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Abstract

A method is proposed for combining information from several emergent constraints into a probabilistic estimate for a climate

sensitivity proxy $Y$ such as equilibrium climate sensitivity (ECS) or the climate feedback parameter $\lambda$. The method

is based on fitting a multivariate Gaussian PDF for $Y$ and the emergent constraints using an ensemble of global climate models

(GCMs). For a single perfectly-observed constraint $X$, it reduces to a linear regression-based estimate of $Y$. The method

accounts for uncertainties in sampling this multidimensional PDF with a small number of models, for observational uncertainties

in the constraints, and for overconfidence about the correlation of the constraints with the climate sensitivity. Two methods are

presented. Method C accounts for correlations between emergent constraints but can fail if some constraints are too strongly

related. Method U assumes constraints are uncorrelated except through their mutual relationship to the climate proxy; it is

robust to small GCM sample size and is appealingly interpretable. These methods are applied to ECS and $\lambda$ using a

previously-published set of 11 possible emergent constraints derived from climate models in the Coupled Model Intercomparison

Project (CMIP). This study corroborates and quantifies past findings that most constraints predict higher climate sensitivity

than the CMIP mean. The $\pm2\sigma$ posterior range of ECS for Method C with no overconfidence adjustment is $4.1 \pm

0.8$ K. For Method U with a large overconfidence adjustment, it is $4.0 \pm 1.3$ K.
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ABSTRACT

A method is proposed for combining information from several emergent

constraints into a probabilistic estimate for a climate sensitivity proxy Y such

as equilibrium climate sensitivity (ECS) or the climate feedback parameter

λ . The method is based on fitting a multivariate Gaussian PDF for Y and the

emergent constraints using an ensemble of global climate models (GCMs).

For a single perfectly-observed constraint X , it reduces to a linear regression-

based estimate of Y . The method accounts for uncertainties in sampling this

multidimensional PDF with a small number of models, for observational un-

certainties in the constraints, and for overconfidence about the correlation

of the constraints with the climate sensitivity. Two methods are presented.

Method C accounts for correlations between emergent constraints but can fail

if some constraints are too strongly related. Method U assumes constraints are

uncorrelated except through their mutual relationship to the climate proxy; it

is robust to small GCM sample size and is appealingly interpretable. These

methods are applied to ECS and λ using a previously-published set of 11 pos-

sible emergent constraints derived from climate models in the Coupled Model

Intercomparison Project (CMIP). This study corroborates and quantifies past

findings that most constraints predict higher climate sensitivity than the CMIP

mean. The±2σ posterior range of ECS for Method C with no overconfidence

adjustment is 4.1±0.8 K. For Method U with a large overconfidence adjust-

ment, it is 4.0±1.3 K.
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1. Introduction31

Climate change is a defining problem of our time. It is hard to plan for future warming with-32

out knowing its magnitude, but our ±1σ ‘likely’ confidence range for equilibrium climate sen-33

sitivity (ECS, the global-average surface warming due to doubling CO2 and letting the climate34

re-equilibrate) is currently 1.5-4.5 K (Stocker et al. 2013) - which is disturbingly large. This35

uncertainty has persisted for decades despite large advances in our understanding of the climate36

system (Knutti et al. 2017).37

Emergent constraints offer a possible path to narrowing this spread. An emergent constraint38

is a current-climate quantity which has skill at predicting future changes in climate. Such pre-39

dictors may be valuable shortcuts to the complex and uncertain process of directly simulating40

climate change in a general circulation model (GCM) or inferring it from imperfect observational41

records. Because the physical processes governing climate change are generally the same ones42

that control present-day seasonal, weather-scale, and diurnal variations, it is likely that real emer-43

gent constraints exist. Hall and Qu (2006) was one of the first papers to identify such a constraint.44

They found that the seasonal cycle of snow albedo over northern-hemisphere land is tightly cor-45

related with snow albedo feedback over this region in 17 model simulations from the 3rd phase46

of the Coupled Model Intercomparison Project (CMIP). This emergent constraint has an obvious47

motivation: surface warming reduces snow cover irrespective of whether that warming is due to48

seasonal changes in insolation or CO2-induced climate change. Nearly 40 other emergent con-49

straints have been proposed since 2006 (Hall et al. 2019), though few have had such a satisfying50

physical explanation.51

Several limitations and assumptions apply to the use of emergent constraints to predict ECS.52

First, the ECS simulated by a climate model is generally estimated from an integration of finite53
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length (customarily 150 years in CMIP5) that is not fully equilibrated and keeps certain physics54

fixed (e. g. vegetation type and land ice). The response of that model (or the real climate sys-55

tem) to a time-varying radiative forcing is not determined purely by the ECS, but also depends56

upon natural and forced changes in the pattern of surface warming, e.g. Armour et al. (2013);57

Gregory and Andrews (2016). ECS is also a problematic target for emergent constraints because it58

arises from interaction between many processes. As a result, it is questionable whether any single59

current-climate variable would explain a large fraction of ECS variability. This is why Klein and60

Hall (2015) suggest that emergent constraints should be targeted towards a single climate feedback61

mechanism (e.g. snow cover) whenever possible. Nevertheless, many studies (including this one)62

focus on emergent constraints for global climate sensitivity proxies such as ECS or the climate63

feedback parameter λ (Cess et al. 1989) because of their importance. Lastly, emergent constraints64

in general derive from a blend of scientific reasoning and a posteriori optimization to maximize65

their correlation with ECS or λ over a modest set of GCMs, and only the most promising con-66

straints are likely to be published. This suggests a risk of constraints being ‘overconfident’, i. e.67

better correlated with ECS or λ over the GCMs on which they were first tested and optimized than68

in another independent set of GCMs.69

Emergent constraints have already been noted to predict larger climate sensitivity than expected70

from other lines of evidence (Tian 2015; Klein and Hall 2015). If agreement between constraints71

gives us confidence in their predictions, this is an alarming finding. A goal of this paper is to72

develop an approach for combining emergent constraints to provide a confidence range for ECS73

or any other climate sensitivity proxy, while accounting for the issues just raised.74

The emergent constraints used and the relevant data are described in Sect. 2, and terminology is75

described in Sect. 3. In Sect. 4, we derive and apply our method to individual emergent constraints76

with observational uncertainty. Sect. 5 discusses correlations between the constraints. Sect. 677
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presents and applies Method C to derive a PDF of the climate proxy given multiple correlated78

constraints, including the need to ’prune’ constraints when those correlations are too strong. Sect.79

7 presents and applies Method U, which neglects any correlations between constraints outside of80

their mutual correlation with the climate proxy. Method U can be fully analyzed, easily interpreted,81

and does not require constraint pruning. Sect. 8 presents and applies an overconfidence adjustment82

to accounting for overfitting. Sect. 9 presents conclusions.83

2. Data84

a. Choice of emergent constraints85

For this study, we rely on 11 emergent constraints evaluated in Caldwell et al. (2018) (here-86

after CZK18). These include the four constraints CKZ18 judged to be ‘credible’ (significantly87

correlated with ECS and supported by a physical mechanism which correctly identifies dominant88

physical processes and geographical regions which create this correlation), and seven constraints89

they judged to be ‘uncertain’ or ’unclear’ (significantly correlated with ECS but not amenable to90

the above assessment of credibility). We will call these constraints ‘possible’. Two other ‘un-91

clear’ Klein constraints from CKZ18 had to be excluded from our analysis for technical reasons92

described in the following subsection. We also excluded six constraints assessed not to be credi-93

ble in Table 4 of CKZ18. Short explanations of each constraint that we used along with original94

citations and evaluations from CZK18 are provided in Table 1.95

b. Observational estimates of constraints96

CZK18 focused on the evaluation of emergent constraints using model data, while this study97

aims to use the observed values of those constraints to make climate sensitivity predictions. This98

requires observational estimates (including uncertainty) for the constraints. It would be ideal to ob-99
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tain these estimates directly from the original data sources, but this is impractical given the number100

and diversity of constraints we use. Thus we rely almost exclusively on values communicated by101

the papers originally proposing each constraint. These studies employed a variety of approaches102

and levels of detail in describing observational uncertainty. As a result, we are forced to make103

approximations to achieve uniformity of observed uncertainty estimates across constraints.104

For simplicity, our analysis assumes observational uncertainty is normally distributed. The PDF105

of observed values for constraint i is specified by its mean µi,o and standard deviation σi,o. While106

convenient, this assumption is not appropriate for two ‘Klein’ constraints discussed by CZK18,107

which are based on positive semi-definite measures of model skill. Hence these two constraints108

were excluded from our analysis.109

Our observed values and the information used to construct them are summarized in Table 2.110

Studies which provide mean and some multiple of the standard deviation were trivial to process.111

For studies which provide bounds for a given confidence level, we compute the number of standard112

deviations for that confidence level for a normal distribution, and we rescale the quoted range to113

estimate σi,o. Where several estimates of µi,o and σi,o were provided, we average the estimated114

means, and we increase σi,o such that µi,o±1σi,o just encompasses all of the individual estimated115

±1σ ranges. For constraints which provide only minimum and maximum credible values (often116

taken from a pair of observations), we take the average of these values as the mean and 1/2 the117

distance between these values as the standard deviation. Because two samples provide a very poor118

sense of uncertainty, we occasionally use extra information from papers and/or expert judgement119

to modify these values, as noted in Table 2.120
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3. Terminology and covariance estimation121

Our mathematical nomenclature is as follows. Capitalized Latin letters denote random variables,122

and lowercase versions of the same letter indicate particular values of these variables. Vectors123

are boldfaced. We define Ỹ to be a climate sensitivity proxy such as the equilibrium climate124

sensitivity or a climate feedback strength, for which the constraints are derived. A single emergent125

constraint variable is denoted X̃ . A collection of n emergent constraints will be labeled X̃i, i =126

1, ...,n. Versions of these random variables which have been normalized to have zero mean and127

variance of 1 are similarly denoted, but without the tilde. The PDF of any random variable U is128

p(u), and similarly for multivariate distributions.129

The main mathematical formula that we use is the joint PDF of the components of a column130

vector U of m zero-mean Gaussian random variables which are known to have an m×m covariance131

matrix C with determinant |C|:132

p(u) = (2π)−m/2|C|−1/2 exp
(
−1

2
uTC−1u

)
. (1)

a. Calculating correlation and covariance from GCM samples133

A key input to our analysis is the (n+1)× (n+1) covariance matrix C̃GCM between the climate134

proxy Ỹ and the n constraints X̃i, derived from the available sample of GCMs. An important135

complication is that not all GCMs provide the data needed to compute all constraints. Using136

all available GCMs for calculating each needed covariance, rather than just the 8 models which137

supplied data for all 11 constraints, is essential to obtaining an adequate sample size. The method138

used to do this must preserve the positive definiteness of the covariance matrix for the multivariate139

Gaussian method to provide stable results.140
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The approach that we settled on is to build a GCM covariance matrix based on the best possi-141

ble estimates of the correlation coefficients. We compute the correlation coefficient r̃i j between142

each pair (i, j) of constraints using all GCMs for which both constraints are available. We use a143

similar approach for GCM-based correlation coefficients r̃0 j between the climate proxy and the144

j’th constraint, as well as for calculating the standard deviation of each constraint σ̃ j across the145

GCM sample. The standard deviation σ̃0 of the climate proxy is computed across all GCMs. The146

elements of the covariance matrix are computed as:147

C̃GCM,i j = r̃i jσ̃iσ̃ j, i, j = 0, ...,n (2)

Note that in general, a different set of GCMs is used for computing each of the three terms on the148

right-hand side.149

Here and in the rest of the paper, rows and columns of the covariance matrix are indexed starting150

at 0, index 0 corresponds to the climate proxy, and indices 1-n correspond to the n constraints.151

4. Climate Sensitivity PDF from a Single Constraint152

In this section we describe our approach for computing a PDF of the climate sensitivity proxy153

Ỹ from a single constraint X̃ . This is a useful first step towards treating multiple constraints.154

Like Bowman et al. (2018) and others, we first estimate a joint PDF of Ỹ and X̃ from the GCMs,155

then we apply our observational knowledge about X̃ to derive a constrained pdf of Ỹ . A key156

assumption, questioned by Williamson and Sansom (2019), is that the GCM-derived joint pdf157

is applicable to the real climate, i. e. is a suitable prior for interpreting an observation of the158

constraint. Also like Bowman et al. (2018), we make the important simplifying assumption that159

the multivariate pdfs that we estimate are Gaussian, allowing them to be described in terms of a160

vector of means and a covariance matrix. See Cox et al. (2018), Brient and Schneider (2016),161
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Bowman et al. (2018), and Williamson and Sansom (2019) for other approaches to deriving a162

PDF of a climate sensitivity proxy from a single emergent constraint, and for further discussions163

about issues with applying emergent constraints. Our approach captures all sources of uncertainty164

without sacrificing simplicity, and it is easily extensible to multiple constraints.165

An emergent constraint is based on a GCM-based relationship between X̃ and Ỹ . Such a rela-166

tionship should not be trusted well outside the range of GCM values. Indeed, if the observed value167

of the constraint X̃ lay well outside the expected GCM range, we might interpret this as a physical168

shortcoming of the GCMs that requires further attention, rather than a solid basis for inferring that169

the climate sensitivity proxy Ỹ lies outside its GCM range.170

Philosophically, this frames our mathematical representation of emergent constraints. Unlike171

prior studies, we do not start by performing a GCM-based linear regression to determine Ỹ from172

an observationally-constrained X̃ . Instead we estimate a joint Gaussian pdf between X̃ and Ỹ by173

substituting their 2× 2 sample covariance matrix C̃GCM into (1). In contrast to linear regression,174

this retains information about the GCM-preferred range of Ỹ . It tacitly assume that relations be-175

tween the climate proxy and the constraints are nearly linear. It also assumes that all GCMs have176

equal value in estimating how the emergent constraint is related to the climate proxy, whether or177

not they predict realistic values of the proxy. That assumption has been reasonably criticized (e.g.178

Brient 2019) but it is a fundamental premise of emergent constraints that the underlying relation-179

ship with the climate proxy should rely on a mechanism sufficiently robust as to be insensitive180

to details of the GCM physical formulation, even though those details are important to actually181

obtaining an observationally consistent value of the constraint.182

If we could exactly observe that X̃ = x, we could substitute into the joint PDF to obtain the183

conditional pdf of Ỹ . In the language of Bayesian analysis, this is the posterior probability for Ỹ184
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based on the GCM-only Gaussian prior and the observation of the constraint. However, there are185

two further practical complications to consider.186

First, we cannot exactly observe the true value of X̃ . To handle observational uncertainty, we187

define a random variable X̂ , the estimated constraint, which is the sum of X̃ plus a normally-188

distributed observational error with zero mean and the observed standard deviation σo. This ob-189

servational error is assumed to be independent of Ỹ and the physically-determined (true) value of190

X̃ . Thus X̂ is a Gaussian random variable whose variance is the sum of its variance across GCMs191

and its observational variance. Ỹ and X̂ have a Gaussian joint PDF determined by their covariance192

matrix,193

Ĉ =

 var(Ỹ ) cov(Ỹ , X̂)

cov(Ỹ , X̂) var(X̂)

= C̃GCM +

 0 0

0 σ2
o

 , (3)

where C̃GCM is computed using Eq. (2).194

Second, the process of formulation and selection of emergent constraints may result in over-195

confidence, i. e. constraints that are more highly correlated with the climate sensitivity proxy196

than would be obtained from a different independent random sample of GCMs, if such existed.197

We counteract overconfidence by artificially reducing the covariance between X and Ỹ without198

changing the other elements of Ĉ. We have not explicitly included this adjustment in our single-199

constraint analysis because a goal of that analysis is to evaluate overlap between PDFs for each200

constraint, and ignoring overconfidence provides a lower bound for that overlap. We consider the201

sensitivity of a multiple-constraint analysis to an overconfidence correction in Sect. 8.202
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It is convenient to work with standardized variables with a mean of zero and a standard deviation203

of 1:204

Y = (Ỹ − y)/σ̃Y , (4)

X = (X̂− x)/σ̂X , (5)

σ̂
2
X = σ̃

2
X +σ

2
o . (6)

The normalization of the standardized X accounts for both its variance across GCMs and its ob-205

servational uncertainty. Overlines indicate averages over the GCM ensemble.206

The covariance matrix of Y and X , derived from the sample of GCMs and adjusted for observa-207

tional constraint uncertainty, is208

C =

 1 r

r 1

 , (7)

where r = Ĉ01/(σ̃Y σ̂X) is the correlation coefficient between Y and X , or equivalently between209

Ỹ and X̂ . Because of the observational uncertainty, r is smaller in magnitude than the GCM-210

estimated correlation coefficient r̃01 between the climate proxy Ỹ and the constraint X̂211

We translate the observational estimate of the constraint, X̂ = x̂, into the standardized form212

X = x′ = (x̂− x)/σ̂X . (8)

We condition the joint pdf of Y and X on this known value of X to obtain a Gaussian posterior for213

Y :214

p(y|x′) = p(y,x′)/p(x′) = (2π|C|)−1/2 exp

−1
2

[
y x′

]
C−1

 y

x′

+ x′2

2


∝ exp `(y), (9)

where the log-probability is215

`(y) =−1
2

y2−2rx′y+ x′2

1− r2 +
x′2

2
=−1

2
(y− rx′)2

1− r2 .
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From this formula, we can read off the mean y(1) and standard deviation σ (1) of the posterior216

distribution of Y :217

y(1) = rx′, (10)

σ
(1) = (1− r2)1/2. (11)

The superscript (1) denotes that this is a one-constraint estimate. We will define the estimated218

posterior ‘range’ of Y as lying within 2 standard deviations of the mean, i. e. y(1)±2σ (1). We use219

a subscript i to denote an estimate based on constraint i.220

Past studies of emergent constraints have typically used linear regression to quantify the re-221

lationship between the constraint and the climate sensitivity proxy. If we ignore observational222

uncertainty we could obtain the above result by regressing the climate sensitivity proxy Y on the223

constraint X . In this case, r would be the GCM-based correlation coefficient between X̃ and Ỹ224

with no adjustment for the observational uncertainty. The best fit regression line y = rx matches225

the posterior mean y(1) when evaluated at x′. The residual in Y around that fit has a standard error226

(1− r2)1/2 that matches σ (1).227

Unlike this regression approach, our approach naturally incorporates observational uncertainty228

in the constraint. For a single constraint, this was also done by Bowman et al. (2018) under similar229

assumptions, but using a different mathematical approach. Reassuringly, after after accounting for230

our different notation and normalization, our formulas (10) and (11) are isomorphic to eqns. (18)231

and (23) of Bowman et al. (2018). However, unlike earlier work our approach extends naturally to232

many constraints.233
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a. Single-constraint results for ECS234

Table 3 gives the correlation coefficients ri between each constraint i and two choices of cli-235

mate proxy Y (ECS and climate feedback parameter λ ). To simplify the ensuing discussion, we236

henceforth ‘sign-correct’ all constraints so that ri > 0, by flipping the sign of those constraints that237

are negatively correlated with Y (indicated by a ’-’ in the ‘Sign’ column). This table also gives238

normalized constraint values x′i (in units of standard deviation) for the sign-corrected constraints,239

such that x′i > 0 favors y > 0 (ECS larger than the GCM mean). Eight of the 11 constraints have240

positive x′i, with values up to 2.4 for Constraint 1 (Sherwood D). Constraints 2 (Brient Shal), 9241

(Lipat) and 11 (Cox) have modestly negative x′i in the range -0.4 to -0.8.242

Lastly, Table 3 gives σo/σ̃X , the ratio of the observational uncertainty to the GCM-based stan-243

dard deviation for each constraint. For the credible constraints 1-4 and constraint 10 (Siler), this244

ratio is less than 0.5 and observational uncertainty is relatively unimportant to the posterior range245

of Y . For the remaining 6 constraints, the ratio is larger than 0.5. For these constraints, obser-246

vational uncertainty substantially reduces ri, broadens the posterior range, and moves y(1)i toward247

zero, i. e. it moves the posterior mean Y toward the GCM mean. This is most pronounced for248

Constraint 6 (Qu), with a ratio of 1.7; the ratio lies between 0.64 and 1.01 for the remaining five249

constraints. In general, we conclude that it is important to account for observational uncertainty in250

the constraints.251

Our approach is illustrated in Fig. 1, using the Zhai constraint as an example. For clarity,252

the figure is presented in terms of dimensional rather than standardized variables. The cyan ellipse253

shows a contour of joint probability density between Ỹ and X̃ derived from our collection of CMIP254

models (dots). The maximum joint density is at the center of this ellipse, which is the centroid255

of the CMIP data points. The green ellipse corrects this PDF for observational uncertainty in256
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the constraint, the PDF of which is shown along the y-axis in blue. Note that for this constraint,257

observational uncertainty has a small effect, as evident by the similarity between green and cyan258

ellipses. This situation is found for other constraints as well. Were we to adjust for overconfidence259

by using a joint PDF with reduced correlation r between Ỹ and X̂ , this ellipse would be vertically260

broadened. The posterior for ECS (red) is the cross section of the bivariate PDF at the best-guess261

observed constraint value x̂ (horizontal blue dashed line).262

The posterior PDFs of ECS given each constraint separately are shown in Fig. 2, along with the263

PDF of ECS from CMIP3+CMIP5 models, shown both as a histogram and a Gaussian fit. Credible264

constraints are shown in panel (a) and possible constraints are shown in panel (b). Their means265

vary from 3.14 K (constraint 9 = Lipat) to 3.60 K (constraint 1 = Sherwood), with a standard266

deviation of 0.27 K (constraint 3 = Zhai) to 0.37 K (constraint 6 = Qu). Eight of the 11 constraints267

have PDFs peaked at an ECS greater than the GCM mean. Constraint credibility has no systematic268

effect on peak probabilities or distribution widths.269

These Gaussian PDFs are derived from the formulas for nondimensional posterior mean (10)270

and standard deviation (11) using the information in Table 3. These are redimensionalized by271

scaling with the GCM standard deviation σ̃Y = 0.38 K and adding the GCM mean y = 3.24 K,272

which can be read off the ‘GCM Ensemble’ line of Table 4.273

These PDFs do not account for possible overconfidence, which would further broaden their274

width. Even so, all of the constraints have substantial overlap with each other. This is reassuring275

because if two constraints had disjoint PDFs we would be forced to conclude that at least one of276

them must be wrong, and multi-constraint analysis would be pointless. Results for the climate277

sensitivity parameter λ (not shown) are similar.278
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5. Dependence between Constraints279

Combining constraints is only useful if those constraints provide independent information. Be-280

cause agreement between samples is typically used as a proxy for uncertainty, failure to account281

for redundant samples is dangerous.282

Interdependence of constraints was investigated in CZK18 by computing correlations between283

each pair of constraints. CZK18 found that constraints were more correlated than expected by284

chance, but identifying pairs of significantly correlated constraints based on related physical ex-285

planations was generally unsuccessful. They noted that some pairwise correlation is expected286

because all constraints are by construction correlated with ECS.287

For our 11 constraints, there are 55 pairs of constraints. If we flip the sign of constraints which288

are negatively correlated with ECS, then 52 of the 55 constraint pairs are positively correlated289

across the GCMs, which is strong evidence for such mutual dependence; 14 of these have a positive290

correlation coefficient exceeding 0.4 and none have a correlation coefficient more negative than291

-0.25.292

To correct for the mutual dependence between constraints that is due to ECS, we compute the293

partial correlation coefficient between constraints Xi and X j given ECS Y (denoted hereafter by an294

subscript 0):295

ri j·0 =
ri j− rir j

(1− r2
i )

1/2(1− r2
j )

1/2 . (12)

Here ri is the sample correlation coefficient between Xi and Y , and similarly for r j, while ri j is the296

sample correlation coefficient between Xi and X j. We call two constraints with a partial correlation297

of zero ‘conditionally uncorrelated’; for the multivariate Gaussian distributions assumed in this298

paper, this is equivalent to conditional independence. Positive sign-corrected partial correlation299
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indicates constraints that covary in the same sense as we would expect based on their correlation300

with Y , but more strongly.301

Correcting for the mutual dependence with ECS removes some but not all of the covariation302

between our 11 constraints. Fig. 3 shows the sign-corrected pairwise partial correlations. Well303

over half (38 of 55) are positive. This is suggestive, but are these partial correlations statistically304

significant? As in CZK18, choosing an appropriate number of degrees of freedom (DOF) is dif-305

ficult because there are complicated structural dependences between models (Masson and Knutti306

2011; Knutti et al. 2013; Sanderson et al. 2015a,b). Following CZK18, we handle this issue by307

using a fairly lax 90% two-sided test and by assuming each GCM that goes into the calculation of308

a particular correlation coefficient ri j is independent. Both assumptions favor false positives, but309

partial correlations deemed not to be significant would almost certainly also be deemed insignifi-310

cant with other reasonable assumptions. For a typical number of contributing GCMs (20), a partial311

correlation of magnitude 0.35 or larger is significant by this standard.312

We found only 6 (1) of 55 constraint pairs have a significantly positive (negative) partial correla-313

tion; these are shown by orange (purple) shading on Fig. 3. Some expected relationships between314

constraints are borne out, like tight correlation between Siler and Volodin. Other constraints are315

significantly correlated even though their explanations seem to be unrelated, like Brient Shal and316

Brient Alb. This motivates our Method C (for ‘correlated’), which accounting for partial correla-317

tion between constraints. However, other constraint pairs, like Zhai and Brient Alb, are weakly318

correlated even though they share a physical explanation, and only 11% of the constraint pairs319

have a partial correlation above the 90% significance threshold. Thus it is a reasonable overall320

assumption to neglect partial correlations among our set of constraints, motivating the simpler321

Method U (for ‘uncorrelated’) discussed in Sec. 7.322
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6. Method C: Climate Sensitivity PDF from Multiple Correlated Constraints323

a. Theory324

The methodology introduced in Sec. 4 generalizes transparently to the case of multiple con-325

straints X̃1, ..., X̃n with observational estimates x̂1, ..., x̂n having uncertainties σo,1, ...,σo,n. We form326

a column vector U of length n+1 whose components are the climate sensitivity proxy Ỹ and the327

X̃ ′i s. The components of its (n+1)× (n+1) covariance matrix modified for observational uncer-328

tainty are329

Ĉi j =



var(Ỹ ) i = j = 0

cov(Ỹ , X̃ j) i = 0, j = 1, ...,n

cov(X̃i,Ỹ ) j = 0, i = 1, ...,n

cov(X̃i, X̃ j)+σ2
o,iδi j i, j = 1, ...,n

(13)

Here δi j is 1 if i = j and 0 otherwise. The matrix Ĉ is non-negative definite if all covariances are330

computed with the same set of GCMs, but this is not guaranteed if different elements of Ĉ are331

computed with different subsets of GCMs, as we are forced to do in this study.332

We standardize Ỹ and the constraints as before, producing a new covariance matrix C between333

the standardized ECS Y and the standardized constraints Xi, and we derive standardized values x′i334

for each observational estimate x̂i. To simplify notation, define335

A =C−1 (14)

to be the inverse covariance matrix, which is symmetric and positive definite if Ĉ is non-singular.336

To obtain the resulting posterior PDF of Y conditioned on the observational estimates x′i, we define337

a column vector338

u = [y,x′1, ...,x
′
n]

T (15)
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and substitute this, together with (13) into the joint PDF (1) :339

p(y|x′1, ...,x′n) = p(y,x′1, ...,x
′
n)/p(x′1, ...,x

′
n)

∝ exp`(y),

`(y) = −1
2

uTC−1u+ terms not involving y

= −1
2

[
A00y2 +2

n

∑
i=1

A0iyx′i

]
+ terms not involving y

= −
(y− y(n)C )2

2σ
(n)2
C

+ terms not involving y, (16)

which describes a Gaussian distribution with:340

Method C posterior mean of Y : y(n)C =
n

∑
i=1

aix′i, (17)

Constraint weights: ai =−A0i/A00, (18)

Posterior std. dev. of Y : σ
(n)
C = A−1/2

00 . (19)

In theory, Method C solves our problem for multiple correlated constraints.341

b. Sampling uncertainty in the covariance matrix342

In practice, if the covariance matrix is derived from a finite sample of GCMs, it is sensitive343

to sampling uncertainty, especially if the number of constraints is comparable to the number of344

GCMs. For instance, if we have 10 constraints and 20 GCMs, we are using 20 samples to estimate345

an 11-dimensional correlation matrix with 11 · 12/2 = 66 independent entries, which is a highly346

underconstrained problem. Thus we anticipate that Method C may fail or give spurious results,347

especially if partial correlations between the constraints are important. In the next subsection,348

we apply Method C to ECS estimation and develop a way to test and (if necessary) improve its349

robustness.350
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c. Applying Method C to ECS and the Need to Prune Constraints351

1) 4 CREDIBLE CONSTRAINTS352

The red curve in Fig. 4a shows the ECS posterior PDF estimated using Method C based on the353

4 sign-corrected credible constraints. It is compared to other PDFs, including the Gaussian CMIP354

prior (black dash) and the average of the single-constraint PDFs (solid black). Methods U and U3355

will be discussed in the following section.356

Method C gives a strikingly higher and narrower PDF than the average of the single-constraint357

PDFs, which in turn is shifted slightly higher than the CMIP mean PDF. This may seem surprising,358

but can be viewed as the result of strong evidence (3 of 4 constraints) agreeing that ECS is likely359

more positive than the GCM mean. Mathematically stated, of the four observed x′i, only x′2 < 0.360

Using (17)-(19), Method C predicts that the nondimensional most likely ECS is361

y(4)C = 0.22x′1 +0.25x′2 +0.48x′3 +0.28x′4 = 1.19. (20)

The nondimensional ECS standard deviation is σ
(4)
C = 0.54 and does not depend on the constraint362

values. Redimensionalizing using the mean (3.24 K) and standard deviation (0.75 K) of the GCM363

ensemble yields a 4-constraint ±2σ ECS range of 4.14±0.82 K.364

Constraint 3 (Zhai) has the strongest weight a3 = 0.48 on the Method C ECS mean. Constraint365

4 (Brient Alb) has only 60% of the weight of constraint 3 despite having a similar correlation366

r ≈ 0.7 with ECS; this is due to its covariances with the other constraints. All four constraints367

have positive weights ai > 0. This positivity property is physically reasonable and desirable. For368

instance, if constraint i has observed value x′i > 0, its correlation with ECS is ri > 0, and all other369

constraints have observed values of zero, then we expect y > 0; this is only possible if ai > 0.370

However, weight positivity is not guaranteed by Method C.371
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Fig. 4b assesses the sensitivity to the GCM sampling by redoing the 4-constraint analysis with372

each of the GCMs omitted in turn when computing the needed correlation matrix. The posterior373

ECS PDF is quite robust to this test. Removing any two GCMs provides very similar results, with374

the most likely value of ECS always being 3.9-4.2 K (not shown).375

2) ALL CONSTRAINTS376

Method C can also be applied to all 11 constraints, since the 12×12 estimated correlation matrix377

has all positive eigenvalues. It gives a ±2σ ECS range 4.28± 0.69 K, shown as the dashed red378

curve in Fig. 4c. This PDF has a slightly higher mean and a narrower distribution of ECS than the379

4-constraint estimate. Eight of the 11 weights ai are positive. Two are marginally negative, and380

one, a10 =−0.47, is strongly negative. This arises because constraint 10 (Siler) has strong partial381

correlations with some of the other constraints, exceeding 0.5 with constraints 2 (Brient Shal) and382

5 (Volodin). Because the observed value x′10 = 0.35 is small, the large negative weight doesn’t383

have a strong direct impact on the most probable ECS. Nevertheless this suggests the Method C384

ECS PDF may be less robust to sampling uncertainty in the correlation matrix with 11 constraints385

than with 4 constraints. This defeats the point of using more constraints.386

Fig. 4d assesses this by removing one GCM from the sample, as in Fig. 4b. The posterior ECS387

PDFs are mostly robust to this test again, but less so than with the 4 constraints, since there are388

now three clear outliers among the 11 ranges. The mean ECS ranges from 3.7-4.6 K across these389

cases, and 3.6-5 K when 2 GCMs are removed.390

3) PRUNING CONSTRAINTS WITH LARGE NEGATIVE WEIGHTS391

When Method C gives negative sign-corrected ai’s, we do not recommend its use unless there are392

so many independent GCMs that the correlation matrix is accurately known. Instead, we suggest393
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removing (’pruning’) the constraint which has the most negative weight, repeating the analysis,394

and testing if there are still negative sign-corrected weights. If so, continue the procedure until all395

weights lie in the desired range. A weaker threshold for pruning a constraint such as ai < −0.1396

may still provide satisfactory results, since constraints with weights close to zero will have little397

impact on the estimate of the most likely ECS. With our set of constraints, certain combinations398

of as few as three constraints (e. g. 2, 4, 10) lead to negative weights with ai < −0.1, although399

there are combinations of as many as 10 constraints for which all weights exceed -0.1, and there400

are combinations of 8 constraints for which all weights are positive.401

For the 11-constraint case, pruning just constraint 10 (Siler) brings the most negative sign-402

corrected weight down from -0.47 to -0.10 and changes the Method C ±2σ posterior range of403

ECS to 4.12±0.77 K, very similar to the 4-constraint value. We regard this 10-constraint PDF as404

more plausible than the 11-constraint PDF, so it is shown as a solid (rather than dashed) red curve405

in Fig. 4c.406

7. Method U: Estimation of Y From Conditionally Uncorrelated Constraints407

Overall, Fig. 3 suggests that most of the partial correlations between the constraint pairs are408

not that large and are statistically insignificant. Thus it is reasonable to consider the special case409

that all the constraints are mutually uncorrelated when conditioned on a given value of the climate410

sensitivity proxy Y . Since the constraints have Gaussian PDFs, they are therefore independent411

when conditioned on Y . This assumption allows a closed-form posterior estimate of the PDF of Y412

that we call Method U. Method U provides valuable insights into Method C, and our experience413

is that it also gives results close to Method C when the latter yields all positive sign-corrected414

weights. Method U requires only estimates of the correlation coefficients ri between Y and the415

individual constraints. These can be computed fairly reliably with 10 or more GCMs; for our416
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sample of GCMs, they are given in Table 3. For only one constraint, or when the constraints are417

conditionally uncorrelated, Method U is identical to Method C, although derived differently.418

We work in terms of the standardized variables. With the assumption of conditional indepen-419

dence, the joint PDF of the constraints conditioned on Y can be written as a product:420

p(x1, ...,xn|y) = p(x1|y)...p(xn|y), (21)

where the conditional PDF for constraint Xi is given by (10-11) with x and y swapped:421

p(xi|y) ∝ exp
{
−(xi− riy)2/2(1− r2

i )
}
. (22)

Thus the joint multivariate Gaussian PDF simplifies to422

p(y,x1, ...,xn) = p(x1, ...,xn|y)p(y)

∝ exp

{
−1

2
[y2 +

n

∑
i=1

(xi− riy)2/(1− r2
i )]

}
. (23)

Setting the constraints equal to their standardized observed values, denoted again by primes, we423

obtain a posterior PDF424

p(y|x′1, ...,x′n) = p(y,x′1, ...,x
′
n)/p(x′1, ...,x

′
n)

∝ exp `(y)

`(y) = −1
2

[
y2 +

n

∑
i=1

(x′i− riy)2/(1− r2
i )

]

= −1
2

n

∑
i=0

wi(y′i− y)2

= −
(y− y(n)U )2

2σ
(n)2
U

. (24)
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The subscript U refers to the assumption of conditional uncorrelation. Here,425

Method U posterior mean of Y : y(n)U =
n

∑
i=0

wiy′i (25)

=
n

∑
i=1

aix′i, (26)

Posterior std. dev. of Y : σ
(n)
U = s−1/2, (27)

where426

Proxy estimates y′i =


0, i = 0

x′i/ri, 1≤ i≤ n
, (28)

Proxy weights wi = vi/s, (29)

vi =


1, i = 0

r2
i /(1− r2

i ), 1≤ i≤ n
, (30)

s =
n

∑
i=0

vi, (31)

Constraint weights ai = wi/ri. (32)

Method U expresses the mean (26) of the posterior PDF as a linear combination of the observed427

constraint values x′i. This is the expected form for a special case of Method C, but has three major428

interpretational advantages. First, it gives explicit formulas for the constraint weights ai that de-429

pend only on the correlation coefficients ri. The relative weights for constraints with correlation430

coefficients of 0.3, 0.6 and 0.9 with the climate proxy are 0.3, 0.9, and 4.7; constraints with large431

correlations have much more impact on the posterior PDF. These explicit formulas are less sen-432

sitive to small-sample errors than entries in the inverse covariance matrix. Second, these weights433

automatically satisfy the desirable positivity condition that ai > 0 for ri > 0.434

Third, there is an appealingly interpretable alternate form (25) for y(n)U in terms of proxy weights435

wi = airi multiplying climate proxy estimates y′i = x′i/ri. For each constraint, y′i is the predicted436

value of the climate proxy we would obtain by linear regression applied to the single-constraint437
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problem with the dependent and independent variables swapped, i. e. regressing Xi on Y and438

evaluating at the observed value x′i.439

The proxy weights sum to one if we add a weight w0 for ’constraint 0’, the GCM prior. Thus440

y(n)U is a weighted average of the y′i. Each proxy weight is a strongly increasing function of its441

correlation coefficient with the climate sensitivity proxy Y . For constraints that are poorly corre-442

lated with Y , y′i can be quite large but is multiplied by a very small proxy weight. Nevertheless,443

if a lot of constraints with modest correlations with Y all suggest large positive anomalies y′i, they444

combine to create a large y(n)U , suggestive of a Y much larger than the GCM mean.445

The posterior standard deviation σ
(n)
U decreases as the inverse square root of the sum s of positive446

contributions vi from each constraint. More conditionally uncorrelated constraints always narrow447

the posterior range of Y , especially those having a high correlation with Y .448

a. Consistency with single-constraint posterior PDF449

When there is only one constraint, Methods C and U are identical, and they must both reduce to450

the single-constraint posterior PDF. Using the Method U formulas (after dropping the index 1 to451

match the single-constraint notation):452

s = 1+
r2

1− r2 =
1

1− r2 , (33)

y(1)U = [1 ·0+ r2

1− r2 y′]/s = r2y′ = rx′, (34)

σ
(1)
U = s−1/2 = (1− r2)1/2, (35)

which indeed match our single-constraint formulas. The interpretation from Method U is that the453

posterior mean of Y is a weighted average of its GCM prior (zero), and the y′ = x′/r predicted by a454

regression of X on Y , multiplied by a proxy weight r2 < 1. In the single-constraint case, we noted455
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this posterior PDF can alternatively be derived from a regression of Y on X , but that perspective456

doesn’t generalize to multiple constraints.457

b. Method U results for ECS458

The red curve in Fig. 4a shows the Method U estimate of the ECS posterior given the 4 credible459

constraints. This Gaussian PDF has a ±2σ range of 3.3-4.9 K, similar to the 4-constraint estimate460

from Method C. That is, partial correlation between the 4 credible constraints has almost no impact461

on the posterior PDF. Indeed, according to Method U, the most likely ECS is462

y(4)U = 0.15x′1 +0.14x′2 +0.42x′3 +0.41x′4 = 1.10, (36)

The coefficients are quite similar to those in the analogous formula (20) derived from Method C.463

The red curve in Fig. 4c shows the Method U ECS posterior for all 11 constraints, which has464

a ±2σ range of 3.4-4.6 K. This is similar but slightly narrower than the 4-constraint Method U465

PDF and the PDF from Method C pruned to 10 constraints per the earlier discussion. That is466

to be expected, as any conditional correlation between the constraints reduces the independent467

information provided by adding new constraints, Unlike for Method C, pruning constraint 10 has468

a negligible impact on the posterior range predicted by Method U (not shown).469

Fig. 5a shows the 11 proxy weights wi, calculated using Eq. (30). Each constraint is represented470

by a colored vertical line with height proportional to the proxy weight, located at a Y value of471

y′i. Since these weights sum to one, the most likely ECS (black circle) is at the horizontal center472

of gravity (weighted average) of these bars. Most of the constraints have correlation coefficients473

with ECS of between 0.4 and 0.6 and modest proxy weights of 0.02-0.1. Constraints 3 (Zhai)474

and 4 (Brient Alb) have larger weights near 0.2 because of their stronger correlation with ECS,475

so they are particularly important in setting the ECS posterior range. ’Constraint 0’, the GCM476
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prior, has a weight of 0.21. Thus with 11 constraints, the GCM range of ECS plays a modest477

role in shaping the posterior function. Constraint 1 (Sherwood D) has an anomalously large y′1478

because its observational estimate is x′1 = 2.4 standard deviations from the mean, and because it479

has a relatively small correlation r1 ≈ 0.4 with ECS. However, that small r1 causes it to have a480

small proxy weight.481

Fig. 5b shows the contribution of individual constraints to changing the posterior mean of ECS482

away from the GCM mean of 3.2 K (aix′i before redimensionalization). Constraint 3 (Zhai) is483

most important, because its observational estimate x′3 is over one standard deviation from the484

GCM mean and it also has the highest correlation with ECS. Three other constraints (1, 4, 8) give485

substantial positive contributions exceeding 0.1 K, four give modest positive contributions of less486

than 0.08 K, and three give modest negative contributions with magnitude less than 0.05 K.487

8. Adjusting for overconfidence488

We present a method to adjust Methods C and U for overconfidence by artificially reducing489

the correlation coefficients ri between the constraints and Y , while leaving the partial correlation490

coefficients between the constraints unchanged.491

An obvious way to do this would be to scale all the correlation coefficients ri by the same factor.492

We use a related but slightly different approach. A constraint that is nearly perfectly correlated493

with ECS over 20+ GCMs should also be extremely highly correlated with ECS over a different494

set of GCMs. Thus we treat overconfidence as leading to a systematic underestimate by a user-495

specified factor α2 ≤ 1 of the variance in each of the constraints that is unexplained by regression496

onto Y . This amounts to scaling the ratio vi = r2
i /(1−r2

i ) of the explained to unexplained variance497

by the specified factor α2:498

v∗i = α
2vi, i = 1, ...,n,

26



for which the correspondingly reduced correlation coefficients are499

r∗i =
αri

[1− (1−α2)r2
i ]

1/2 .

For small values of ri, the reduced correlation coefficient is a factor of α as large as the original500

coefficient; for large ri, the fractional reduction is less.501

To use Method C, we could adjust the correlation matrix to preserve the partial correlations ri j·0502

between constraints while reducing the ri’s. However, if we are highly uncertain about ri, then our503

empirical estimates of the partial correlations are at least as uncertain and potentially meaningless.504

Some overconfidence correction (α < 1) seems merited given our earlier arguments about a pri-505

ori selection and optimization of constraints. One compelling basis for such a judgement is testing506

based on an independent set of GCMs. Some previous examples include some of the discredited507

constraints in CZK18, and the minimal correlation of the ‘credible’ Sherwood D constraint with508

ECS across a perturbed parameter ensemble. Wagman and Jackson (2018) recommend a large509

uncertainty enhancement for constraint overconfidence even for physically appealing emergent510

constraints. Further research on this issue is needed.511

As a sensitivity test, we apply an extreme overconfidence adjustment α = 1/3 (a nine-fold in-512

flation of unexplained variance) to Method U. The magenta curves U3 in Figs. 4a and c show513

the resulting ECS PDFs for the 4-constraint and the 11-constraint cases. In both cases, the over-514

confidence correction widens the posterior range (Table 4) and moves the posterior mean ECS515

somewhat toward the GCM mean. The wider range is expected, because constraints weakly cor-516

related with ECS are less informative.517
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9. Conclusions518

We derive a new ’Method C’ of combining correlated emergent constraints to estimate a Gaus-519

sian PDF for ECS or any other global climate sensitivity proxy from a finite sample of GCMs.520

It accounts for observational uncertainty of the constraints and (optionally) for over-confidence521

in the estimated correlation between the constraints and the proxy. The method is based on ap-522

proximating the joint PDF of the proxy and the constraints as multivariate Gaussian. With our523

limited sample of 40 CMIP GCMs, most of which provided inadequate outputs to compute some524

constraints, this PDF is inadequately sampled and the method may not give robust results as the525

number of constraints becomes comparable to the number of GCMs. We develop a systematic526

constraint-pruning method to improve the robustness of Method C. We also present ‘Method U’,527

which neglects any partial correlations between emergent constraints that are not related to their528

joint correlation with the climate proxy; this is more robust when applied to a small sample of529

GCMs, does not require constraint pruning, and is more interpretable.530

We apply these methods to a set of four credible and seven other ‘possible’ constraints from531

CZK18 and compare them with PDFs derived from single constraints, for which our method is532

essentially equivalent to regression of the climate sensitivity proxy on the constraint. Taken singly,533

the 11 constraints imply ECS PDFs with ±2σ ranges having means between 3-4 K and ±2σ534

widths of ±0.8-1.2 K. Reassuringly, all of these constraints give overlapping PDFs for ECS, with535

eight of the 11 favoring ECS higher than the GCM mean.536

The 4-constraint ±2σ ECS range estimated by both Methods C and U is close to 4± 0.8 K,537

which lies exclusively in the upper half of the GCM range. To apply method C with all 11 con-538

straints, we had to prune one constraint, after which the ECS range was again similar and higher539

than the PDFs estimated from most of the constraints taken one at a time. We obtain the same ECS540
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range using Method U with 11 constraints. The interpretation from Method U is that since a large541

majority of the constraints individually favor ECS values above the GCM mean, combining them542

more strongly favors that result. This is an important and interesting result of this analysis.543

We propose a user-chosen adjustment factor α to account for constraint overconfidence. This544

factor reduces the correlation coefficients of all the constraints with the climate sensitivity proxy545

while leaving their conditional correlations with each other unaltered. With a strong overconfi-546

dence adjustment α = 1/3, the ±2σ 11-constraint estimated ECS range of Method U doubles in547

width to 2.7-5.3 K, but its mean remains nearly 4 K.548

The same hierarchy of approaches was applied to the climate sensitivity parameter λ , with549

similar results shown in Tables 3 and 4.550

We conclude that climate sensitivity estimated from combining the most reasonable current551

emergent constraints is very likely above the CMIP3/5 GCM mean of 3.2 K and has roughly even552

odds of exceeding 4 K. To better interpret and bolster this surprisingly strong result, we should553

continue to search for more physically-motivated emergent constraints aimed at regime-specific554

cloud feedbacks, e. g. Qu et al. (2013).555
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TABLE 1. Short description of each emergent constraint tested in this paper along with original citation and

evaluation from CZK18. Possible constraints are classified as untestable (lack a physical explanation or don’t

have an explanation which can be decomposed into feedback and forcing terms) or unclear (ambiguous when

evaluated using the CZK18 criteria).

665

666

667

668

Name Citation Credible? Description

Sherwood D Sherwood et al. (2014) Yes Strength of resolved-scale mixing between BL and lower troposphere in tropical E Pacific
and Atlantic

Zhai Zhai et al. (2015) Yes Seasonal response of BL cloud amount to SST variations in oceanic subsidence regions
between 20-40◦latitude

Brient Shal Brient et al. (2015) Yes Fraction of tropical clouds with tops below 850 mb whose tops are also below 950 mb

Brient Alb Brient and Schneider (2016) Yes Sensitivity of cloud albedo in tropical oceanic low-cloud regions to present-day SST vari-
ations

Volodin Volodin (2008) Untestable Difference between tropical and southern-hemisphere midlatitude total cloud fraction

Qu Qu et al. (2013) Unclear BL cloud amount response to SST variations in subtropical stratocumulus regions (after
removing EIS contribution)

Su Su et al. (2014) Untestable Error in vertically-resolved tropospheric zonal-average RH between 40◦N and 45◦S

Tian Tian (2015) Untestable Strength of double-ITCZ bias

Lipat Lipat et al. (2017) Unclear Latitude of the southern edge of the Hadley cell in austral summer

Siler Siler et al. (2017) Untestable Extent to which cloud albedo is small in warm-SST regions and large in cold-SST regions

Cox Cox et al. (2018) Untestable Strength of global-average surface temperature variations and temporal autocorrelation
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TABLE 2. Observed values for all constraints used in this study and explanation of how they were obtained.

See text for details.

669

670

Mean σo Explanation

Sherwood D 0.413 0.031 Provides MERRA and ERA Interim values (0.382 and 0.444, respectively)

Brient Shal 44.5% 3.5% Mean and σ values were provided for ERA Interim over 1979-2012 (45±3%) and Calipso/GOCCP over
2006-20012 (45±3%). Flaws in both estimates were noted.

Zhai -1.28% K−1 0.187 % K−1 Provides mean and 3σ values computed using CloudSat/CALIPSO cloud fraction and AMSRE SST. Un-
certainty was taken as the larger of the northern and southern hemisphere interannual standard deviations
for 2006-2010.

Brient Alb -0.96 % K−1 0.13 % K−1 Computes mean and bootstrapped 90% bounds of 0.96±0.22 % K−1 from CERES-EBAF Ed2.8 shortwave
fluxes and monthly ERSST sea surface temperature for March 2000 through May 2015. See Brient and
Schneider (2016) for details.

Volodin -25% 5.5% Suggests mean of -25% with uncertainty <5% based on ISCCP D-2 data. We have computed our own
Volodin constraint values of -19%, -30%, and -25% using Calipso, MODIS, and ISCCP data and report the
mean and standard deviation over them.

Qu -2.48% K−1 1.6 Their Table 6 says dLCC/dSST averaged over regions of interest has observed value -2.48% K−1 with 95%
confidence bounds of ±3.13% K−1. Observed slopes combine ISCCP cloud data (Rossow and Schiffer
1991) and NOAA optimum interpolation monthly SST version 2 (Reynolds et al. 2002).

Su 1 0.25 Our Su metric is the regression slope of model versus observed RH profiles, so matching observations
means a slope of 1. RH measurements are taken from August 2004 to December 2012 using AIRS for
pressures >300 mb and MLS for lower pressures. Uncertainty of 25% was used based on MLS measure-
ment uncertainty from Read and coauthors (2007).

Tian 0 0.5 Tian measures annual-mean precipitation bias over the Southeast Pacific using monthly-mean data from
GPCP between January 1986 to December 2005. Consistency of correlation using TRMM and RH mea-
sures is used, but no direct estimate of observational uncertainty is provided. Thus our uncertainty estimate
comes completely from expert judgement.

Lipat 35.83 1.75 Table 1 in Lipat et al. (2017) provides the observed mean latitude from ERA Interim for DJF of years
1984-2008 and Figs 3-4 include 95% confidence intervals of 34 to 37.5◦.

Siler 0.36 0.05 Their Fig. 9b gives the CERES-EBAF Ed2.8 2003-2008 observed value of 0.36 with 90% bounds of±0.08
computed assuming the observations follow a normal distribution.

Cox 0.14 0.05 Their extended data table 2 provides mean and σ values from HadCRUT (0.13±0.016), NOAA
(0.16±0.034), Berkeley Earth (0.13±0.021), and GISSTEMP (0.12±0.025).
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TABLE 3. For each constraint i: Sign of correlation with ECS, standardized best-guess value x′i, ratio of ob-

servational uncertainty σo to GCM-based standard deviation σ̃X , and sign-corrected GCM-derived correlations

ri with the two climate proxies, after adjusting for observational uncertainty as described in the text.

671

672

673

i Constraint Sign x′i σo/σ̃X ri

Credible ECS λ

1 Sherwood D + 2.40 0.45 0.40 0.42

2 Brient Shal + -0.44 0.18 0.37 0.46

3 Zhai - 1.23 0.28 0.70 0.76

4 Brient Alb - 0.68 0.28 0.69 0.80

Possible

5 Volodin - 0.80 0.64 0.45 -0.48

6 Qu - 0.70 1.70 0.20 -0.14

7 Su + 0.70 0.88 0.44 0.52

8 Tian - 1.46 0.81 0.44 -0.38

9 Lipat - -0.80 1.01 0.33 -0.22

10 Siler + 0.35 0.05 0.54 0.64

11 Cox + -0.46 0.76 0.50 0.46
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TABLE 4. Estimated ±2σ climate proxy ranges

Method ECS (K) λ (K W−1 m2)

GCM Ensemble 3.24 ± 1.51 -1.14 ± 0.56

Multiple Emergent Constraints Credible 4 All 11 No #10 Credible 4 All 11 No #10

Method C 4.14 ± 0.82 4.28 ± 0.69 4.12 ± 0.77 -0.78 ± 0.25 -0.74 ± 0.22 -0.78 ± 0.24

Method U 4.07 ± 0.79 4.01 ± 0.69 4.04 ± 0.72 -0.85 ± 0.29 -0.85 ± 0.25 -0.84 ± 0.26

Method U3 3.84 ± 1.32 3.96 ± 1.30 3.95 ± 1.30 -0.91 ± 0.52 -0.85 ± 0.49 -0.86 ± 0.50
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FIG. 1. Example of single-constraint methodology applied to Zhai constraint. Black dots are values for

individual GCMs. Ellipses are the 0.94 contour of the bivariate Gaussian between the ECS and the constraint

excluding (cyan) and including (green) observational uncertainty. The PDF of the observed constraint value is

in blue along the y axis. The red curve is the posterior PDF of ECS given the observed best-guess constraint

value (blue dash) and the green bivariate PDF.
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FIG. 2. Posterior PDFs for ECS based on individual constraints using the method of Sect. 3.4. Panels (a) and

(b) are for credible and possible constraints, respectively.
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FIG. 3. Partial correlations between pairs of emergent constraints over all available models, removing their

joint correlation with ECS. The number of models used for each constraint pair is listed in parentheses in the

bottom of each box. Boxes with orange or purple hue are statistically significant at 90% using a 2-tailed T-test.

Grayish boxes are not statistically significant.
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(a)
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(c)

(d)

FIG. 4. Posterior PDFs for ECS based on (a) 4 credible constraints and (b) all 11 constraints, using Methods

C, U and U3, and (Method C only) the 10 constraints excluding Siler. Black dashed lines in both panels show

the CMIP Gaussian prior for comparison. (c) and (d) show Method C results, but each PDF is calculated with

one GCM removed to test for robustness.
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FIG. 5. Method U all-constraint interpretive results: (a) Constraint contributions to posterior mean of ECS,

shown as vertical line segments with heights equal to the constraint weights wi at horizontal positions equal

to the nondimensional ECS y′i that is implied by ‘swapped’ regression of the constraint on the ECS together

with the observed nondimensional constraint value. Each line segment is labelled by its constraint number i;

i = 0 refers to the GCM prior. The circle and the horizontal dashed black line between the two bars denotes

the resulting ±2σ posterior range of ECS. (b) Contributions of individual constraints to changing the posterior

mean of ECS away from the GCM mean of 3.2 K.
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