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Abstract

Climate models rely on parameterizations of a variety of processes in the atmospheric physics, but a common concern is

that the temporal resolution is too coarse to consistently resolve the behavior that individual parameterizations are designed to

capture. This study examines timescales numerically derived from the Morrison-Gettelman (MG2) microphysics as implemented

within the Energy Exascale Earth System Model, version 1 (E3SMv1). Numerically-relevant timescales in MG2 are derived by

computing the eigenspectrum of its Jacobian. These timescales are found to often be smaller than the default 5 min timestep

used for MG2. The fast timescales are then heuristically connected to individual microphysics processes. By substepping a few

particular rain processes within MG2, the time discretization error for those processes was significantly reduced with minimal

additional expense to the overall microphysics. While this improvement has a substantial effect on the target processes and

on the vertical distribution of stratiform-derived rain within E3SMv1, the overall model climate is found to not be sensitive to

MG2 time step.
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Key Points:7

• MG2 contains several processes that are poorly resolved at a time step of 5 min-8

utes.9

• Substepping MG2’s rain-related processes significantly changes their rates.10

• However, reducing MG2’s time step within E3SM has little to no impact on the11

climate.12
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Abstract13

Climate models rely on parameterizations of a variety of processes in the atmospheric14

physics, but a common concern is that the temporal resolution is too coarse to consis-15

tently resolve the behavior that individual parameterizations are designed to capture.16

This study examines timescales numerically derived from the Morrison-Gettelman (MG2)17

microphysics as implemented within the Energy Exascale Earth System Model, version18

1 (E3SMv1). Numerically-relevant timescales in MG2 are derived by computing the eigen-19

spectrum of its Jacobian. These timescales are found to often be smaller than the de-20

fault 5 min timestep used for MG2. The fast timescales are then heuristically connected21

to individual microphysics processes. By substepping a few particular rain processes within22

MG2, the time discretization error for those processes was significantly reduced with min-23

imal additional expense to the overall microphysics. While this improvement has a sub-24

stantial effect on the target processes and on the vertical distribution of stratiform-derived25

rain within E3SMv1, the overall model climate is found to not be sensitive to MG2 time26

step.27

Plain Language Summary28

The atmospheric components of climate models contain a number of physics pa-29

rameterizations, subcomponents that are designed to capture particular aspects of the30

atmospheric physics. Cloud microphysics models are parameterizations designed to rep-31

resent very small-scale cloud processes, including phase changes and the formation of pre-32

cipitation. The accuracy of these parameterizations depends on the model time step: a33

shorter time step typically requires more computational resources, but also improves the34

model’s accuracy. This paper examines a particular microphysics model, MG2, used with35

a time step of five minutes in the E3SMv1 climate model. By linearizing MG2, we can36

find characteristic time scales associated with this model, which are often much shorter37

than five minutes. This suggests that the usual time step is too large to fully capture38

the physics that MG2 represents. We also experiment with using a shorter time step for39

parts of the rain physics, and find that in many cases the rain mass is significantly af-40

fected. However, reducing the MG2 time step does not have much effect on the overall41

climate of E3SMv1.42

1 Introduction43

Atmospheric general circulation models (GCMs) consist of resolved-scale fluid “dy-44

namics” and parameterized “physics” components. Dynamics is based on the Navier-45

Stokes equations, which makes its discretization and numerical solution straightforward46

(though computationally taxing). In particular, the dynamics timestep is typically con-47

trolled by the CFL condition (cite?) and related stability concerns. Parameterized physics,48

on the other hand, handles the grid-scale effects of the remaining collection of sub-grid49

scale atmospheric processes. Because the proper equations for these processes are often50

not known, and because the processes themselves often do not behave smoothly (e.g. across51

the clear-sky/condensate boundary), numerical treatment of atmospheric physics has re-52

ceived much less attention. In addition, use of limiters and implicit numerical schemes53

often prevents outright instability in physical parameterizations even at arbitrarily long54

time steps. As a result, physics timesteps are often set based on a tradeoff between through-55

put requirements and model sensitivity to further timestep reductions.56

This situation leads to a lack of confidence in the numerical accuracy of parame-57

terized physics schemes. As a result, a more formal numerical analysis of atmospheric58

physics routines would be of great interest. Stability analysis is one way to evaluate the59

time steps that should be used for various parameterizations. When solving a linear prob-60

lem, we can readily determine whether any given method is absolutely stable (i.e. when61

the error does not grow exponentially in time), by checking the eigenvalues associated62
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with this problem. In the nonlinear case, there is no simple procedure that rigorously63

bounds the error growth in this way, but if the equations governing process rates are smooth,64

it can still be informative to analyze stability using the linearization of the problem, i.e.65

by analyzing the eigenvalues of the Jacobian used to linearize the problem (LeVeque, 2007).66

Using a time step size small enough to solve the linearized system will not guarantee any67

particular level of accuracy, but we can regard it as a necessary condition. If the numer-68

ical method being used would ordinarily be unstable at a given timestep, and model sta-69

bility is only being maintained by limiters to prevent this instability, it is likely that the70

model’s time step is too large to accurately approximate the solution of the underlying71

mathematical equations for the parameterized physics.72

This study is focused on version 2 of the Morrison-Gettelman microphysics (MG2,73

(Gettelman & Morrison, 2015)), the component of the Energy Exascale Earth System74

Model version 1 (E3SMv1) responsible for microphysics in stratiform clouds. Previous75

work on the Community Atmosphere Model version 5 (CAM5), a predecessor to E3SMv1,76

shows that cloud cover and cloud ice distribution are significantly affected by the model77

timestep(Wan et al., 2014), and also that the stratiform microphysics considerably af-78

fects the temporal convergence rate of the overall model (Wan et al., 2015). While these79

results were based on an earlier version of the Morrison-Gettelman microphysics (MG1),80

it has also been noted that MG2 relies significantly on limiters to avoid negative cloud81

liquid mass, even when running at the default 5 minute timestep (Gettelman et al., 2015).82

While the limiters within MG2 specifically are designed to avoid introducing errors in83

the conservation of water mass, it is known that other limiters implemented to avoid neg-84

ative mass in E3SMv1 can produce significant water mass conservation violations in the85

atmosphere at coarse resolution (Zhang et al., 2018). All this strongly suggests a need86

for a more detailed investigation of the timestep sensitivity of E3SMv1’s cloud processes,87

since it appears that many of these processes are not adequately resolved, and therefore88

that the model physics is excessively reliant on conservation limiters and resolution-dependent89

tuning to produce a reasonable climate.90

Section 2 will describe the relevant features of MG2 and its usage within E3SMv1.91

Then we will address questions about the numerically-relevant timescales in MG2 in sev-92

eral sections. First, we examine the eigenvalues of the Jacobian in Section 3, which are93

derived numerically based on a broad sample of conditions from the global model. Then,94

we associate these eigenvalues with specific processes in Section 4. This allows us to con-95

nect the timescales associated with MG2 to subsets of the specific physical processes it96

implements. Next, in Section 5 we examine the time scales of MG2 in different regimes97

where specific processes are dominant (e.g. warm versus cool grid cells, cloudy grid cells98

versus precipitation in an otherwise clear sky). Finally, in Section 6, we check these re-99

sults by substepping the processes identified as having fast timescales. Each of these four100

sections is divided between one or more methodology sections, followed by a section pre-101

senting the results. We will conclude by discussing the relevance of these results to the102

numerics of MG2 generally, and introduce some preliminary information about the im-103

pact of MG2’s timestep on the global model.104

2 Model Description105

E3SM is an ongoing U.S. Department of Energy (DOE) project designed to pro-106

duce a state-of-the-art earth system model that can leverage the DOE’s largest super-107

computers to produce high-resolution simulations. The scientific goals of this project re-108

late to three main topics: (1) the water cycle, (2) the cryosphere, and (3) biogeochem-109

istry (Golaz et al., 2019). While most of this paper is concerned with its stratiform mi-110

crophysics (MG2) running in isolation using a stand-alone driver, we do use the global111

model to generate input data and do some preliminary investigation of the impact of MG2’s112

timestep on global climate. For this purpose, we use version one of the E3SM Atmosphere113
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Model (EAMv1), which is coupled to a data ocean and run at an approximately 100km114

(1) horizontal resolution.(Rasch et al., 2019)(Xie et al., 2018)115

Within EAMv1 at this resolution, much of the physics, including the deep convec-116

tion scheme, runs at a 30 minute time step, which is also the frequency of physics-dynamics117

coupling. However, both MG2 and the Cloud Layers Unified By Binormals parameter-118

ization (known as CLUBB, which handles cloud macrophysics, shallow convection and119

turbulence) use a shorter time step. These parameterizations, as well as a handful of aerosol-120

and ice-related microphysical processes calculated outside of MG2, are substepped in a121

loop within the physics driver, and use a 5 minute (300s) timestep. Although the time122

step for much of the physics is reduced to 15 minutes when running EAMv1 at high res-123

olution, the MG2 and CLUBB time step is not changed. We therefore regard this as the124

default MG2 time step, and will concern ourselves with the behavior of MG2 only at 5125

minute and smaller time step sizes.126

The MG2 microphysics uses a two-moment representation of four hydrometeor types.127

For cloud liquid, the two prognostic variables are the grid-cell-average mass mixing ra-128

tio (qc) and number concentration (nc), and process rates are calculated assuming that129

the particle diameter follows a gamma distribution, with the mean size dictated by the130

ratio qc/nc, and the other shape parameter diagnosed from the number concentration.131

Similarly, an average mass mixing ratio and number concentration are used to describe132

the model’s cloud ice (qi, ni), rain (qr, nr), and snow (qs, ns), though these other hy-133

drometeors are assumed to have sizes that follow a simpler exponential distribution. The134

temperature (T ), the humidity (q), and these hydrometeor variables together make up135

the ten prognostic state variables for MG2, and for the purposes of this paper we define136

the “state” used by MG2 to consist of only these variables. Other inputs are also used137

by MG2, such as the cloud fraction, but these are diagnosed by other parameterizations,138

and we assume that they are roughly constant over the course of the 300s time step at139

which MG2 runs.140

Parallel splitting is used for most of the processes in MG2, i.e. the inputs to these141

processes are generally the same as the inputs to MG2 itself. Once the process rates are142

calculated, the state is updated by adding contributions from all processes and taking143

a single forward Euler method step. As part of this process, a series of conservation checks144

are performed. For each hydrometeor, MG2 checks whether the forward Euler step would145

produce a negative mass mixing ratio or number concentration. If so, all process rates146

are scaled down to avoid producing negative values. All processes that are applied at this147

stage are listed in Table 1. Note that the droplet activation is a special case; its rate is148

calculated outside of MG2, and it is applied sequentially using a single forward Euler step149

before all the other processes in this table. There are also three other processes controlled150

by “external” schemes. While these are applied as if they had been calculated within MG2151

itself, within E3SMv1 they are prescribed by a different scheme.152

After this, MG2’s sedimentation is run on the updated state. The sedimentation153

calculates the mean fall speed of each hydrometeor in each grid cell, and uses a first-order154

explicit upwind scheme to update the profile of the entire column. Hydrometeors that155

reach the surface are considered precipitation and reported as a surface flux to the host156

model.157

Some limiters and instantaneous adjustments (e.g. forcing all precipitation to freeze/melt158

when introduced to very cold/warm grid cells) are also applied at two stages: at the be-159

ginning of MG2, and after the sedimentation.160

3 Timescales in MG2161

In this section we investigate the inherent timescales present in the MG2 code by162

calculating the eigenvalues of a numerically derived Jacobian.163
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Short name Variables affected Description

Rain Evap. T , q, qr, nr Evaporation of rain droplets

Snow Subl. T , q, qs Sublimation of snow

Vapor/Ice Transfer T , q, qi, ni Vapor deposition onto cloud ice minus ice
sublimation

Berg. (Snow) T , qc, qs Bergeron process on snow

Liq. Accr. Snow T , qc, nc, qs Collection of cloud water by snow

Sec. Ice Prod. T , qc, qi, ni Secondary ice production via the Hallet-
Mossop process

Het. Rain Frz. T , qi, ni, qr, nr, qs, ns Heterogeneous rain freezing

Rain Accr. Snow T , qr, nr, qs Collection of rain by snow

Berg. (Cloud) T , qc, qi Bergeron process on cloud ice

Autoconversion qc, nc, qr, nr Autoconversion of cloud droplets to rain

Accretion qc, nc, qr Accretion of cloud water by rain

Ice Auto. qi, ni, qs, ns Autoconversion of cloud ice to snow

Ice Accretion qi, ni, qs Accretion of cloud ice by snow

Rain Self-col. nr Self-collection of rain

Snow Self-col. ns Self-aggregation of snow

Drop. Activ. nc Droplet activation from external aerosol
scheme

Nucleation Dep. T , q, qi, ni External classical nucleation scheme.

Immersion Frz. T , qc, nc, qi, ni External heterogeneous freezing scheme.

Contact Frz. T , qc, nc, qi, ni External heterogeneous freezing scheme.

Size Limiters nc, ni, nr, ns Limiters constraining hydrometeor particle
sizes to remain in relevant ranges

Table 1. MG2 process descriptions and short names used in figures.
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3.1 Methodology - Running MG2 as a Standalone Process164

Within E3SM, MG2 and CLUBB are substepped together using a 300 second time165

step, which is both the default and maximum recommended time step for CLUBB. We166

can view the main role of MG2 as providing the average rates of change of MG2’s ten167

state variables due to microphysical processes over a given timestep. We can evaluate168

how well MG2 answers this question without use of the full E3SM model, as long as we169

have a representative sample of atmospheric columns and a method for running MG2170

outside of E3SM.171

To obtain a sample of input columns, we ran a standard pre-industrial global E3SM172

simulation with ∼100 km atmospheric resolution (ne30 ne30 grid) and prescribed sea sur-173

face temperature (compset F1850C5AV1C-04P2). The code used for this integration was174

a beta version (git hash 7a17edbe) which is structurally similar to the E3SMv1 release.175

Code modifications between this version and the release are not expected to make a dif-176

ference for the results here. At the end of a five day run, we saved a “snapshot” of ev-177

ery column on the planet at the final timestep, including every input used in the final178

call to MG2.179

This provided us with a representative sampling of columns for a particular day180

in January, which is the basis for the analysis in the remainder of this paper. A larger181

or more varied sample of columns, taken over the course of a run lasting a year or more,182

would have some statistical differences, especially since such a sample would capture sea-183

sonal variation. However, since this sample causes MG2’s most important processes to184

operate under a wide variety of conditions, we do not believe that broader sampling would185

affect our overall conclusions.186

In order to run MG2 in isolation from the rest of the model, we used F2PY to cre-187

ate a Python interface and compiled MG2 and the interface into a stand-alone library.188

This library was used by a set of drivers to produce the MG2 stand-alone results in this189

paper.190

We narrowed down the number of active processes to a subset of those in MG2 by191

implementing switches to disable two types of process. First, sedimentation was disabled192

in our runs. MG2’s sedimentation runs sequentially after the state is updated by all other193

processes, and it uses an adaptive timestep, smaller than that of MG2 as a whole, to sat-194

isfy its CFL condition. The numerical problems posed by the sedimentation are of a dif-195

ferent character from those posed by the rest of MG2, and so we believe that it would196

be best to examine the sedimentation in a separate study.197

Since sedimentation is the (only) process in the MG2 microphysics that transports198

mass between levels, disabling sedimentation allowed us to view MG2 as a tool for solv-199

ing an ODE in a collection of uncoupled grid cells, rather than as a tool for solving a 1D200

PDE on an atmospheric column. This provides two benefits:201

1. All remaining processes have a well-defined and easily controlled time step, since202

only the sedimentation uses an adaptive time step.203

2. If sedimentation was enabled with 72 vertical layers per column, then the state204

vector input to MG2 would be 720-dimensional (given the 10-dimensional state205

for each grid cell). With sedimentation disabled, MG2 operated on individual grid206

cells with a 10-dimensional state in each one.207

Second, many “instantaneous” processes were disabled. Instantaneous processes208

are those processes which MG2 implements not by calculating an expected process rate,209

but by making an immediate adjustment from an state that is considered unstable or210

a violation of model assumptions, to a more stable or valid state. Usually such processes211
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involve rapid changes of state, e.g. quickly melting snow that has fallen into a very warm212

grid cell.213

We disabled these processes because we were interested in how the microphysical214

processes in MG2 are resolved, but instantaneous processes are by definition so fast that215

the model is not designed to resolve them in the first place. Furthermore, disabling the216

instantaneous processes removed any explicit dependence of the calculation on the time217

step size, which allowed the time step chosen during the Jacobian calculation to be cho-218

sen arbitrarily without significantly impacting the results.219

One final change that was made to MG2 was to extract the calculation of precip-220

itation area fraction from the main code, so that it was only calculated once per driver221

call. In conjunction with disabling sedimentation, this change was needed to allow MG2222

to be run on individual grid cells rather than full columns, which greatly reduces com-223

putational cost. Furthermore, MG2’s default precipitation area fraction calculation de-224

pends mostly on the cloud fraction calculated by CLUBB and is insensitive to changes225

in the state vector. As a result, forcing this variable to remain constant for short MG2226

runs does not produce significantly different results from allowing it to vary over time.227

3.2 Methodology - Measuring Differences in MG2 States228

We often wanted to compare MG2 states in order to (a) establish whether MG2229

is active enough to produce a final state that is significantly different from its input state,230

or (b) measure the magnitude of a change in MG2’s output given a change in MG2’s pa-231

rameters. However, MG2’s ten state variables include temperature, mass mixing ratios,232

and number concentrations, which have different units and orders of magnitude, so an233

isotropic norm such as the L2 norm is ill-suited to represent the distance between MG2234

states. One way to remedy this would be to use a set of constant weights to convert all235

variables to a common set of units; for instance, a difference in temperature could be con-236

verted to an approximate change in mass mixing ratio of liquid water that would be nec-237

essary to produce that change in temperature via evaporation/condensation.238

A simpler approach is to focus solely on the mass mixing ratio terms in the state239

vector, from which which we define a quantity called the total water mass difference (Dw).240

This is simply half of the L1-norm of the water mass, or for two states labeled as s1 and241

s2:242

Dw(s1, s2) = |q1−q2|+|qc1−qc2|+|qi1−qi2|+|qr1−qr2|+|qs1−qs2|
2 (1)243

This value can be interpreted as the total amount of water that is in a different cat-244

egory between two states. For instance, if the difference between the two states is equiv-245

alent to the evaporation of 10−3g/kg of water, then Dw = 10−3g/kg.246

The total water mass difference is arguably the most straightforward method for247

measuring the differences between MG2 outputs. Technically it does not account directly248

for differences in temperature or number concentration. However, MG2 can only create249

changes in temperature via phase change, which will affect the mass mixing ratios, and250

in practice changes in number concentration will only occur in circumstances where pro-251

cesses that affect mass mixing ratio are also present. Differences in the overall MG2 state252

can therefore be distinguished by looking at mass mixing ratio alone.253

3.3 Methodology - Jacobian Eigenvalue Calculation254

A standard method for analyzing the stability of a numerical method on a nonlin-255

ear problem is to linearize the system about a given state by calculating the Jacobian.256
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The stability of the method on the linearized problem depends on the location of the eigen-257

values of the Jacobian (multiplied by the time step) in the complex plane.258

Alternatively, one can think of the inverse of these eigenvalues as a set of time scales259

associated with the linearized system. In order to keep the system stable without depend-260

ing on limiters or other artificial corrections to a given method, our time step must be261

less than or equal to the smallest time scales derived from the Jacobian.262

However, calculating this Jacobian presents some difficulty. The system of equa-263

tions represented by MG2 is quite complex, and contains a large number of thresholds264

that adversely affect the smoothness of the process rates (e.g. the process rates are gen-265

erally continuous, but not C1, at the freezing point of water).266

Rather than attempt to analytically differentiate MG2 around each point, we nu-267

merically calculated the Jacobian using the numdifftools Python package. The specific268

method we used from this package is a second-order forward difference method, supple-269

mented with one stage of Richardson extrapolation (so the resulting method is 3rd or-270

der accurate).271

The use of a forward (rather than central) difference method was important. MG2272

produces floating point exceptions when given negative concentrations, so we needed to273

use a one-sided method in order to numerically linearize about a state where any con-274

stituent has zero mass. Furthermore, by using a small linear change of variables, we could275

also ensure that this one-sided method does not use perturbed states that violate MG2’s276

size limiters. Since MG2 enforces these limiters at several points throughout the code,277

any perturbation that leads to a state outside of the acceptable size ranges will result278

in an instantaneous adjustment back to a valid state, and these instantaneous adjust-279

ments are not of interest.280

Since the Jacobian is a 10×10 matrix, finding its eigenvalues and eigenvectors was281

a negligible cost compared to the MG2 calls necessary to calculate the Jacobian in the282

first place. Thus we simply used SciPy’s linalg.eig (which wraps LAPACK calls that use283

the QR algorithm) for this calculation. The MG2 Jacobian almost always has a full set284

of eigenvectors when MG2 is active, though the Jacobian becomes defective when no hy-285

drometeors are present. This appears to be because the process rates are completely in-286

sensitive to the temperature and humidity variables (rates are always zero in the absence287

of hydrometeors), but perturbations to the hydrometeor masses will result in temper-288

ature and humidity changes. This introduces asymmetric off-diagonal elements to the289

Jacobian that make it non-diagonalizable. We had no interest, however, in states where290

MG2 is inactive or nearly-inactive. We therefore only included cases where the process291

rates are sufficiently large, as defined by a total water mass difference threshold. Specif-292

ically, for an initial state s1 and a final state s2 we were only interested in columns where293

Dw(s1, s2)/∆t ≥ 10−7 g kg−1 s−1. Since most grid cells in the model have little to no294

condensate, this eliminated most of the total grid cells from consideration (20.3%), which295

also significantly sped up calculations on the full sample.296

The eigenvalues of the Jacobian are furthermore almost always real or have small297

imaginary parts. We therefore solely focused on the real parts of these eigenvalues.298

3.4 MG2 Timescale Results299

Figures 2 through 3 contain histograms of MG2’s eigenvalues for grid cells above300

the 10−7gkg−1s−1 cutoff. These eigenvalues are further categorized based on whether301

they are associated with active or inactive processes, where an active process is one that302

either affects water mass above a rate of 10−7gkg−1s−1, or affects a hydrometeor num-303

ber above 2.98kg−1s−1, which is equivalent to the rate of 400µm rain particles that would304
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Figure 1. Graphs of complex eigenvalues, using a log scale. Eigenvalues with magnitude less

than 10−5s are placed at the origin. Left panel shows distribution of eigenvalues in the complex

plane, with a circle at (300s)−1 for comparison, as well as the region of absolute stability for the

Euler method. Note that the number of eigenvalues on the real axis is far larger than what can

be represented on this color scale, implying that real eigenvalues dominate. Left panel compares

real zeros (taken to be those with ≤ 10−5s−1 imaginary part) with all zeros, showing that almost

all eigenvalues are real.

have to be introduced to produce a mass change of 10−7gkg−1s−1. We can roughly di-305

vide these eigenvalues into five categories:306

1. Eigenvalues associated with inactive processes (shown in blue). These eigenval-307

ues are typically related to physics that is not active in a given regime, e.g. ice308

physics in a warm grid cell, so they are not as relevant to the numerics in prac-309

tice. We will discuss how we associate eigenvalues with particular processes in a310

later section.311

2. Negative eigenvalues of magnitude greater than (300s)−1. These eigenvalues cor-312

respond to short-timescale processes, which have rates that may decay too rapidly313

for the default MG2 timescale to handle. In general, MG2 requires limiters to avoid314

instability caused by these processes.315

3. Negative eigenvalues of magnitude less than (300s)−1. These eigenvalues corre-316

spond to processes which MG2 is able to resolve, assuming roughly linear behav-317

ior of MG2.318

4. Near-zero eigenvalues. These eigenvalues correspond either to extremely slow feed-319

backs within MG2, or to forbidden directions of motion in the phase space (par-320

ticularly eigenvectors that are perpendicular to surfaces of constant energy or mass).321

5. Positive eigenvalues. These eigenvalues correspond to eigenvalues of processes that322

are temporarily in a state of positive feedback (e.g. accretion produces larger rain-323

drops, and those larger raindrops will be effective at accreting even more cloud324

water). Generally speaking, MG2 avoids instability from these processes due to325

its nonlinearity, since all MG2 processes “use up” some form of mass or number,326

and therefore will eventually slow down over time.327

In general we were most interested in dealing with the second case, the large neg-328

ative eigenvalues, since these are common and correspond to cases where MG2’s large329

time scale is likely to cause problems. Figure 2 shows that there are a great number of330
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Figure 2. Histogram of the real parts of the eigenvalues of MG2’s Jacobian, focusing on neg-

ative eigenvalues. Red bars represent eigenvalues associated primarily with an active process.

Green bars represent eigenvalues associated with at least one active process, but no “primary”

process. Blue bars represent eigenvalues associated with inactive processes. Black line placed at

(300s)−1 for comparison with the MG2 timestep.

timescales that are not adequately resolved at MG’s current time step (by this measure,331

even more than the number that do seem adequately resolved). We also wanted to un-332

derstand the nature of the positive eigenvalues.333

In order to better interpret this result, however, we needed to associate the eigen-334

values more closely with both specific sets of processes within MG2, and the physical con-335

ditions under which these eigenvalues arise. For instance, there may be cases where the336

model is formally unstable without limiters at a given timestep, but in practice there is337

little difference between the resolved and limited behaviors.338

4 Connecting Timescales to Specific Processes339

Documenting the timescales of MG2 processes was of inherent interest, but we were340

particularly interested in the finding that MG2 is often integrated using a ∆t which is341

too large to represent the processes it represents. Substepping all of MG2 in order to cap-342

ture these timescales is not computationally feasible, but numerically accurate solutions343

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

10-5 10-4 10-3 10-2 10-1 100 101

Eigenvalue (1/s)

0

5000

10000

15000

20000

N
u
m
b
e
r 
o
f 
e
ig
e
n
v
a
lu
e
s

Number of positive eigenvalues 
(based on 540798 eigenvalues)

Figure 3. Histogram of the real parts of the eigenvalues of MG2’s Jacobian, focusing on pos-

itive eigenvalues. Red bars represent eigenvalues associated primarily with an active process.

Green bars represent eigenvalues associated with at least one active process, but no “primary”

process. Blue bars represent eigenvalues associated with inactive processes.

may still be affordable if the need for substepping could be isolated to just a few pro-344

cesses.345

4.1 Methodology - Measuring Eigenvalue-to-Process Associations346

We sought to assign each eigenvalue from Sect. 3 to one or more of the MG2 pro-347

cesses listed in Table 1. Let us label the grid-cell output tendencies from applying MG2348

to state s as r = ∂s/∂t. The Jacobian Jr has i, jth entry ∂ri/∂sj where ri is the ith349

entry in r and sj is the jth entry in s. As noted above, Jr is diagonalizable for the states350

that were of interest for us, so matrices of eigenvalues Λ and eigenvectors V exist such351

that V ΛV −1 = Jr.352

If we label the tendencies due to a particular process p as rp, then ΣP
p=1rp = r.353

This leads directly to the identity354

Λ = V −1(Jr)V = ΣP
p=1V

−1(Jrp)V (2)355

which is the heart of our association method. Now construct a matrix C̃ of dimensions356

N (number of eigenvalues) by P (number of processes to consider) whose n, pth entry357
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C̃np is the n-th diagonal element of V −1(Jrp)V . Since it depends only on these diago-358

nal elements, C̃ is independent of the scaling of the columns of V . Additionally,359

ΣP
p=1C̃np = λn (3)360

so the nth row of C̃ partitions λn into contributions from each process.361

As a final step, normalize C̃ by taking the absolute value of each element, and by362

dividing each row by its 1-norm, producing a new matrix C. Then each element of C363

describes the fractional contribution of its column’s process to its row’s eigenvalue. If364

any element of C is greater than 0.5 (our heuristic for whether at least 50% of an eigen-365

value’s magnitude can be attributed to a particular process), then we say that the eigen-366

value for that row is primarily associated with the process for that column. This is how367

the colors in Figures 2-3 are derived: the red bars count eigenvalues primarily associated368

with active processes, blue bars correspond to inactive processes, and green bars repre-369

sent eigenvalues without a primarily association. We are mainly concerned with large-370

magnitude eigenvalues, which almost all have a primary association with a particular pro-371

cess.372

For purposes of this study, we treated the effects of MG2’s size limiters as if they373

were a separate physical process. This was largely because MG2’s state can become un-374

realistic or invalid if these limiters are disabled, so we were not able to disable them as375

we had with other instantaneous processes, and it was therefore necessary to account for376

their effects on MG2’s state. Note also that these limiters are not applied purely for ar-377

tificial, numerical reasons, since the maximum size limiters are also the means by which378

MG2 accounts for the spontaneous breakup of large particles, which is important espe-379

cially for a reasonable treatment of precipitation.380

4.2 Methodology - Correlation of Multiple Processes381

In addition to identifying processes associated with particular timescales, we wanted382

to identify tightly coupled processes. Such processes must be solved simultaneously or383

substepped together in order to obtain numerically accurate solutions. In addition, ac-384

counting for such coupling is needed in order to create useful conceptual models of mi-385

crophysical behavior.386

To identify tightly coupled processes, we first tallied the number of eigenvalues with387

primary associations to each process. We then looked at the average value of C across388

all modes primarily associated with a given process. If, for instance, modes that are pri-389

marily associated with autoconversion also typically have strong association with accre-390

tion, then we would focus on autoconversion/accretion coupling for further study and391

optimization.392

4.3 Process Association Results393

We will first examine the association between positive eigenvalues and specific pro-394

cesses, shown in Figure 4.395

First, we found positive eigenvalues that are associated mainly with accretion-related396

processes. These eigenvalues are positive when the accumulating particles are small and397

few in number, since in this case the initial accretion increases the size of the particles,398

making them better at accumulating additional mass. In the long run, this is not a threat399

to the stability of the model, since eventually the accretion will begin to deplete the cloud,400

which will cause the rate of accretion to slow (see Figure 5). We will not examine this401

issue further here, but it should be noted that long timesteps may delay the onset of heavy402

precipitation in these cases.403
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Figure 4. PDF of positive MG2 Jacobian eigenvalues, based on process primarily associated

with each eigenvalue. Each row sums to 1, except for processes with no associated positive eigen-

values. The right-hand y-axis label shows the number of positive eigenvalues associated with each

process.

Second, we found eigenvalues that are associated mainly with evaporation or sub-404

limation. These eigenvalues are again positive mainly when the affected particles are small405

and few in number, as such particles rapidly evaporate when out-of-cloud. In such cases,406

the particle mass rapidly drops to zero, and the temporal resolution should not be rel-407

evant to the final state of the system.408

Turning back to the negative eigenvalues, we wanted to examine the processes as-409

sociated with the smallest timescales. As seen in Figure 6, these processes are:410

1. Accretion of cloud water by rain.411

2. Rain evaporation.412

3. Rain self-collection.413

4. Snow sublimation.414

5. Vapor/Ice transfer.415

Some other processes were active with relatively short time scales (particularly het-416

erogeneous rain freezing and the Bergeron process), but these were less active. The par-417
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Figure 5. Diagram of accretion regimes. In case (a), the cloud mass is still much larger than

the rain mass. As the rain accretes more liquid mass, it becomes more effective at accreting addi-

tional mass, so accretion experiences positive feedback. In case (c), the rain has already accreted

most of the cloud, and further depletion of cloud mass slows the accretion rate, producing nega-

tive feedback. In case (b), cloud and rain mass are comparable, and these effects are in balance,

producing only weak positive or negative feedback.

ticular processes that we examined in more detail were rain evaporation, self-collection,418

and accretion of cloud water in more detail. Partially this was because the purely liq-419

uid processes were easier to examine in isolation from the other physics, and partly this420

was because in practice the vapor/ice transfer was usually associated with small timescales421

only when the effect of this process was small anyway, so the error due to finite time res-422

olution was small. In particular, sublimation of a small ice mass in relatively dry air can423

be quite rapid, but leads to the same behavior as given by the limited behavior, namely424

that the ice sublimates completely and rapidly.425

We can also note that almost no eigenvalues are associated with the external pro-426

cesses, which is what we expect since these process’ rates don’t directly depend on the427

MG2 inputs, and only interact with MG2’s physics due to being affected by the conser-428

vation limiters. In our data set, we found only three eigenvalues associated with contact429

freezing, a few thousand associated with immersion freezing, and none with nucleation430

deposition or droplet activation.431

Figure 7 shows the degree to which different processes were associated with the same432

eigenvalues (and hence timescales). Looking at timescales associated primarily with the433

processes listed above, we found the following:434

1. Accretion of cloud water by rain is associated with autoconversion.435

2. Rain self-collection is strongly associated with rain evaporation.436

3. The degree of association between ice processes is quite complex. In particular,437

vapor/ice transfer is associated with several processes, possibly because it is mildly438

active in a very large number of grid cells.439

As Figure 6 shows, the timescales associated with both types of autoconversion were440

relatively long. We therefore expected that the regime in which, say, liquid autoconver-441

sion and accretion interact most heavily would be different from the regime in which ac-442

cretion by rain is associated with short timescales, and therefore we hypothesized that443

autoconversion should not require a short time step to adequately resolve, despite its as-444

sociation with accretion.445
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Figure 6. PDF of negative MG2 Jacobian eigenvalues, based on process primarily associated

with each eigenvalue. Each row sums to 1, except for processes with no associated negative eigen-

values.The right-hand y-axis label shows the number of negative eigenvalues associated with each

process.

On the other hand, rain self-collection and evaporation were both primarily asso-446

ciated with the same short time scales, and so it appeared less likely that we could re-447

solve rain-related processes without using a relatively short time scale for both.448

5 Decomposition by Weather Regime449

Microphysics operates differently in different meteorological conditions. In partic-450

ular, only a few microphysical processes are typically active at any particular point in451

space and time. Thus breaking cases down by weather regime can simplify the task of452

understanding model behavior. Such decomposition is also important because processes453

are likely to have different timescales depending on the weather regime they’re in. For454

instance, the rate of accretion is fairly steady when rain and cloud mass are similar, but455

the accretion rate decreases rapidly when cloud becomes depleted, and the associated456

timescale is therefore much smaller in the latter case.457
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Figure 7. Association between pairs of processes in MG2. Each row shows the average as-

sociation index (C) for eigenvalues associated with a given primary process. Each entry on the

diagonal has had its value reduced by 0.5, to fit in the same color range.

5.1 Methodology458

We accomplished this decomposition by normalizing all process rates by typical val-459

ues (so that they were at the same order of magnitude) and using a simple k-means al-460

gorithm to generate clusters that we could treat as separate regimes.461

We were interested in finding clusters containing qualitatively different, common462

types of behavior to examine in further detail, not in an objective categorization of all463

types of grid cells in the model. For this purpose we were content to use a degree of hand-464

tuning on both the relative weights of different process rates and the total number of clus-465

ters, until we found 10 clusters that had reasonably distinct process rates from one an-466

other.467

Once this was accomplished, we could then look at the eigenvalues associated with468

the Jacobian for each cluster, in order to determine which regimes were likely to have469

short time scale behavior based on process rates alone.470

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

5.2 Results471

Figure 8 shows a representation of each cluster showing its most active processes.472

Cluster 0, which consists of generally clear-sky grid cells where no processes is partic-473

ularly active, comprises the majority of grid cells.474
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Figure 8. Relative activity of each process in each cluster found via k-means.

Note that this provides another, simpler way to look at associations between pro-475

cesses. Looking again at liquid autoconversion and accretion, we see that these two pro-476

cesses are active together in clusters 3 and 6, but that the rate of accretion is much larger477

in cluster 6. We can then look at the eigenvalues of the Jacobian based on cluster, which478

is shown in Figure 9. Unsurprisingly, the negative eigenvalues are much larger in clus-479

ter 6, implying that the short timescales are associated with the heavy accretion present480

in cells with a relatively large in-cloud rain mass.481

Similarly, we can use other clusters to examine other sets of short timescale pro-482

cesses. Cluster 1 is the best test case for short timescales associated with the Bergeron483

process and ice deposition. Rain evaporation and self-collection are both active and as-484

sociated with short timescales in clusters 7 and 9.485
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Figure 9. PDF of negative MG2 Jacobian eigenvalues, based on cluster of grid cell where the

eigenvalue was calulated.

6 Impact of Shorter Timesteps486

In the previous sections we identified processes and combinations of processes that487

evolve much more rapidly than the default model step. In this section we test whether488

accurately resolving those processes has a big impact on model behavior.489

6.1 Methodology490

In this section, we focused on two clusters, each associated with a set of processes491

that we believed would change significantly if substepped so as to resolve their behav-492

ior:493

1. Grid cells with large rain self-collection and evaporation rates, corresponding to494

heavy out-of-cloud rain. (Cluster 9)495

2. Grid cells with large accretion rates and moderate autoconversion rates, correspond-496

ing to heavy in-cloud rain. (Cluster 6, filtered to remove grid cells with any sub-497

limation/evaporation process tendency above 1.e− 7g/kg)498

The filtering of cluster 6 was necessary to remove cases where accretion and au-499

toconversion were not the only processes with significant activity, since the clustering500
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algorithm alone did not separate those grid cells with only rain production from grid cells501

that combined rain production with evaporation/sublimation of precipitation falling from502

above.503

For each of these cases, we produced modified versions of MG2 that allowed these504

processes to be run at a smaller time step using the forward Euler method. For instance,505

for heavy in-cloud rain, autoconversion and accretion were substepped inside a nested506

series of loops, so that it was possible to adjust the timestep of each independently of507

MG2 as a whole. If both processes were run at a finer timestep, it was also possible to508

independently adjust the coupling frequency. By adjusting these timesteps, it was pos-509

sible to determine which processes needed to be better resolved to improve MG2’s ac-510

curacy, and which were less relevant.511

In order to assess the accuracy of these substepped simulations, it was necessary512

to decide upon both a measure of error, and a “converged” result for comparison. To mea-513

sure the error in each grid cell, we used the total water mass difference defined above (Dw),514

which for Cluster 9 was effectively identical to the evaporation rate due to the absence515

of other influences. The converged result was chosen by using MG2 run at a very fine516

timestep of 75/512s, which is 1/2048 of the normal MG2 timestep of 300s.517

6.2 Results518

We hypothesized that for the grid cells with large rain evaporation, there would519

be a significant benefit from substepping rain self-collection as well, since our Jacobian-520

based analysis associates these two processes with the same short timescales.521

Since these timescales are typically around 20s and we are still using the forward522

Euler method in the substepping loop, we also expect to see roughly first-order conver-523

gence for time steps shorter than this, but not for larger time step sizes, because for larger524

time steps this method (or rather, its linearization around a typical state) is not stable525

on this problem. The model therefore becomes increasingly dependent on limiters for longer526

time steps.527

The actual evaporation/self-collection results are shown in Figure 10. Substepping528

evaporation by itself is indeed much less effective than substepping both processes to-529

gether. The self-collection of raindrops is a very fast process in MG2, and accounting530

for this considerably reduces the rate of evaporation.531

Furthermore, the rate of convergence of the model becomes first order at a time532

scale of roughly 30−60s, both when all of MG2 is substepped and when only only these533

two processes are substepped together. At very short time steps, the error levels off when534

substepping only evaporation and self-collection due to small contributions from other535

processes in the grid cell.536

For grid cells dominated by accretion and autoconversion, we expected the effect537

of substepping accretion to matter much more than that of autoconversion, since auto-538

conversion is associated almost exclusively with timescales longer than the maximum MG2539

step size of 300s. Similar to the evaporation case, we expected that first-order conver-540

gence would occur only for timescales shorter than about 5s.541

Figure 11 shows the results of this substepping of accretion and autoconversion in542

Cluster 6. As expected, substepping autoconversion alone has no benefit at all. Substep-543

ping the accretion can cut the errors by an order of magnitude, while substepping au-544

toconversion as well improves the error by only another factor of 2.545

However, we find, somewhat suprisingly, a near-perfect first-order convergence be-546

low a timestep of about 100s, a much larger timestep than we would have expected to547

be necessary to capture this process. We suspect that this is partially due to the fact that,548
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Figure 10. Convergence plot for mean error in cluster 9 grid cells under different substepping

strategies for rain evaporation and self-collection. Runs substepping all of MG2 are shown in

blue. Runs substepping evaporation and self-collection together, with total MG2 timestep held

fixed at 300s, shown in green. Substepping evaporation alone, with all other processes at 300s,

shown in red. The dotted reference line has slope 1.

while many grid cells have shorter associated time scales, the rate of accretion is largest549

in grid cells with large masses of both cloud liquid and rain, which have longer time scales.550

7 Discussion551

Our analysis of MG2, based on examining the eigenvalues of a numerically-derived552

Jacobian, shows that there are many situations where MG2 would appear to be unsta-553

ble when using E3SM’s forward Euler method at a 300s timestep. It is stable in prac-554

tice due to nonlinearities in MG2, and especially due to the presence of limiters, but we555

would expect these limiters to reduce the accuracy with which E3SM solves the equa-556

tions that MG2 is intended to implement.557

This leads us to three concerns. First, is the time discretization error first-order,558

so that we can readily trade off increased computational cost for a proportional decrease559

in error? Or are there key unresolved timescales present in the system, so that the so-560

lutions we find at a 300s time step qualitatively different from the converged results, e.g.561

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

100 101 102

Timestep (s)

10-8

10-7

10-6

10-5

T
o
ta

l 
w

a
te

r 
m

a
ss

 d
if
fe

re
n
ce

 (
g
/k

g
/s

)

Mean error in Cluster 6

MG2
Autoconversion only
Accretion only
Coupled Auto/Accr
1st-order reference

Figure 11. Convergence plot for mean error in cluster 6 grid cells under different substepping

strategies for accretion and autoconversion. Runs substepping all of MG2 are shown in blue.

Runs substepping accretion and autoconversion together, with total MG2 timestep held fixed

at 300s, shown in yellow. Substepping autoconversion alone is shown in green, and substepping

accretion alone is shown in red.

governed largely by limiters? Our results suggest that the answer to these questions de-562

pends significantly on the regime and the set of active processes involved. The time scales563

involved in the production and growth of snow, for instance, seem to be generally much564

longer than the 300s time step MG2 typically runs at. For processes involving rain or565

cloud ice, however, MG2 relies on limiters for stability, and in the particular case of rain566

evaporation, we have shown that the 300s time step is an order of magnitude too large567

to achieve first order convergence.568

Our second concern is whether we can use a process-based analysis of MG2 to sig-569

nificantly improve accuracy without substepping the entire microphysics. Our results again570

suggest that it is possible to significantly improve accuracy in this way in certain regimes,571

but that it takes some care to do so effectively. For instance, substepping MG2’s rain572

evaporation at a much shorter timestep, say 10s, produces a significant increase in model573

cost due to a number of pow calls, while only moderately reducing the error. But by also574

substepping rain self-collection (a less computationally-intensive process) in the same loop,575

the error can be reduced by an order of magnitude. We believe that sedimentation may576

also be relevant to these rain processes, and hope that a future study will investigate in-577
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cluding rain evaporation and self-collection as part of the sedimentation solver itself, rather578

than sequentially splitting sedimentation from all other microphysical processes.579

Third, we can broaden our view and ask whether it is necessary at this point to580

accept the increased computational cost in order to improve MG2’s accuracy at all. To581

answer this question, we ran a simulation using E3SM v1 with MG2 substepped at a 1s582

time step (compset F1850C5AV1C-04P2, grid ne30 ne30) for four simulated years. Fig-583

ure 12 shows a Taylor diagram that compares the spatial variability of several key vari-584

ables in this run to a control run with the MG2 default time step of 300s. The differ-585

ences here appear to be quite minor. Figure 13 shows the spatial distribution of precip-586

itation, which likewise is quite similar and shows no obvious systematic differences.587

We can see significant differences, however, if we look specifically at the vertical588

distribution of rain mass. Figure 14 shows the difference between the zonally averaged589

in-area rain mass, which shows a reduction of rain in the upper cloud and near the sur-590

face, as well as a significant increase in the lower cloud. Our current interpretation of591

this is that this is due to a combination of reduced production of rain, reduced evapo-592

ration, and the effects of these differences on the rain fall speed. However, the exact rea-593

son for these differences is obscure, and in need of further study. We also believe that594

the coupling of sedimentation to these processes should be further examined.595

8 Conclusions596

By numerically calculating the eigenspectrum of the Jacobian of the MG2 micro-597

physics, we were able to associate a set of time scales to these microphysical processes,598

and found that MG2’s equations are not always accurately modeled at the default E3SM599

time step. We were able to associate the short time scales to several processes, and demon-600

strated that in some regimes, decreasing the MG2 timestep can lead to significant dif-601

ferences in rain-related processes. We have also demonstrated that rain evaporation and602

self-collection should not be treated independently in MG2’s formulation, though accre-603

tion appears to be more independent.604

The importance of these results, however, seems to depend significantly on the vari-605

ables of interest. Several key variables show that we achieve essentially the same climate606

even with all of MG2 run at a short timestep, and in particular average rainfall is not607

significantly affected. However, there is some evidence that this is due to an effect in-608

volving cancellation of errors, since the vertical distribution of rain differs significantly609

at shorter time steps. Therefore we conclude that experiments which examine the cloud610

microphysics from a process-oriented perspective, and experiments looking at particu-611

lar case studies (i.e. single-column runs) should consider the effects of time resolution612

on model results.613

Acknowledgments614

Data will be provided through Argonne National Laboratory’s Petrel service. That trans-615

fer process is in progress, and a URL will be available shortly.616

The TAR file at this location contains the following files:617

1. MG2 data collection.cam.h1.0001-01-06-00000.nc – Data set used to provide in-618

puts to MG2.619

2. MG2 data collection.10 cluster labels.0001-01-06-00000.nc – Labels input grid points620

according to clusters generated via k-means.621

3. Jacobian cutoff * – Eigenvalues derived from the numerical derivative of MG2 for622

each grid point. These were calculated in parallel and placed in 12 separate files.623

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 12. Taylor diagram comparing run with MG2 running at 1s to run at default settings.

Only years 2-4 of the simulation were used.
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for Figures 12-14.627
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Figure 13. Comparison of total precipitation at the surface using MG2 at a 1s (left) and 300s

(right) timestep over three years, with the difference also plotted (center).
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