Collision-Induced Absorption of CH $_{4}\$ -CO $_{2}\$ and H $_{2}\$ -CO $_{2}\$ Complexes and Their Effect on the Ancient Martian Atmosphere

Paul Godin¹, John E Moores¹, Ramses Mario Ramirez², Charissa Campbell¹, Kimberly Strong³, Tue Giang Nguyen¹, and Tyler Wizenberg³

¹York University ²Tokyo Institute of Technology ³University of Toronto

November 22, 2022

Abstract

Experimental measurements of collision-induced absorption (CIA) cross-sections for CO2-H2 and CO2-CH4 complexes were performed using Fourier transform spectroscopy over a spectral range of 100-500 cm and a temperature range of 200-300 K. These experimentally derived CIA cross-sections agree with the spectral range and temperature dependence of the calculation by $citeA{Robin}$, however the amplitude is half of what was predicted. Furthermore, the CIA cross-sections reported here agree with those measured by $citeA{Turbet}$. The CIA cross-sections can be applied to planetary systems with CO $_{2}^{2}$ -rich atmospheres, such as Mars and Venus, and will be useful to terrestrial spectroscopists.

Additionally, radiative transfer calculations of the early Mars atmosphere were performed and showed that CO2\$-CH4 CIA would require surface pressure greater than 3 bar for a 10% methane atmosphere to achieve 273 K at the surface. CO2-H2, however, liquid water is possible with 5% hydrogen and less than 2 bar of surface pressure.

Collision-Induced Absorption of CH₄-CO₂ and H₂-CO₂ Complexes and Their Effect on the Ancient Martian Atmosphere

Paul J. Godin¹, Ramses M. Ramirez^{2,3}, Charissa Campbell¹, Tyler Wizenberg⁴, Tue Giang Nguyen¹, Kimberly Strong⁴, John E. Moores¹

 ¹Department of Earth and Space Science and Engineering, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
 ²Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
 ³Space Science Institute, 4765 Walnut St, Suite B, Boulder, CO 8030, USA
 ⁴Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada

Key Points:

5

12

18

13	•	First temperature-dependent experimental measurements of CO_2 -H ₂ and CO_2 -
14		CH_4 CIA cross-sections
15	•	Radiative transfer calculations of the early Mars atmosphere were performed us-
16		ing the newly acquired CIA cross-sections
17	•	Surface temperatures above 273 K can be reached if surface pressures exceed 3 bar

for 10% CH₄ or 2 bar for a 5% H₂ atmosphere

Corresponding author: Paul J. Godin, pgodin@yorku.ca

19 Abstract

Experimental measurements of collision-induced absorption (CIA) cross-sections for CO₂-20 H_2 and CO_2 - CH_4 complexes were performed using Fourier transform spectroscopy over 21 a spectral range of 100-500 $\rm cm^{-1}$ and a temperature range of 200-300 K. These exper-22 imentally derived CIA cross-sections agree with the spectral range and temperature de-23 pendence of the calculation by Wordsworth et al. (2017), however the amplitude is half 24 of what was predicted. Furthermore, the CIA cross-sections reported here agree with those 25 measured by Turbet et al. (2019). The CIA cross-sections can be applied to planetary 26 systems with CO₂-rich atmospheres, such as Mars and Venus, and will be useful to ter-27 restrial spectroscopists. 28 Additionally, radiative transfer calculations of the early Mars atmosphere were per-29 formed and showed that CO_2 -CH₄ CIA would require surface pressure greater than 3 30 bar for a 10% methane atmosphere to achieve 273 K at the surface. CO₂-H₂, however, 31 liquid water is possible with 5% hydrogen and less than 2 bar of surface pressure. 32

³³ Plain Language Summary

Temperature-dependent experimental measurements of collision-induced absorp-34 tion (CIA) cross-sections for CO_2 -H₂ and CO_2 -CH₄ complexes were measured for the 35 first time over a spectral range of 100-500 $\rm cm^{-1}$ and a temperature range of 200-300 K. 36 These experimentally derived CIA cross-sections are half as strong as what was predicted 37 by Wordsworth et al. (2017), but agree with those measured by Turbet et al. (2019), strength-38 ening our confidence in these results. The CIA cross-sections can be applied to plane-30 tary systems with CO_2 -rich atmospheres, such as Mars and Venus, and will be useful to 40 terrestrial spectroscopists. Additionally, simulations of the early Mars atmosphere were 41 performed and showed that a surface pressure greater than 3 bar for a 10% methane at-42 mosphere or 5% hydrogen and less than 2 bar of surface pressure to achieve liquid wa-43 ter at the surface of Mars. 44

45 **1** Introduction

Geological evidence suggests that there was once liquid water on ancient Mars (Ramirez 46 & Craddock, 2018; Craddock & Howard, 2002; Mangold et al., 2004; Stepinski & Stepin-47 ski, 2005; Barnhart et al., 2009; Hynek et al., 2010; Matsubara et al., 2013); this leads 48 to an unanswered question of how could the early Martian atmosphere have maintained 49 a greenhouse effect sufficient to allow for water on the surface present as a liquid? Ramirez 50 et al. (2014) proposed the idea that collision-induced absorption (CIA) between carbon 51 dioxide (CO_2) and hydrogen gas (H_2) from volcanic events could provide the additional 52 atmospheric absorption needed to trap enough radiation to raise the ancient Martian sur-53 face temperature above freezing. However, there were no measured CO₂-H₂ CIA cross-54 sections available in the literature at the time of Ramirez et al. (2014), so N_2 -H₂ was used 55 as a proxy, but they had argued that CO_2 -H₂ CIA should be stronger. This was followed 56 up in a study by Wordsworth et al. (2017), wherein they simulated the CIA of CO_2 -H₂ 57 and CIA of CO_2 and methane (CH₄), and their simulations did show that CO_2 -H₂ CIA 58 was stronger than N₂-H₂ CIA. Wordsworth et al. (2017) derived their CIA by perform-59 ing *ab initio* calculations of the zeroth spectral moment of a CO_2 -H₂/CH₄ system, and 60 then approximating the spectra as a linear combination of CO_2 - CO_2 and H_2 - H_2 or CH_4 -61 CH_4 CIAs with the weighting determined by the *ab initio* calculation. The theoretical 62 cross-sections from Wordsworth et al. (2017) have strong absorption features in the range 63 of 0-600 cm⁻¹ and 1200-1500 cm⁻¹ for CO₂-CH₄; for CO₂-H₂, absorption was predicted 64 to be a broad feature over the range of $0-1500 \text{ cm}^{-1}$. While this approximation appears 65 to give accurate results, there can be significant deviations. For example, for CO_2 -CH₄ 66 above 1000 $\rm cm^{-1}$, there are no CH₄-CH₄ CIA cross-sections in the literature, so a lin-67 ear combination ends up simply as scaled CO_2 - CO_2 CIA cross-section. For these reasons, 68

experimental validation of this linear combination approximation method are still required (Karman et al., 2019).

Additional modeling by Ramirez (Ramirez, 2017) used the cross-sections from Wordsworth 71 et al. (2017) in more sophisticated Martian climate models and found that the inclusion 72 of CIA between CO_2 and H_2 does result in a warm and wet early Mars that agrees with 73 the paleopressure and climate stability constraints with only 1% hydrogen concentrations. 74 Unfortunately, computing CIA cross-sections is quite challenging, and to date, the only 75 CIA cross-sections for CO₂-H₂ and CO₂-CH₄ complexes in the literature are limited to 76 room temperature, a spectral range of 60 to 535 cm^{-1} , and a resolution of 1 cm^{-1} (Turbet 77 et al., 2019); which found that the experimentally derived CIA cross-sections are weaker 78 than predicted by Wordsworth et al. (2017), but still stronger than N_2 -H₂ CIA. 79

This paper expands upon the experimental work of Turbet et al. (2019), detailing the first temperature-dependent experimental measurements of CO₂-H₂ and CO₂-CH₄ CIA. Given that experimentally derived CIA cross-sections are more reliable than predicted ones, these new experimentally derived cross-sections are used in early Mars climate models to improve our understanding of the impact CIA may have had on the climate of ancient Mars.

2 Laboratory Measurements of Collision-Induced Absorption

2.1 Experimental Procedure and Data Analysis

87

Experiments were performed at the Far-IR beamline of the Canadian Light Source 88 (CLS) Synchrotron facility. The IR absorption spectra were obtained using a Bruker IFS 89 125HR Fourier transform spectrometer connected to a temperature-controllable White-90 type cell with a pathlength of 7275 ± 6 cm. Experiments were performed using a glo-91 bar source, mylar beamsplitter, polypropylene windows, and Si bolometer detector. Spec-92 tra were recorded at an unapodized resolution of 0.05 cm^{-1} (maximum optical path dif-93 ference of 20 cm). Each measurement consisted of 300-500 co-added spectra. Temper-94 ature control was provided by a recirculating chiller. The chiller was capable of reach-95 ing temperatures as low as 203 K with the cell containing gas at atmospheric pressure. 96 The gas samples were commercial products from Praxair with stated high purities 97 of greater than 99%. The cell was evacuated using a Varian turbo pump. The pressure 98 in the gas cell was measured using a combination of a 10 and 1000 Torr MKS baratron qq pressure gauges. At each temperature, measurements were made at two pressure com-100 binations as detailed in Table 1. Empty cell scans were performed between filled cell runs 101 to monitor baseline stability. Due to safety limitations when using explosive gases at the 102 CLS, the mixing ratio of H_2 in CO_2 was restricted to a maximum 8.3%; while for CH_4 103

¹⁰⁴ in CO_2 , the mixing ratio was restricted to maximum 20%. Methane experiments were ¹⁰⁵ performed by first filling the cell with methane, followed by adding CO_2 . The H₂ exper-¹⁰⁶ iments were performed using pre-mixed H₂- CO_2 gas cylinders as indicated in Table 1.

¹⁰⁷ The absorption of light by a medium at a given pressure and temperature (P, T) ¹⁰⁸ can be described by the well-known Beer-Lambert Law:

$$I(\tilde{\nu}) = I_o(\tilde{\nu})e^{-\chi(\tilde{\nu})} \tag{1}$$

where $I(\tilde{\nu})$ is the intensity at wavenumber $\tilde{\nu}$ after passing through the gas sample (filledcell measurement) and $I_o(\tilde{\nu})$ is the incident intensity (empty-cell measurement). $\chi(\tilde{\nu})$ is the optical depth, which for a mixture of CO₂ and another gas in a cell is given by:

$$\chi(\tilde{\nu}) = L(\rho_{CO_2}\sigma_{CO_2}(\tilde{\nu}) + \rho_x\sigma_x(\tilde{\nu}) + \rho_{CO_2}^2\sigma_{CO_2+CO_2}(\tilde{\nu}) + \rho_x^2\sigma_{x+x}(\tilde{\nu}) + \rho_{CO_2}\rho_x\sigma_{CO_2+x}(\tilde{\nu}))$$

$$(2)$$

Temperature (K)	Total Pressure (Torr)	$egin{array}{c} { m CH}_4 \ { m Pressure} \ ({ m Torr}) \end{array}$	% H ₂
$\begin{array}{c} 293.80 {\pm} 0.05 \\ 293.40 {\pm} 0.05 \end{array}$	$\begin{array}{c} 750.1{\pm}0.08 \\ 762.5{\pm}0.15 \end{array}$	$\begin{array}{c c} 156.5 \pm 0.05 \\ 76.7 \pm 0.05 \end{array}$	0 0
$\begin{array}{c c} 250.10 \pm 0.05 \\ 250.15 \pm 0.08 \end{array}$	$\begin{array}{c} 743.6{\pm}0.11 \\ 687.0{\pm}0.12 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0
$\begin{array}{c c} 204.05 \pm 0.08 \\ 203.20 \pm 0.05 \end{array}$	751.0 ± 0.17 760.4 ± 0.30	$\begin{array}{c c} 150.7 \pm 0.06 \\ 75.8 \pm 0.06 \end{array}$	000
$\begin{array}{c} 292.60{\pm}0.05\\ 293.12{\pm}0.06\end{array}$	745.3 ± 0.31 742.4 ± 0.13	000	4.009 8.312
$\begin{array}{c} 250.01{\pm}0.05\\ 250.45{\pm}0.15\end{array}$	718.1 ± 0.33 741.7 ± 0.44	000	4.009 8.312
$\begin{array}{c} 203.30{\pm}0.05\\ 203.50{\pm}0.05\end{array}$	$756.4 \pm 0.19 \\ 757.5 \pm 0.25$	0 0	3.987 8.270

Table 1: Summary of experimental conditions for CIA experiments with $\rm CO_2$ and $\rm CH_4$ or $\rm H_2.$

where L is the cell length, ρ is the density of the gas, and $\sigma(\tilde{\nu})$ are the absorption crosssections for either single gas species or CIA of mixed species depending on the subscript $(x \text{ designating either H}_2 \text{ or CH}_4)$. The density of a gas in the cell is related to the pressure by:

$$\rho_x = \frac{P_x T_o}{P_o T} N_L \tag{3}$$

where P_o and T_o are standard conditions for pressure and temperature, and N_L is Loschmidt's constant.

Single gas species absorption cross-sections exist in the literature for CH_4 , H_2 , and 118 CO₂ (Gordon et al., 2017); while CIA cross-sections exist for CO₂-CO₂ (Gruszka & Bo-119 rysow, 1997), CH_4 - CH_4 (Borysow & Frommhold, 1987), and H_2 - H_2 (Abel et al., 2011) 120 at the temperatures and spectral region investigated in this study. The absorption ef-121 fects from single gas species, CO₂-CO₂ CIA, CH₄-CH₄ CIA, and H₂-H₂ CIA are sim-122 ulated using the HITRAN Application Programming Interface (HAPI) (Kochanov et al., 123 2016). These absorption effects are then subtracted from the optical depth. Addition-124 ally, there was some water contamination in the cell, which requires the subtraction of 125 water absorption lines from the measured optical depth; however, since the concentra-126 tion of water is unknown, the optical depth was fit to match the absorption spectra of 127 water in contaminated regions, using the density of water as a free parameter. The re-128 moval of these unwanted absorption features is not perfect, since there are small differ-129 ences between the simulated lines from HAPI and the measured spectra. A 7 cm^{-1} me-130 dian filter was applied to remove any remaining narrow features. Lastly, the baseline was 131 adjusted to account for fluctuations in light intensity between empty- and full-cell mea-132 surement runs. Wavenumbers of known zero optical depth are used to fit a linear base-133 line to the spectra. 134

Once the optical depth has been cleaned of the unwanted absorption effects, the CIA absorption cross-sections can be found via a linear fit of optical depth versus pres¹³⁷ sure for a given temperature and wavenumber. All fits have a forced convergence of $\chi =$ ¹³⁸ 0 for P = 0, with

$$\chi(\tilde{\nu}) = \frac{P_x T_o}{P_o T} N_L L \sigma(\tilde{\nu}). \tag{4}$$

Sources of error include subtraction of unwanted absorption features (10%), temperature fluctuations (± 0.2 K), baseline adjustment (10%), and pressure readout (± 0.08 Torr). These errors are propagated in the calculation of the optical depth to determine its uncertainty. The uncertainty of the optical depth is used to assign weights in the linear fit against pressure to find the absorption cross-section. The final uncertainty is the sum, in quadrature, of the linear fit error, pathlength uncertainty (± 6 cm), and sample purity error ($\pm 1.0\%$), expressed at the 3σ confidence interval.

2.2 Collision-Induced Absorption Cross-sections

146

¹⁴⁷ Measured CO₂-CH₄ and CO₂-H₂ CIA cross-sections as a function of temperature ¹⁴⁸ are shown in Figures 1 and 2, respectively. Below 100 cm⁻¹, the limit of the detector be-¹⁴⁹ gins to be reached and the amplitude of the cross-section becomes less reliable; above ¹⁵⁰ 500 cm⁻¹, CO₂ lines begin to saturate the detector, preventing the detection of other ¹⁵¹ types of absorption.

At room temperature, the measurement from this work for CO_2 -CH₄ CIA agree with the experimental results from Turbet et al. (2019), and its observed that the theoretical prediction of Wordsworth et al. (2017) overestimates the CIA by roughly a factor of 2. Looking at the temperature dependence of the CIA, the predicted increase in strength with decreasing temperature is also observed. Once again, Wordsworth et al. (2017) overestimates the CIA by roughly a factor of 2 at these colder temperatures.

Similar results are observed in the CO_2 -H₂ CIA measurements, as seen for CO_2 -158 CH₄, although the uncertainty in the derived CIA is larger overall. Due to the exper-159 imental safety limitations on the amount of hydrogen gas permitted in the gas cell, it 160 was difficult to resolve the CO_2 -H₂ CIA from the noise, especially at higher tempera-161 tures where the CIA effect is weaker, hence the uncertainty is higher compared to the 162 CO_2 -CH₄ CIA measurements. Despite this, an overestimation factor of 2 can still be in-163 ferred when comparing the prediction from Wordsworth et al. (2017) to the experimen-164 tal measurements, including the measurement by Turbet et al. (2019). 165

Ultimately, these results agree with the prediction of Wordsworth et al. (2017) when 166 it comes to the spectral range, and temperature dependence. However, the Wordsworth 167 et al. (2017) prediction consistently overestimates the strength of the CIA by a factor 168 of 2. At room temperature, these results agree within combined errors with the exper-169 imental cross-sections of Turbet et al. (2019), strengthening our confidence in those num-170 bers. There appears to be more internal structure in the CIA cross-sections reported in 171 this work compared to those of Turbet et al. (2019). This may be due to the increased 172 resolution of this experiment or residual of incompletely removed unwanted absorption 173 lines. 174

Attempts were also made to observe the CIA above 500 cm^{-1} , using an MCT detector and KBr windows/beamsplitter. However in this regime, absorption lines from CO₂ and CH₄ were so strong that in order to not saturate the detector, less than 0.05 Torr of those gas species was used. With such a small amount of gas present, there was no longer enough to produce a measurable CIA signal above the noise.

Figure 1: Experimental cross-section of CO_2 -CH₄ CIA from this work (solid black line) along with comparisons to Wordsworth et al. (2017) (red dotted line), Wordsworth et al. (2017) prediction scaled by a factor of 0.5 (red solid line) to provide better agreement with the results from this work, and Turbet et al. (2019) measurement (blue X line). Uncertainty is represented by the shading around the experimentally derived measurements.

Figure 2: Experimental cross-section of CO_2 -H₂ CIA from this work (solid black line) along with comparisons to Wordsworth et al. (2017) (red dotted line), Wordsworth et al. (2017) prediction scaled by a factor of 0.5 (red solid line) to provide better agreement with the results from this work, and Turbet et al. (2019) measurement (blue X line). Uncertainty is represented by the shading around the experimentally derived measurements.

¹⁸⁰ 3 Implications for Ancient Mars

181

3.1 Climate Model Details

Wordsworth et al. (2017) and Ramirez (Ramirez, 2017) investigated the effect on 182 the ancient Martian climate by including the predicted CIA cross-sections in their ra-183 diative transfer models. However as noted in Section 2.2, there is a systematic overes-184 timation in the predicted CIA for both CO_2 -H₂ and CO_2 -CH₄ by a factor of 2. There-185 fore, it is worth revisiting these climate calculations with experimentally verified CIA 186 absorption values. Since the experimental CIA do not cover the full spectral range needed 187 for radiative transfer modeling, it is assumed that the scaling factor of 2 needed to ad-188 just the Wordsworth et al. (2017) CIA is consistent across the full spectral range. A scaled 189 Wordsworth et al. (2017) CIA was used in a single-column radiative climate model fol-190 lowing the same procedure as outlined below (Ramirez et al., 2014; Ramirez, 2017): 191

This model follows a moist adiabat at warmer temperatures and relaxes to a CO_2 192 adiabat when temperatures become cold enough for CO₂ to condense (Ramirez et al., 193 2014, 2014). The model uses the correlated-k technique to compute absorption for CO_2 . 194 H_2O , CH_4 , and H_2 across 38 solar intervals, 55 infrared intervals, five temperatures (100, 195 200, 300, 400, and 600 K), and for eight pressures $(10^{-5}-10^2 \text{ bar})$. At the low temper-196 atures considered here (<300 K), the HITRAN (Gordon et al., 2017) line list was uti-197 lized to compute k-coefficients at all wavelengths for CO_2 and H_2O , and in the thermal 198 infrared for CH₄. The far wings of water vapor are modeled using the Baranov Payn-199 ter Serio (BPS) water vapor continuum (Paynter & Ramaswamy, 2011), which allows 200 for accurately computed water vapor absorption at warm temperatures. However, the 201 HITRAN line list is still incomplete for CH_4 at visible and near-infrared wavelengths (Kassi 202 et al., 2008). Instead, near-infrared CH₄ k-coefficients for wavelengths under 1 micron 203 from Karkoschka (Karkoschka, 1994) were combined with those from Irwin et al. (1996) 204 for the spectral range between 1 and 4.5 microns. Rayleigh scattering for H_2O , CO_2 , and 205 CH₄ (Ramirez et al., 2014; Sneep & Ubachs, 2005) was included. CO₂-CH₄ and CO₂-206 H_2 CIA are incorporated, both from Wordsworth et al. (2017), and the CIA scaled by 207 0.5 to match the above experimental results. CO_2 - CO_2 CIA is modeled following the pro-208 cedure in Wordsworth et al. (2010), using experimental data from Baranov et al. (2004) 209 and Gruszka and Borysow (1997). 210

Overall, the new CIA yield significantly cooler mean surface temperatures as shown 211 in Figures 3a and 3b, when comparing the results from this work (solid lines) to the pre-212 vious work (dashed lines). Mean surface temperatures above 273 K can be reached with 213 the new CIA if surface pressures exceed ~ 3 bar for a 10% CH₄ atmosphere. However, 214 current studies on geologic observations suggest that the pressure on early Mars during 215 valley network formation was no higher than ~ 2 bar (Kite et al., 2014; Hu et al., 2015; 216 Kurokawa et al., 2017). Another issue is that for CH_4 concentrations above a CH_4/CO_2 217 ratio of 0.1, photochemical hazes form that cool the planet, canceling the greenhouse ef-218 fect (Haqq-Misra et al., 2008). Ultimately, CO_2 -CH₄ absorption is not as promising as 219 initially argued in Wordsworth et al. (Wordsworth et al., 2017). CO_2 -H₂, however, still 220 seems much more promising, as liquid water is possible with 5% hydrogen and less than 221 2 bar of surface pressure. 222

The planetary albedo plots are calculated here using the updated CIA and com-223 pared to those found in (Ramirez, 2017); as in that study, the planetary albedo decreases 224 with increasing CH_4 or H_2 concentrations since this causes the overall atmospheric scat-225 tering to decrease. Comparing the effect of scaled versus unscaled CIA on planetary albedo, 226 the albedo does not change significantly with the updated CIA for CO_2 -CH₄ as shown 227 in Figures 3c and 3d; this is primarily because water vapor amounts are still small at these 228 temperatures. However with updated CO_2 -H₂ CIA, there is a slight change in planetary 229 albedo. This is because H_2 has a larger impact on the surface temperature (Figures 3a 230 and 3b) compared to CH_4 , which in turn increases the amount of water vapor in the at-231 mosphere, resulting in the increased sensitivity of the planetary albedo to changes in CO_2 -232 H_2 CIA. Additionally, atmospheres with CH_4 will have a lower planetary albedo than 233

those with H_2 is in part due to the increased absorption of CH_4 at solar wavelengths, which reduces the planetary albedo compared to H_2 .

Following the analysis in (Ramirez, 2017), a comparison of temperature-altitude profiles for a fully-saturated 3 bar CO₂ early Mars atmosphere containing 1% CH₄ or 5% H₂ for a fully-saturated 2 bar CO₂ atmosphere were also performed using the updated CIA from this work. As seen in Figures 3e and 3f, there is little change in the temperature profile in the upper atmosphere when using Wordsworth et al. (2017) CIA or scaled CIA from this work; however at the surface there is ~ 10 K difference in temperature.

243 **4** Conclusions

This report details the first temperature-dependent experimental measurements of CO_2-H_2 and CO_2-CH_4 CIA. It was found that below 600 cm⁻¹, the experimentally derived CIA cross-sections agree with the spectral range and temperature dependence of the calculations by Wordsworth et al. (2017), however the amplitude is half of what was predicted. Furthermore, the CIA cross-sections reported here agree within combined uncertainty with those measured by Turbet et al. (2019), strengthening our confidence in these results.

With improved spectra, radiative transfer calculations of the early Mars atmosphere were performed and showed that CO_2-CH_4 CIA is not as promising as initially argued in Wordsworth et al. (Wordsworth et al., 2017) for producing a warm and wet early Mars. CO_2-H_2 , however, still seems much more promising, as liquid water is possible with 5% hydrogen and less than 2 bar of surface pressure.

256 Acknowledgments

This work was supported by the Technologies for Exo-planetary Science (TEPS) Nat-257 ural Sciences and Engineering Research Council of Canada (NSERC) CREATE Train-258 ing Program. R. M. Ramirez acknowledges support from the Astrobiology Center (pro-259 posal grant number JY310064). The authors would like to thank Dr. Brant Billinghurst 260 and Dr. Jianbao Zhao of the Far-IR beamline at the CLS for their assistance. Experi-261 mentally derived CIA cross-sections are available from the York University Dataverse 262 repository: https://dataverse.scholarsportal.info/privateurl.xhtml?token=7d20f4c4-5fca-263 4d44-a2da-5dc42fa4db2b. 264

265 References

- Abel, M., Frommhold, L., Li, X., & Hunt, K. L. C. (2011). Collision-induced ab sorption by h₂ pairs: From hundreds to thousands of kelvin. J. Phys. Chem.
 A., 115, 68056812. doi: 10.1021/jp109441f
- Baranov, Y. I., Lafferty, W. J., & Fraser, G. T. (2004). Infrared spectrum of the continuum and dimer absorption in the vicinity of the o₂ vibrational fundamental in o₂/co₂ mixtures. J. Mol. Spectrosc., 228(2), 432440. doi: 10.1016/j.jms.2004
- Barnhart, C. J., Howard, A. D., & Moore, J. M. (2009). Long-term precipitation
 and late-stage valley network formation: landform simulations of parana basin,
 mars. J. Geophys. Res. Planets, 114 (E01003). doi: 10.1029/2008JE003122
- Borysow, A., & Frommhold, L. (1987). Collision-induced rototranslational absorption spectra of ch₄-ch₄ pairs at temperatures from 50 to 300 k. Astrophys. J., 318 (940). doi: 10.1086/165426
- Craddock, R. A., & Howard, A. D. (2002). The case for rainfall on a warm, wet
 early mars. J. Geophys. Res. Planets, 107(5111). doi: 10.1029/2001JE001505
- Gordon, I. E., Rothman, L. S., Hill, C., & et al. (2017). The hitran 2016 molecular
 spectroscopic database. J. Quant. Spec. Rad. Trans., 203, 3-69. doi: 10.1016/

Figure 3: Early Mars climate modeling for atmospheres containing CH₄ or H₂. Dotted lines designate unscaled CIA from Wordsworth et al. (2017), while solid lines use CIA values scaled by 0.5. The model assumes that the effective stellar flux received by be Mars ~4 billion years ago, is 75% of the present-day flux (S/S_O=0.75). First row: modeled surface temperature as a function of CO₂ partial pressure (log scale), at 1%, 5%, and 10% CH₄ (a) or H₂ (b). Second row: Mars' planetary albedo as a function of CO₂ partial pressure, at 1%, 5%, and 10% CH₄ (c) or H₂ (d). Third row: temperature-altitude profiles for a fully-saturated CO₂ early Mars atmosphere from Ramirez (2017) for atmospheres containing no CH₄ or H₂ (dashed line), 1% CH₄ (e) or 5% H₂ (f) using Wordsworth et al. (2017) CIA (blue line), and 1% CH₄ (e) or 5% H₂ (f) using CIA from this work (red line).

202	i jasrt 2017 06 038
203	Gruszka M & Borysow A (1997) Boto-translational collision-induced absorption
284	of c_{22} for the stmosphere of venus at frequencies from 0 to 250 cm ¹ at tem-
285	peratures from 200 to 800 k Learne $120(172)$ doi: 10.1006/jcar.1007.5773
280	Hage Migra I D. Domagal Coldman S. D. Kasting P. I. & Kasting I F.
287	(2008) A revised here methane greenhouse for the archean earth
288	hiology 8(6) 1127 1137 doi: 10.1080/ost 2007.0107
289	Hu B Kagg D M Felmonn B I k Vung V I (2015) Tracing the fate of car
290	hon and the atmospheric evolution of mars. Nat. Commun. 6(10003) doi: 10
291	boin and the atmospheric evolution of mais. <i>Null. Commun.</i> , $\theta(10003)$. doi: 10 1038/ncomms10003
292	Humak B M Baach M & Hoka M B T (2010) Undeted global man of martian
293	uplice, D. M., Death, M., & Hoke, M. R. 1. (2010). Opticated global map of matital
294	<i>where Res Diamete</i> 115(F00008) doi: 10.1020/2000JE003548
295	prize $P = P = P = P = P = P = P = P = P = P $
296	distribution coefficients for hydrogeneral cell breadened methans in the range
297	austribution coefficients for hydrogenand sen-broadened methane in the range $2000,0500$ am ⁻¹ from supported supported to hand modelled spectra.
298	C_{eo} R_{eo} Pl_{emote} 101(F11) 26127 26154 doi: 10.1020/06 JE02707
299	Geo. Res. Functs, $101(E11)$, $20157-20154$. doi: $10.1029/905E02107$ Karlogable E (1004) Spectrophotometry of the joyien planets and titan at 200 to
300	1000 nm wavelength: The methane spectrum Learnie 111(1) 174 102 doi: 10
301	1000-fini wavelength: The methane spectrum. <i>Icarus</i> , $111(1)$, 174 -192. doi: 10
302	.1000/10al.1994.1159
303	Karman, I., Gordon, I. E., Van der Avoird, A., Baranov, Y. I., Boulet, C., Drouin,
304	b. J., van der Zande, w. J. (2019). Opdate of the intran consion-induced
305	absorption section. <i>Icarus</i> , 528 , 100-175. doi: 10.1010/J.Icarus.2019.02.054
306	(1 201 70 µm) abcomption groat up of mathema down to 77 h. Dhusical Cham
307	$(1.301.70 \ \mu m)$ absorption spectrum of methane down to 77 K. Physical Chem- istrue Chamised Division 10(20), 4410, 4410, doi: 10.1020/D005047V
308	stry Chemical Physics, 10(30), 4410-4419. doi: 10.1039/B805947K
309	Kite, E. S., Williams, J. P., Lucas, A., & Anaronson, O. (2014). Low palaeopres-
310	sure of the martian atmosphere estimated from the size distribution of ancient $(2.225, 220, -1.5, -10, 1029)$ (mms 2127)
311	craters. Nat. Geosci., 7, 355-359. doi: $10.1038/ngeo2137$
312	Kochanov, R. V., Gordon, I. E., Rothman, L. S., Weiso, P., Hill, C., & Wilzewski,
313	J. S. (2016). Hitran application programming interface (napi): A comprehen-
314	sive approach to working with spectroscopic data. J. Quant. Spec. Rad. Trans.,
315	III, 10-50. doi: 10.1010/J.JqSrt.2010.05.005
316	Kurokawa, H., Kurosawa, K., & Usul, I. A. (2017). Lower limit of atmospheric
317	pressure on early mars interred from introgen and argon isotopic compositions. Learning $0.00(1)$, $442,450$, doi: 10.1016 /: joanna 2017.08.020
318	Icarus, 299(1), 443-459. doi: 10.1010/J.icarus.2017.08.020
319	Mangold, N., Quantin, C., Ansan, V., Delacourt, C., & Allemand, P. (2004). Ev-
320	dence for precipitation on mars from dendritic valleys in the valles marineris
321	Materia v Harrand A D & Clashan and L D (2012) Hadraham of contraction
322	Matsubara, Y., Howard, A. D., & Gocnehour, J. P. (2013). Hydrology of early mars:
323	valley network incision. J. Geophys. Res. Planets, 118, 1303-1387. doi: 10
324	1002/Jgre.20081
325	Paynter, D. J., & Ramaswamy, V. (2011). An assessment of recent water vapor con-
326	tinuum measurements upon longwave and shortwave radiative transfer. J. Geo. B_{00} Atmospheres 116(D20) doi: 10.1020/2010/D015505
327	Res. Atmospheres, $110(D20)$. doi: $10.1029/2010JD015505$
328	Ramfrez, R. M. (2017). A warmer and wetter solution for early mars and the chal-
329	of opt
330	
331	Ramírez, R. M., & Craddock, R. A. (2018). The geological and climatological case for a warman and watter carly many $Nature Conscience 11(4)$ 220.227
332	Deminer D M Kopperent D Zurger M E Deliver T D Eventure D
333	Kasting I. E. (2014) Warming carly many with ac and by Network
334	EXAMPLE 10 LO14). Warming early mars with CO_2 and D_2 . Nature Geo-
335	Shoop M & Ubache W (2005) Direct measurement of the readian contains
336	C_{1000} , $M_{1.0}$
331	CLOSS SECTION III VALIOUS GASES. J. GUUNIL SPEC. NULL ITUNS., $\mathcal{II}(3)$, 293-310. (IOI:

338	10.1016/j.jqsrt.2004.07.025
339	Stepinski, T. F., & Stepinski, A. P. (2005). Morphology of drainage basins as an in-
340	dicator of climate on early mars. J. Geophys. Res. Planets, 110(E12S12). doi:
341	10.1029/2005 JE002448
342	Turbet, M., Tran, H., Pirali, O., Forget, F., Boulet, C., & Hartmann, JM. (2019).
343	Far infrared measurements of absorptions by ch_4+co_2 and h_2+co_2 mixtures
344	and implications for greenhouse warming on early mars. Icarus, 321, 189-199.
345	doi: 10.1016/j.icarus.2018.11.021
346	Wordsworth, R., Forget, F., & Eymet, V. (2010). Infrared collision-induced and
347	far-line absorption in dense co_2 atmospheres. <i>Icarus</i> , $210(2)$, 992-997. doi: 10
348	.1016/j.icarus.2010.06.010
349	Wordsworth, R., Kalugina, Y., Lokshtanov, S., Vigasin, A., Ehlmann, B., Head, J.,
350	Wang, H. (2017). Transient reducing greenhouse warming on early mars.
351	Geophys. Res. Lett., 44, 665-671. doi: 10.1002/2016GL071766