired via radio tracking (e.g. D. E. Smith et al., 2012, for the case of Mercury) allow for the computation of a geoid. The geoid is an equipotential surface from which accurate radii and by extension an ellipsoidal datum can be extracted. A gravity model significantly improves the accuracy of geodetic coordinate reference frames and derived topography.

198

2.5 Byproducts of Foundational Data Products

The creation of foundational data products results in the derivation of a number of valuable byproducts. These include: (1) image mosaics, (2) geodetic control networks, (3) updated ephemeris information, and (4) photometric models. These byproducts are valuable for scientific study in and of themselves, quantifying and reporting spatial accuracies, generating or updating foundational data products, or building context during a scientific study.

2.5.1 Image Mosaics

205

Image mosaics are not foundational data products. Image mosaics can be gener-206 ated from observations, foundational products, or other derived products. Therefore, the 207 classification of image mosaics is nuanced, and a function of the provenance of the un-208 derlying input data. Greeley and Batson (2007) frame and contrast image mosaics (photomosaics in the original texts) with true maps, stating that '[t]hey differ from true maps 210 because photographic images are collections of complicated light and dark patterns re-211 lated to both illumination and surface coloration and thus do not lend themselves to pre-212 213 cise verbal or schematic definitions. Geometrically, they are perspective views...[and] are projections of three-dimensional objects onto two-dimensional image planes.' This de-214 scription is of images that have been mosaicked with adjacent images to generate a sin-215 gle image of larger spatial extent. Mosaicking non-foundational data products does not 216 result in a foundational data product. Mosaicking foundational orthoimages results in 217 a second-order foundational data product, i.e., a foundational data product that has been 218 derived from existing foundational data products, the underlying orthoimages in this case. 219

Below, we present a classification scheme for image mosaics to help data users de-220 termine whether or not the products they have discovered or created can be considered 221 second-order foundational. To understand the fitness for use of a particular product, it 222 is necessary to understand what potential spatial errors exist, the extent or magnitude 223 of those errors, and the impact of the error on the analysis to be performed. In sum, we 224 consider this the spatial efficacy of the derived product. We identify four contributing 225 components that can be used to assess the spatial efficacy of an image mosaic: (1) geode-226 tic control, (2) reference frame, (3) rectification, and (4) intended use. 227

Geodetic Control: The methods used to align image mosaics define the classifica-228 tion of then derived product. Image mosaics can be controlled, semi-controlled, or un-229 controlled. In order to classify as a controlled mosaic, the sensor positions and orienta-230 tions of multiple images must have been updated using a rigorous photogrammetric bun-231 dle adjustment (described below). The application of bundle adjustment and subsequent 232 updates to the sensor ephemerides results in both improved geographic location on the 233 surface and absolutely quantifiable spatial accuracy. Semi-controlled mosaics can be cre-234 ated by taking the initial, estimated geographic position, and then warping (rubber sheet-235 ing or georeferencing) the images on the surface into a position where discontinuities be-236 tween images are minimized. The resulting products are generally visually quite appeal-237 ing, but have a limited capacity for spatial accuracy assessment and are unsuitable for 238 cross product error analysis or co-registration with a spatial accuracy requirement. Fi-239 nally, uncontrolled image mosaics use the initial, estimated geographic location of the 240 images on the surface without any correction for inter-image discontinuities. Uncontrolled 241 image mosaics are well suited for a first look at a geographic region, but care must be 242 taken as the image locations within the scene are approximate. 243

Reference Frame: A controlled (or semi-controlled) mosaic can be related to the
reference frame either relatively or absolutely. A relatively controlled image mosaic 'floats'
above the geodetic coordinate reference frame and has not been tied to the broader geospatial context. An absolutely controlled image mosaic has been rigorously tied to a geodetic coordinate reference frame. Therefore, intra-data set evaluations (assuming both products are controlled to the same coordinate reference frame) are possible.

Rectification: The level of rectification applied to the images in the image mosaic
 also defines the fitness-for-use. As described above, unrectified images are in a perspective view that suffers from topographic and sensor orientation induced errors. Orthorec tified images have been topographically corrected for a planimetric view. A rigorously
 controlled image mosaic that has been rectified to a spherical body representation can
 suffer from significant topography induced errors that can not be removed simply by con-

trolling the data, and we do not consider such an image or mosaic to be orthorectified
 without topographic information.

Intended Use: Finally, image mosaics can be classified based upon the way in which 258 the individual pixels or Digital Number (DN) values are being reported. We classify these 259 as either being qualitative or quantitative. In the former, image ordering is selected for 260 cosmetic effect to minimize image boundaries and generate an appealing product to view. 261 Image seams can then be further masked using any number of image processing tech-262 niques (e.g., boxcar filtering, gradient domain tonal matching, etc.) Image mosaics for 263 science applications can be generated using a quantitative approach to image ordering, for example by minimizing emission angles and preferring nadir viewing geometries, or 265 by selecting images with the highest spatial resolution. This usage distinction is the least 266 quantitative as the act of deriving an image mosaic requires that some quantity of data 267 are removed from the final product. 268

Table 1 enumerates the possible permutations given the above classes. We note that 269 uncontrolled image mosaics are neither relatively nor absolutely controlled as the image 270 locations are a best approximation based upon initial sensor position and pointing. Semi-271 controlled mosaics and relatively controlled image mosaics with orthorectification are po-272 tentially suitable products for a wide range of science studies assuming that spatial er-273 rors are reported and science uses are resilient to spatial errors at the appropriate spa-274 tial scale. Semi-controlled products are not suitable for image co-registration as the er-275 rors that propagate through the process are potentially non-linear and quantification is 276 exceptionally problematic. Orthorectification and absolute control operate in conjunction to derive a product with the highest spatial accuracy. The act of absolute control 278 makes co-registration of the image data to the underlying DEM more accurate. The higher 279 co-registration accuracy in the DEM results in higher accuracy orthoimages, and by ex-280 tension a more accurate image mosaic. Only absolutely controlled, orthorectified image 281 mosaics can be considered foundational data products. An image mosaic meeting these 282 criteria is a second order foundational product as it is derived from the aforementioned 283 foundational data products. In Section 3, below, we identify image mosaics that are de-284 rived from foundational data products and image mosaics that are not derived from foun-285 dational data products. In the case of the latter, the image mosaics derived from non-286 foundational data products are the current best available. 287

288

301

2.5.2 Control Networks

Control networks are the collection of the points identifying common features across 289 two or more images that can be used to photogrammetrically control some number of 290 images (e.g. M. T. Bland et al., 2018). They are not foundational data products. The 291 photogrammetric control process utilizes the points within a control network to update 292 the position, orientation, velocity, and potentially sensor characteristics in order to min-293 imize the 3D pixel reprojection error between all observations of the same point (e.g. Beyer et al., 2018). The result of this process is updated sensor and spacecraft ephemeris in-295 formation (described below). The publication and distribution of control networks sup-296 port the iterative refinement of ephemeris information across research teams, co-registration 297 of data across sensors and spacecraft, and robust assessments of accuracy. Sparse con-298 trol networks have been used as a basis for topographic point densification, subsequent 299 shape model estimation, and DEM derivation (e.g., (K. J. Becker et al., 2016)). 300

2.5.3 Updated Ephemeris Data

Ephemeris data are the position, orientation, and characteristics of a sensor that allow one to parameterize a sensor model (Laura et al., 2018) and spatialize a recorded value from the sensor to the surface of a body. Through the process of deriving relatively or absolutely controlled images and image mosaics, or through the use of updated ra-

FDP	Control	Reference Frame	Orthorectified	Digital Numbers	Fit-for-Use
			No	Qualitative	Quick view not
	Uncontrolled	N/A	NO	Quantitative	geospatial, errors not
	encontronou	11/11	Ver	Qualitative	quantified
			res	Quantitative	1
				Qualitative	Regional Work, Small
			No		Scale $(1:500,000+),$
		Relative		Quantitative	spatial errors can be
				Qualitative	meaningful and a
No	Semi-Controlled		Yes		product of multiple
				Quantitative	factors
					Regional Work, Small
				Qualitative	Scale $(1:500,000+),$
			No		spatial errors can be
		Absolute			meaningful and a
					product of multiple
				Quantitative	instrument errors can
					be compounding
					Regional Work, Small
			N	Qualitative	Scale $(1:500,000+),$
			Yes		spatial errors can be
					meaningful, cross
				Quantitative	instrument errors can
					be compounding
					Geospatially enabled,
			No	Qualitative	spatial errors can be
		Belative	110		meaningful, cross
					nstrument work is not
	Controlled			Quantitative	geometric
					relationships are clean
					Geospatially enabled
				Qualitative	cross instrument work
			Yes	, , , , , , , , , , , , , , , , , , ,	is not possible,
					inter-data set
				Quantitative	geometric
					relationships are clean
					Geospatially enabled,
			No	Qualitative	cross instrument work
		Absolute			possible, geometric
				Quantitative	relationships are
					inaccurate
					Fully geospatially
Yes			Yes	Qualitative	enabled, spatial errors
- 00					are quantifiable, cross
					instrument work
				Quantitative	possible, change
					detection possible

Table 1. Permutations of qualities for image mosaics. All image mosaics should include rigor-ous error reporting that drives appropriate fit-for-use statements.

dio tracking, spacecraft ephemeris data are updated. This includes adjustments to the 306 exterior orientation including data acquisition time(s), sensor position and orientation(s) 307 with respect to some datum, and sensor velocities (which are a proxy to time). It is also 308 possible that the derivation of controlled products will result in adjustments to a sen-309 sor's interior orientation, such as focal length, optical center, or other sensor character-310 istics (e.g. M. Robinson et al., 2012; Speverer et al., 2018). In a planetary context this 311 information is most commonly stored in SPICE kernels (Acton, 1996). Updated ephemerides 312 are invaluable and must be made available to the community as they allow for the ac-313 curate spatialization of individual data products and not just the use of derived image 314 mosaics. As an example use case, with updated ephemeris information, one can perform 315 change detection analysis knowing that controlled image data will co-register at some 316 quantifiable accuracy. 317

318 2.6 Photometric Models

Domingue et al. (2016) state '[p]hotometric analyses are used to standardize im-319 ages obtained at a variety of illumination and viewing conditions to a common geom-320 etry for the construction of maps or mosaics...'. Accurate photometric models, of par-321 ticular importance to small bodies research where image data can exhibit rapidly chang-322 ing incidence and emission angles within a single scene, are necessary to correct illumi-323 nation in much the same way that accurate topography are necessary to correct for ge-324 ometric distortion. Photometric models allow for the correction of an image, orthoim-325 age, or orthomosaic to represent viewing from a single observation and illumination ge-326 ometry. The estimation and application of photometric models requires co-registered im-327 age and elevation data for the highest possible accuracy. 328

329 **3 Knowledge Inventory**

Here we enumerate the available foundational data products and gravity models 330 for bodies in the Solar System for which flyby or orbital missions have acquired data. 331 The listing does not include telescopic observations, as they are not generally used to 332 create spatially enabled products. Reported data have been identified using the PDS, 333 the USGS Astropedia search tools, the Japan Aerospace Exploration Agency (JAXA) 334 Data ARchive and Transmission System (DARTS) interface, the European Space Agency 335 (ESA) Planetary Science Archive (PSA), the Chinese National Space Administration (CNSA) 336 Data Archives, the Smithsonian Astrophysical Observatory/ NASA Astrophysics Data 337 System, and reference lists from peer-reviewed publications and conference abstracts. 338

No accuracy assessments have been performed as part of this work, and all reported internal data quality metrics are drawn from the broader literature, typically the data creator. We report both horizontal and vertical accuracies, when available.

Horizontal and vertical accuracies are reported relative to some agreed upon geode-342 tic coordinate reference frame (horizontal and vertical datum). Therefore, the accura-343 cies reported do no include horizontal and vertical error that exists in the coordinate ref-344 erence frame proxy. Lunar Reconnaissance Orbiter Camera (LROC)-Narrow Angle Cam-345 era (NAC) DEMs, identified below in the Moon section, provide an example of the im-346 pact of this nuanced distinction that impacts how the products can and should be used. 347 The LROC-NAC DEMs report a horizontal accuracy of 1.5 meters relative to the LOLA 348 reference frame. As a user of the data product, it is important to understand that the 349 1.5m horizontal error is relative to the LOLA reference frame and the actual, absolute 350 error that should be considered in analysis would be the 1.5m LROC-NAC DEM error 351 plus the reported 20m LOLA reference frame error. 352

We are unable to include internal data quality metrics such as attribute or metadata accuracy, semantic accuracy (defined narrowly as an assessment of the correctness for semantic interoperability in data discovery), and logical consistency (the internal consistency of a product), as we have not identified any foundational data producers that are reporting these criteria. We hope that future data custodians (those persons or organizations that take ownership and provide long term maintenance of a data product Laura et al., 2017), will consider assessing and maintaining a full suite of internal data consistency metrics.

Data products with GeoTiff, GeoJPEG2000, or Open Geospatial Consortium (OGC) 361 compliant Web Mapping formats are Geographic Information System (GIS) ready. Prod-362 ucts in these formats fulfill our 'spatial data should just work' requirement (Laura et al., 363 2017). Data in the IMG or IMQ formats and published in a peer-reviewed archive are 364 the highest quality products, but are generally not GIS ready (Laura et al., 2018). Fi-365 nally, we were unable to provide external data quality metrics because data producers 366 have not reported on the fitness of use or qualitative usability of a given product. In gen-367 eral, we have sought to identify those products which are highly available. By this we 368 mean that the products have been deposited into a long-lived data archive (e.g., the Plan-369 etary Data System (PDS), PSA, DARTS) or are broadly available over the internet via 370 some non-archival data portal (e.g., a mission team, university, or even personal web-371 site). We have identified unreleased products as those products where the data are not 372 freely available. In some cases, one can request the data from a data creator. In other 373 cases, the data are simply unavailable to the general public. Requestable and unavail-374 able data products have been identified below but we assert that they can not be iden-375 tified as foundational as they can not be widely used by the broader community. 376

3.1 Mercury

377

Data from both the Mariner 10 (Cook & Robinson, 2000) and Mercury Surface Space 378 Environment, GEochemistry, and Ranging (MESSENGER) (Solomon et al., 2007) mis-379 sions have provided a wealth of data from which a large number of foundational data 380 products have been derived. In Table 2, we identify 21 foundational data products. A 381 radio-tracking-derived gravity model, HgM008 (Genova et al., 2019), and Mercury Laser 382 Altimeter (MLA) derived geodetic parameters (Zuber et al., 2012) define the geodetic 383 coordinates reference and geodetic parameters. It is to this reference frame and the MLA 384 proxy that foundational data products should be registered. The Deutsches Zentrum für 385 Luft- und Raumfahrt (DLR) generated DEMs (Preusker, Oberst, et al., 2017; Stark et 386 al., 2017; Preusker, Stark, et al., 2017; Oberst et al., 2017) report good geometric rigidity to the MLA data suggesting that these products are in alignment with the geodetic 388 coordinate reference frame. The stereoscopically derived global model (K. J. Becker et 389 al., 2016) does not report being constrained by the MLA geodetic coordinate reference 390 frame though Neumann et al. (2016) report differences. Regional DEMs (Fassett, 2016; 391 Manheim et al., 2017) do report, where possible being tied to MLA. Orthoimages gen-392 erated through the DEM creation process (Manheim et al., 2017) are absolutely controlled 393 to the reference frame when those underlying DEMs make use of MLA ground ties. It 394 is not clear if the global orthorectified products (Murchie et al., 2017) have been tied to 395 the geodetic coordinate reference frame. While we report that the global mosaic prod-396 ucts (Murchie et al., 2017) are absolutely controlled and orthrectified, they are at best 397 orthorectified to the global DEM. The resolution disparity between these data sets is greater 308 than 450 m. 399

We note that the breadth of Mercury orthorectified foundational data products demonstrate the potential explosion in co-registered data sets with quantifiable spatial efficacy when a single geodetic coordinate reference frame is agreed upon and control networks are widely shared. Given the wealth of products, potential exists to focus on quantifying spatial accuracies and other internal quality metrics as well as beginning to co-locate data sets and collect external quality metrics that would be of immense value to the nonspatial expert data user. Finally, we note that mosaicked, orthorectified products exist at a global scale, but a source for individual controlled and orthorectified images in a geospatial format that are readily ingested into a GIS do not appear to be available.

3.2 Venus

409

422

We have identified five foundational data products, collected by the Magellan mis-410 sion (Saunders & Pettengill, 1991) for Venus. The MGNP180U gravity model was cre-411 ated using data from the Magellan and Pioneer Venus Orbiter (A. Konopliv et al., 1999) 412 Using these data a reference geoid has been derived. Additionally, Wieczorek (2015) pro-413 vide a Venus gravity model built using data derived from Magellan (GTDR3.2), Pioneer 414 Venus, and Venera 15/16 altimetry. This is a degree 719 spherical haromic model ava-415 ialble in a plain text format and hosted on both Zenodo and GitHub. Synthetic Aper-416 ture Radar (SAR) collected topography (Saunders et al., 1990) that was used to derive 417 near global topography (Ford & Pettengill, 1992). Radar collected Mosaicked Image Data 418 Record (MIDR) data and left-look, right-look products were used to create uncontrolled 419 global mosaic products. Using the currently available data, it appears that the limit of 420 foundational data product creation has been attained. 421

3.3 Moon

The intense scientific interest in our nearest planetary neighbor has resulted in a 423 large number of current foundational data products with high spatial resolutions and reported accuracies. The GRGM1200A gravity model (Lemoine et al., 2014; Goossens et 425 al., 2016), derived using data from the Gravity Recovery and Interior Laboratory (GRAIL) 426 (Zuber et al., 2013), is the most accurate and well understood planetary gooid (discount-427 ing the Earth). Barker et al. (2016) suggest that the LOLA/Kaguya Terrain Camera (TC) derived topography, SLDEM2015, has 'become the reference geodetic framework for the 429 lunar community and has led to the highest resolution and most accurate polar digital 430 elevation models (DEMs) to date.' The gravity model, global LOLA product (Neumann, 431 2009) and SLDEM2015, with spatial extent between 60 °S and 60 °N (Barker et al., 2016), 432 provide a highly accurate and globally defined horizontal and vertical datum to which 433 all other lunar observations can be controlled. Additionally, the existence and accuracy 434 of these datums can serve to demonstrate the value associated with data collection and 435 derivation of a single, agreed upon geodetic coordinate reference frame. 436

It is not clear if the Apollo data (Nefian et al., 2009) are tied to the reference frame. The Kaguya TC (Haruyama et al., 2012) are not photogrammetrically controlled and are therefore relatively consistent internally, but not tied to LOLA. Finally, we see conference presentations describing the Chandrayaan-1 Terrain Mapping Camera (TMC) stereoscopically derived DEM (Sivakumar et al., 2012), but have not been able to identify a publicly accessible place to access the data product.

The only absolutely controlled lunar orthomosaics are generated alongside the LROC-443 NAC DEM products (Henriksen et al., 2017). The LROC team has also generated high 444 quality, but uncontrolled orthomosaics of the Lunar North and South poles (Wagner et 445 al., 2015). We note that these products are likely orthorectified to a LOLA base, so an 446 appreciable scale disparity between the LROC-NAC resolution and LOLA derived to-447 pography will exist that impacts the accuracy of the orthorectification process in areas 448 of high relief. Likewise the Kaguya global orthomosaic (Haruyama et al., 2012) and in-449 dividual orthoimages (Haruyama et al., 2012) are uncontrolled. The orthorectification 450 of the Kaguya TC orthoimages should be quite good as the underlying DEMs are gen-451 erated using the to-be-rectified source images and are therefore absolutely internally con-452 sistent. Finally, we can not classify the LROC-Wide Angle Camera (WAC) product as 453 being absolutely controlled as errors in the data were corrected to subpixel visual accu-454 racy by updating the sensor interior orientation (M. Robinson et al., 2012). Therefore, 455 while the WAC mosaic product is qualitatively of exceptional accuracy, the success of 456

the pseudo-registration is a function of the a priori accuracy of the exterior orientation
(spacecraft ephemeris) and the pixel resolution. Likewise, the global Clementine product was registered to the LROC-WAC base (Speyerer et al., 2018) meaning that that product is also not absolutely controlled by the definition we propose above.

3.4 Mars

461

In recent years Phobos and Deimos have seen a rapid expansion in the number of 462 available foundational data products due to both reprocessing of older data (Ernst et 463 al., 2015; Ernst, Gaskell, et al., 2018) and the derivation of new products using Mars EX-464 press (MEX) High Resolution Stereo Camera (HRSC) data. Phobos is well served with 465 a global control network (albiet unreleased), multiple elevation data sets generated us-466 ing different methods that allow for cross comparison (R. W. Gaskell, 2011; Wählisch 467 et al., 2010; Ernst, Gaskell, et al., 2018), and a wealth of absolutely controlled image data 468 sets captured by HRSC, Viking Orbiter, Phobos 2, Mars Global Surveyor (MGS), MEX, 469 and Mars Reconnaissance Orbiter (MRO) (Ernst, Gaskell, et al., 2018). Those data sets 470 available via the Small Bodies Mapping Tool (SBMT) (Ernst, Barnouin, et al., 2018) are 471 not also mirrored through another download location for use in a different tool. While 472 less well covered, Deimos has also benefited from the release and reprocessing of older 473 data and is available via the SBMT. Deimos foundational data products include a shape 474 model and collection of absolutely controlled image data products (Ernst, Gaskell, et al... 475 2018). We have identified the Phobos and Deimos image data (Ernst, Gaskell, et al., 2018) as being absolutely controlled as the spacecraft ephemerides (positions) were updated 477 in order to the features to the body shape models (personal communication, C. Ernst). 478 As of the writing of this manuscript, the updated kernels have not been released. 479

Mars currently has the highest number of foundational data products in this in-480 ventory. This is due to the number of different flight missions that have collected map-481 ping data, the products that can and have been created using these products, the num-482 ber of different research teams testing methods for product derivation using the same 483 data sets, and the number of landed missions that require the highest spatial efficacy re-484 gional products. The Mars science community is well served with gravity models, a geode-485 tic coordinate reference system proxy in the form of the MGS Mars Orbiter Laser Al-486 timeter (MOLA) (D. E. Smith et al., 1999), the MDIM2.1 control network (Archinal et 487 al., 2001, 2003) and the MDIM2.1 absolutely controlled image mosaic. All three prod-488 ucts can and have been used as proxies for the accepted Mars reference frame allowing absolute control of subsequent data sets. 490

Mars gravity was collected and derived using MGS data (Albee et al., 2001) result-491 ing in numerous iteratively released gravity models including the final MGS95J model 492 (A. S. Konopliv et al., 2006). These gravity data products were then superseded by data 493 collected by the MRO (Zurek & Smrekar, 2007) spacecraft and resulted in the release 494 of the most accurate gravity model to date, the Goddard Mars Model 3 (GMM-3) gravity model (Genova et al., 2016). We also note the incremental release of the Goddard 496 Mars Model 2B (GMM-2B) product that was used as the basis for the MOLA gridded 497 DEM products. These include an interpolated global product at a maximum of 128 pix-498 els per degree, as well as regionally tiled Mission Experiment Gridded Data Records (MEGDRs). 499

We have identified eight different foundational elevation data products from global 500 to local spatial extents. The MOLA interpolated DEM (Lemoine et al., 2001) and merged 501 HRSC-MOLA product (Fergason et al., n.d.) provide global coverage with areas of in-502 terpolation at the poles due to a data gap and larger interpolated gaps, in the case of 503 MOLA, at the equator due to the sensor orbit. While the individual HRSC DEMs are 504 available at 50m per pixel and approximately 44% surface coverage, the merged prod-505 uct is made available at 200m per pixel. At the middle resolutions and spatial extents 506 the Colour and Stereo Surface Imaging System (CaSSIS) (Conway et al., 2018; Re et al., 507

2019) sensor on the ExoMars Trace Gas Orbiter spacecraft, HRSC (Gwinner et al., 2010;
Dumke et al., 2010; Putri et al., 2019), and MRO Context Camera (CTX) (Fergason et al., 2018; Fergason et al., 2017) sensors have been used to generate regional scale DEMs.
We note that the CaSSIS DEMs are, at this time, not available for download or preview.
At the highest spatial resolution, the USGS and University of Arizona have generated
over 600 High Resolution Imaging Science Experiment (HiRISE) stereoscopically derived
DEMs (Kirk et al., 2008; University of Arizona, 2019).

The wealth of Mars elevation data has naturally led to a large number of available 515 orthoimages and orthomosaics. At a global scale, the absolutely controlled MDIM2.1 mo-516 saic (Kirk et al., 2001; Archinal et al., 2003) and semi-controlled CTX mosaic (Dickson 517 et al., 2018) are available. We note that the former is appropriate for follow on control 518 work while the latter, even if georeferenced to MOLA, is not as the image data are semi-519 controlled; this assessment is inline with that published by the data producer. With a 520 spatial extent from 60 °S to 60 °N the absolutely controlled and orthorectified (to MOLA) 521 THErmal EMission Imaging System (THEMIS) day and night infrared mosaics offer the 522 highest resolution, absolutely controlled orthomosaiced data currently available (Fergason 523 et al., 2013). At more regional scale, more than 1250 HRSC-derived orthoimages (Gwinner 524 et al., 2010) have been generated and released. The orthorectification of these products 525 should be of exceptionally high quality as the scale disparity between the image data (~ 12.5 m/pixel) 526 and DEM ($\sim 50 \text{ m/pixel}$) is small. We note that Mars Quadrangle (MC) 11 has been the 527 focus for automated co-registration (Sidiropoulos et al., 2018) of high resolution visible 528 spectrum data to an HRSC DEM and orthomosaic resulting in the registration of Viking 529 Orbiter, Mars Orbiter Camera (MOC)-NAC, THEMIS-VIS, MRO CTX and MRO HiRISE 530 data (Sidiropoulos & Muller, 2016; Sidiropoulos & Muller, 2016). The MC11 data are 531 available via the iMars web-GISystem (Walter et al., 2017) (personal communication J. 532 Muller). 533

Also at the regional scale though with much more limited spatial coverage, the USGS-534 generated, absolutely controlled CTX orthomosaics for landing site analysis are avail-535 able (Fergason et al., 2017). These products should not be confused with the relatively 536 controlled CTX orthomosaics generated for initial human landing site select work (Hare 537 et al., n.d.). The former are of high spatial efficacy while the latter are 'floating' over 538 the surface and not usable for cross instrument analysis. Finally, the HiRISE-derived DEM 539 products are released with associated orthoimages offering the highest resolution, abso-540 lutely controlled Mars data. 541

3.5 Jupiter

542

In Table 6, we identify 11 foundational data products across five bodies. Neither 543 Jupiter nor the four Galilean Satellites (Io, Europa, Ganymede, and Callisto) have full 544 gravity models or global topography. Some partial gravity models exist: second degree 545 tidal and rotational parameters for Io (J. D. Anderson et al., 2001), a third degree spher-546 ical harmonic model for Europa (J. D. Anderson et al., 1998), an estimate of the spher-547 ical harmonics for Ganymede (J. D. Anderson et al., 1996), and the mass and unnormal-548 ized quadrupole gravity coefficients for Callisto (J. Anderson et al., 2001). A gravity model 549 for Jupiter has been created (Iess et al., 2018; Buccino et al., 2018) and is presented in 550 Iess et al. (2018) in tabular form. The Jovian system has limited elevation data prod-551 ucts available. RAND Corporation generated control networks for Io, Europa, Ganymede, 552 and Callisto (M. Davies et al., 1979), in conjunction with the IAU body definitions, they 553 are the current defacto geodetic coordinate reference frames. Io has the only publicly avail-554 able topography, a stereoscopically-derived DEM with approximately 75% coverage and 555 one kilometer per pixel equatorial resolution (White et al., 2014). 556

Images used to create these mosaics were collected by the Galileo Solid State Imager (SSI)(Belton et al., 1992), Voyager 1 (B. A. Smith et al., 1981), and Voyager 2 (B. A. Smith et al., 1979). These were fly-by data acquisition missions. Therefore, the nominal pixel resolution at which a mosaic is being released is not the actual resolution at which images were acquired. For example, the Europa Je 15M CMN controlled photomosaic has a pixel scale between 200m per pixel and 20km per pixel. Therefore, in Table 6, we report pixel ranges for image mosaic resolutions.

564 **3.6 Saturn**

We have identified 22 foundational data products for the moons of Saturn (Table 565 7). These products have been derived from data collected by the recently ended Cassini 566 mission (Matson et al., 2003). We have not identified any gravity models for the Satur-567 nian system though many shape model and stereoscopically derived topography prod-568 ucts have been created. These include shape models for Mimas, Enceladus, Tethys, Dione, 569 and Phoebe (R. W. Gaskell, 2013b, 2013d, 2013a). Topography products for Mimas, Ence-570 ladus, Tethys, Dione, Rhea and Iapetus have been created (P. Schenk, 2010), but have 571 not been released to the planetary science community. Finally, Titan has been well served 572 with an eighth order spherical harmonic gravity model and associated geoid (Corlies et 573 al., 2017). Data from Cassini SAR were used to create a spline-interpolated, global el-574 evation product of Titan (Lorenz et al., 2013) at 40km per pixel. Unfortunately, it ap-575 pears that this product is only available as a publication figure both from the publisher 576 and from the first author's website. Corlies et al. (2017) built upon the original SAR-577 interpolated topography using data from three sources: (1) SAR-derived topography (Stiles 578 et al., 2009), (2) altimetry data using flight time and nadir viewing geometries (Zebker 579 et al., 2009), and (3) radar-stereophotogrammetrically derived DEMs (Kirk et al., 2012). 580 The resultant product has 8.9% global coverage using non-interpolated sources. 581

Finally, the DLR has generated a number of semi-controlled, or relatively controlled 582 image mosaics of Mimas (Roatsch et al., 2018), Enceladus (Roatsch et al., 2018), Tethys 583 (Roatsch, Kersten, Matz, Preusker, et al., 2016), Dione (Roatsch, Kersten, Matz, Preusker, 584 et al., 2016), and Rhea (Roatsch, Kersten, Matz, Preusker, et al., 2016). These products, 585 like the Jovian image mosaics, are being released at a nominal scale, but are using flyby 586 data collected across a range of spatial scales. We have identified these as being relatively 587 controlled because they are not using a proxy geodetic coordinate reference frame to as-588 sert an absolutely controlled ground location. This is important because none of the afore-589 mentioned products include accuracy assessments in the referenced works or alongside 590 the data (in instances where the data are released). 591

3.7 Uranus

592

Foundational data products for the Uranian system, Table 8, are limited as map-593 ping data were only collected by flyby observations from the Voyager 1 and Voyager 2 594 spacecraft. Therefore, we have not identified any gravity models for the reported bod-595 ies. RAND Corp generated control networks and the USGS created airbrush photomo-596 saics for Miranda (13 images), Ariel (10 images), Umbriel (6 images), Titania (20 im-597 ages), and Oberon (5 images). The photo mosaics are available as USGS-generated map 598 sheets in PDF format; these products are not geospatially enabled and ready for use. The 599 control networks have been published online and include the images used to generate them. 600 Unfortunately, software to make use of the networks is not available, therefore these data 601 are also not GIS ready. A user could not independently use the network and update SPICE 602 information to process and project the images in the photo mosaics. We have identified 603 topography products for Ariel, Titania, and Miranda generated using a combination of 604 stereophotogrammetry and photoclinometry near the terminator (P. M. Schenk, 2008). 605 Unfortunately, we have not located a source for these data or associated metadata be-606 yond the figures and text in the abstract. 607

608 **3.8** Neptune

We have identified three foundational data products for Triton, Table 10. Voyager 1 and Voyager 2 flyby data were used by the RAND Corporation to generate a control network using 57 images of Triton. From these data, a controlled unrectified mosaic was created to the extent of coverage. These data were also used to generate a unreleased DEM using stereophotogrammetry and photoclinometry near the terminator (P. M. Schenk, 2008).

615

3.9 Pluto and Charon

Foundational data products for Pluto and Charon have been created from data from 616 the recent New Horizons mission (Stern et al., 2015) and are summarized in Table 12. 617 We have not identified any gravity models, but multi-image control networks (unreleased) 618 have been created to control images of the 40% of the surface that was imaged during 619 the flyby (P. M. Schenk et al., 2018b, 2018a). In addition, the creation and adjustment 620 of these networks yielded updated SPICE spk and ck kernels that support image-wise 621 map projection to the current geodetic coordinate reference frame, these kernels are be-622 ing prepared for submission to the PDS (personal communication, R. Beyer). The con-623 trolled fly-by image data were then used to generate a global (to data coverage) image 624 mosaic, compute body radii, and generate stereophotogrammetric DEMs. Based on the 625 descriptions in P. M. Schenk et al. (2018b) and P. M. Schenk et al. (2018a), we have clas-626 sified the derived image mosaics as being absolutely controlled and un-rectified. 627

628 3.10 Sn

3.10 Small Bodies

Small bodies reported in this section fulfill two criteria. First, the bodies are not
associated, as per the NAIF numbering scheme, to a primary body. Therefore, these bodies all have NAIF identifiers in the 2000000 range. Second, these small bodies have been
the target of mapping efforts. The significantly larger collection of Near Earth Objects
(NEOs) is not the target of this knowledge inventory and the interested reader could explore the PDS small bodies node, the NASA Jet Propulsion Laboratory (JPL) maintained
NHATS database, or the JPLs small-body database browser.

The knowledge inventory, summarized in Table 13, covers asteroids (Ceres, Vesta, 636 Lutetia, Eros, Steins, Itokawa, Bennu, Ryugu) and comets (Borrelly, 67P-CG, 103P/Hartley, 637 and Tempel-1). Each has been served by a mission with instruments capable of creat-638 ing the three aforementioned foundational data products. The Dawn mission (Russell 639 & Raymond, 2012) captured gravity and imaging data of Ceres sufficient for the deriva-640 tion of a global gravity model good to 300 km/pixel (A. S. Konopliv et al., 2012; Kono-641 pliv et al., 2018), as well as global and regional DEMs of varying spatial resolutions us-642 ing both stereophotogrammetric methods (Preusker et al., 2016; Jaumann et al., 2017) 643 and stereophotoclinometric (SPC) methods (Park et al., 2019). Using the derived elevation data absolutely controlled, global orthomosaics were created using data from both 645 the High Altitude Mapping Orbits (HAMOs) and the Low Altitude Mapping Orbits (LAMOs) 646 (Roatsch, Kersten, Matz, Preusker, et al., 2016). We note a lack of published accuracy 647 assessments (particular with respect to horizontal errors). The PDS archives 'extras' di-648 rectory provides geospatial ready GeoTiffs for immediate use in a GIS. Foundational data 649 products derived and made available for Vesta mirror those generated for Ceres with a 650 gravity model (A. Konopliv et al., 2014), stereophotogrammetrically derived DEMs (Preusker 651 et al., 2012; Jaumann et al., 2012), a SPC derived shape model (R. W. Gaskell, 2012), 652 and absolutely controlled orthomosaics (Roatsch et al., 2013; Le Corre et al., 2017). 653

For Eros, Itokawa, Bennu, Lutieta, Steins, and Ryugu, we have identified a number of elevation products. We have not identified any geodetic coordinate reference frame products (though the elevation products could act as a proxy) or any available orthoim-

ages (whether individual or mosaiced). A SPC shape model for Eros exists in the PDS 657 (R. W. Gaskell, 2008) though we did not locate any error reporting on the product. Like-658 wise, we have found two videos of Structure from Motion (SfM) and SPC-generated shape 659 models of Ryugu in press releases, but have not been able to locate the data (JAXA, n.d.). 660 Finally, a Bennu shape model has been archived in the PDS (Nolan et al., 2013)that in-661 cludes both horizontal and vertical error reporting. We also note that for many of the 662 asteroid and comet shape models, global imaging in direct sunlight was not possible. There-663 fore, the global shape models are composite products making use of radar data and fea-664 ture silhouetting. 665

For many of the comet shape models, we report the resolution as the number of 666 facets or plates in a given model. Each facet is either a triangle or quadrilateral repre-667 senting a 'flat' surface. In general, the higher the number of plates the higher the shape 668 model resolution. In instances were the data producers or follow-on papers have reported 669 a nominal ground scale, we have reported this. For example, Jorda et al. (2012) report 670 the nominal ground scale of facets in the Steins SPC derived shape model to be better 671 than 70 meters. For these objects, we see what appear to be orthorectified images as fig-672 ures in the literature (see any of the referenced comet works), but have not identified sources 673 for these data in an already orthorectified form (i.e., the data user appears to need to 674 orthorectify the images to the available shape information). Therefore, we are not re-675 porting on any available foundational imaging data products beyond those available for 676 Ceres and Vesta. 677

Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
HgM008	Gravity	N/A	16ppd	Global	Current	IMG	?	GSFC	PDS	Genova et al. (2019)
MLA Derived Geodetic Parameters	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	?/?	300kmpp	Global	Current	IMG	?	Zuber, et al.	PDS	(2012) Zuber et al. (2012)
Mariner 10 Dervied DEM	Elevation	$\sim 20 \mathrm{km}/?$	300kmpp	Regional	Superseded	?	?	Cook et al.	?	Cook and Robin- son (2000)
Messenger MDIS Global DEM	Elevation	?/?	64ppd / 655mpp	Global	Current	GeoTiff, IMG, JPEG2000 Cube	?	USGS, APL, Carnegie Science	PDS, USGS	K. J. Becker et al. (2016)
Messenger North Polar MLA Derived DEM V2	Elevation	?/?	250mpp	75N - 90N	Current	IMG, JPEG2000	?	GSFC	PDS	Solomon et al. (2007)
Messenger North Polar MLA Derived DEM V1	Elevation	?/?	2.66kmpp	18S - 90N (Par- tial)	Partially Superseded	IMG, JPEG2000	?	GSFC	PDS	(2007) Solomon et al.
Messenger DEM H03 Quad	Elevation	$45 \mathrm{m}/30 \mathrm{m}$	220mpp	Quad	Current	IMG, JPEG2000	?	DLR	PDS	Preusker, Oberst, et al. (2017)
Messenger DEM H05 Quad	Elevation	?/35m	220mpp	Quad	Current	$\begin{array}{l} \mathrm{IMG},\\ \mathrm{JPEG2000} \end{array}$?	DLR	PDS	Stark et al. (2017)
Messenger DEM H06 Quad	Elevation	$55 \mathrm{m}/30 \mathrm{m}$	220mpp	Quad	Current	IMG, JPEG2000	?	DLR	PDS	Preusker, Stark, et al. (2017)
Messenger DEM H07 Quad	Elevation	?/35	220mpp	Quad	Current	$\begin{array}{l} \mathrm{IMG},\\ \mathrm{JPEG2000} \end{array}$?	DLR	PDS	Oberst et al. (2017)
ASU Regional DEMs	Elevation	$\begin{array}{c} 70-\\ 380\mathrm{m/2-}\\ 255\mathrm{m}\\ \mathrm{(See}\\ \mathrm{reference)} \end{array}$	See refer- ence	Regional	Current	GeoTiff, IMG	?	ASU	PDS	Manheim et al. (2017)

-17-

Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
Fassett Regional DEMs	Elevation	50-250m / 10m (See reference)	See refer- ence	Regional	Current	GeoTiff, IMG	?	Fassett, et al.	Webpage ; See Refer- ence	Fassett (2016, n.d.)
Mariner 10 Mosaic	Absolutely Controlled Orthomosaics	$\sim 20 \mathrm{km}/?$	1kmpp	Regional	Superseded	IMG	?	ASU	ASU	M. S. Robin son et al. (1999)
Regional Orthoimages	Absolutely Controlled Orthoimages	70-380m / 2-255m (See reference)	See refer- ence	Regional	Current	GeoTiff, IMG	?	ASU	PDS	(1000) Manheim et al. (2017)
Mercury MESSENGER MDIS Global Basemap BDR	Absolutely Controlled Orthomosaic	?/?	256ppd / 166mpp	Global	Current	$\begin{array}{l} \text{GeoTiff,} \\ \text{IMG} \end{array}$	WMS	ACTC	PDS	Murchie et al. (2017)
Messenger Wide Angle Map-Projected Regional Targeted Mosaic	Absolutely Controlled Orthomosaics	?/?	591ppd / 72mpp	Regional	Current	IMG	?	ACTC	PDS	Murchie et al. (2017)
Messenger MDIS NAC/WAC Mosaics (By Mercury Quad / BDR Data)	Absolutely Controlled Orthomosaics	?/?	256ppd / 166mpp	Global	Current	IMG	?	ACTC	PDS	Murchie et al. (2017)
Messenger MDIS NAC/WAC High In- cidence Angle East Mosaic	Absolutely Controlled Orthomosaics	?/?	256ppd / 166mpp	Global	Current	IMG	?	ACTC	PDS	Murchie et al. (2017)
Messenger MDIS NAC/WAC High In- cidence Angle West Mosaic	Absolutely Controlled Orthomosaics	?/?	256ppd / 166mpp	Global	Current	IMG	?	ACTC.	PDS	Murchie et al. (2017)
Messenger MDIS NAC/WAC Low In- cidence Angle Mosaic	Absolutely Controlled Orthomosaics	?/?	256ppd / 166mpp	Global	Current	IMG	?	ACTC	PDS	Murchie et al. (2017)
Messenger MDIS 5- Color Map Projected Multispectral Mosaic	Absolutely Controlled Orthomosaic	?/?	128ppd / 332mpp	Global	Current	IMG	?	ACTC	PDS	Denevi et al. (2016)

Table 2: Twenty-one identified foundational data products for Mercury. Most were created using data collected by the recent Messenger mission, the Mariner 10 mission data were processed into now superseded products.

Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
Magellan MGNP180U	Gravity	NA / NA	1ppd	Near Global	Current	DAT, IMG	?	JPL	PDS	A. Kono- pliv et al. (1999)
Magellan SAR Altime- ter	Elevation	?/50m	22ppd / 5kmpp	Near Global	Current	IMG, GeoTiff	WMS	USGS	PDS, USGS	Ford and Pet- tengill (1992)
Magellan C3 MIDR Mosaic	Uncontrolled Image Mosaic	?/?	52ppd / 2025mpp	Near Global	Current	GeoTiff	WMS	USGS	PDS, USGS	Ford et al. (1993)
Magellan F-Map Left- look Mosaic	Uncontrolled Image Mosaic	?/?	1408ppd / 75mpp	92%	Current	$\operatorname{GeoTiff}$	WMS	USGS	PDS	?
Magellan F-Map Right- look Mosaic	Uncontrolled Image Mosaics	?/?	1408ppd / 75mpp	55%	Current	GeoTiff	WMS	USGS	PDS	?

Table 3: Four identified Venus foundational data products. All products are radar derived. We have not identified a proxy data set for the IAU defined geodetic

coordinate reference frame or a gravity model.

Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
GRGM1200A	Gravity	NA/NA	< 5kmpp	Global	Current	ASCII, Geo- Tiff, PDS IMG	?	GSFC	PDS	Lemoine et al. (2014); Goossens et al. (2016)
Gridded Lunar Or- biter Laser Altimeter (LOLA)	Elevation	$20 \mathrm{m}/1 \mathrm{m}$	256ppd / 118mpp	Global	Current	PDS3, Cube, GeoTiff	WMS	GSFC	PDS, PDS Annex	(2009) (2009)
SLDEM2015	Elevation	60- 100m/3- 4m	512ppd / 60mpp	60S to 60N	Current	GeoTiff, IMG, IPEG2000	WMS	GSFC	PDS, USGS	Barker et al. (2016)
Kaguya (SELENE) LALT DEM	Elevation	77m/?	16ppd / 2kmpp	Near Global	Current	IMG	?	JAXA	DARTS	(2010) Araki et al. (2009)
Kaguya (SELENE) North Pole LALT DEM	Elevation	77m / ?	16ppd / 2kmpp	79N - 90N	Current	IMG	?	JAXA	DARTS	(2009) Araki et al. (2009)
Kaguya (SELENE) South Pole LALT DEM	Elevation	77m / ?	16ppd / 2kmpp	79S - 90S	Current	IMG	?	JAXA	DARTS	(2009) Araki et al. (2009)
CLTM-s01	Elevation	445m / 31m	0.25ppd / 7.5kmpp	Global	Superseded	Unreleased	1?	CNSA	GRAS	(2009) Ping et al. (2009)
CE-1 LAM Derived DEM	Elevation	50m / ?	0.0625 ppd / 20 mpp	Global	Current	Unreleased	1?	CNSA	GRAS	(2009) Huang et al. (2018)
GLD100 WAC DEM	Elevation	1km/20m global; 10m flat	100mpp	79N - 79SS	Current	GeoTiff, ISIS Cub	WMS	ASU	ASU, USGS	(2018) Scholten et al. (2012)
LMMP Generated LRO-NAC DEMs	Elevation	20m / 1 - 2m (reported per	1.5mpp	Regional	Current	GeoTiff	?	ASU, USGS,UA, DLR, AMES,	Moon Trek	Tran et al. (2010)
LROC NAC DEMs (>450 created)	Elevation	product) Varied / Varied (Tied to	1.5mpp	Regional	Current	?	WMS	OSU ASU	ASU	Henriksen et al. (2017)
Apollo 15,16, 17 Metric DEM Mosaic	Elevation	91m / 41m	1024ppd	38S - 38N	Current	GeoTiff	?	NASA Ames	PDS	Nefian et al. (2009)

Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
Kaguya TC Stereopho- togrammetric DEM	Elevation	50m / 5m	$4095 \mathrm{ppd}$ / $\sim 7.5 \mathrm{mpp}$	95%	Current	IMG	?	JAXA	DARTS	Haruyama et al. (2012)
Chandrayaan-1 TMC DEM Mosaic	Elevation	?/?	25m, 10m, 5m(?)	Global (?)	Current	?	?	ISRO	ISDA	(2012) Sivakumar et al. (2012); Suresh (n.d.)
LROC WAC Mosaic	Uncontrolled Orthomosaic	45m/?	100mpp	Global	Current	IMG, Cube, Geo- TIFF	WMS	ASU	ASU, PDS, USGS	M. Robin- son et al. (2012)
LROC NAC DEM Derived Orthomosaics	Absolutely Controlled Orthomosaics	Varies with un- derlying DEM	1mpp	Regional	Current	IMG	?	ASU	ASU, PDS, Moon- Trek	Henriksen et al. (2017)
Uncontrolled LROC NAC Polar Orthomo- saics	Uncontrolled Controlled Orthomosaics	Varies with un- derlying DEM	1mpp	88.5 - 90N/S	Current	Cube	WMS	ASU	ASU	Wagner et al. (2015)
Clementine Mosaic	Uncontrolled Orthomosaics	?/?	$250 \mathrm{mpp}$	Global	Current	IMG	WMS	ASU	PDS	Speyerer et al. (2018)
Kaguya TC Global Orthomosaic	Uncontrolled Orthomosaic	$50\mathrm{m}$ / $5\mathrm{m}$	474mpp	Global	Current	GeoTiff	?	JAXA	USGS	Haruyama et al. (2012)
Kaguya TC Orthoim- ages	Uncontrolled Orthoimages	$50 \mathrm{m}$ / $5 \mathrm{m}$	$4095 \mathrm{ppd}$ / $\sim 7.5 \mathrm{mpp}$	95%	Current	IMG	?	JAXA	DARTS	Haruyama et al. (2012)

Table 4: Twenty identified foundational and non-foundational lunar data products

including gravity models, elevation data, and a myriad of orthoimage and or-

thomosaics products at varying spatial resolutions. We have combined the many foundational regional elevation and orthoimage products into a single entry.

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
401	Phobos	Oberst Control Network	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	13.7m / ?	N/A	Global	Current	?	?	DLR	?	Oberst et al. (2014)
401	Phobos	Stereo- photoclinometry Derived Shape Model	Elevation	? / ?	15mpp	Global	Current	?	SBMT	Ernst, et al.	SBMT	Ernst et al. (2015)
401	Phobos	Shape Model	Elevation	?/?	60mpp	Global	Superceded	ICQ	?	Gaskell,	PDS	R. W. Gaskell
401	Phobos	HRSC DEM	Elevation	20m/?	1.9ppd / 100 mpp	Global	Current	GeoTiff, IMG, JPEG2000	?	DLR	USGS, PSA, PDS	Wählisch et al. (2010)
401	Phobos	Viking Global Mo- saic	Absolutely Controlled Orthomosaics	?/?	40ppd / 5mpp	Global	Current	GeoTiff	?	Simonelli, et al.	USGS	(2010) Simonelli et al. (1993); Stooke (2012)
401	Phobos	HSRC Mosaic	Absolutely Controlled Orthomosaics	20m / ?	16ppd / 12 mpp	Global	Current	GeoTiff, IMG, JPEG2000	?	DLR	USGS, PSA, PDS	Wählisch et al. (2010)
401	Phobos	Co-registered Image Data (>3400)	Absolutely Controlled Orthoimages	?/?	Varies	Global	Current	?	SBMT	Ernst, et al.	SBMT	Ernst, Barnouin, et al. (2018)
402	Deimos	Stereo- photoclinometry Derived Shape Model	Elevation	?/?	?	Global	Current	?	SBMT	Ernst, et al.	SBMT	(2010) Ernst et al. (2015)
402	Deimos	Co-registered Image Data (>950)	Absolutely Controlled Orthoimages	?/?	Varies	Global	Current	?	SBMT	Ernst, et al.	SBMT	Ernst, Barnouin, et al. (2018)
499	Mars	Goddard Mars Model 3 (GMM-3)	Gravity	N/A / N/A	120kmpp	Global	Current	Ascii, IMG	?	GSFC	PDS	(2016) Genova et al. (2016)
499	Mars	Goddard Mars Model 2B (GMM2B)	Gravity	N/A / N/A	120kmpp	Global	Superseded	Ascii, IMG	?	GSFC	PDS	Lemoine $et al.$
499	Mars	MGS95J Model	Gravity	N/A / N/A	120kmpp	Global	Superseded	Ascii, IMG	?	JPL	PDS	A. S. Kono- pliv et al. (2006)

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
499	Mars	Interpolated MOLA DEM	Elevation	100m / 3m	463mpp / 128ppd	Global	Current	IMG, Cube, GeoTiff	WMS	GSFC	PDS, PDS Annex	?
499	Mars	HRSC / MOLA Blended Product	Elevation	100m / 3m	200mpp	Global	Current	GeoTIff	?	USGS	USGS	Fergason et al. (n.d.)
499	Mars	HRSC South Pole DEMs / Merged Product	Elevation	? / Varies (See Ref- erence)	50mpp	82S - 90S	Current	GeoTIff	?	University College London	PSA Guest Facility	Putri et al. (2019)
499	Mars	High Resolution Stereo Camera Derived DEMs (> 1250)	Elevation	<100m / <4m	up to 50mpp	Regional	Current	IMG, GeoTiff	?	HRCS Team / DLR	PDS, PSA	Gwinner et al. (2010); Dumke et al. (2010)
499	Mars	HRSC South Pole Orthoimages / Orthomosaic	Elevation	? / Varies (See Ref- erence)	12.5mpp	82S-90S	Current	GeoTiff	?	University College London	PSA Guest Facility	Putri $et al.$ (2019)
499	Mars	CaSSIS DEM	Elevation	? / ?	$\sim 20 \mathrm{mpp}$	Regional	Current	$\operatorname{GeoTiff}_{\operatorname{JPEG2000}}$?	CaSSIS Team	CaSSIS Team	Conway et al. (2018); Re et al. (2019)
499	Mars	ASU HiRISE Dervied DEM (>600)	Elevation	Varies / <1m	1-2mpp	Regional	Current	IMG	?	UA / USGS	PDS	Kirk et al. (2008); Univer- sity of Arizona (2019)
499	Mars	CTX Derived DEM	Elevation	?/?	20mpp	Regional	Current	IMG, Cube, GeoTiff	?	USGS	PDS Annex	Fergason et al. (2018); Fer- gason et al. (2017)

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
499	Mars	USGS Derived Landing Site CTX Orthomosaics	Absolutely Controlled Orthoimages	?/?	5mpp	Regional	Current	IMG, Cube, GeoTiff	?	USGS	PDS Annex	Fergason et al. (2018); Fer- gason et al. (2017)
499	Mars	USGS Derived Hu- man Exploration CTX Orthomosaics	Relatively Controlled Orthoimages	100m / ?	5mpp	Regional	Current	IMG, Cube, GeoTiff	?	USGS	PDS Annex	Hare et al. (n.d.)
499	Mars	HiRISE Orthomo- saics	Absolutely Controlled Orthoimages	Varies / <1m	0.25mpp	Regional	Current	IMG, JPEG2000	?	UA, USGS	PDS	Kirk et al. (2008); Univer- sity of Arizona (2019)
499	Mars	High Resolution Stereo Camera De- rived Orthoimages (>1250)	Absolutely Controlled Orthoimages	<100m/ <4m	up to 12.5mpp	Regional	Current	IMG, JPEG2000	?	HRSC Team, DLR	PDS, PSA	Gwinner et al. (2010)
499	Mars	University Col- lege London Co- Registered Hi- resolution Data	Relatively Controlled Orthoimages	?/?	Varies	Regional	Current	?	iMars (?)	University College London	?	Sidiropoulos and Muller (2016); Sidiropou- los and Muller (2016)
499	Mars	Murray Lab Global CTX	Semi-controlled Unrectified Image Mosaic	?/?	5mpp	88S- 88N	Current	GeoTiff	WMS	California Insti- tute of Tech- nology	California Insti- tute of Tech- nology	(2010) Dickson et al. (2018)
499	Mars	Mars Digital Image Mosaic 2.1 (Control Network)	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	Average: 200m Max: 1000m/10m	N/A	Global	Current	Cube Control Net- work, PVL	?	USGS	USGS	Archinal et al. (2003)

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
499	Mars	Mars Digital Image Mosaic 2.1	Absolutely Controlled Orthomosaics	Average: 200m Max: 1000m/ 10m	231mpp / 256ppd	Global	Current	IMG, Cube, GeoTiff	WMS	USGS	PDS Annex	Kirk et al. (2001); Archi- nal et al. (2003)
499	Mars	THEMIS Day IR Orthomosaic	Absolutely Controlled Orthomosaics	150m - 275m / ?	100mpp	60S - 60N	Current	IMG, Cube, GeoTiff	WMS	USGS	PDS Annex	Fergason et al. (2013)
499	Mars	THEMIS Night IR Orthomosaic	Absolutely Controlled Orthomosaics	150m - 275m / ?	100mpp	60S - 60N	Current	IMG, Cube, GeoTiff	WMS	USGS	PDS Annex	Fergason et al. (2013)

Table 5: Foundational data products for Mars (21) and it's two satellites, Phobos (7) and Deimos (2). We have combined the many foundational regional elevation and orthoimage products into a single entry.

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
501	Іо	Galilelo SSI / Voy- ager Global Mosaic	Absolutely Controlled Un- rectified Mosaic	1km/?	1 - 10kmpp	85N - 85S	Current	GeoTiff	WMS	USGS	USGS	T. Becker and Geissler (2005); Archi- nal et al. (2001)
501	Io	Rand Control Net- work	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	N/A	N/A	Global	Unreleased	?	?	RAND / USGS	Unrelease	(19001) d M. Davies et al. (1979)
501	Io	Stereo-dervied DEM	Elevation	<0.5 - >4km/0.2 - >1.6km	$1 \mathrm{kmpp}$ (equator)	75%	Current	Cube	?	White et al.	AGU	White et al. (2014)
502	Europa	Rand Control Net- work	Geodetic Coor- dinate Refer- ence Frame (or Proyv)	N/A	N/A	Global	Unreleased	?	Flat files	RAND	USGS	M. Davies et al. (1979)
502	Europa	Controlled Pho- tomosaic Map of Europa, Je 15M CMN	Relatively Con- trolled Image Mosaic	?/?	200m - 20kmpp	Global	Current	GeoTiff	WMS	USGS	USGS	U.S. Geo- logical Survey (2002)
502	Europa	Europa Supermo- saic	Uncontrolled Image Mosaic	?/?	?	Global(?)	Unreleased	?	?	G. Collins	Unreleased	(2002) d ?
503	Ganymede	RAND Control Network	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	N/A	N/A	Global	Current	?	?	Rand	Unrelease	d M. Davies et al. (1979)
503	Ganymede	Galileo/Voyager Global Mosaic	Uncontrolled Image Mosaic	?/?	400m - 20kmpp	Global	Current	$\operatorname{GeoTiff}$	WMS	USGS	USGS	?
504	Callisto	Rand Control Net- work	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	N/A	N/A	Global	Unreleased	?	?	Rand	?	M. Davies et al. (1979)
504	Callisto	Galileo/Voyager Global Mosaic	Uncontrolled Image Mosaic	?/?	400mpp - 60kmpp	Global	Current	GeoTiff	WMS	USGS	USGS	U.S. Geo- logical Survey (2001)

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Reference Providers
599	Jupiter	Gravity Model	Gravity	?/?	?	Global	Unreleased	?	?	Iess, et al.	Unreleased Iess et al. (2018); Buccino et al. (2018)

Table 6: Discovered foundational and non-foundational data products for Io, Europa, Ganymede, Callisto, and Jupiter

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
601	Mimas	Shape Model	Elevation	?/?	?	Global	Current	$\begin{array}{c} \mathrm{ICQ},\\ \mathrm{Tab} \end{array}$?	Gaskell	PDS	R. W. Gaskel (2013b)
601	Mimas	Cassini Stereo De- rived Topography	Elevation	?/?	?	Semi- Global	Unreleased	?	?	Shenk	Unreleased	l P. Schenk (2010)
601	Mimas	Cassini ISS Global Mosaic	Semi-controlled Unrectified Image Mosaic	?/?	700mpp to ; 200mpp	Semi- Global	Current	IMG, PDF, PNG	WMS	DLR	DLR, PDS	Roatsch et al. (2018)
602	Enceladus	Shape Model	Elevation	?/?	?	Global	Unreleased	?	?	USGS	Unreleased	l M. T. Bland et al. (2019); M. Bland et al. (2019)
602	Enceladus	Cassini Stereo De- rived Topography	Elevation	?/?	?	Semi- Global	Unreleased	?	?	Shenk	Unreleased	l P. Schenk (2010)
602	Enceladus	Cassini ISS Global Mosaic	Relatively Controlled Un- rectified Image Mosaic	?/?	100mpp	Global	Current	GeoTiff, IMG	WMS	DLR	PDS, USGS	Roatsch et al. (2018)
603	Tethys	Shape Model	Elevation	?/?	?	Global	Current	ICQ, Tab	?	Gaskell	PDS	R. W. Gaskel (2013d)
603	Tethys	Cassini Stereo De- rived Topography	Elevation	?/?	?	Semi- Global	Unreleased	?	?	Shenk	Unreleased	l P. Schenk (2010)
603	Tethys	Cassini ISS Global Mosaic	Semi-controlled Unrectified Image Mosaic	?/?	32ppd / 293mpp	Global	Current	GeoTiff, IMG, PDF, PNG	WMS	DLR	DLR, PDS, USGS	Roatsch, Ker- sten, Matz, Scholten, et al. (2016); T. Roatsch et al. (2008)
604	Dione	Shape Model	Elevation	?/?	?	Global	Current	$\begin{array}{c} \mathrm{ICQ},\\ \mathrm{Tab} \end{array}$?	Gaskell	PDS	R. W. Gaskel (2013a)
604	Dione	Cassini Stereo De- rived Topography	Elevation	?/?	?	Semi- Global	Unreleased	?	?	Shenk	Unreleased	l P. Schenk (2010)

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
604	Dione	Cassini ISS Global Mosaic	Semi-controlled Unrectified Image Mosaic	?/?	154mpp	Global	Current	GeoTiff, IMG, PDF, PNG	WMS	DLR	DLR, PDS, USGS	Roatsch, Ker- sten, Matz, Scholten, et al. (2016); T. Roatsch et al. (2008)
605	Rhea	Cassini Stereo De- rived Topography	Elevation	?/?	?	Semi- Global	Unreleased	?	?	Shenk	Unreleased	P. Schenk (2010)
605	Rhea	Cassini ISS Global Mosaic	Semi-controlled Unrectified Image Mosaic	?/?	417mpp	Global	Current	GeoTiff, IMG, PDF, PNG	?	DLR	DLR, PDS, USGS	Roatsch, Ker- sten, Matz, Scholten, et al. (2016); T. Roatsch et al. (2008)
606	Titan	Cassini ISS Global Mosaic	Uncontrolled Image Mosaic	?/?	11ppd / 4kmpp	95 - 97%	Current	GeoTiff	?	Perry et al.	USGS	Perry et al. (2005)
606	Titan	Cassini ISS Mosaic	Absolutely Con- trolled Image Mosaic	?/?	100ppd / 450mpp	-65 to 45	Current	GeoTiff, PNG	WMS	USGS	USGS	Archinal et al. (2013)
606	Titan	Cassini SAR Spline Interpolated Global Topography	Elevation	?/?	1ppd / 45kmpp	Global	Current	Tiff	?	Lorenz, et al.	UA, Icarus	(2010) Lorenz et al. (2013)
606	Titan	Radar Stereo- photogrammetric	Elevation	? / 200m	Varies	Regional	Current	Unreleased	1?	Kirk, et al.	?	(2010) Kirk et al. (2012)
606	Titan	Altimeter Echo DEMs	Elevation	? / 35m	?	Regional	Current	Unreleased	1?	Zebker, et al.	?	Zebker et al.
606	Titan	SAR Topo DEM	Elevation	? / 160m	10kmpp	5.2%	Current	Unreleased	1?	Stiles, et al.	?	(2009) Stiles et al. (2009)
606	Titan	Merged / Interpo- lated Global DEM	Elevation	? / ?	4ppd	Global	Current	Text	?	Corlies, et al.	?	(Corlies et al., 2017)

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
606	Titan	Cassini VIMS Global Mosaic	Uncontrolled mosaic	?/?	32ppd / 1.4kmpp	Global	Unreleased	?	?	Le Moulic et al.	Unreleased	l Moulic et al. (2019)
608	Iapetus	Cassini Stereo De- rived Topography	Elevation	?/?	?	Semi- Global	Unreleased	?	?	Shenk	Unreleased	l P. Schenk (2010)
608	Iapetus	Cassini ISS Global Mosaic	Semi-controlled Unrectified Image Mosaic	?/?	16ppd / 803mpp	Semi- Global	Current	GeoTiff, IMG, PDF, PNG	WMS	DLR	DLR, PDS, USGS	Roatsch, Ker- sten, Matz, Scholten, et al. (2016); T. Roatsch et al. (2008)
609	Phoebe	Shape Model	Elevation	?/?	?	Global	Current	ICQ, Tab	?	Gaskell	PDS	R. W. Gaskell (2013c)
609	Phoebe	Cassini ISS Global Mosaic	Semi-controlled Unrectified Image Mosaic	?/?	233mpp	Semi- Global	Current	IMG, PDF, PNG	?	DLR	DLR, PDS	Roatsch, Ker- sten, Matz, Scholten, et al. (2016); T. Roatsch et al. (2008)

Table 7: Foundational and non-foundational Saturnian data products for Mimas (3), Enceladus (3), Tethys (3), Dione (3), Rhea (2), Titan (8), Iapetus (2), and Phoebe (2).

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
701	Ariel	Control Network	Geodetic Coor- dinate Refer- ence Frame (or Provy)	?	N/A	25% - 45%	Current	ASCII	?	RAND.	USGS	M. E. Davies et al. (1987)
701	Ariel	Airbrush Mosaic	Controlled Un- rectified Mosaic	?	?	25% - 45%	Current	PDF	?	USGS	USGS	(U.S. Geo- logical Survey, 1988)
701	Ariel	Controlled Unrecti- fied Images	Controlled Un- rectified Images	?	?	25% - 45%	Current	IMQ	?	USGS	USGS	M. E. Davies et al. (1987)
701	Ariel	Stereoscopically De- rived Topography	Elevation	?	?	25% - 45%	Unreleased	?	?	Schenk et al.	Unreleased	1 P. M. Schenk (2008)
702	Umbriel	Control Network	Geodetic Coor- dinate Refer- ence Frame (or Provy)	?	N/A	25% - 45%	Current	ASCII	?	RAND.	USGS	M. E. Davies et al. (1987)
702	Umbriel	Airbrush Mosaic	Controlled Un- rectified Mosaic	?	?	25% - 45%	Current	PDF	?	USGS	USGS	(U.S. Geo- logical Survey, 1988)
702	Umbriel	Controlled Unrecti- fied Images	Controlled Un- rectified Images	?	?	25% - 45%	Current	IMQ	?	USGS	USGS	M. E. Davies et al. (1987)
703	Titania	Control Network	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	?	N/A	25% - 45%	Current	ASCII	?	RAND.	USGS	(1987) M. E. Davies et al. (1987)
703	Titania	Airbrush Mosaic	Controlled Un- rectified Mosaic	?	?	25% - 45%	Current	PDF	?	USGS	USGS	(U.S. Geo- logical Survey, 1988)
703	Titania	Controlled Unrecti- fied Images	Controlled Un- rectified Images	?	?	25% - 45%	Current	IMQ	?	USGS	USGS	M. E. Davies et al. (1987)
703	Titania	Stereoscopically De- rived Topography	Elevation	?	?	25% - 45%	Unreleased	?	?	Schenk et al.	Unreleased	1 P. M. Schenk (2008)
704	Oberon	Control Network	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	?	N/A	25% - 45%	Current	ASCII	?	RAND.	USGS	M. E. Davies et al. (1987)

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
704	Oberon	Airbrush Mosaic	Controlled Un- rectified Mosaic	?	?	25% - 45%	Current	PDF	?	USGS	USGS	(U.S. Geo- logical Survey, 1988)
704	Oberon	Controlled Unrecti- fied Images	Controlled Un- rectified Images	?	?	25% - 45%	Current	IMQ	?	USGS	USGS	M. E. Davies et al. (1987)
705	Miranda	Control Network	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	?	N/A	25% - 45%	Current	ASCII	?	RAND.	USGS	M. E. Davies et al. (1987)
705	Miranda	Airbrush Mosaic	Controlled Un- rectified Mosaic	?	?	25% - 45%	Current	PDF	?	USGS	USGS	U.S. Geo- logical Survey (1988)
705	Miranda	Controlled Unrecti- fied Images	Controlled Un- rectified Images	?	?	25% - 45%	Current	IMQ	?	USGS	USGS	M. E. Davies et al. (1987)
705	Miranda	Stereoscopically De- rived Topography	Elevation	?	?	25% - 45%	Unreleased	?	?	Schenk et al.	Unreleased	l P. M. Schenk (2008)

Table 8: Uranian foundational data products. We have not identified any accu-

racy reporting for any of the identified products. This is entirely understandable given the limited scope and inadequate repeat coverage for robust error assessment.

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
801	Triton	Control Network	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	?	N/A	?	Current	IMQ		USGS	USGS	M. E. Davies et al. (1991)
801	Triton	Control Network	Controlled Un- rectified Mosaic	?	39ppd / 600mpp	Hemisphe	ereCurrent	GeoTiff		USGS	USGS	M. E. Davies et al. (1991)
801	Triton	Stereo-scopically Derived Topogra- phy	Elevation	?	?	25% - 45%	Unreleased	?	?	Schenk et al.	Unrelease	d P. M. Schenk (2008)

 Table 10.
 All foundational data products for the Neptunian system cover Triton.

ID	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
901	Charon	Control Network	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	?	N/A	?	Unreleased	ISIS	?	Shenk, et al.	Unreleased	P. M. Schenk et al. (2018b)
901	Charon	DEM	Elevation	? / 1000m - 100m	35.25ppd / 300mpp	$\sim 40\%$ (to avail- able data)	Current	GeoTiff, Cube	WMS	Shenk, et al.	USGS	P. M. Schenk et al. (2018b)
901	Charon	Mosaic	Absolutely Controlled Un- rectified Image Mosaic	?	35.25ppd / 300mpp 35km - 0.15kmpp (actual resolution)	$\sim 40\%$ (to avail- able data)	Current	GeoTiff, Cube	WMS	Shenk, et al.	USGS	P. M. Schenk et al. (2018b)
999	Pluto	Control Network	Geodetic Coor- dinate Refer- ence Frame (or Proxy)	?	N/A	?	Unreleased	ISIS	?	Shenk, et al.	Unreleased	P. M. Schenk et al. (2018a)
999	Pluto	Global Mosaic	Absolutely Controlled Un- rectified Image Mosaic	?	69.13ppd / 300mpp	~42% (to avail- able data)	Current	GeoTiff, Cube	WMS	Shenk, et al.	USGS	P. M. Schenk et al. (2018a)
999	Pluto	DEM	Elevation	? / 800m - 100m	69.13ppd / 300mpp	~42% (to avail- able data)	Current	GeoTiff, Cube	WMS	Shenk, et al.	USGS	P. M. Schenk et al. (2018a)

Table 12. Identified foundational data products for Pluto (3) and Charon (3) collected by the New Horizons mission.

ID Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
2000001 Ceres	Gravity Model	Gravity	?/?	300kmpp	Global	Current	IMG, Tab	?	Konopliv, et al.	PDS	A. S. Kono- pliv et al. (2012); Kono- pliv et al. (2018); Park et al. (2018)
2000001 Ceres	Dawn FC global DEM (HAMO)	Elevation	?/10m	60ppd / 136mpp	Global	Current	GeoTiff, IMG	?	DLR	PDS	(2016) Preusker et al. (2016); E. Roatsch T. et al. (2018)
$2000001{\rm Ceres}$	Dawn FC Re- gional DEM (LAMO)	Elevation	?/~1.5m	256ppd / 32mpp	Regional	Superseded	IMG	?	DLR	PDS	Preusker et al.
$2000001{\rm Ceres}$	Regional DEMs and Mosaics	Elevation	$?/{\sim}1.5m$	256ppd / 32mpp	Regional	Current	IMG	?	DLR	PDS	Jaumann et al.
2000001 Ceres	Dawn Stereo- photoclinometric (SPC) - LAMO	Elevation	?/mean 10m, 89% < 20m	100mpp	Global	Current	DSK, ICQ, IMG	WMS	Park, et al.	NAIF, PDS	(2017) Park et al. (2019); Park and Buccino (2018)
2000001 Ceres	Dawn FC global mosaic (HAMO)	Absolutely Controlled Orthomosaic	$\sim 16 \mathrm{m} /$ $\sim 16 \mathrm{m}$	140mpp	Global	Current	GeoTiff, IMG	WMS	DLR	PDS, USGS	Roatsch, Ker- sten, Matz, Preusker, et al. (2016)
2000001 Ceres	Dawn FC global mosaic (LAMO)	Absolutely Controlled Orthomosaic	$\sim 16 \mathrm{m} /$ $\sim 16 \mathrm{m}$	140mpp	Global	Current	GeoTiff, IMG	?	DLR	PDS, USGS	Roatsch, Ker- sten, Matz, Preusker, et al. (2016)

ID E	Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
2000004 \	Vesta	Gravity Model	Gravity	?/?	90kmpp	Global	Current	IMG, Tab	?	Konopliv, et al.	PDS	A. Kono- pliv et al. (2014, 2017)
2000004 \	Vesta	Dawn Stereo- photogrammetric (SPG) - HAMO	Elevation	$\sim 8m / \sim 8m$	64ppd / 70mpp	~95%	Current	GeoTiff, IMG	?	DLR	PDS	Preusker et al. (2012, 2012); Jau- mann et al. (2012)
2000004 \	Vesta	Dawn Stereo- photoclinometric (SPC) - LAMO	Elevation	?/?	64ppd / 70mpp	Near Global	Unreleased		?	Gaskell, et al.	Unreleased	R. W. Gaske (2012)
2000004 \	Vesta	Dawn FC global Mosaic (LAMO)	Absolutely Controlled Orthomosaic	?/?	20mpp	$\sim 84\%$	Current	GeoTiff, IMG	?	DLR	PDS	Roatsch et al. (2013)
2000004 \	Vesta	Dawn FC global Mosaic (HAMO)	Absolutely Controlled Orthomosaic	${\sim}8{ m m}$ / ${\sim}8{ m m}$	60mpp	Global	Superseded	GeoTiff, IMG	WMS	DLR	PDS	Le Corre et al. (2017)
2000021 I	Lutetia	Shape Model	Elevation	?/?	1,500,000 facets	Global	Current	VRML	?	Jorda, et al.	PDS	(Sierks et al., 2011)
2000433 E	Eros	Stereo- photoclinometric (SPC) Shape Model	Elevation	?/?	$(512 + 1)^2$ Vertices / Face	Global	Current	$\begin{array}{c} {\rm Tab},\\ {\rm ICQ} \end{array}$?	Gaskell, et al.	PDS	R. W. Gaske (2008)
2002867 S	Steins	OSIRIS Derived SPC Derived Shape Model	Elevation	20m / ?	> 70m $/$ facet	Global	Current	VRML	?	Jorda, et al.	PDS	(Jorda et al., 2012)
2025143 I	tokawa	Stereo- photoclinometric (SPC) Shape Model	Elevation	?/?	$(256 + 1)^2$ Vertices / Face	Global	Current	$_{\rm ICQ}^{\rm Tab,}$?	Gaskell, et al.	PDS	R. Gaskell et al. (2006)
2101955 E	Bennu	Shape Model	Elevation	10m / 52m	25m be- tween vertices	Global	Current	Tab, Obj, Wave- front	?	Nolan, et al.	PDS	Nolan et al. (2013)
2162173 F	Ryugu	Structure From Motion (SfM) Shape Model	Elevation	?/?	?	Global	Unreleased	?	?	University of Aizu	Unreleased	JAXA (n.d.)

ID Body	Product Name	Product Type	Horizontal / Vertical Accuracy	Resolution	Coverage	Status	Offline For- mats	Online For- mats	Source (Pro- ducer)	Data Providers	References
2162173 Ryugu	Stereo- photoclinometric (SPC)) Shape Model	Elevation	?/?	?	Global	Unreleased	?	?	Kobe Uni- versity, Univer- sity of Aizu	Unreleased	JAXA (n.d.)
$1000005\mathrm{Borrelly}$	Stereo- photogrammetric Shape Model	Elevation	? / 100m	500m	$\sim 50\%$	Current	TAB	?	Oberst, et al.	PDS	Oberst et al. (2004)
1000005 Borrelly	Stereo- photogrammetric Shape Model	Elevation	? / 100m	500m	$\sim 50\%$	Current	TAB	?	USGS	PDS	Kirk et al. (2004)
1000012 Comet 67P/C- G	NavCam De- rived SPC Shape Model	Elevation	?/?	>4,000,000 facets	Global	Current	DSK, ROS	?	ESA, Rosetta Mission	PDS	ÈSA (2017)
1000012 Comet 67P/C- G	OSIRIS SPC Derived Shape Model	Elevation	<2m / <2m	>5,000,000 plates, 1- 2m maplets	Global	Current	DSK, VRML	?	Gaskell, et al.	PDS	Preusker et al. (2015)
1000012 Comet 67P/C- G	OSIRIS Derived SPG Model	Elevation	<2m / <2m	2m, >16,000,000 facets	Global	Current	DSK, VRML	?	DLR	PDS	Preusker et al. (2015)
1000012 Comet 67P/C- G	Multiresolution Photoclinom- etry by Defor- mation Shape Model	Elevation	?/?	>1,000,000 plates	Global	Current	DSK, VRML	?	Jorda, et al.	PDS	Jorda et al. (2016); Ca- panna et al. (2015)
1000041 Comet 103P / Hartley 2	EPOXI Derived Shape Model	Elevation	10m (vis- ible) 30m (silhou- ettes) / 18m	> 32,000 plates	Global	Current	TAB, VRML	?	Thomas, et al.	PDS	P. Thomas et al. (2013)
1000093 Comet Tempel 1	Deep Impact Derived Shape Model	Elevation	20m/20m	> 32,000 plates	Global	Current	TAB	?	Thomas, et al.	PDS	P. C. Thoma et al. (2007)

Table 13: Identified foundational data products for small bodies not associated with a particular primary body. Asteroids that have been the targets of satellite mapping operations are identified by NAIF codes in the 2000000 range. Likewise, comets that have been the target of mapping operations are identified by NAIF codes in the 1000001 range. For the ESA generated SPC shape model of Comet 67P/C-G the '.ros' format is a custom format adopted by the Rosetta mission team.

678 4 Conclusion

Prior to making widespread use of foundational data products to drive the gener-679 ation, co-registration, and use of framework data products it is necessary to survey the 680 current state of knowledge. In this work, we have provided a more stringent definition 681 of what constitutes a foundational data product. Specifically, we have tightened our pre-682 vious definition for image data to assert that, at the purest form, only absolutely con-683 trolled and properly orthorectified image products are foundational. In the absence of 684 the necessary geodetic coordinate reference frame definitions and elevation data sets, ab-685 solutely controlled non-orthorectified image products, relatively controlled image prod-686 ucts, and semi-controlled image products can serve as interim foundational data prod-687 ucts. 688

We have identified well over 100 foundational data products, reported on internal 689 data quality, interoperability, and provided a reference, where available. In general, the 690 planetary science community has a wide array of products available to support geospa-691 tial studies. We note a general lack of calibrated and orthorectified (to the best avail-692 able shape) image data at the per-image scale. Therefore, the individual research sci-693 entist can gain access to large-extent orthomosaics, but must process individual images. 694 This processing step has a non-trivial cost that is spread across the entire planetary sci-695 ence community (e.g. Malik & Foster, 2012). 696

The identification of these products supports three goals. First, each body should 697 have at least four entries describing a gravity model, a geodetic coordinate reference frame 698 or proxy, an elevation data set, and orthomosaic data. The lack of a particular entry for 699 an object represents the opportunity to create, assess, and publish a foundational data 700 product. Second, foundational data products must be well described in peer-reviewed 701 publications and made freely available to users. In instances where this is not the case, 702 we hope that merely identifying that further work is possible will empower improved trans-703 parency. Finally, product identification is the first step necessary to realize a data clear-704 ing house and a Planetary Spatial Data Infrastructure (Laura et al., 2017). 705

This process of data discovery to identify available foundational data products high-706 lighted the challenges researchers face discovering suitable data. In the best case, we were 707 aware of a product through experience using, developing, or archiving it. With a prod-708 uct name, it was usually possible to rapidly discover a conference abstract, peer-reviewed 709 publication, or data repository. Naturally, the discovery process for data sets that we 710 did not know about was significantly more challenging due to the lack of any type of geo-711 portal or data portal (Beyer et al., 2018). Most challenging, were those works where the 712 data were delivered to the PDS and we were unable to identify any associated peer-reviewed 713 or conference publication, and those instances where publications were generated, but 714 the data were never made available. 715

Once discovered, we also note that many publications did not explicitly describe spatial accuracy, the reference frame to which the product was tied, or the potential interoperability between data sets. This is not surprising given both the wealth of topical science that is possible with a single data set and the relatively recent efforts to bring this type of metadata to increased prominence. We hope that the community can identify standards and policies to support increased data product metadata reporting.

Finally, in evaluating the entire set of foundational data products, it is clear that more recent flight missions have placed increased importance on the creation, assessment, and publication of foundational data products. We hope that this trend continues and that data from previous missions can be reassessed and integrated into the corpus of spatially enabled data products in order to support the widest possible array of planetary science research.

	-
729	Ames NASA Ames Research Center
730	AGU American Geophysical Union
731	APL John Hopkins University Applied Physics Laboratory
732	ASU Arizona State University
733	ACTC Applied Coherent Technology Corporation
734	CNSA Chinese National Space Administration

- ⁷³⁵ CaSSIS Colour and Stereo Surface Imaging System
- 736 CTX Context Camera

5 Acronyms

728

- ⁷³⁷ **Cube** The ISIS Cube Format
- 738 **DARTS** Data ARchive and Transmission System
- 739 **DAT** A plain text archival format
- 740 **DEM** Digital Elevation Model
- 741 **DLR** Deutsches Zentrum für Luft- und Raumfahrt
- 742 **DN** Digital Number
- ⁷⁴³ **ESA** European Space Agency
- ⁷⁴⁴ **GIS** Geographic Information System
- ⁷⁴⁵ **GMM-3** Goddard Mars Model 3
- ⁷⁴⁶ GMM-2B Goddard Mars Model 2B
- 747 **GRAIL** Gravity Recovery and Interior Laboratory
- **GRAS** Data Release and Information Service System of China's Lunar Exploration Pro gram
- 750 **GSFC** Goddard Space Flight Center
- ⁷⁵¹ **HAMO** High Altitude Mapping Orbit
- ⁷⁵² **HiRISE** High Resolution Imaging Science Experiment
- ⁷⁵³ **HRSC** High Resolution Stereo Camera
- 754 IAU International Astronomical Union
- ⁷⁵⁵ **ICQ** Implicitly Connected Quadrilateral Format
- ⁷⁵⁶ **IMG** PDS3 Compliant Image Storage Format
- ⁷⁵⁷ **IMQ** A PDS3 compliant compressed data format
- ⁷⁵⁸ **ISRO** Indian Space Research Organization
- ⁷⁵⁹ **ISDA** Indain Science Data Archive
- 760 IR Infrared
- ⁷⁶¹ JAXA Japan Aerospace Exploration Agency
- ⁷⁶² **kmpp** kilometers per pixel
- 763 **JPL** Jet Propulsion Laboratory
- ⁷⁶⁴ **LAMO** Low Altitude Mapping Orbit
- ⁷⁶⁵ LALT Kaguya/Selene Laser Altimeter
- ⁷⁶⁶ LOLA Lunar Orbiter Laser Altimeter
- ⁷⁶⁷ **LROC** Lunar Reconnaissance Orbiter Camera
- 768 MC Mars Quadrangle
- ⁷⁶⁹ **MEGDR** Mission Experiment Gridded Data Record
- 770 **MESSENGER** Mercury Surface Space Environment, GEochemistry, and Ranging
- 771 MEX Mars EXpress
- 772 MGS Mars Global Surveyor
- 773 MIDR Mosaicked Image Data Record
- 774 MLA Mercury Laser Altimeter
- 775 MOC Mars Orbiter Camera
- 776 MOLA Mars Orbiter Laser Altimeter
- mpp meters per pixel
- 778 **MRO** Mars Reconnaissance Orbiter

- 779 NAC Narrow Angle Camera
- 780 NASA National Aeronautics and Space Administration
- 781 **NEO** Near Earth Object
- 782 NIR Near Infrared
- 783 OGC Open Geospatial Consortium
- 784 **OSU** Ohio State University
- 785 **PDS** Planetary Data System
- $_{786}$ **ppd** pixels per degree
- 787 **PSA** Planetary Science Archive
- 788 **PSDI** Planetary Spatial Data Infrastructure
- 789 SAR Synthetic Aperture Radar
- ⁷⁹⁰ **SBMT** Small Bodies Mapping Tool
- ⁷⁹¹ **SDI** Spatial Data Infrastructure
- 792 SfM Structure from Motion
- ⁷⁹³ **SPC** stereophotoclinometric
- 794 SSI Solid State Imager
- 795 **TC** Terrain Camera
- 796 **THEMIS** THErmal EMission Imaging System
- 797 **TMC** Terrain Mapping Camera
- ⁷⁹⁸ **UA** University of Arizona
- ⁷⁹⁹ **USGS** United States Geological Survey
- ⁸⁰⁰ **VIS** Visible Spectrum
- VRML The PDS Small Bodies Node Archival Shape Model Format
- ⁸⁰² WAC Wide Angle Camera
- **WMS** Web Mapping Standard

804 Acknowledgments

This work has been supported by NASA-USGS Inter-agency Agreement #NNH16AC13I. 805 Any use of trade, firm, or product names is for descriptive purposes only and does not 806 imply endorsement by the U.S. government. Referenced data are available via the Plan-807 etary Data System, cited works, via URLs presented within this work, or are indicated 808 as being not publicly available. We would like to thank the NASA and international mis-809 sion teams, research groups, and product creation teams that have worked so tirelessly 810 to derive all of the foundational data products identified herein. We would also like to 811 thank the NASA Mapping and Planetary Spatial Infrastructure Team (MAPSIT) for re-812 viewing an earlier draft of this manuscript and specifically Dr. Lisa Gaddis, Dr. Sander 813 Goossens, Trent Hare, and Dr. Daniella DellaGuistina for their comments on lunar data 814 availability, gravity models, data discovery, and elevation data for small bodies, respec-815 tively. Thanks to Dr. Y. Zhang for helpling with translation and data discovery on the 816 CNSA Data Release and Information Service System of China's Lunar Exploration Pro-817 gram (GRAS) system. Finally, many thanks to Dr. Ross Beyer for thoughtful review and 818 editing of the entire manuscript, especially Section 2, that have helped to push for sig-819 nificantly improved clarity as we define foundational data products and make this work 820 more concise. 821

822 References

acton, C. H. (1996). Ancillary data services of NASA's Navigation and Ancillary In-
formation Facility. Planetary and Space Science, 44(1), 65 - 70. Retrieved from
http://www.sciencedirect.com/science/article/pii/0032063395001077
(Planetary data system) doi: http://dx.doi.org/10.1016/0032-0633(95)00107
-7

828	Albee, A. L., Arvidson, R. E., Palluconi, F., & Thorpe, T. (2001). Overview of
829	the Mars Global Surveyor mission. Journal of Geophysical Research: Planets,
830	106(E10), 23291-23316. Retrieved from https://agupubs.onlinelibrary
831	.wiley.com/doi/abs/10.1029/2000JE001306 doi: 10.1029/2000JE001306
832	Anderson, J., Jacobson, R., McElrath, T., Moore, W., Schubert, G., & Thomas, P.
833	(2001). Shape, mean radius, gravity field, and interior structure of Callisto.
834	Icarus, 153(1), 157 - 161. Retrieved from http://www.sciencedirect.com/
835	science/article/pii/S0019103501966643 doi: https://doi.org/10.1006/
836	icar.2001.6664
837	Anderson, J. D., Jacobson, R. A., Lau, E. L., Moore, W. B., & Schubert, G. (2001).
838	Io's gravity field and interior structure. Journal of Geophysical Research: Plan-
839	ets, 106(E12), 32963-32969. Retrieved from https://agupubs.onlinelibrary
840	.wilev.com/doi/abs/10.1029/2000JE001367 doi: 10.1029/2000JE001367
841	Anderson, J. D., Lau, E. L., Siogren, W. L., Schubert, G., & Moore, W. B. (1996).
842	Gravitational constraints on the internal structure of Ganymede. Nature.
843	384(6609), $541-543$. Retrieved from https://doi.org/10.1038/384541a0
844	doi: 10.1038/384541a0
845	Anderson J. D. Schubert, G. Jacobson B. A. Lau F. L. Moore W. B. & Sio-
846	gren W. L. (1998) Europa's differentiated internal structure: Inferences
847	from four Galileo encounters Science 281(5385) 2019–2022 Betrieved from
848	http://www.istor.org/stable/2895735
840	Araki H. Tazawa S. Noda H. Ishihara V. Goossens S. Sasaki S. Shum
950	C (2009) Lunar global shape and polar topography derived from
851	Kaguya-LALT Laser Altimetry Science 323(5916) 897–900 Retrieved
852	from https://science.sciencemag.org/content/323/5916/897 doi:
853	10.1126/science.1164146
954	Archinal B A Acton C H A'Hearn M F Conrad A Consolmagno G I
004	Duxbury T Williams I P (2018 February 23) Report of the
856	IAU Working Group on Cartographic Coordinates and Rotational Ele-
857	ments: 2015. Celestial Mechanics and Dunamical Astronomy, 130(3), 22.
858	Retrieved from https://doi.org/10.1007/s10569-017-9805-5 doi:
859	10.1007/s10569-017-9805-5
860	Archinal, B. A., Becker, T. L., Lee, E. M., & Edmundson, K. L. (2013, March).
861	Initial global control network and mosaicking of ISS images of Titan. In Lunar
862	and planetary science conference (Vol. 44, p. 2957).
863	Archinal, B. A., Davies, M. E., Colvin, T. R., Becker, T. L., Kirk, R. L., & Gitlin,
864	A. R. (2001, March). An Improved RAND-USGS Control Network and Size
865	Determination for Io. In Lunar and planetary science conference (Vol. 32).
866	Archinal, B. A., Kirk, R. L., Duxbury, T. C., Lee, E. M., Sucharski, R., & Cook, D.
867	(2003, March). Mars Digital Image Model 2.1 Control Network. In S. Mackwell
868	& E. Stansbery (Eds.), Lunar and planetary science conference (p. 1485).
869	Archinal, B. A., Laura, J., Becker, T. L., Bland , M. T., & Kirk, R. L. (2017, De-
870	cember). Foundational Data Products for Europa: A Planetary Spatial Data
871	Infrastructure Example. In Agu fall meeting abstracts (Vol. 2017, p. P33E-
872	2918).
873	Archinal, B. A., Laura, J., Kirk, R. L., Hare, T. M., Gaddis, L. R., & Hagerty, J.
874	(2017, March). Foundational Data Products Needed to Support Planetary Spa-
875	tial Data Infrastructure. In Lunar and planetary science conference (p. 2286).
876	Arctic SDI Working Group on Strategy. (2015). Arctic spatial data infrastructure
877	strategic plan: 2015-2020 (Tech. Rep.). Arctic Spatial Data Infrastructure.
878	Retrieved from https://arctic-sdi.org/wp-content/uploads/2014/08/
879	20151119-Arctic-SDI-Strategic-Plan-2015-2020_FINAL.pdf
880	Barker, M., Mazarico, E., Neumann, G., Zuber, M., Haruyama, J., & Smith, D.
881	(2016). A new lunar digital elevation model from the Lunar Orbiter Laser Al-
882	timeter and SELENE Terrain Camera. Icarus, 273, 346 - 355. Retrieved from

883	http://www.sciencedirect.com/science/article/pii/S0019103515003450
884	doi: https://doi.org/10.1016/j.icarus.2015.07.039
885	Barnouin, O., Daly, M., Palmer, E., Johnson, C., Gaskell, R., Asad, M. A.,
886	Lauretta, D. (2019). Digital terrain mapping by the OSIRIS-REx mis-
887	sion. Planetary and Space Science, 104764. Retrieved from http://
888	www.sciencedirect.com/science/article/pii/S0032063318303805 doi:
889	https://doi.org/10.1016/j.pss.2019.104764
890	Becker, K. J., Robinson, M. S., Becker, T. L., Weller, L. A., Edmundson, K. L.,
891	Neumann, G. A., Solomon, S. C. (2016, March). First Global Digital Ele-
892	vation Model of Mercury. In Lunar and planetary science conference (Vol. 47,
893	p. 2959).
894	Becker, T., & Geissler, P. E. (2005, March). Galileo Global Color Mosaics of Io. In
895	S. Mackwell & E. Stansbery (Eds.), 36th annual lunar and planetary science
896	conference (Vol. 36).
897	Belton, M. J. S., Klaasen, K. P., Clary, M. C., Anderson, J. L., Anger, C. D., Carr,
898	M. H., Pollack, J. B. (1992, May 01). The Galileo Solid-State Imag-
899	ing experiment. Space Science Reviews, $60(1)$, $413-455$. Retrieved from
900	https://doi.org/10.1007/BF00216864
901	Beyer, R. A., Alexandrov, O., & McMichael, S. (2018). The Ames stereo
902	pipeline: NASA's open source software for deriving and processing terrain
903	data. Earth and Space Science, 5(9), 537-548. Retrieved from https://
904	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018EA000409 doi:
905	10.1029/2018EA000409
906	Beyer, R. A., Hare, T., & Radebaugh, J. (2018, April). The Need for a Planetary
907	Spatial Data Clearinghouse. In Planetary science informatics and data analyt-
908	<i>ics conference</i> (Vol. 2082, p. 6067).
909	Bland, M., Weller, L., Mayer, D., Edmundson, K., & Archinal, B. (2019, June). The
910	Shape of Enceladus from a Dense Photogrammetric Control Network. LPI
911	Contributions, 2151, 7048.
912	Bland, M. T., Becker, T. L., Edmundson, K. L., Roatsch, T., Archinal, B. A.,
913	Takir, D., Cook, D. A. (2018). A new Enceladus global control net-
914	work, image mosaic, and updated pointing kernels from Cassini's 13-year $E_{\rm rel}$
915	mission. Earth and Space Science, 5(10), 604-621. Retrieved from https://
916	agupubs.onlinelibrary.wiley.com/do1/abs/10.1029/2018EA000399 doi:
917	Dland M T Weller I. A. Merry D. D. Edward daw K. I. Andriael D. A.
918	Bland, M. I., Weller, L. A., Mayer, D. P., Edmundson, K. L., Archinal, B. A., Manol, I. A., Boolan, T. J. (2010, March), A New Clobal Shane Model
919	of Encoloduce from a Dance Distogrammetric Control Network. In Lungar and
920	of Enceration a Dense r notogrammetric Control Network. In Lanar and
921	Puscing D. Follman W. M. Hubbard W. P. Hollad P. & Daniai M. (2018 Da
922	comber) An Undated Shape Model for Junitar from June Creatity Science
923	Monsuroments ACU Fall Meeting Abstracts
924	Capanna C. Jorda I. Cutierroz D & Hviid S. (2015) MSDCD SHAD2 Conta
925	sian Plate Model DSK for comet 67P/C-C 1M plates NASA Planetary Date
920	Sustem and ESA Planetary Science Archive
927	Conway S. Pozzobon B. Lucchetti A. Massironi M. Simioni E. Be C.
920	Thomas N (2018 September) Evaluating the performance of CaSSIS eleva-
930	tion data for geomorphological and geological analyses In European planetary
931	science congress (p. EPSC2018-962).
032	Cook A C & Robinson M S (2000 April) Mariner 10 stereo image coverage
932	of Mercury. Journal of Geophysical Research 105 9429-9444 doi: 10.1029/
934	1999JE001135
935	Corlies, P., Haves, A. G., Birch, S. P. D., Lorenz, R., Stiles, B. W., Kirk, R.,
936	Iess, L. (2017). Titan's topography and shape at the end of the cassini mission.
937	Geophysical Research Letters, 44(23), 11,754-11,761. Retrieved from https://

938	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075518 doi:
939	10.1002/2017GL070010
940	Cragna, M. (2010). Building INSPIRE: The Spatial Data Infrastructure for Eu-
941	rope. ArcNews Online, Spring. Retrieved 2/6/2018, from http://www.esri
942	.com/news/arcnews/springl0articles/building-inspire.ntml
943	Crompvoets, J., Bregt, A., Rajabifard, A., & Williamson, I. (2004). Assessing
944	the worldwide developments of national spatial data clearinghouses. In-
945	ternational Journal of Geographical Information Science, 18(7), 665-689.
946	Retrieved from https://doi.org/10.1080/13658810410001/02030 doi:
947	10.1080/13058810410001702030
948	Davies, M., Hauge, T., Katayama, F., & Roth, J. (1979). Control networks for the
949	Galilean satellites (Tech. Rep. No. R-2532-JPL/NASA). Jet Propolusion Lab-
950	oratory and National Aeronautics and Space Administration. Retrieved from
951	https://www.rand.org/content/dam/rand/pubs/reports/2006/R2532.pdf
952	Davies, M. E., Colvin, T. R., Katayama, F. Y., & Thomas, P. C. (1987). The
953	control networks of the satellites of Uranus. <i>Icarus</i> , 71(1), 137 - 147. Re-
954	trieved from http://www.sciencedirect.com/science/article/pii/
955	0019103587901680 doi: https://doi.org/10.1016/0019-1035(87)90168-0
956	Davies, M. E., Rogers, P. G., & Colvin, I. R. (1991). A control network of Iriton.
957	Journal of Geophysical Research: Planets, 90(E1), 150/5-15081. Retrieved
958	$\frac{1}{1000} \frac{1}{1000} \frac{1}{10000} 1$
959	Della Ciustina D. N. Dennett, C. A. Deeleen, K. Celish, D. P. Le Conro, I. Ceele
960	DenaGiustina, D. N., Dennett, C. A., Decker, K., Gonsii, D. R., Le Corre, L., Cook,
961	with image based mapping of small bodies in propagation for the OSIPIS
962	BEx mission to (101055) Bonny Farth and Snace Science 5(12) 020 040
903	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
904	10.1029/2018EA000382 doi: 10.1029/2018EA000382
966	Denevi B W Seelos F P Ernst C M Keller M B Chabot N L Murchie
967	S. L Blewett, D. T. (2016, March). Final Calibration and Multispectral
968	Map Products from the Mercury Dual Imaging System Wide-Angle Camera.
969	In Lunar and planetary science conference (Vol. 47, p. 1264).
970	Dickson, J. L., & Ehlmann, B. L. (2019, Jun). Standards for Traceability and Non-
971	Destructive Construction in Planetary Science Data Sets: An Example from
972	the CTX Global Mosaic. LPI Contributions, 2151, 7109.
973	Dickson, J. L., Kerber, L. A., Fassett, C. I., & Ehlmann, B. L. (2018, March). A
974	Global, Blended CTX Mosaic of Mars with Vectorized Seam Mapping: A New
975	Mosaicking Pipeline Using Principles of Non-Destructive Image Editing. In
976	Lunar and planetary science conference (Vol. 49, p. 2480).
977	Domingue, D. L., Denevi, B. W., Murchie, S. L., & Hash, C. D. (2016). Application
978	of multiple photometric models to disk-resolved measurements of Mercury's
979	surface: Insights into Mercury's regolith characteristics. Icarus, 268, 172 -
980	203. Retrieved from http://www.sciencedirect.com/science/article/pii/
981	S0019103515005825 doi: https://doi.org/10.1016/j.icarus.2015.11.040
982	Drewes, H. (2009). Reference systems, reference frames, and the geodetic datum. In
983	M. G. Sideris (Ed.), Observing our changing Earth (pp. 3–9). Berlin, Heidel-
984	berg: Springer Berlin Heidelberg.
985	Dumke, A., Spiegel, M., van Gasselt, S., Neu, D., & Neukum, G. (2010, May). Mars,
986	High-Resolution Digital Terrain Model Quadrangles on the Basis of Mars-
987	Express HRSC Data. In EGU general assembly conference abstracts (Vol. 12,
988	p. 12903).
989	Ernst, C. M., Barnouin, O. S., Daly, R. T., & Small Body Mapping Tool Team.
990	(2018, March). The Small Body Mapping Tool (SBMT) for Accessing, Visu-
991	alizing, and Analyzing Spacecraft Data in Three Dimensions. In Lunar and
992	planetary science conference (Vol. 49, p. 1043).

993	Ernst, C. M., Gaskell, R. W., Barnouin, O. S., & Daly, R. T. (2018, Mar). A Com-
994	plete, Coregistered, and Searchable Collection of Phobos and Deimos Images
995	from 1975-2016. In Lunar and planetary science conference (p. 2769).
996	Wilcomb K K (2015 March) Undeted Shape Models of Dishee and
997	Deimos from Storoophotoelinometry In Lunar and planetary saiones and
998	ference (Vol. 46, p. 2753)
999	$FSA = (2017) = MTP019$ cartesian plate model high res DSK for comet $67P/C_{-}C_{-}$
1000	NASA Planetary Data System and ESA Planetary Science Archive
1002	Fassett, C. I. (n.d.). Mercury DTMs. http://www.calebfassett.com/
1002	mercurvdtms/. (Accessed October. 1, 2019)
1004	Fassett, C. I. (2016). Ames stereo pipeline-derived digital terrain models of mer-
1005	cury from messenger stereo imaging. Planetary and Space Science, 134, 19 -
1006	28. Retrieved from http://www.sciencedirect.com/science/article/pii/
1007	S0032063316300423 doi: https://doi.org/10.1016/j.pss.2016.10.001
1008	Fergason, R., Hare, T., & Laura, J. (n.d.). HRSC and MOLA Blended Digital Eleva-
1009	tion Model at 200m v2. http://bit.ly/HRSC_MOLA_Blend_v0. (Accessed Octo-
1010	ber, $7, 2019$)
1011	Fergason, R. L., Hare, T. M., Mayer, D. P., Galuzska, D. M., Golombek, M. P.,
1012	Otero, R. E., & Redding, B. L. (2018, March). Mars 2020 Landing Site Evalu-
1013	ation: Digital Terrain Model Procedure and Capability Development. In Lunar
1014	and planetary science conference (p. 1611).
1015	Fergason, R. L., Kirk, R. L., Cushing, G., Galuszka, D. M., Golombek, M. P.,
1016	at the InSight landing site on Mars Space Science Reviews 211(1) 100
1017	133 Betrieved from https://doi.org/10.1007/s11214-016-0292-y doi:
1018	10.1007/s11214-016-0292-x
1020	Fergason, R. L., Lee, E. M., & Weller, L. (2013, March). THEMIS geodetically con-
1020	trolled mosaics of Mars. In Lunar and planetary science conference (Vol. 44.
1022	p. 1642).
1023	Ford, J. P., et al. (Eds.). (1993, November). Guide to Magellan image interpreta-
1024	tion.
1025	Ford, P. G., & Pettengill, G. H. (1992). Venus topography and kilometer-scale
1026	slopes. Journal of Geophysical Research: Planets, 97(E8), 13103-13114.
1027	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
1028	10.1029/92 JE01085 doi: $10.1029/92$ JE01085
1029	Gaskell, R., Salto, J., Isniguro, M., Kudota, I., Hasnimoto, I., Hirata, N., Scheered D. (2006 Mar) Clobal Tenegraphy of Asteroid 25142 Italiana
1030	In S. Mackwall & F. Stansbory (Eds.) 27th annual lunar and planetary science
1031	conference (p. 1876)
1032	Gaskell R W (2008 September) Gaskell Eros Shape Model V1 0 NASA Plane-
1034	tary Data System, 96, NEAR-A-MSI-5-EROSSHAPE-V1.0.
1035	Gaskell, R. W. (2011, April). Phobos Shape Model V1.0. NASA Planetary Data
1036	System, 154, VO1-SA-VISA.
1037	Gaskell, R. W. (2012, October). SPC Shape and Topography of Vesta from DAWN
1038	Imaging Data. In Aas/division for planetary sciences meeting abstracts #44
1039	(Vol. 44, p. 209.03).
1040	Gaskell, R. W. (2013a, September). Gaskell Dione Shape Model V1.0. NASA Plane-
1041	tary Data System, 209, CO-SA-ISSNA.
1042	Gaskell, R. W. (2013b, September). Gaskell Mimas Shape Model V2.0. NASA Plan-
1043	etary Data System, 206, CO-SA-ISSNA-5-MIMASSHAPE-V2.0.
1044	Gaskell, R. W. (2013c, September). Gaskell Phoebe Shape Model V2.0. NASA Plan-
1045	etary Data System, 200, UU-SA-ISSINA-5-PHUEBESHAPE-V2.0.
1046	Gasken, R. W. (20150, September). Gasken lettnys Shape Model VI.0. NASA Plan- atoreu Data Sustem 206 CO SA ISSNA 5 TETUVSSUADE VI.0
1047	eiury Duiu System, 200, 00-5A-155NA-0-1E1H155HAPE-V1.0.

1048	Genova, A., Goossens, S., Lemoine, F. G., Mazarico, E., Neumann, G. A., Smith,
1049	D. E., & Zuber, M. T. (2016). Seasonal and static gravity field of Mars
1050	from MGS, Mars Odyssey and MRO radio science. Icarus, 272, 228 - 245.
1051	Retrieved from http://www.sciencedirect.com/science/article/pii/
1052	S0019103516001287 doi: https://doi.org/10.1016/j.icarus.2016.02.050
1053	Genova, A., Goossens, S., Mazarico, E., Lemoine, F. G., Neumann, G. A., Kuang,
1054	W., Zuber, M. T. (2019). Geodetic evidence that Mercury has a solid inner
1055	core. Geophysical Research Letters, 46(7), 3625-3633. Retrieved from https://
1056	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL081135 doi:
1057	10.1029/2018GL081135
1058	Goossens, S., Lemoine, F. G., Sabaka, T. J., Nicholas, J. B., Mazarico, E., Row-
1059	lands, D. D., Zuber, M. T. (2016, Mar). A Global Degree and Order 1200
1060	Model of the Lunar Gravity Field Using GRAIL Mission Data. In Lunar and representation of $(n = 1484)$
1061	Crealey P. & Poteon P. (2007) <i>Planetary manning</i> Combridge University Press
1062	Greeley, R., & Batson, R. (2007). Functury mapping. Cambridge University Fless.
1063	Grus, L., Crompvoets, J., & Bregt, A. K. (2010). Spatial data infrastructures as
1064	tion Science 2/(3) 430.462 Batrioved from https://doi.org/10.1080/
1065	13658810802687319 doi: 10.1080/13658810802687319
1000	Cwinner K Scholten F Preusker F Elgner S Rostsch T Spiegel M
1069	Heinke C (2010 June) Topography of Mars from global mapping by
1069	HRSC high-resolution digital terrain models and orthoimages: Characteris-
1070	tics and performance. Earth and Planetary Science Letters, 294, 506-519. doi:
1071	10.1016/j.epsl.2009.11.007
1072	Hapke, B. (1981). Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geo-
1073	physical Research: Solid Earth, 86(B4), 3039-3054. Retrieved from https://
1074	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB086iB04p03039
1075	doi: $10.1029/JB086iB04p03039$
1075 1076	doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). <i>Context camera</i>
1075 1076 1077	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX
1075 1076 1077 1078	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019)
1075 1076 1077 1078 1079	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata,
1075 1076 1077 1078 1079 1080	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced
1075 1076 1077 1078 1079 1080 1081	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and the terrain formation of the formation of the second state of
1075 1076 1077 1078 1079 1080 1081 1082	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200).
1075 1076 1077 1078 1079 1080 1081 1082 1083	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Backingan, M., (2017)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from heap neuron and compared planetary science conference store operations.
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Betrieved from http://www.sciencedirect.com/science/article/
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Becompaissance Orbiter - Part II) doi:
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797%] 5363797
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797%]5363797 Iess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton,
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797%]5363797 Iess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton, S. J. (2018, 03 07). Measurement of Jupiter's asymmetric gravity field. Nature,
1075 1076 1077 1078 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX_EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797%]5363797 Iess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton, S. J. (2018, 03 07). Measurement of Jupiter's asymmetric gravity field. Nature, 555, 220 EP Retrieved from https://doi.org/10.1038/nature25776
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX_EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797%]5363797 Iess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton, S. J. (2018, 03 07). Measurement of Jupiter's asymmetric gravity field. Nature, 555, 220 EP Retrieved from https://doi.org/10.1038/nature25776 Jaumann, R., Presuker, F., Krohn, K., von der Gathen, I., Stephan, K., Matz, K
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797%]5363797 Iess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton, S. J. (2018, 03 07). Measurement of Jupiter's asymmetric gravity field. Nature, 555, 220 EP Retrieved from https://doi.org/10.1038/nature25776 Jaumann, R., Presuker, F., Krohn, K., von der Gathen, I., Stephan, K., Matz, KD., Schenk, P. (2017, March). Topography and Geomprphology of the
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX_EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797%]5363797 Iess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton, S. J. (2018, 03 07). Measurement of Jupiter's asymmetric gravity field. Nature, 555, 220 EP Retrieved from https://doi.org/10.1038/nature25776 Jaumann, R., Presuker, F., Krohn, K., von der Gathen, I., Stephan, K., Matz, KD., Schenk, P. (2017, March). Topography and Geomprphology of the Interior of Occator Crater on Ceres. In Lunar and planetary science conference
1075 1076 1077 1078 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797] Jess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton, S. J. (2018, 03 07). Measurement of Jupiter's asymmetric gravity field. Nature, 555, 220 EP Retrieved from https://doi.org/10.1038/nature25776 Jaumann, R., Presuker, F., Krohn, K., von der Gathen, I., Stephan, K., Matz, KD., Schenk, P. (2017, March). Topography and Geomprphology of the Interior of Occator Crater on Ceres. In Lunar and planetary science conference (Vol. 48, p. 1440).
1075 1076 1077 1078 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1095 1096 1097 1098	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX_EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from lroc narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797%] Jess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton, S. J. (2018, 03 07). Measurement of Jupiter's asymmetric gravity field. Nature, 555, 220 EP Retrieved from https://doi.org/10.1038/nature25776 Jaumann, R., Presuker, F., Krohn, K., von der Gathen, I., Stephan, K., Matz, KD., Schenk, P. (2017, March). Topography and Geomprphology of the Interior of Occator Crater on Ceres. In Lunar and planetary science conference (Vol. 48, p. 1440). Jaumann, R., Williams, D. A., Buczkowski, D. L., Yingst, R. A., Preusker, F.,
1075 1076 1077 1078 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100	 doi: 10.1029/JB086iB04p03039 Hare, T., Cushing, G., Shinamen, J., Day, B., & Law, E. (n.d.). Context camera (ctx) image mosaics for mars human exploration zones. http://bit.ly/CTX _EZs. (Accessed October, 7, 2019) Haruyama, J., Hara, S., Hioki, K., Iwasaki, A., Morota, T., Ohtake, M., Iwata, T. (2012, March). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. In Lunar and planetary science conference (Vol. 43, p. 1200). Henriksen, M., Manheim, M., Burns, K., Seymour, P., Speyerer, E., Deran, A., Robinson, M. (2017). Extracting accurate and precise topography from hron narrow angle camera stereo observations. Icarus, 283, 122 - 137. Retrieved from http://www.sciencedirect.com/science/article/pii/S001910351630152X (Lunar Reconnaissance Orbiter - Part II) doi: https://doi.org/10.1016/j.icarus.2016.05.012 Huang, Y., Chang, S., Qin, S., Li, P., Hu, X., & Fan, M. (2018). A new lunar DEM based on the calibrated Chang E-1 laser altimeter data [10.1155/2018/5363797]. Advances in Astronomy, 2018, 7. Retrieved from https://doi.org/10.1155/2018/5363797%]5363797 Jess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton, S. J. (2018, 03 07). Measurement of Jupiter's asymmetric gravity field. Nature, 555, 220 EP Retrieved from https://doi.org/10.1038/nature25776 Jaumann, R., Presuker, F., Krohn, K., von der Gathen, I., Stephan, K., Matz, KD., Schenk, P. (2017, March). Topography and Geomprphology of the Interior of Occator Crater on Ceres. In Lunar and planetary science conference (Vol. 48, p. 1440). Jaumann, R., Williams, D. A., Buczkowski, D. L., Yingst, R. A., Preusker, F., Hiesinger, H., Sierks, H. (2012). Vesta's shape and morphology. Science, and the start of the start science of the start science and planetary science of the start science of the science o

1103	content/336/6082/687 doi: 10.1126/science.1219122
1104	JAXA. (n.d.). Initial version of the shape model for ryugu. http://www.isas.jaxa
1105	.jp/en/topics/001725.html. (Accessed September, 23, 2019)
1106	Jensen, J. (2009). Remote sensing of the environment: An earth resource perspective
1107	2/e. Pearson Education.
1108	Jorda, L., Gaskell, R., Capanna, C., Hviid, S., Lamy, P., urech, J., Wenzel, KP.
1109	(2016). The global shape, density and rotation of comet 67P/Churyumov-
1110	Gerasimenko from preperihelion Rosetta/OSIRIS observations. <i>Icarus</i> ,
1111	277, 257 - 278. Retrieved from http://www.sciencedirect.com/science/
1112	article/pii/S0019103516301385 doi: https://doi.org/10.1016/j.icarus.2016
1113	
1114	Jorda, L., Lamy, P., Gaskell, R., Kaasalainen, M., Groussin, O., Besse, S., & Faury,
1115	G. (2012). Asteroid (2807) Steins: Snape, topography and global phys-
1116	Cal properties from OSIRIS observations. Icarus, 221(2), 1089 - 1100.
1117	S0019103512003223 doi: https://doi.org/10.1016/j.jcarus.2012.07.035
1118	Kirk B. Oberst I. & Ciese B. (2004) DS1 digital elevation maps of compt
1119	19P/Borrelly V1 0 NASA Planetary Data System
1120	Kirk B L Archinal B A Lee E M Davies M E Colvin T B & Duxbury
1121	T. C. (2001, March). Global Digital Image Mosaics of Mars: Assessment of
1123	Geodetic Accuracy. In Lunar and planetary science conference (Vol. 32).
1124	Kirk, R. L., Howington-Kraus, E., Redding, B., Callahan, P. S., Hayes, A. G.,
1125	Legall, A., Cassini RADAR Team (2012, March). Topographic Mapping
1126	of Titan: Latest Results. In Lunar and planetary science conference (Vol. 43,
1127	p. 2759).
1128	Kirk, R. L., Howington-Kraus, E., Rosiek, M. R., Anderson, J. A., Archinal, B. A.,
1129	Becker, K. J., McEwen, A. S. (2008). Ultrahigh resolution topographic
1130	mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of
1131	candidate Phoenix landing sites. Journal of Geophysical Research: Planets,
1132	113(E3). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/
1133	abs/10.1029/2007JE003000 doi: $10.1029/2007JE003000$
1134	Konopliv, A., Asmar, S., Park, R., Bills, B., Centinello, F., Chamberlin, A.,
1135	landmark positions and enhamoris from the Dawn tracking and entical data
1130	$L_{carus} = 2/0 = 103 - 117$ Betrieved from http://www.sciencedirect.com/
1138	science/article/pii/S0019103513003850 (Bright and Dark Materials on
1139	Vesta) doi: https://doi.org/10.1016/j.icarus.2013.09.005
1140	Konopliv, A., Banerdt, W., & Sjogren, W. (1999). Venus gravity: 180th de-
1141	gree and order model. <i>Icarus</i> , 139(1), 3 - 18. Retrieved from http://
1142	www.sciencedirect.com/science/article/pii/S0019103599960864 doi:
1143	https://doi.org/10.1006/icar.1999.6086
1144	Konopliv, A., Park, R., Asmar, S., & Buccino, D. (2017). Dawn Vesta derived grav-
1145	ity data. NASA Planetary Data System, DAWN-A-RSS-5-VEGR-V2.0.
1146	Konopliv, A. S., Asmar, S. W., Bills, B. G., Mastrodemos, N., Park, R. S., Ray-
1147	mond, C. A., Zuber, M. T. (2012). The dawn gravity investigation at vesta
1148	and ceres. In C. Russell & C. Raymond (Eds.), The Dawn mission to minor
1149	planets 4 Vesta and 1 Ceres (pp. 461–486). New York, NY: Springer New
1150	TORK. Retrieved from https://doi.org/10.100//9/8-1-4614-4903-4_15 doi: 10.1007/078.1.4614.4003.4.15
1151	$\begin{array}{c} \text{doi: } 10.1007/978-1-4014-4905-4_15 \\ Veneralize A S Davis D S Veneralize A T Dills D C Assess S W Encoders$
1152	A I Zuber M T (2018 January) The Cores gravity field gain hole re-
1153	tation period and orbit from the Dawn radiometric tracking and optical data
1154	<i>Icarus, 299</i> , 411-429, doj: 10.1016/i.icarus.2017.08.005
1156	Konopliv, A. S., Yoder, C. F., Standish, E. M., Yuan, DN., & Siogren, W. L.
1157	(2006). A global solution for the Mars static and seasonal gravity. Mars orien-

	tation Phahas and Daimas masses and Mars anhamania I_{accura} $190(1)$ 22
1158	50 Batriavad from http://www.sciencedirect.com/science/article/pii/
1159	S00.19103506000297 doi: https://doi.org/10.1016/j.jcarus.2005.12.025
1161	Laura J Arvidson B E & Gaddis L B (2018 April) The relationship be-
1162	tween Planetary Spatial Data Infrastructure and the Planetary Data System.
1163	In Planetary science informatics and data analytics conference (Vol. 2082,
1164	p. 6005).
1165	Laura, J. R., Bland, M. T., Fergason, R. L., Hare, T. M., & Archinal, B. A. (2018).
1166	Framework for the development of planetary spatial data infrastructures:
1167	A Europa case study. <i>Earth and Space Science</i> , 5(9), 486-502. Retrieved
1168	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
1169	2018EA000411 doi: 10.1029/2018EA000411
1170	Laura, J. R., Hare, T. M., Gaddis, L. R., Fergason, R. L., Skinner, J. A., Hagerty,
1171	J. J., & Archinal, B. A. (2017, June). Towards a planetary spatial data
1172	infrastructure. ISPRS International Journal of Geo-Information, $6(6)$,
1173	181. Retrieved from http://dx.doi.org/10.3390/ijgi6060181 doi:
1174	10.3390/1jgf6060181
1175	Le Corre, L., Becker, K. J., Gaskell, R., Li, JY., Reddy, V., Blewett, D. T., &
1176	Lucey, P. (2017, June). Controlled Color Mosaics of Vesta with Dawn Framing
1177	Camera Images. In Inita planetary data workshop and the planetary geologic
1178	Lameina E C Cooggang S Sabalta T L Nicholag L P Mazariao E Dorr
1179	Lemome, F. G., Goossens, S., Sabaka, T. J., Micholas, J. D., Mazarico, E., Row-
1180	nar gravity model from GRAIL primary and extended mission data
1182	<i>physical research letters</i> , /1(10), 3382–3389. Betrieved from https://
1183	www.ncbi.nlm.nih.gov/pubmed/26074638 doi: 10.1002/2014GL060027
1184	Lemoine, F. G., Smith, D. E., Rowlands, D. D., Zuber, M. T., Neumann, G. A.,
1185	Chinn, D. S., & Pavlis, D. E. (2001). An improved solution of the gravity
1186	field of Mars (GMM-2B) from Mars Global Surveyor. Journal of Geophys-
1187	ical Research: Planets, 106(E10), 23359-23376. Retrieved from https://
1188	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JE001426 doi:
1189	10.1029/2000JE001426
1190	Lorenz, R. D., Stiles, B. W., Aharonson, O., Lucas, A., Hayes, A. G., Kirk, R. L.,
1191	Barnes, J. W. (2013). A global topographic map of Titan. <i>Icarus</i> , 225(1), 367
1192	- 377. Retrieved from http://www.sciencedirect.com/science/article/
1193	p11/S0019103513001620 doi: https://doi.org/10.1016/j.icarus.2013.04.002
1194	Maguire, D. J., & Longley, P. A. (2005). The emergence of geoportals and their role
1195	In spatial data infrastructures. Computers, Environment and Urban Systems, 20(1) 3 - 14 Betrieved from http://www.gciencedirect.com/gcience/
1196	article/nii/S0198971504000456 (Geoportals) doi: https://doi.org/10.1016/
1198	i.compenyurbsys.2004.05.012
1190	Malik T & Foster I T (2012) Addressing data access needs of the long-tail
1200	distribution of geoscientists. In 2012 IEEE international aeoscience and re-
1201	mote sensing symposium, munich, germany, july 22-27, 2012 (pp. 5348–5351).
1202	Retrieved from http://dx.doi.org/10.1109/IGARSS.2012.6352399 doi:
1203	10.1109/IGARSS.2012.6352399
1204	Manheim, M. R., Henriksen, M. R., Robinson, M. S., & Messenger Team. (2017,
1205	Jun). High-Resolution Local-Area Digital Elevation Models and Derived Prod-
1206	ucts for Mercury from MESSENGER Images. In Third planetary data work-
1207	shop and the planetary geologic mappers annual meeting (Vol. 1986, p. 7001).
1208	Matson, D. L., Spilker, L. J., & Lebreton, JP. (2003). The Cassini/Huygens mis-
1209	sion to the Saturnian system. In C. T. Russell (Ed.), <i>The Cassini-Huygens</i>
1210	mission: Overview, objectives and Huygens instrumentarium volume 1 (pp.
1211	1-58). Dordrecht: Springer Netherlands. Ketrieved from https://doi.org/
1212	10.100//9/8-94-01/-3251-2_1 doi: 10.100//9/8-94-01/-3251-2_1

- (2007).Maune, D., for Photogrammetry, A. S., & Sensing, R. Digital elevation 1213 model technologies and applications: The DEM users manual. American Soci-1214 ety for Photogrammetry and Remote Sensing. Retrieved from https://books 1215 .google.com/books?id=IbwsAQAAMAAJ 1216 Moulic, S. L., Cornet, T., Rodriguez, S., Sotin, C., Seignovert, B., Barnes, J., ... 1217 Soderblom, J. (2019). The Cassini VIMS archive of Titan: From browse prod-1218 ucts to global infrared color maps. Icarus, 319, 121 - 132. Retrieved from 1219 http://www.sciencedirect.com/science/article/pii/S0019103518303993 1220 doi: https://doi.org/10.1016/j.icarus.2018.09.017 1221 Murchie, S., Mick, A., Prockter, L., nad E. Guinness, A. R., & Ward, J. (2017).1222 Messenger: MDIS CDR/RDR software interface specification (Tech. 1223 Rep. No. 1.2.23). John Hopkins University Applied Physics Labora-1224 tory, and PDS Geosciences Node Washington University. Retrieved from 1225 https://pdsimage2.wr.usgs.gov/data/mess-h-mdis-5-rdr-rtm-v1.0/ 1226 MSGRMDS_8001/DOCUMENT/MDIS_CDR_RDRSIS.PDF 1227 Nefian, A., Alexandrov, O., Beyer, R., Moratto, Z., Smith, T., Broxton, M., ... 1228 Robinson, M. (2009).Lunar albedo reconstruction from Apollo metric 1229 camera images (Tech. Rep.). LASER Report. Retrieved from https:// 1230 pdsimage2.wr.usgs.gov/downloads/Apollo_Metric_Albedo_Mosaic/ 1231 AMCAM_0001/document/laser09_report.pdf 1232 Lunar reconnaissance orbiter lunar orbiter laser al-Neumann, G. (2009).1233 timeter reduced data record and derived products software interface speci-1234 fication (Tech. Rep. No. 2.2). LOLA Instrument Team. Retrieved from 1235 https://lola.gsfc.nasa.gov/images/LOLA_RDRSIS.pdf 1236 Neumann, G. A., Perry, M. E., Mazarico, E., Ernst, C. M., Zuber, M. T., Smith, 1237 D. E., ... Solomon, S. C. (2016, March). Mercury Shape Model from Laser 1238 Altimetry and Planetary Comparisons. In Lunar and planetary science confer-1239 ence (Vol. 47, p. 2087). 1240 Nolan, M., Magri, C., Howell, E., Benner, L., Giorgini, J., Hergenrother, C., ... 1241 Scheeres, D. (2013, September). Asteroid (101955) Bennu Shape Model V1.0. 1242 NASA Planetary Data System, 96, EAR-A-I0037-5-BENNUSHAPE-V1.00. 1243 Oberst, J., Giese, B., Howington-Kraus, E., Kirk, R., Soderblom, L., Buratti, 1244 (2004).The nucleus of comet Borrelly: a study of mor-B., ... Britt, D. 1245 phology and surface brightness. Icarus, 167(1), 70 - 79.Retrieved from 1246 http://www.sciencedirect.com/science/article/pii/S0019103503002707 1247 (Special Issue on DS1/Comet Borrelly) doi: https://doi.org/10.1016/ 1248 j.icarus.2003.05.001 1249 Oberst, J., Preusker, F., Stark, A., Matz, K.-D., Gwinner, K., & Roatsch, T. (2017, 1250 High-Resolution Topography from MESSENGER Orbital Stereo March). 1251 Imaging - The H7 Quadrangle "Beethoven". In Lunar and planetary science 1252 *conference* (Vol. 48, p. 1442). 1253 Oberst, J., Zubarev, A., Nadezhdina, I., Shishkina, L., & Rambaux, N. (2014). The 1254 phobos geodetic control point network and rotation model. Planetary and 1255 Space Science, 102, 45 - 50. Retrieved from http://www.sciencedirect.com/ 1256 science/article/pii/S0032063314000646 (Phobos) doi: https://doi.org/ 1257 10.1016/j.pss.2014.03.006 1258 Park, R., & Buccino, D. (2018). Ceres SPC Shape Model Dataset V1.0. NASA Plan-1259 etary Data System, DAWN-A-FC2-5-CERESSHAPESPC-V1.0. 1260 Park, R., Konopliv, A., Asmar, S., & Buccino, D. (2018). Dawn Ceres Derived Grav-1261 ity Data. NASA Planetary Data System, DAWN-A-RSS-5-CEGR-V3.0. 1262 Park, R., Vaughan, A., Konopliv, A., Ermakov, A., Mastrodemos, N., Castillo-1263 Rogez, J., ... Zuber, M. (2019). High-resolution shape model of ceres from 1264 stereophotoclinometry using dawn imaging data. Icarus, 319, 812 - 827. 1265 Retrieved from http://www.sciencedirect.com/science/article/pii/ 1266
- ¹²⁶⁷ S0019103518302835 doi: https://doi.org/10.1016/j.icarus.2018.10.024

1268	Perry, J. E., McEwen, A. S., Fussner, S., Turtle, E. P., West, R. A., Porco, C. C.,
1269	Cassini Iss Team (2005, March). Processing ISS Images of Titan's Surface. In
1270	S. Mackwell & E. Stansbery (Eds.), 36th annual lunar and planetary science
1271	conference (Vol. 36).
1272	Ping, J., Huang, Q., Yan, J., Cao, J., Tang, G., & Shu, R. (2009, July). Lunar to-
1273	pographic model CLTM-s01 from Chang'E-1 laser altimeter. Science in China:
1274	Physics, Mechanics and Astronomy, 52, 1105-1114.
1275	Preusker, F., Oberst, J., Stark, A., Matz, KD., Gwinner, K., & Roatsch, T. (2017,
1276	March). High-Resolution Topography from MESSENGER Orbital Stereo
1277	Imaging - The H3 Quadrangle "Shakespeare". In Lunar and planetary science
1278	<i>conference</i> (Vol. 48, p. 1441).
1279	Preusker, F., Scholten, F., Matz, KD., Elgner, S., Jaumann, R., Roatsch, T.,
1280	Russell, C. T. (2016, March). Dawn at Ceres - Shape Model and Rotational
1281	State. In Lunar and planetary science conference (Vol. 47, p. 1954).
1282	Preusker, F., Scholten, F., Matz, KD., Roatsch, T., Jaumann, R., Raymond, C. A.,
1283	& Russell, C. T. (2012, September). Topography of Vesta from Dawn FC
1284	stereo images. In European planetary science congress 2012 (p. EPSC2012-
1285	428).
1286	Preusker, F., Scholten, F., Matz, KD., Roatsch, T., Willner, K., Hviid, S. F.,
1287	Vincent, JB. (2015, November). Shape model, reference system definition,
1288	and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko
1289	- Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astronomy
1290	and Astrophysics, 583, A33. doi: 10.1051/0004-6361/201526349
1291	Preusker, F., Stark, A., Oberst, J., Matz, KD., Gwinner, K., Roatsch, T., & Wat-
1292	ters, T. R. (2017, August). Toward high-resolution global topography of
1293	Mercury from MESSENGER orbital stereo imaging: A prototype model for
1294	the H6 (Kuiper) quadrangle. Planetary and Space Science, 142, 26-37. doi:
	10 1016/; mg 2017 04 012
1295	10.1010/J.pss.2017.04.012
1295 1296	Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G.
1295 1296 1297	Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-
1295 1296 1297 1298	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High- Resolution Stereo Camera (HRSC) onboard the ESA Mars Express.
1295 1296 1297 1298 1299	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://
1295 1296 1297 1298 1299 1300	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi:
1295 1296 1297 1298 1299 1300 1301	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High- Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http:// www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010
1295 1296 1297 1298 1299 1300 1301 1302	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future direction of the statement of the stateme
1295 1296 1297 1298 1299 1300 1301 1302 1303	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. International Journal of Applied Earth Ob-
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi:
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8
1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S00303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, 2019)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogramme-</i>
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S003243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi:
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1306 1307 1308 1309 1310	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019
1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S.,
1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S., Russell, C. (2018). DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0.
1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S., Russell, C. (2018). DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0. <i>NASA Planetary Data System</i>, DAWN-A-FC2-5-CERESHAMODTMSPG-
1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S., Russell, C. (2018). DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0. <i>NASA Planetary Data System</i>, DAWN-A-FC2-5-CERESHAMODTMSPG-V1.0.
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S., Russell, C. (2018). DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0. <i>NASA Planetary Data System</i>, DAWN-A-FC2-5-CERESHAMODTMSPG-V1.0. Roatsch, T., Kersten, E., Matz, KD., Bland, M., Becker, T., Patterson, G., &
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S., Russell, C. (2018). DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0. <i>NASA Planetary Data System</i>, DAWN-A-FC2-5-CERESHAMODTMSPG-V1.0. Roatsch, T., Kersten, E., Matz, KD., Bland, M., Becker, T., Patterson, G., & Porco, C. (2018). Final Mimas and Enceladus atlases derived from Cassini-
1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S., Russell, C. (2018). DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0. <i>NASA Planetary Data System</i>, DAWN-A-FC2-5-CERESHAMODTMSPG-V1.0. Roatsch, T., Kersten, E., Matz, KD., Bland, M., Becker, T., Patterson, G., & Porco, C. (2018). Final Mimas and Enceladus atlases derived from Cassini-ISS images. <i>Planetary and Space Science</i>, 164, 13 - 18. Retrieved from
1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S., Russell, C. (2018). DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0. <i>NASA Planetary Data System</i>, DAWN-A-FC2-5-CERESHAMODTMSPG-V1.0. Roatsch, T., Kersten, E., Matz, KD., Bland, M., Becker, T., Patterson, G., & Porco, C. (2018). Final Mimas and Enceladus atlases derived from Cassini-ISS images. <i>Planetary and Space Science</i>, 164, 13 - 18. Retrieved from http://www.sciencedirect.com/science/article/pii/S003206331830062X
1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S0030243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S., Russell, C. (2018). DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0. <i>NASA Planetary Data System</i>, DAWN-A-FC2-5-CERESHAMODTMSPG-V1.0. Roatsch, T., Kersten, E., Matz, KD., Bland, M., Becker, T., Patterson, G., & Porco, C. (2018). Final Mimas and Enceladus atlases derived from Cassini-ISS images. <i>Planetary and Space Science</i>, 164, 13 - 18. Retrieved from http://www.sciencedirect.com/science/article/pii/S003206331830062X doi: https://doi.org/10.1016/j.pss.2018.05.021
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1307 1308 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321	 Putri, A. R. D., Sidiropoulos, P., Muller, JP., Walter, S. H., & Michael, G. G. (2019). A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express. <i>Planetary and Space Science</i>, 174, 43 - 55. Retrieved from http://www.sciencedirect.com/science/article/pii/S0032063318300977 doi: https://doi.org/10.1016/j.pss.2019.02.010 Rajabifard, A., Feeney, ME. F., & Williamson, I. P. (2002). Future directions for SDI development. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 4(1), 11 - 22. Retrieved from http://www.sciencedirect.com/science/article/pii/S003243402000028 doi: https://doi.org/10.1016/S0303-2434(02)00002-8 Re, C., Tulyakov, S., Simioni, E., Mudric, T., Cremonese, G., & Thomas, N. (2019, Jun). Performance Evaluation of 3DPD, the Photogrammetric Pipeline for the Cassis Stereo Images. <i>ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 4213, 1443-1449. doi: 10.5194/isprs-archives-XLII-2-W13-1443-2019 Roatsch, E., T., Kersten, K., Matz, F., Preusker, F., Scholten, S., Elgner, S., Russell, C. (2018). DAWN FC2 DERIVED CERES HAMO DTM SPG V1.0. <i>NASA Planetary Data System</i>, DAWN-A-FC2-5-CERESHAMODTMSPG-V1.0. Roatsch, T., Kersten, E., Matz, KD., Bland, M., Becker, T., Patterson, G., & Porco, C. (2018). Final Mimas and Enceladus atlases derived from Cassini-ISS images. <i>Planetary and Space Science</i>, 164, 13 - 18. Retrieved from http://Www.sciencedirect.com/science/article/pii/S003206331830062X doi: https://doi.org/10.1016/j.pss.2018.05.021 Roatsch, T., Kersten, E., Matz, KD., Preusker, F., Scholten, F., Jaumann, R.,

1323	from Dawn FC images. In Egu general assembly conference abstracts (Vol. 15,
1324	p. EGU2013-1129).
1325	Roatsch, T., Kersten, E., Matz, KD., Preusker, F., Scholten, F., Jaumann, R.,
1326	Russell, C. (2016). High-resolution Ceres High Altitude Mapping Or-
1327	bit atlas derived from Dawn Framing Camera images. Planetary and Space
1328	Science, 129, 103 - 107. Retrieved from http://www.sciencedirect.com/
1329	science/article/pii/S0032063316300939 doi: https://doi.org/10.1016/
1330	j.pss.2016.05.011
1331	Roatsch, T., Kersten, E., Matz, KD., Scholten, F., Wagner, R., & Porco, C. (2016).
1332	Cartography of the Medium-Sized Saturnian Satellites Based on Cassini-ISS
1333	Images. In Enceladus and the icy moons of saturn (p. 3032).
1334	Roatsch, T., Whlisch, M., Hoffmeister, A., Scholten, F., Matz, KD., Giese, B.,
1335	Neukum, G. (2008, 01). Mapping and cartography of the icy saturnian
1336	satellites using cassini-iss images. In Proceedings of the xxxvii isprs conference
1337	(p. 1011).
1338	Robinson, M., Speyerer, E., Boyd, A., Waller, D., Wagner, R., & Burns, K. (2012).
1339	Exploring the moon with the lunar reconnaissance orbiter camera. In Interna-
1340	tional archives of the photogrammetry, remote sensing and spatial information
1341	sciences - isprs archives (Vol. 39, pp. 501–504). International Society for
1342	Photogrammetry and Remote Sensing.
1343	Robinson, M. S., Davies, M. E., Colvin, T. R., & Edwards, K. (1999). A revised con-
1344	trol network for mercury. Journal of Geophysical Research: Planets, 104(E12),
1345	30847-30852. Retrieved from https://agupubs.onlinelibrary.wiley.com/
1346	doi/abs/10.1029/1999JE001081 doi: 10.1029/1999JE001081
1347	Russell, C. T., & Raymond, C. A. (2012). The dawn mission to vesta and ceres.
1348	In C. Russell & C. Raymond (Eds.), The dawn mission to minor plan-
1349	ets 4 vesta and 1 ceres (pp. 3–23). New York, NY: Springer New York.
1350	Retrieved from https://doi.org/10.1007/978-1-4614-4903-4_2 doi:
1351	$10.1007/978$ -1-4614-4903-4_2
1352	Saunders, R. S., & Pettengill, G. H. (1991). Magellan: Mission summary. Science,
1353	252(5003), 247-249. Retrieved from https://science.sciencemag.org/
1354	content/252/5003/247 doi: 10.1126/science.252.5003.247
1355	Saunders, R. S., Pettengill, G. H., Arvidson, R. E., Sjogren, W. L., Johnson,
1356	W. T. K., & Pieri, L. (1990). The magellan venus radar mapping mission.
1357	Journal of Geophysical Research: Solid Earth, 95(B6), 8339-8355. Retrieved
1358	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
1359	JB095iB06p08339 doi: 10.1029/JB095iB06p08339
1360	Schenk, P. (2010). New moons - first global topographic maps of (saturn's) icy
1361	moons. https://stereomoons.blogspot.com/2010/11/new-moons.html.
1362	(Accessed September, 26, 2019)
1363	Schenk, P. M. (2008). Cartographic and topographic mapping of the icy satellites
1364	of the outer solar system. In The international archives of the photogrammetry,
1365	remote sensing and spatial information sciences (Vol. XXXVII).
1366	Schenk, P. M., Beyer, R. A., McKinnon, W. B., Moore, J. M., Spencer, J. R.,
1367	White, O. L., Olkin, C. (2018a). Basins, fractures and volcanoes: Global
1368	cartography and topography of pluto from new horizons. $I carus, 314, 400$ -
1369	433. Retrieved from http://www.sciencedirect.com/science/article/pii/
1370	0019103517306024 doi: https://doi.org/10.1016/j.icarus.2018.06.008
1371	Schenk, P. M., Beyer, R. A., McKinnon, W. B., Moore, J. M., Spencer, J. R.,
1372	White, O. L., Olkin, C. (2018b). Breaking up is hard to do: Global
1373	cartography and topography of pluto's mid-sized icy moon charon from
1374	new horizons. Icarus, 315, 124 - 145. Retrieved from http://www
1375	.sciencedirect.com/science/article/pii/S0019103517306565 doi:
1376	https://doi.org/10.1016/j.icarus.2018.06.010
1377	Scholten, F., Oberst, J., Matz, KD., Roatsch, T., Wählisch, M., Speyerer, E. J.,

1378	& Robinson, M. S. (2012). Gld100: The near-global lunar 100 m raster dtm
1379	from lroc wac stereo image data. Journal of Geophysical Research: Planets,
1380	117(E12).
1381	Sidiropoulos, P., & Muller, JP. (2016). Batch co-registration of mars high-
1382	resolution images to hrsc mcl1-e mosaic. ISPRS - International Archives
1383	of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
1384	XLI-B4, 491-495. Retrieved from https://www.int-arch-photogramm
1385	-remote-sens-spatial-inf-sci.net/XLI-B4/491/2016/ doi: 10.5194/
1386	isprs-archives-ALI-B4-491-2016
1387	Sidiropoulos, P., & Muller, JP. (2016, March). Large-Scale Co-Registration of
1388	Mars High-Resolution NASA Images to HRSC: A Case-Study of the MC11-E
1389	Quadrangle. In Lunar and planetary science conference (Vol. 47, p. 2034).
1390	Sidiropoulos, P., Muller, JP., Watson, G., Michael, G., & Walter, S. (2018). Au-
1391	tomatic coregistration and orthorectification (acro) and subsequent mosaicing
1392	of nasa high-resolution imagery over the mars mc11 quadrangle, using hrsc
1393	as a baseline. Functury and space science, 151, 55 - 42. Retrieved from
1394	doi: https://doi.org/10.1016/j.psg.2017.10.012
1395	Cientra II. Larger D. Danhieri C. Kasehner D. Dieleman II. Dadniga D.
1396	Weige P. D. (2011) Images of actored 21 Lutetia. A remnant planetesi
1397	mal from the early Solar System Science 22/(6055) 487-400 Betrieved
1398	from https://science_sciencemag_org/content/334/6055/487doi:
1399	10.1126/science.1207325
1401	Simonelli, D. P., Thomas, P. C., Carcich, B. T., & Veverka, J. (1993). The gener-
1402	ation and use of numerical shape models for irregular Solar System objects.
1403	Icarus, 103(1), 49 - 61. Retrieved from http://www.sciencedirect.com/
1404	science/article/pii/S0019103583710572 doi: https://doi.org/10.1006/
1405	icar.1993.1057
1406	Sivakumar, V., Kumar, B., Srivastava, S., Gopala Krishna, B., Srivastava, P., &
1407	Seelin, K. (2012, 12). DEM generation for lunar surface using Chandrayaan-1
1408	TMC triplet data. Journal of the Indian Society of Remote Sensing, 40. doi:
1409	10.1007/s12524-011-0172-5
1410	Smith, B. A., Soderblom, L., Beebe, R., Boyce, J., Briggs, G., Bunker, A.,
1411	Suomi, V. E. (1981). Encounter with Saturn: Voyager 1 imaging sci-
1412	ence results. Science, 212(4491), 163–191. Retrieved from https://
1413	science.sciencemag.org/content/212/4491/163 doi: 10.1126/science
1414	.212.4491.163
1415	Smith, B. A., Soderblom, L. A., Beebe, R., Boyce, J., Briggs, G., Carr, M.,
1416	Veverka, J. (1979). The Galilean satellites and Jupiter: Voyager
1417	2 imaging science results. Science, 206 (4421), 927–950. Retrieved
1418	from https://science.sciencemag.org/content/206/4421/927 doi:
1419	10.1126/science.206.4421.927
1420	Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A., Lemoine,
1421	F. G., Iaylor, A. H. (2012). Gravity field and internal structure of Maximum from MECCENCED Column 200(2078) 214 217 Detailored
1422	Mercury from MESSENGER. Science, 336 (6078), 214–217. Retrieved
1423	from https://science.sciencemag.org/content/336/60/8/214 doi:
1424	Smith D. E. Zuhan M. T. Salaman S. C. Dhilling D. I. Haad, I. W. Camin
1425	I P Durbury T C (1000) The global topography of Mars and im
1426	blications for surface evolution Science 98/(5/10) 1/05-1503 Petwievod
1427	from https://science_sciencemag_org/content/284/5410/1405doi:
1420	10 1126/science 284 5419 1495
1429	Solomon S C McNutt R L Gold R E & Domingue D L $(2007 \text{ Aug } 01)$
1431	Messenger mission overview. Snace Science Reviews 131(1) 3–39 Re-
1432	trieved from https://doi.org/10.1007/s11214-007-9247-6 doi:

1433	10.1007/s11214-007-9247-6
1434	Speyerer, E. J., Wagner, R. V., Mazarico, E., Silva, V., Anderson, J., Robinson,
1435	M. S., & Bell, J. F. (2018, Mar). Production of New Clementine UVVIS Map
1436	Products Tied to the LRO Reference Frame. In Lunar and planetary science
1437	conference (p. 2538).
1438	Stark, A., Preusker, F., Oberst, J., Matz, KD., Gwinner, K., & Roatsch, T. (2017,
1439	March). High-Resolution Topography from MESSENGER Orbital Stereo
1440	Imaging - The H5 Quadrangle "Hokusai". In Lunar and planetary science
1441	<i>conference</i> (Vol. 48, p. 2287).
1442	Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., Grundy, W. M., McK-
1443	innon, W. B., Zirnstein, E. (2015). The Pluto system: Initial results
1444	from its exploration by New Horizons. Science, $350(6258)$. Retrieved from
1445	https://science.sciencemag.org/content/350/6258/aad1815 doi:
1446	10.1126/science.aad1815
1447	Stiles, B. W., Hensley, S., Gim, Y., Bates, D. M., Kirk, R. L., Hayes, A.,
1448	Veeramacheneni, C. (2009). Determining Titan surface topography
1449	from Cassini SAR data. <i>Icarus</i> , 202(2), 584 - 598. Retrieved from
1450	http://www.sciencedirect.com/science/article/pii/S0019103509001456
1451	doi: https://doi.org/10.1016/j.icarus.2009.03.032
1452	Stooke, P. (2012). Stooke Small Bodies Maps V2.0. NASA Planetary Data System,
1453	MULTI-SA-MULTI-6-STOOKEMAPS-V2.0.
1454	Suresh, K. (n.d.). Lunar digital elevation model generation using Chandrayaan-
1455	1 Terrain Mapping Camera (TMC). https://vedas.sac.gov.in/vedas/
1456	downloads/ertd/CHANDRAYAAN/ldem-usermeet-final.pdf. (Accessed
1457	September, 25, 2019)
1458	Thomas, P., AHearn, M. F., Veverka, J., Belton, M. J., Kissel, J., Klaasen, K. P.,
1459	Richardson, J. E. (2013). Shape, density, and geology of the nu-
1460	cleus of comet 103P/Hartley 2. <i>Icarus</i> , 222(2), 550 - 558. Retrieved from
1461	http://www.sciencedirect.com/science/article/pii/S0019103512002163
1462	(Stardust/EPOXI) doi: https://doi.org/10.1016/j.icarus.2012.05.034
1463	Thomas, P. C., Veverka, J., Belton, M. J., Hidy, A., A'Hearn, M. F., Farnham, T.,
1464	Delamere, W. A. (2007). The shape, topography, and geology of Tempel
1465	1 from Deep Impact observations. <i>Icarus</i> , $187(1)$, 4 - 15. Retrieved from
1466	http://www.sciencedirect.com/science/article/pii/S0019103506004507
1467	(Deep Impact Mission to Comet 9P/Tempel 1, Part 1) doi: https://doi.org/
1468	10.1016/j.icarus.2006.12.013
1469	Thrower, N. J. W., & Jensen, J. R. (1976). The orthophoto and orthophotomap:
1470	Characteristics, development and application. The American Cartographer,
1471	3(1), 39-56. Retrieved from https://doi.org/10.1559/152304076784080249
1472	doi: 10.1559/152304076784080249
1473	Tran, T., Rosiek, M., Beyer, R., Mattson, S., Howington-Kraus, E., Robinson, M.,
1474	Anderson, E. (2010). Generating digital terrain models using LROC NAC
1475	images. In International archives of the photogrammetry, remote sensing and
1476	spatial information sciences - isprs archives (Vol. 38). International Society for
1477	Photogrammetry and Remote Sensing.
1478	University of Arizona. (2019). Overview of Digital Terrain Models (DIM). https://
1479	www.uanirise.org/dtm/about.pnp. (Accessed October, 7, 2019)
1480	U.S. Geological Survey. (2001). Controlled photomosaic map of Callisto JC 15M
1481	UMIN: U.S. Geological Survey Geologic Investigations Series Map 1-2770
1482	(lecn. Rep.). U.S.G.S. Retrieved from https://pubs.usgs.gov/imap/2770/
1483	U.S. Geological Survey. (1988). The southern hemispheres of the Uranian satel-
1484	utes (lecn. Kep.). U.S.G.S. Ketrieved from https://pubs.er.usgs.gov/
1485	publication/11920 doi: $10.3133/11920$
1486	U.S. Geological Survey. (2002). Controlled photomosaic map of Europa Je 15 M
1487	UMIN (lech. Rep.). Reston, VA. Retrieved from http://pubs.er.usgs.gov/

1488	publication/i2757 doi: $10.3133/i2757$
1489	van Donk, D. P., & Riezebos, J. (2005). Exploring the knowledge inven-
1490	tory in project-based organisations: a case study. International Jour-
1491	nal of Project Management, 23(1), 75 - 83. Retrieved from http://
1492	www.sciencedirect.com/science/article/pii/S0263786304000547 doi:
1493	https://doi.org/10.1016/j.jiproman.2004.05.002
1404	Vaníček P Kingdon B & Santos M (2012) Geoid versus quasigeoid: a case
1494	of physics versus geometry Contributions to Geonbusics and Geodesu
1495	$\sqrt{2(1)}$ 101–118 Betrieved from https://content_sciendo_com/view/
1490	42(1), for first matrix a number of the first matrix $42(1)$, for f
1497	$v_{10126-012-0004-0}$
1498	Wagner B V Speverer E I Robinson M S & LBOC Team (2015 Mar) New
1499	Mossicked Data Products from the LBOC Team. In Lunar and planatary sci
1500	(p = 1/72)
1501	Wähligeh M. Willner K. Oherst I. Metz K. D. Schelter F. Destach T.
1502	Wannsch, M., Whitler, K., Oberst, J., Matz, KD., Scholten, F., Roatsch, T.,
1503	Neukum, G. (2010). A new topographic image atlas of Photos.
1504	Earth and Planetary Science Letters, 294(3), 547 - 553. Retrieved from
1505	http://www.sciencedirect.com/science/article/pii/S0012821X09006505
1506	(Mars Express after 6 Years in Orbit: Mars Geology from Three-Dimensional
1507	Mapping by the High Resolution Stereo Camera (HRSC) Experiment) doi:
1508	https://doi.org/10.1016/j.epsl.2009.11.003
1509	Walter, S., Steikert, R., Schreiner, B., Muller, JP., van Gasselt, S., Sidiropoulos, P.,
1510	& Lanz-Kroechert, J. (2017, April). The iMars WebGIS - Spatio-Temporal
1511	Data Queries and Single Image Map Web Services. In EGU general assembly
1512	conference abstracts (Vol. 19, p. 19171).
1513	White, O. L., Schenk, P. M., Nimmo, F., & Hoogenboom, T. (2014). A new stereo
1514	topographic map of Io: Implications for geology from global to local scales.
1515	Journal of Geophysical Research: Planets, 119(6), 1276-1301. Retrieved
1516	<pre>from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/</pre>
1517	2013JE004591 doi: 10.1002/2013JE004591
1518	Wieczorek, M. (2015). 10.05 - gravity and topography of the terrestrial plan-
1519	ets. In G. Schubert (Ed.), Treatise on geophysics (second edition) (Sec-
1520	ond Edition ed., p. 153 - 193). Oxford: Elsevier. Retrieved from http://
1521	www.sciencedirect.com/science/article/pii/B978044453802400169X
1522	doi: https://doi.org/10.1016/B978-0-444-53802-4.00169-X
1523	Zebker, H. A., Gim, Y., Callahan, P., Hensley, S., & Lorenz, R. (2009). Analysis and
1524	interpretation of Cassini Titan radar altimeter echoes. <i>Icarus</i> , 200(1), 240 -
1525	255. Retrieved from http://www.sciencedirect.com/science/article/pii/
1526	S0019103508003874 doi: https://doi.org/10.1016/j.icarus.2008.10.023
1527	Zuber, M. T., Smith, D. E., Phillips, R. J., Solomon, S. C., Neumann, G. A., Hauck,
1528	S. A Yang, D. (2012). Topography of the northern hemisphere of Mercury
1520	from MESSENGER laser altimetry Science 336(6078) 217–220 Betrieved
1529	from https://science_sciencemag_org/content/336/6078/217doi:
1530	10 1196 /science 1918805
1531	Zuber M T Smith D F Watking M M Asmar S W Konoplin A S
1532	Lemoine F C Vuen D_{-N} (2013) Crevity field of the moon from
1533	the Cravity Becovery and Interior Laboratory (CRAIL) mission
1534	220(6120) 668 671 Detriored from https://acionec.acioneco.aci
1535	approx (0120), 000-071. Retrieved from https://science.sciencemag.org/
1536	Content/353/0120/000 (III: III:II20/SCIENCE.123130)
1537	Durek, R. W., & Shirekar, S. E. (2007). All Overview of the Mars Reconnaissance
1538	110(EE) Detrieved from http://www.heiner.com/actional/from http://
1539	112(LD). Ketrieved from https://agupubs.onlinelibrary.wiley.com/doi/
1540	abs/10.1029/2006JE002701 doi: 10.1029/2006JE002701