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Abstract

Integrating Adaptive Mesh Refinement (AMR) into climate models is problematic partly because several components have

difficulty in accommodating adaptive grids. However, on coarse resolutions, errors from each component of climate models

contribute to the overall errors of the model output. Using AMR in single components should reduce the overall model error.

Besides, we can use AMR in existing climate models with reduced development time compared to designing a new AMR model.

We integrate AMR into the tracer transport module of the atmospheric model ECHAM6 and test our implementation in

idealized scenarios as well as on a realistic application (dust transport). To achieve this goal, we modify the Flux-Form Semi-

Lagrangian (FFSL) transport scheme in ECHAM6 such that we can use it on adaptive meshes while retaining all important

properties such as mass conservation of the original implementation. Our proposed scheme is dimensionally split and ensures

that high-resolution information is always propagated on (locally) highly resolved meshes. We introduce a data structure that

can accommodate an adaptive grid.

We demonstrate that our AMR scheme improves both accuracy and efficiency compared to the original scheme. More impor-

tantly, our approach improves the representation of transport processes in ECHAM6 for coarse resolution simulations. Hence,

the results of this paper suggest that we can overcome the overhead of developing a fully adaptive earth system model by in-

tegrating AMR into single components while leaving data structures of the dynamical core untouched. This enables researches

to retain well-tested legacy code of existing models while still improving accuracy.
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Abstract7

Integrating Adaptive Mesh Refinement (AMR) into climate models is problematic partly8

because several components have difficulty in accommodating adaptive grids. However,9

on coarse resolutions, errors from each component of climate models contribute to the10

overall errors of the model output. Using AMR in single components should reduce the11

overall model error. On the other hand, we can use AMR in existing climate models with12

significantly reduced development time compared to designing a new model equipped13

with AMR.14

We integrate AMR into the tracer transport module of the atmospheric model ECHAM615

and test our implementation in several idealized scenarios on spherical geometries as well16

as in a realistic application scenario (dust transport). In order to achieve this goal, we17

modify the Flux-Form Semi-Lagrangian (FFSL) transport scheme in ECHAM6 such that18

we can use it on adaptive meshes while retaining all important properties such as mass19

conservation of the original FFSL implementation. Our proposed AMR scheme is dimen-20

sionally split and ensures that high-resolution information is always propagated on (lo-21

cally) highly resolved meshes. We also introduce a data structure that can accommo-22

date an adaptive Gaussian grid.23

We demonstrate that our AMR scheme improves both accuracy and efficiency com-24

pared to the original FFSL scheme. More importantly, our approach improves the rep-25

resentation of transport processes in ECHAM6 for coarse resolution simulations. Hence,26

the results of this paper suggest that we can overcome the overhead of developing a fully27

adaptive earth system model by integrating AMR into single components while leaving28

data structures of the dynamical core untouched. This enables researches to retain well-29

tested and complex legacy code of existing models while still improving the model’s ac-30

curacy.31

Plain Language Summary32

Mesh adaptivity is a valuable tool in many branches of computational sciences and33

can help to reduce the overall model error by only refining meshes in specific areas when34

actually necessary. Here we suggest a way to integrate mesh adaptivity into an existing35

earth system model, ECHAM6, without having to redesign the implementation from scratch.36

This is advantageous since, first, many effects can not be fully represented in long time37
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simulations with standard meshes which do not permit a high resolution due to compu-38

tational constraints and, secondly, since designing a fully adaptive model from scratch39

would be costly and time consuming.40

Prototypically we show how to integrate adaptive meshes in a tracer transport mod-41

ule, i.e., a module in the earth system model that computes the evolution of certain sub-42

stances (tracers) such as CO2 or dust. We show that while the additional computational43

effort is manageable the error can be reduced compared to a low resolution standard model.44

Computational examples are presented for idealized test cases for which exact solutions45

are known and, prototypically, also for the evolution of Sahara dust as a real world sce-46

nario.47

1 Introduction48

The climate system is inherently multi-scale. In climate models, various processes49

are under-resolved because the resolution cannot represent details of these processes. One50

of the most straightforward approaches to better accuracy is increasing spatial resolu-51

tion. However, high-resolution climate simulations are still computationally expensive,52

especially for long-term climate simulations like paleoclimate simulation. Adaptive Mesh53

Refinement (AMR) is an attractive alternative for global high-resolution climate mod-54

els. The AMR technique refines and coarsens local meshes during run-time based on des-55

ignated refinement criteria.56

There is active research on AMR applications in the climate community dating back57

to the 1980s. For example, Skamarock and Klemp (1993) proposed an early non-hydrostatic58

model using AMR. More recently Jablonowski et al. (2009) constructed a finite volume59

general circulation model on a reduced lat-lon grid. Kopera and Giraldo (2015) constructed60

an atmospheric model using a Galerkin method on a cubed-sphere. These efforts focus61

on the dynamical cores of atmospheric models. Utilizing these methods for realistic cli-62

mate simulations needs further research and development.63

We propose an alternative pathway towards adaptivity in climate models to tackle64

concerns with AMR in operational climate models ranging from properties of numeri-65

cal schemes to the coupling between dynamical core and physics packages (Weller et al.,66

2010).67
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Constructing a complete model from scratch usually takes decades of research. In-68

stead, we propose to integrate AMR into single components of existing models, here ECHAM6,69

which could bring about immediate benefits. It is not uncommon to apply different res-70

olutions for different components of a numerical model. For example, Berthet et al. (2019)71

showed that a high-resolution dynamical core using low-resolution parameterizations gen-72

erates satisfactory results.73

Enabling AMR in the passive tracer transport module of a climate model can im-74

prove the representation of the tracer transport process and it can potentially improve75

the general quality of climate simulations. The tracer transport module controls advec-76

tive passive tracer transport processes in climate models. These tracers interact with wind77

in many other processes in the climate system and have feedback on the radiative bal-78

ance or cloud formations. Consequently, these tracers affect the state of the climate sys-79

tem significantly.80

Despite these benefits of integrating AMR into the tracer transport module of an81

existing model, there are still difficulties in achieving this goal:82

• How does the tracer transport scheme handle hanging nodes on non-conforming83

adaptive meshes?84

• How many improvements can we gain from integrating adaptive tracer transport85

schemes without refining other components?86

We introduce AMR into the tracer transport module of ECHAM6. ECHAM6 uses87

the Flux-Form Semi-Lagrangian (FFSL) scheme (Lin & Rood, 1996). The scheme has88

two essential properties in climate models: mass conservation and semi-Lagrangian time89

stepping. Semi-Lagrangian schemes are particularly useful for the Gaussian grid in ECHAM6.90

The Gaussian grid is a variation of the lat-lon grid, where the longitude is equally spaced91

in the longitudinal dimension, and the latitude grid corresponds to Gaussian quadrature92

points for numerical integration. The Gaussian grid leads to smaller grid intervals around93

poles, which poses a CFL-limit on the time step size. Semi-Lagrangian time stepping en-94

sures stable integration for large time steps.95

However, on the adaptive mesh, the existing transport scheme in ECHAM6 can-96

not retain all its properties when hanging nodes are present. Hanging nodes lie at the97

interface between high-resolution and low-resolution areas. Ghost cells are a common98
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treatment of hanging nodes. The scheme creates high-resolution ghost cells at low-resolution99

areas along the interface such that the stencil of the numerical scheme always lies at uni-100

form resolutions. For example, Jablonowski et al. (2009) use ghost cells for the FFSL101

scheme but their implementation does not maintain the semi-Lagrangian time-stepping.102

Another plausible approach is to substitute the existing transport scheme by a mass103

conservative semi-Lagrangian scheme, which can handle irregular meshes. For example,104

Nair and Machenhauer (2002) proposed a cell-integrated semi-Lagrangian scheme; Lauritzen105

et al. (2010) proposed a more efficient mass conservative semi-Lagrangian scheme using106

Stokes theorem. However, the comparison between the original climate model and the107

climate model with adaptive tracer transport would be difficult if we use two different108

transport schemes.109

We propose a modified version of the existing tracer transport scheme which re-110

tains essential properties of the original scheme. Our modified tracer transport scheme111

allows us to reuse the code for vertical tracer transport and a class of limiters in the ex-112

isting model without further investigation.113

Utilizing idealized test cases, we quantitatively investigate the unique properties114

of our modified scheme on adaptive meshes and non-adaptive meshes even though many115

other tracer transport schemes using AMR are well studied (Behrens, 1996; Kessler, 1999;116

Iske & Käser, 2004; Jablonowski et al., 2006). In particular, we examine the effect of us-117

ing coarse initial condition and wind field using idealized test cases as we only integrate118

AMR into a single component of the climate model.119

We further validate our proposed AMR approach simulating the prototypical but120

realistic example of dust transport in ECHAM6. Dust is particularly suitable to demon-121

strate the effect of AMR since it has local sources and is transported around the entire122

globe. The global distribution of dust shows strong local features whose representation123

can get improved by local refinements.124

The paper is organized as follows. We discuss our adaptive tracer transport scheme125

in Section 2. In order to quantitatively demonstrate the property of our modified scheme126

and features of AMR, we show our results in idealized tests in Section 3. We further demon-127

strate our idea of integrating AMR into tracer transport component of the existing model128
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in Section 4 and conclude with a discussion of our results and future work in Section 5.129

130

2 The Adaptive Transport Scheme131

In order to ensure a fair examination of the partial introduction of AMR into the132

existing model ECHAM6, we use the original FFSL scheme in ECHAM6. The FFSL scheme133

is particularly suitable for climate models because it is accurate, efficient, mass conser-134

vative and semi-Lagrangian. The FFSL scheme is a combination of dimensionally split135

technique, 1-D finite volume transport scheme and Semi-Lagrangian extension for finite136

volume schemes.137

Our aim is to use the FFSL scheme on adaptive meshes. However, we cannot ex-138

tend the FFSL scheme to adaptive meshes while retaining all its properties without any139

modifications. We will explain the FFSL scheme, its problem on adaptive meshes and140

our modification in detail in this section.141

2.1 The Flux-Form Semi-Lagrangian Scheme142

We present the Flux-Form Semi-Lagrangian (FFSL) transport scheme proposed143

by Lin and Rood (1996). The FFSL scheme solves the 2-D transport equation. Climate144

models often rely on the transport equation in spherical coordinates:145

∂ρc

∂t
+

1

a cos θ

(
∂ρcu

∂λ
+
∂ρcv cos θ

∂θ

)
= 0 (1)146

where a is the radius of the sphere, (λ, θ) is the longitude and latitude on the sphere, (u, v)147

is the horizontal velocity, ρ is the air density, c is the tracer concentration. For conve-148

nience of introducing the scheme, we set c ≡ 1.149

The dimensionally split technique of the FFSL scheme is second order accurate in150

time. The method splits the 2-D transport equation in (1) into two 1-D transport equa-151

tions:152

∂ρ

∂t
+

∂ρu

a cos θ∂λ
= 0 (2)153

∂ρ

∂t
+
∂ρv cos θ

a cos θ∂θ
= 0 (3)154

The dimensionally split technique eases the difficulty in extending 1-D methods into higher155

dimensions and enables the application of various 1-D limiters to 2-D problems.156
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Figure 1. Schematic illustration of the dimensionally split scheme. If the arrival cell is cell A

and departure cell is cell D, the dimensionally split scheme transports information from the cell

D to cells B and C respectively. Then, the scheme updates the value in cell A from cells B and C.

This method is equivalent to the COSMIC splitting proposed in Leonard et al. (1996).157

The advantage of the FFSL scheme is that the scheme leads to a mass conservative and158

consistent dimensionally split technique since the Strang splitting cannot preserve both159

mass conservation and consistency condition for tracer transport problems.160

The FFSL scheme defines a 1-D conservative operator for the flux difference of two161

cell edges FC(ρ):162

FλC(ρ) =
∂ρu

a cos θ∂λ
F θC(ρ) =

∂ρv cos θ

a cos θ∂θ
(4)163

Here, the subscript C means the operator is conservative and the superscript represents164

the dimension of the 1-D operator. The dimensionally split technique allows any 1-D fi-165

nite volume transport scheme to solve the 1-D operator FC(ρ). The finite volume scheme166

ensures the mass conservation of the FFSL scheme.167

In order to achieve the consistency condition of the FFSL scheme, the scheme also168

uses an advective operator, which is a variation of the FC(ρ):169

FλA(ρ) = FλC(ρ)−∆tρ(∇ · u) F θA(ρ) = F θC(ρ)−∆tρ(∇ · u) (5)170

where A means the operator only solves the advective part of the transport equation,171

∆t is the time interval and ∇·u is the divergence. The second term of equation (5) is172

computed by a 2nd order finite difference scheme.173
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Similar to the Strang splitting, the FFSL scheme alternates the direction sequen-174

tially. The dimensionally split scheme first solves the 1-D equation in λ or θ dimension.175

ρA(λ) = ρn + FλA(ρn) ρA(θ) = ρn + F θA(ρn) (6)176

the superscript n is the current time step. The scheme uses the advective operator FC(ρ)177

as the inner operator, which guarantees the consistency condition.178

Using ρA as the initial condition, the scheme subsequently solves the 1-D equation179

in the other direction.180

ρ(ρA(λ), ρn) = ρn + FλC(ρn) + F θC(ρA(λ))181

ρ(ρA(θ), ρn) = ρn + F θC(ρn) + FλC(ρA(θ)) (7)182

The mass conservation is guaranteed by the conservative outer operator. Results of ρ(ρA(λ), ρn)183

and ρ(ρA(θ), ρn) tilt to different directions. Hence, the final solution for the next time184

step, n+ 1 is the average of the outer operator in each direction:185

ρn+1 =
1

2
(ρ(ρA(λ), ρn) + ρ(ρA(θ), ρn)) (8)186

We illustrate the scheme in figure 1. If the cell D is the departure cell correspond-187

ing to cell A, the scheme transports information dimensionally from cell D to cells B and188

C, which in turn are the departure cells of cell A in each dimension. Therefore, the value189

of the arrival cell A is calculated based on cells B and C.190

2.2 Semi-Lagrangian Extension on Adaptive Meshes191

The FFSL scheme attains long time steps by a semi-Lagrangian extension from 1-192

D finite volume schemes (Leonard et al., 1995). Similar to traditional semi-Lagrangian193

schemes, the extension requires computation of trajectories described by the flow field.194

However, by construction, the extension also requires the mass flux of each cell edge dur-195

ing one time step, which is a sweep of mass along trajectories. This semi-Lagrangian com-196

putation takes account for the exact integration of mass flux across an edge, similar to197

a finite volume scheme, and thus yields mass conservation. In order to improve the ef-198

ficiency of the implementation, the FFSL scheme employs the widely used idea of cu-199

mulative mass first described in Colella and Woodward (1984). The cumulative mass of200

a cell is the mass from the beginning of the domain to the cell. Thus, the mass along the201

trajectory is the difference between the arrival cell and the departure cell, and the finite202
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A

B C
u u

1

Figure 2. Illustration of the semi-Lagrangian extension for finite volume schemes on adap-

tive meshes. cell A is the arrival cells. The dashed read cells are ghost cells. The shaded areas

represent departure trajectories, which is the mass flux at the edge of the arrival cell.

volume flux at the departure cell. The cumulative mass significantly reduces the com-203

putational cost.204

However, when using the semi-Lagrangian extension on adaptive meshes, problems205

arise. The FFSL scheme assumes a structured rectangular grid, where the cell centers206

align with each other in each dimension such that the dimensionally split scheme can use207

1-D solvers for each dimension. For example, the cell center always lies at the same lat-208

itude when the scheme computes for longitudinal direction. However, hanging nodes on209

adaptive meshes cannot guarantee an alignment as shown in Figure 2. Breaking the align-210

ment assumption leads to inconsistency and violates mass conservation. For example,211

if a 1-D finite volume scheme computes the value of the next time step at the arrival cell212

A in Figure 2, the 1-D scheme could include the mass at the entire cell B while a con-213

sistent treatment needs only the mass at the lower shaded area of cell B.214

In order to satisfy the alignment assumption, we can use ghost cells, which are the215

red cells in Figure 2. However, using ghost cells for large Courant numbers prevents the216

scheme from using cumulative mass since it is difficult to define the cumulative mass for217

high-resolution cells. Without cumulative mass, the semi-Lagrangian extension may lead218

to multiple computations of the mass because the departure trajectory of different edges219

may overlap, leading to an inefficient scheme.220

2.3 Modified Flux-Form Semi-Lagrangian Scheme221

As described in Section 2.2, the original FFSL scheme cannot handle hanging nodes222

efficiently because it uses a finite volume scheme with a semi-Lagrangian extension to223
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1-D CISL scheme

(Departure Cell)

(Arrival Cell)

u u

1

2-D CISL scheme

(Departure Cell)A

B C
u u

1

Figure 3. Illustration of the CISL scheme in 1-D and 2-D settings, where the 1-D setting does

not account for the variation in two dimensions and the 2-D setting accounts for the variation in

two dimensions.

solve 1-D problems, where it is computationally expensive to obtain the mass along the224

trajectory. We expect that a mass conservative semi-Lagrangian scheme without the sweep225

along trajectories can solve the problem arising with hanging nodes. The cell-integrated226

semi-Lagrangian (CISL) scheme (Nair & Machenhauer, 2002) is a good candidate. In-227

stead of adding up the mass along the whole trajectory of cell edges, the CISL scheme228

update values from the mass at departure cells. In particular, Lauritzen (2007) shows229

that the CISL scheme is an alternative point of view of Godunov-type finite volume schemes230

with a semi-Lagrangian extension. Hence, we can safely substitute the finite volume scheme231

to the CISL scheme and expect a fair comparison of numerical results on adaptive and232

non-adaptive meshes.233

Similar to finite volume schemes, in a 1-D setting, the CISL scheme assumes the234

cell center value as the cell average:235

ρci =
1

∆xi

∫∫
∆xi

ρdx (9)236

where x is either λ or µ = sin θ and ∆xi is the interval of a cell i. The integrand is a237

sub-cell reconstruction function based on the cell center value. For example, the Godunov238

scheme assumes the sub-cell reconstruction function as constant.239

In the CISL scheme, the departure cell is formed by the departure position of the240

cell edges of the arrival cell and the 1-D scheme updates values from the departure cell:241

ρn+1
i (λ) =

1

∆λi

∫
∆λd

ρndλ ρn+1
i (θ) =

1

∆µi

∫
∆µd

ρndµ (10)242
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AAd

BBd CCd

DDd EEd

FFd

GGd

2-D reconstruction

1
Figure 4. Illustration of the stability issue of hanging nodes. The solid mesh is the underlying

Eulerian grid while the dashed mesh is the Lagrangian mesh at previous time step. The dashed

mesh is marked by subscript d.

where ∆λi and ∆µi represent the interval of arrival cells in each dimension, ∆λd and243

∆µd are interval of departure cells in each dimension. As shown in Figure 3, the dashed244

line is the departure cell in 1-D. The scheme gets new values from the mass at the de-245

parture cells, which is an integral of the sub-cell reconstruction function over the inter-246

val of departure cells. The departure position of cell edges in each dimension on the sphere247

is described by:248

a cos θdλ

dt
= u

adµ

dt
= v cos θ (11)249

Here, we use a first-order Euler method to solve the ODE as done in ECHAM6. The CISL250

scheme avoids the computation of mass along the trajectory while keeping the advan-251

tage of long time steps on adaptive meshes.252

On an adaptive mesh with hanging nodes, the 1-D integral in Equation (10) does253

not consider the mass variation in the other dimension, which breaks the 2-D mass con-254

servation. Therefore, we must use a 2-D integral:255

ρn+1(λ) =
1

∆Ai

∫∫
∆Aλ,d

ρndλdµ ρn+1(θ) =
1

∆Ai

∫∫
∆Aθ,d

ρndλdµ (12)256

where ∆Ai is the area of the arrival cell, ∆Aλ,d is the area of the departure cell in λ di-257

rection and ∆Aθ,d is the area of the departure cell in θ direction. The cell interval in Equa-258

tion (10) is different from the area in Equation (12) since the cell interval only consid-259

ers a 1-D problem while the area considers the variation in 2-D as shown in Figure 3.260

By definition of the cell center value in Equation (9), Equation (12) can be reduced to261
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Equation (10) if departure cell and underlying Eulerian cell have the same refinement262

level.263

The equivalence between Equations (10) and (12) allows us to use 1-D and 2-D re-264

constructions for different conditions. As shown in Figure 4, we apply a 2-D reconstruc-265

tion function on adaptive meshes when a departure cell has a lower refinement level than266

the arrival cell. Otherwise, we apply a 1-D reconstruction function. For example, in Fig-267

ure 4, cell D needs only a 1-D reconstruction function since it contains the departure cell268

at the same size as itself while cell A requires a 2-D reconstruction function since the de-269

parture cells located at cell A has different sizes.270

In order to be consistent with the original implementation, we choose the same re-271

construction function as the one used by the FFSL scheme in ECHAM6 such that we272

can make a fair comparison between the AMR scheme and the original scheme in the273

following sections and our idealized tests can provide insight for realistic simulations. The274

default option of the FFSL scheme in ECHAM6 uses the Piecewise Parabolic Method275

(PPM) as 1-D finite volume solver. The PPM is a finite volume Godunov-type method,276

which assumes a quadratic subcell distribution function. Interested readers can refer to277

Colella and Woodward (1984) for a detailed description of the PPM. We use a 1-D sec-278

ond order polynomial and a quasi-2D reconstruction as in Nair and Machenhauer (2002):279

ρ(λ, µ) =


ρc + δaxx2 + bx( 1

12 − x
2) ld >= l

ρc + δaλλ2 + bλ( 1
12 − λ

2) + δaµµ2 + bµ( 1
12 − µ

2) ld < l

(13)280

where x ∈ (− 1
2 ,

1
2 ) is either λ or µ in 1-D case, the condition l represents the refinement281

level of the Eulerian cell, ld represents the refinement level of the departure cell, the co-282

efficients a and b are computed following Colella and Woodward (1984). Because a and283

b are computed by 1-D interpolations, we remap the coarse cell values to refined cells by284

recursively using Equation (13) to form the interpolation stencil. The 2-D reconstruc-285

tion function can also be used in the fully 2-D schemes as in the original work of Nair286

and Machenhauer (2002). The dimensionally split scheme benefits from the simplicity287

of the implementation in that the computation of the departure cell’s position is still 1-288

D and the departure cell’s shape is more regular than in a fully 2-D scheme.289

Using our modified 1-D operator in the FFSL scheme, the original F dC(ρ) in Sec-290

tion 2.1 becomes:291

FλC(ρ) = ρn+1(λ)− ρn F θC(ρ) = ρn+1(θ)− ρn (14)292
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where ρ is the updated value in Equation (10).293

Our modified operator for the dimensionally split scheme retains the semi-Lagrangian294

time stepping. Moreover, the efficiency of the CISL scheme is similar to the original fi-295

nite volume scheme with a semi-Lagrangian extension. Finally, the scheme is mass con-296

serving as is the original scheme.297

3 Idealized Tests298

We implement the AMR scheme based on the data structure from Chen et al. (2018).299

There are a number of necessary considerations when using AMR, including errors aris-300

ing from the AMR procedure or the choice of refinement criteria and their correspond-301

ing thresholds. Idealized tests can expose the accuracy and efficiency of the AMR scheme302

under various conditions. We can even design our experiments using idealized tests to303

mimic the behavior of our intended application since we plan to integrate the adaptive304

tracer transport scheme into an existing model while keeping other components unchanged.305

We conduct idealized tests to demonstrate three essential aspects of our AMR scheme.306

Firstly, we show that our dimensionally split AMR scheme needs a special treatment as307

refinement strategy. Secondly, we examine various properties of our AMR scheme, in-308

cluding accuracy, efficiency and mass conservation. Thirdly, we explore the accuracy of309

the solution on adaptive meshes in situations where the AMR scheme interpolates low-310

resolution wind fields to high-resolution meshes.311

We utilize three test cases: a solid body rotation test case (Williamson et al., 1992),312

a divergent test case (Nair & Lauritzen, 2010) and a moving vortices test case (Nair &313

Jablonowski, 2008). Each test case poses different challenges to our transport scheme.314

Hence, we can demonstrate that our AMR scheme possesses all numerical properties es-315

sential for our purpose.316

The solid body rotation test case has a discretely divergence-free wind field and317

in the theoretical absence of diffusion the shape of the tracer distribution should not change318

during run-time. In the solid body rotation test case, the flow orientation can be con-319

trolled by the parameter α, where α is the angle between the flow orientation and the320

equator. This test case is challenging when the tracer moves around the poles due to the321

convergence of coordinate lines. It is a useful test case to explore accuracy and efficiency322

of our numerical scheme under idealized circumstances.323
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The divergent test case deforms the tracer distribution with a divergent wind field.324

Divergent wind is especially challenging for large time steps since the transport scheme325

needs to correctly move the tracer when the divergent wind leads to a high gradient in326

the tracer concentration.327

Different from the solid body rotation test case and the divergent test case, the mov-328

ing vortices test case distributes tracer over the entire globe. The moving vortices test329

case also severely deforms the tracer and the vortices form filaments in the tracer con-330

centration. Strong deformation leads to discontinuities and, furthermore, it poses chal-331

lenges for the AMR scheme because improper refinement criteria may result in refine-332

ment of the entire domain.333

In these idealized tests, we measure the numerical results quantitatively in the `2334

and `∞ error norms:335

`2 =

√∑ncellt
i (qi − qexacti )2dAi√∑ncellt
i (qexacti )2dAi

(15)336

`∞ =
max |qi − qexacti |

max |qexacti |
(16)337

where qi is the tracer concentration in the ith cell, qexacti is the exact solution in the ith338

cell and dAi is the cell area of the ith cell. In order to test the performance of our AMR339

scheme, we do not apply any limiters to the scheme in idealized tests.340

In many tests, we need to investigate the number of cells in a simulation. The num-341

ber of cells changes with time on adaptive meshes. In order to show the overall number342

of cells at each test, we average the number of cells over time:343

cell number =

nt∑
t

ncellt

nt
(17)344

where nt is the number of time steps, ncellt is the number of cells at time step t. The cell345

number can effectively and objectively reflect the efficiency of the AMR scheme regard-346

less of the optimizations applied to the rest of the code.347

3.1 Grid Refinement for Intermediate Steps348

The dimensionally split scheme differs from genuinely multi-dimensional schemes349

creating a need for different refinement strategies.350
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Multi-dimensional schemes mimic the behavior of the multi-dimensional transport351

equation. These schemes get information at the new time step directly from the depar-352

ture point along the trajectory. AMR schemes refine the departure areas and the arrival353

areas, and hence information always resides on the fine-resolution mesh.354

The dimensionally split scheme also gets information from the departure point. How-355

ever, as indicated in Figure 1, the scheme moves the information from the departure point356

to intermediate positions before moving the information to the arrival point. AMR schemes357

need to track this information and need to refine intermediate steps.358

Using the solid body rotation test case as an example, we compare numerical er-359

rors between two refinement strategies. One strategy refines intermediate steps whereas360

the other does not refine intermediate steps. The flow transports the tracer around the361

globe with an angle of α = 0 and α = 3π
20 with respect to the equator. These two set-362

tings lead to different maximum Courant numbers u
∆x∆t, which shows the speed of in-363

formation propagation in one time step. Here, u is the wind speed, ∆x is the grid space,364

and ∆t is the time step size.365

In dimensionally split schemes, large Courant numbers can highlight the displace-366

ment between intermediate steps and final results because the information propagation367

is far away from the departure cell. When α = 0, there is no divergence in each dimen-368

sion in the wind field and the AMR scheme allows arbitrarily large Courant numbers.369

We use a Courant number of around 6 over the globe.370

The dimensionally split scheme poses a limit to the Courant number as the dimen-371

sionally split scheme essentially performs 1-D semi-Lagrangian schemes. The divergence-372

free wind field in 2-D can be a result of the cancellation of 1-D divergence wind. When373

α = 3π
20 , we use a maximum Courant number around 12 in the longitudinal direction,374

which is the largest Courant number without the crossing of trajectories in 1-D. We note375

that the transport of cosine bell is only affected by local small Courant numbers and ex-376

tremely large Courant numbers can only occur around poles.377

In order to expose the difference in these two refinement strategies, we use differ-378

ent spatial resolutions and keep the Courant number roughly fixed. Note that the Courant379

number is not exactly the same on different resolutions as the grid spacing changes with380

the latitude. The AMR scheme uses a gradient-based refinement criterion.381
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α = 0 α = 3π
20

Figure 5. Illustration of the displacement of the numerical solution between the intermediate

step after update in latitudinal direction and final results. The red distribution is the interme-

diate step and the black distribution is the final result. The initial condition is on the mesh for

the previous time step. While the intermediate step and final results are on the mesh for the new

time step. When α = 0, the flow orientation is parallel to the equator and the Courant number

is around 6. When α = 3π
20

, the angle between the flow and the equator is 3π
20

and the maxi-

mum Courant number of roughly 12 in the longitudinal direction occurs around poles while the

Courant number around cosbells is much smaller than around poles.

When α = 3π
20 , the threshold for mesh refinement is θr = 10−3 and the thresh-382

old for coarsening is θc = 5× 10−3. When α = 0, θr = 5× 10−6 and θc = 5× 10−5.383

In Figure 5, we illustrate how both flow orientations induce displacements between384

intermediate steps and final results under both flow orientations on a mesh with 1.25◦×385

1.25◦ spatial resolution. The displacement is more visible when the tracer rotates along386

the equators due to different Courant numbers.387

Figure 6 shows the numerical errors of these two refinement strategies. When α =388

3π
20 , numerical errors and the convergence rate of these two refinement strategies are com-389

parable. Similar results arise from small displacements between intermediate steps and390

final results as shown in Figure 5. Our local high-resolution areas cover intermediate steps391

due to our sensitive refinement criterion.392
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Figure 6. Comparison of the error of the solid body rotation test case after 12 days between

refinement with intermediate step and refinement without intermediate step. Solid lines with

rectangular markers show results with refinement at intermediate steps and dashed lines with

circles show results without refinement at intermediate steps.

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Numerical errors show a significant difference between these two refinement strate-393

gies when α = 0. Without refining intermediate steps, the numerical error is higher on394

adaptive meshes than on non-adaptive meshes due to the coarse resolution. The AMR395

scheme leads to similar accuracy on adaptive meshes and non-adaptive meshes when the396

numerical scheme refines intermediate steps. Our implementation exposes the difference397

as the AMR scheme transports information from the mesh for the previous time step to398

the mesh for the new time step. Computations for both intermediate and final time step399

exist on the mesh for the new time step.400

Our results demonstrate the schematic illustration of the dimensionally split scheme.401

The refinement of intermediate steps is essential for better accuracy when the Courant402

number is large. Although it is unlikely that the numerical model uses an extremely large403

Courant number away from the poles, we refine intermediate steps to ensure the accu-404

racy.405

3.2 Numerical Accuracy and Efficiency406

The transport scheme behaves differently under different initial conditions and flow407

features. We examine the accuracy, efficiency and mass conservation of our AMR scheme408

using three different test cases.409

3.2.1 Non-Divergent Flow with Local Tracer Distribution: The Solid Body410

Rotation Test Case411

We examine our adaptive transport scheme in the solid body rotation test case. The412

solid body rotation test case has discretely non-divergent flow. The non-divergent flow413

also does not severely distort the tracer distribution and the gradient of the tracer does414

not change during the test. Hence, we can test the numerical properties in an ideal con-415

dition.416

The test case uses a local tracer distribution with a radius of a third of the earth’s417

radius. The test case allows us to initialize the tracer distribution on high-resolution adap-418

tive meshes. The AMR scheme should result in very local high-resolution areas.419
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α = 0 centered at (270◦, 0◦) α = 0 centered at (0◦, 0◦)

α = π
2

centered at the north pole α = π
2

centered at the south pole

Figure 7. Snapshots of the solid body rotation test case when α = 0 and α = 0.5π at each

day with one level refinement. The coarse mesh has a resolution of 5◦× 5◦ and high resolution ar-

eas have a resolution of 2.5◦ × 2.5◦.
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We set the flow orientation α = 0 and α = π
2 . When α = 0, the tracer rotates420

around the globe parallel to the equator. When α = π
2 , the flow leads to cross-pole trans-421

port, which suffers from the geometrical problem of Gaussian grids at poles.422

We test these two flow orientations with a maximum Courant number around 1 and423

6 respectively. The AMR scheme utilizes a gradient-based criterion. Our threshold for424

cell refinement is θr = 0.02 and the threshold for cell coarsening is θr = 0.015 when425

α = π
2 while the threshold for α = 0 is the same as in Section 3.1.426

As shown in Figure 7, the cosine bell is located in the high-resolution areas through-427

out the simulation, which exhibits that the refinement criterion detects regions where428

the gradient is present. The large high-resolution areas are also a result of the refinement429

strategy, where the intermediate steps are refined.430

The distribution of the mesh explains the numerical accuracy of our transport scheme431

on adaptive meshes. The discrete representation of the tracer is similar on high-resolution432

areas of adaptive meshes and on the uniformly refined grid if both grids have the same433

maximum resolution. Figure 8 shows that the accuracy on adaptive meshes and non-adaptive434

meshes is similar when the scheme runs with the same maximum resolution on the mesh,435

which leads to similar convergence rates on these meshes.436

Figure 8 also shows that the AMR scheme demands fewer cells than non-adaptive437

schemes to achieve similar accuracy. We also note that higher-order refinement does not438

necessarily result in fewer cells on the mesh.439

The Gaussian grid contains a higher number of cells around the poles than else-440

where. Figure 9 shows that the AMR scheme captures the changing number of grid cells441

at different latitudes, especially the peak of cell number when tracer is located at poles.442

We explore numerical accuracy, efficiency, and the convergence rate of the adap-443

tive transport schemes in an ideal context, where we use a high-resolution initial con-444

dition and a non-divergent wind field. Our adaptive transport scheme can achieve sim-445

ilar accuracy to the scheme on non-adaptive meshes using reduced number of cells.446
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Figure 8. Convergence rate of the numerical results with respect to the number of cells in the

solid body rotation test case. The red lines indicate the numerical results of tracer rotating along

the equator while the blue lines are results of tracer rotating cross the poles.
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Figure 9. Evolution of cell number for rotation around the equator (in the left) and cross-pole

transport (in the right) in the solid body rotation test case with a resolution of 2.5◦ × 2.5◦. The

solid line shows the cell number evolution with time when the Courant number is small and the

dashed line show the cell number evolution with time when the Courant number is large.

3.2.2 Divergent Flow with Local Tracer Distribution: The Divergent Test447

Case448

We test our AMR scheme in the divergent test case. The magnitude and the di-449

rection of the wind change swiftly in a divergent flow. The swift change of wind chal-450

lenges the accuracy of our semi-Lagrangian scheme, which needs the correct departure451

position. Furthermore it may reveal inexact mass conservation, since concentration val-452

ues will change to compensate for converging or diverging trajectories.453

In the divergent test case, background flow transports two cosine bells along the454

equator while the divergent flow stretches them. From day 6 on, the test case reverses455

its flow and the tracer restores to its initial state. The final tracer distribution at day456

12 is the same as the initial condition. There is no analytical solution for the test case457

but we can compare the final state with the initial condition to get the numerical error458

of the results.459

Similar to the solid body rotation test case, the tracer distribution does not cover460

the entire domain but locates at limited areas. However, the size of the tracer is larger461

in the divergent test case than in the solid body rotation test case. The AMR scheme462

might need more grid cells to cover the whole tracer. We initialize the tracer distribu-463
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tion on the high-resolution areas and use a gradient-based refinement criterion. Our thresh-464

old for the refinement is θr = 0.2 and the threshold for the coarsening is θc = 0.15.465

In the divergent test case, we take three steps to verify the performance of our AMR466

scheme. We first run the test case with and without one level refinement using a Courant467

number around 1 using a resolution of 5◦ × 5◦ and demonstrate the representation of468

the tracer on high-resolution mesh.469

As shown in Figure 10, the refinement criterion captures the distribution of the tracer470

completely. As the tracer gets stretched during the runtime, the high-resolution area leads471

to a better representation of filaments. Using high-resolution meshes significantly im-472

proves the representation of the tracer compared to using low-resolution meshes. The473

final tracer distribution is not completely the same as the initial condition as the diver-474

gent flow leads to a damping and distortion in numerical results.475

Secondly, we use multiple levels of refinement to verify the sensitivity of the refine-476

ment level to the numerical accuracy and efficiency. The AMR scheme runs with an ini-477

tial resolution of 20◦×20◦. The refinement on adaptive meshes ranges from two level478

refinement up to 5 level refinement resulting in a resolution up to 0.625◦ × 0.625◦ us-479

ing a Courant number around 5.480

As shown in Figure 11, we observe a similar convergence rate between uniformly481

refined meshes and locally refined meshes. Our results show that our AMR scheme and482

the non-AMR scheme generate numerical results with similar accuracy where the AMR483

scheme requires only a reduced number of cells in the divergent flow.484

At last, we inspect another aspect of numerical accuracy: mass conservation. We485

show the evolution of relative mass in the divergent test case when the maximum res-486

olution is 0.625◦×0.625◦ with no adaptive refinement and one level refinement with a487

coarse resolution of 1.25◦ × 1.25◦. We define the relative mass:488

relative mass =
mass−massmean

massmean
(18)489

where mass is the mass at individual time step and massmean is the temporal average490

of the mass in all time steps.491

We observe that mass is conserved without AMR in Figure 12. However, mass de-492

clines with AMR experiments. After 960 time steps, the loss of relative mass is at an or-493

der of 10−12. The loss of mass arises from the accumulation of rounding error of floating-494
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day 0 day 0

day 6 day 6

day 12 day 12

Figure 10. Numerical results of the divergence test case with a resolution of 5◦ × 5◦ on the

left panel and one level refinement on the right panel. The maximum resolution is 2.5◦ × 2.5◦.

The Courant number is around 1.
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Figure 11. Convergence rate of the numerical results with respect to the number of cells in

the divergent test case using the same initial spatial resolution with multiple refinement levels.

point calculation with time in the computation of geometrical information in AMR pro-495

cedures. Nevertheless, the mass variation in each time step is at machine precision.496

Summing up, our adaptive transport scheme is capable of accurately handling the497

divergent flow on adaptive meshes. The numerical error is nearly the same on non-adaptive498

meshes as on adaptive meshes and the scheme conserves mass in each time step. The heuris-499

tic gradient-based refinement criterion controls the mesh distribution by capturing the500

relevant tracer field and improves the efficiency of the numerical simulation. Better er-501

ror estimators may further improve computational efficiency. The test case demonstrates502

that our adaptive transport scheme is able to be used in realistic simulations.503

3.2.3 Non-Divergent Flow with Global Tracer Distribution: The Mov-504

ing Vortices Test Case505

The moving vortices test case is a challenging test case for AMR. Numerical ac-506

curacy on adaptive meshes and globally refined meshes is similar regardless of the fea-507

ture of the flow when we use local tracer distributions as shown in Section 3.2.1 and 3.2.2.508

The moving vortices test case utilizes a global tracer distribution. To avoid global re-509

finement in our AMR runs, the goal of our AMR scheme is to improve the local repre-510
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Figure 12. Evolution of mass on both non-adaptive meshes and adaptive meshes. The loss of

mass arises from the accumulated floating point rounding error with time. The mass variation in

each time step is at machine precision.

sentation of the tracer distribution in vortices instead of improving the numerical accu-511

racy globally.512

As the vortices in this test case develop with time, local refinement is not present513

at initial time steps. Our numerical experiments use low-resolution initial condition, which514

is different from experiments in Section 3.2.1 and 3.2.2.515

The moving vortices test case allows us to mimic the setting in our targeted ap-516

plications in ECHAM6. Our integrated adaptive transport scheme uses information from517

non-adaptive low-resolution dynamical core and parameterizations. Further, as the mo-518

mentum equations are still solved on coarse resolutions by the spectral dynamical core,519

our AMR scheme needs to interpolate the wind field from the coarse mesh to the AMR520

mesh.521

We use a coarse input wind field and a coarse initial tracer distribution in the test522

case. The wind field on higher resolution grids then has to be obtained by interpolation.523

To prevent numerical oscillations and maintain monotonicity, we use first-order bi-linear524

interpolation. To avoid excessive refinement and problematic interpolation around poles,525

we decide not to refine cells around the poles. We also expect such treatment leads to526

better efficiency.527
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day 0 day 0

day 6 day 6

day 12 day 12

Figure 13. Numerical results of the moving vortices test case. The left panel shows the nu-

merical results on a resolution of 5◦ × 5◦ coarse grid. The right panel shows the numerical results

on a resolution of 5◦ × 5◦ coarse grid with one level refinement with interpolated wind field.
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Compared to non-adaptive experiments, our AMR experiments lead to two sources528

of error: the error from coarse initial conditions and the error from wind interpolations.529

To investigate these errors, we examine three different settings. 1) We set up regular nu-530

merical experiments, where the initial condition and wind field is defined analytically on531

grid cells. 2) We run AMR experiments with one level and two level adaptive refinement532

as in previous sections, where coarse initial condition and interpolated wind field from533

initial refinement levels are used. 3) We also set up experiments using uniform refine-534

ment with coarse initial condition and wind interpolation. Note that a study on the sen-535

sitivity of wind interpolation on tracer fields were also performed in Behrens et al. (2000).536

We set the third experiment setting as reference solutions, which can show the errors aris-537

ing from the coarse initial condition and wind interpolations. As a reference to the AMR538

experiments (setting 2), the coarse initial condition is consistent with the refinement lev-539

els in AMR experiments.540

In all experiment settings, we always set α = π
4 and test the numerical scheme541

with both large and small Courant numbers on various resolutions. On adaptive meshes,542

the refinement threshold for the gradient-based refinement criterion is θr = 0.8 and the543

coarsening threshold is θc = 0.4. The threshold in this test case is more relaxed than544

in the solid body rotation test case due to the strong deformation arising from the vor-545

tices.546

We show snapshots of the numerical solution on 5◦×5◦ coarse resolution and one547

level refinement in Figure 13. The refinement criterion captures the development of the548

vortices. Finer grids reduce the error around discontinuities induced by the vortices. The549

filaments of the tracer are not identifiable in low-resolution simulations but high-resolution550

simulations can capture the fine-scale feature in the tracer field such that we resolve finer551

filaments. Our adaptive transport scheme locally refines the regions where vortices ap-552

pear. Our results indicate that AMR can improve local accuracy of numerical results even553

if the scheme can only access coarse grid information.554

As shown in Figure 14, errors from the initial condition and wind interpolation con-555

tribute to the overall errors. Our results from the AMR setting and the uniform refine-556

ment setting show similar accuracy. However, regular numerical experiments without er-557

rors from the initial condition and wind interpolation show better results. A higher level558

of refinement with the same maximum spatial resolution on the mesh indicates a coarser559
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Figure 14. Convergence rate of the numerical results in the moving vortices test case on

adaptive meshes.
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Figure 15. Differences of numerical errors between exact wind field and interpolated wind

field in the moving vortices test case on adaptive meshes.

grid in the initial condition and wind field and correspondingly greater error than a lower560

level of refinement. We can also observe improved accuracy due to AMR compared to561

numerical results from low-resolution experiments.562

To separate the influence of initial condition from that of the wind interpolation,563

we also conduct experiments using the exact wind field and coarse initial condition. We564

show the difference of numerical errors between the exact wind field and the interpolated565

wind field in Figure 15. We demonstrate that the inexact wind field leads to greater er-566

ror than the coarse initial conditions.567

Although the coarse initial distribution reduces the effect of refinement, using the568

high-resolution mesh still results in better numerical accuracy than only using the low-569
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resolution mesh. Coarse input wind reduces the numerical accuracy. However, we still570

observe convergent and accurate numerical results using the AMR scheme. Our AMR571

scheme can improve the numerical accuracy using fewer grid cells than uniformly refined572

mesh when we integrate it into the tracer transport module into an existing model with573

coarse resolution simulations.574

4 A Realistic Test Case: Simulation of Dust Transport575

The tracer transport process exhibits multi-scale features in climate simulations.576

As indicated in Section 3, low-resolution simulations cannot represent fine-scale features577

of the tracer transport processes. Improving the local representation of the tracer trans-578

port scheme can, therefore, reduce at least one source of errors in climate models. On579

the other hand, the tracer transport process plays an important role in climate systems.580

The transported gases and aerosols have a significant impact on the state of climate through581

solar radiation (Carslaw et al., 2010). For example, carbon dioxide is one of the major582

driving factors of anthropogenic climate change. Volcanic ashes have a cooling effect on583

the global temperature. Hence, better tracer transport simulations can improve overall584

results in climate simulations.585

We select dust to test our adaptive transport scheme in realistic settings. Dust has586

evident local origins like the Sahara desert and it can traverse across long distances while587

retaining local features as the atmospheric flow can lift dust to higher levels (Liu & West-588

phal, 2001). Emission and deposition parametrizations have less impact on higher level589

aerosols. Hence, dust simulations are suitable to demonstrate the advantages of using590

AMR.591

We test our AMR scheme while maintaining a non-adaptive coarse climate model592

to which our AMR scheme is coupled in a one-way fashion. The one-way coupling pre-593

vents our tracer from interacting with other components of the climate model such that594

we can compare the difference between our adaptive tracer transport scheme and the orig-595

inal scheme using our conclusions from Section 3.596

4.1 The Host Model: ECHAM-HAMMOZ597

We integrate our adaptive tracer transport scheme into ECHAM6 without break-598

ing the current code structure of ECHAM6. Further, the structure of ECHAM6 can also599
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provide insight into numerical results of our simulation of dust transport. Hence, it is600

necessary to understand the model.601

ECHAM6 is the atmospheric component of the earth system model, MPI-ESM (Stevens602

et al., 2013). It is composed of several components: the dynamical core, the physical parametriza-603

tions, and a land surface model, JSBACH.604

The dynamical core solves hydrostatic primitive equations of the atmosphere, which605

describe the motion of air and assume absence of acceleration in the vertical. The dy-606

namical core in ECHAM6 was originally derived from an early version of the atmospheric607

model developed at the European Center for Medium-Range Weather Forecast (Eliasen608

et al., 1970). ECHAM6 also applies a terrain-following coordinate to accommodate the609

varying orography at the bottom of the atmosphere. The terrain-following coordinate610

is a hybrid coordinate (Simmons & Burridge, 1981) leading to a non-orthogonal verti-611

cal mesh. Both the passive tracer transport scheme and the parametrizations in ECHAM6612

are computed on a Gaussian grid using the flux-form semi-Lagrangian scheme, which we613

discussed in detail in Section 2. ECHAM6 also includes various parameterization schemes,614

including convection, cloud, radiation and vertical diffusion, etc. The land surface model615

comprises a class of parametrizations that provides the properties of land surface for other616

components of the climate model.617

ECHAM-HAMMOZ is a coupled model that combines ECHAM6 and HAMMOZ618

since ECHAM6 has the flexibility to include various sub-models. HAMMOZ is a class619

of aerosol and atmospheric chemistry modules (Schultz et al., 2018) that predict the evo-620

lution of aerosols and trace gases. In our applications, we focus on the evolution of the621

dust concentration. ECHAM-HAMMOZ divides tracers into seven different modes (Vignati622

et al., 2004). These modes are dependent on the size, and solubility of the particles. There623

are four different modes for dust: Accumulation mode mixed (DU AS), Coarse mode mixed624

(DU CS), Accumulation mode insoluble (DU AI) and Coarse mode insoluble (DU CI).625

HAMMOZ describes the emission, diffusion, dry deposition, wet deposition, cloud scav-626

enging and sedimentation of these tracers.627

4.2 Tendency Equation of Dust Concentration628

We replace the 2-D tracer transport scheme in ECHAM6 with our proposed AMR629

scheme. However, the evolution of dust concentration in a climate model is more com-630
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plicated than a 2-D tracer transport equation. The large-scale temporal changes of dust631

concentration are not only controlled by tracer transport but also affected by various other632

parametrizations. The large-scale temporal changes of the tracer concentration are also633

referred to as the tendency of the tracer concentration.634

In this section, we present the tendency equation of the dust concentration in ECHAM6.635

In addition, we also present our implementation when integrating our adaptive trans-636

port scheme to ECHAM6.637

4.2.1 Numerical Treatment of Tendency Equation in ECHAM6638

ECHAM6 describes the tendency equation of the tracer concentration using the639

following equation:640

∂ρc

∂t
+∇ · (ρcu) = F. (19)641

Here ρ is the air density, c is the tracer concentration, the combination of ρc is the den-642

sity of the tracer in the air, ∂ρc
∂t is the tendency of the tracer concentration, ∇· is the 3-643

D divergence operator, F represents external forcings. In climate models, the tracer con-644

centration c represents the mixing ratio which is the mass of the aerosol or gas relative645

to the mass of dry air. The unit of mixing ratio is kg kg−1.646

The forcing term includes the vertical diffusion, dust emission, dry deposition, wet647

deposition, sedimentation, and cloud scavenging process. The wet deposition process also648

involves the convective and cloud processes. Hence, the forcing term is a collection of649

parametrizations.650

The tendency equation in the terrain-following hybrid coordinate is:651

∂psc

∂t
+∇ · (pscu) = F (20)652

where p is the pressure and ps is the surface pressure. Equation (20) also exhibits that653

the hybrid coordinate is based on the surface pressure. In hydrostatic systems, the hy-654

brid coordinate prescribes a vertical pressure distribution.655

The FFSL scheme in ECHAM6 leads to more diffusive results due to some mod-656

ifications, which result in computationally less expensive scheme than the one presented657

in Section 3. For example, the FFSL scheme in ECHAM6 uses a first-order Godunov scheme658

as the inner operator and a third order piecewise parabolic method (PPM) as the outer659

operator instead of the third-order PPM for both inner and outer operators. The scheme660
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includes limiters to ensure the positivity of the numerical results and averages over the661

longitude bands around the poles to avoid pole problems while we do not apply any lim-662

iters or special treatment around poles in Section 3.663

4.2.2 Refinement Strategy664

One of the benefits of integrating AMR into an existing model is that we do not665

need to implement and design a new model with the AMR technique. Rather, we can666

reuse most components of the existing model. In realistic dust simulations, we only need667

to replace the horizontal tracer transport scheme by our adaptive tracer transport scheme.668

The hydrostatic primitive equations require the vertical integration of a column over669

each cell. Hence, for simplicity, instead of refining the mesh in 3-D, we only refine the670

horizontal 2-D mesh, obtaining locally smaller columns. 2-D refinement enables us to reuse671

the vertical tracer transport scheme without any modification.672

As we integrate AMR into the passive tracer transport module without any mod-673

ification in other components, the passive tracer transport module always gets wind, pres-674

sure and passive tracer concentration on a coarse grid. High-resolution wind can, there-675

fore, only be obtained by interpolation from a coarse grid. Similar to the treatment of676

wind in Section 3, we use a bilinear interpolation. In the realistic test, we use the ab-677

solute value of ρc as a refinement criterion. When N tracers are simulated in ECHAM6,678

the refinement criterion is min(ρci), where i = 1, 2, 3, . . . , N . Hence, we take a refine-679

ment threshold of 1× 10−11 kg kg−1 and a coarsening threshold of 1× 10−12 kg kg−1.680

4.3 Results of One-Way Coupling Dust Simulation681

We test our adaptive tracer transport scheme with realistic dust concentration data682

using one-way coupling, i.e. we get coarse resolution wind and pressure as input data683

at each time step. During the simulations, we do not map the dust concentration back684

to the coarse resolution mesh used by other components. Therefore, the dust concen-685

tration does not affect other components of the climate model, especially pressure and686

wind field. Thus, we are able to investigate the effect of our AMR dust tracer transport687

using our conclusions from idealized tests in Section 3.688
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The dust concentration is always simulated on adaptive meshes. Since the param-689

eterizations compute the tendency of tracer concentration in columns, our adaptive scheme690

can accommodate to use parameterizations.691

4.3.1 Experiment Setting692

In our one-way coupling experiments, parameterization schemes running on coarse693

resolution meshes should affect the dust concentration on adaptive meshes. Our imple-694

mentation, refining columns, is aware of the original ECHAM6 parameterizations and695

is positivity preserving, leading to a compatible dust transport.696

We can illustrate our treatment using a differential equation:697

DcAMR

Dt
= F (Xcoarse, cAMR) (21)698

where D
Dt is the material derivative, cAMR is the tracer concentration of the AMR scheme,699

F is a parameterization scheme and Xcoarse is a vector of variables involved in the parametriza-700

tion scheme other than the tracer concentration. Therefore, our one-way coupling always701

uses coarse resolution parameters for parameterization schemes even if our tracer con-702

centration is on higher resolution. We can achieve such implementation since parame-703

terization schemes run within each column of the horizontal mesh. A flowchart in fig-704

ure 16 illustrates this approach.705

ECHAM6 provides a variety of options for the parameterization schemes. Although706

there are default settings for most parameterizations, we use some non-default options707

to simplify our experiment. In our experiment we use a vertical resolution of 31 layers,708

(L31). Hence, ECHAM6 does not compute the mid-atmosphere in our experiments.709

In order to have the dust emission, we turn on the ECHAM-HAM submodel while710

we turn off the chemistry and MOZ submodel for simplicity. In our experiment, we also711

use the dust scheme proposed by Stier et al. (2005) and omit the additional Sahara and712

east Asia dust sources in the default settings.713

We also set all agricultural, biogenic emission inactive, including forest fire and vol-714

canic ashes. Hence, we only have emissions of dust species from the dust emission pa-715

rameterizations. With this setting we simulate the dust evolution during the period of716

October 10 to October 31, 2006 as there are dust events at the Sahara desert during this717

month.718
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initial state

dycore and
time stepping

Xcoarse, c, cAMR

the original
transport
scheme

the AMR
transport
scheme

with wind
interpolation

Xcoarse, c cAMR

original
physcs

packages

physics
packages
affecting
cAMR

Xcoarse, c cAMR

Xcoarse, c, cAMR

Xcoarse, c
Xcoarse, cAMR

Xcoarse, c
cAMRXcoarse

Xcoarse, c cAMR

Figure 16. Illustration of our setting for one-way coupling experiment. c is the tracer con-

centration on the coarse resolution, Xcoarse is a vector of variables other than the tracer con-

centration in the model on the coarse resolution, and cAMR is the tracer concentration of the

AMR scheme. The rectangle include modules/processes in the model, ellipse is the output of each

module/process, arrows indicate the input variables in each module/process.
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4.3.2 Comparison Between Low-Resolution and High-Resolution Sim-719

ulations720

We expect that high-resolution simulations can represent climate states with higher721

quality. High-resolution climate models not only represent the initial conditions better722

but also the boundary conditions, such as the topography and different types of land sur-723

face.724

Our AMR scheme increases the resolution of the passive tracer transport scheme.725

However, our scheme can improve neither the initial condition nor the representation of726

the boundary conditions. Nevertheless, it is still of interest to compare the dust concen-727

tration on a low resolution of T31L31 and a higher resolution of T63L31 such that we728

can understand the difference between high-resolution simulations and low-resolution sim-729

ulations.730

We present the dust concentration of DU AI in Figure 17. The Saharan air layer731

assumes large-scale systems can lift and transport dust up to a height of 5 km (Rodŕıguez732

et al., 2011). In order to capture the transport of dust without interference from the emis-733

sion in lower levels, we show the dust concentration of DU AI at 800 hPa both on T31L31734

and T63L31 resolution.735

Our results show that dust appears on 800 hPa after 3. Oct on coarse resolution736

simulations. The wind field transports dust westward toward the Atlantic ocean. After737

day 9, the dust concentration increases in East Asia and gradually moves south-westward.738

However, the high-resolution simulation shows very different results. There is a high739

dust concentration at the east and west of North Africa respectively on 6. Oct while we740

cannot observe such high dust concentrations at low-resolution simulations. Although741

both dust simulations show a westward transport, the pattern of the dust distribution742

differs significantly. For example, hardly any dust disperses in east Asia in high-resolution743

simulations.744

These significant differences arise from the parameterization and the resulting me-745

teorological state. The emission of dust relies heavily on wind speed. It is difficult to at-746

tribute the difference to a single source due to the complexity of the interactions between747

various processes in the climate model.748
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Figure 17. Dust concentration of DU AI (mg kg−1) at 800 hPa on 3rd, 6th, 9th, 12th and

15th October using model resolutions of T31L31 (left) and T63L31 (right). The dust concentra-

tion is masked due to high altitude in areas including the Tibet Plateau etc.
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Nevertheless, our results demonstrate that low-resolution simulations with low-resolution749

initial conditions cannot compete with the results from high-resolution simulations with750

high-resolution initial condition and boundary conditions.751

4.3.3 Comparison Between Low-Resolution and Adaptive Meshes752

There are multiple sources for errors in low-resolution simulations. The coarse ini-753

tial condition and boundary condition can lead to less accurate results while the coarse754

resolution dynamical core and parameterizations cannot resolve the finer features of the755

atmosphere. As discussed in Section 3, an interpolated wind field with coarse resolution756

initial condition can still improve the numerical accuracy of passive tracer transport schemes.757

It is still promising that we can reduce one source of error from the coarse resolu-758

tion climate simulations. Hence, we do not expect our results to be similar to results in759

high-resolution simulations. Although we do not have a reference solution for climate760

simulations on a coarse resolution, we can uniformly refine the mesh for passive tracer761

transport and interpolate wind to high resolutions.762

We show results on uniformly refined meshes at the same period as the previous763

section in Figure 18. Compared to low-resolution simulations, we observe that uniformly764

refined meshes show less diffusive results. Dust concentration is higher than in low-resolution765

simulations while the filaments of the dust distribution are more obvious. It indicates766

that with reasonable refinement criteria, high-resolution dust transport is better than767

low-resolution dust transport. The parametrizations and the coarse dynamical core do768

not severely reduce the effect of high-resolution dust transport.769

We take the uniformly refined mesh as the benchmark for our adaptive mesh re-770

finement. Our results in Figure 19 show that AMR captures the appearance of dust and771

shows similar results on uniformly refined meshes and adaptive meshes, which demon-772

strate AMR can improve the accuracy of dust transport in the realistic test.773

Our results show that integrating AMR into a passive tracer transport scheme can774

effectively reduce errors even if we do not use high resolution for other components. In775

order to capture the appearance of dust concentration, we use a strict refinement thresh-776

old, which leads to very large refinement regions. It is reasonable to choose a stricter re-777

finement threshold or more appropriate refinement criteria in future applications.778
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Figure 18. Dust concentration of DU AI (mg kg−1) at 800 hPa on 3rd, 6th, 9th, 12th and

15th October on a model resolution of T31L31 using our modified transport scheme. The entire

model runs on T31L31 on the left panel while the dust transport module has double resolution

while the rest of the model is on T31L31 on the right panel.

–40–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 19. Dust concentration of DU AI (mg kg−1) at 800 hPa on 3rd, 6th, 9th, 12th and

15th October on a model resolution of T31L31 using our modified transport scheme. The entire

model runs on T31L31 on the left panel while the dust transport is on adaptive meshes and the

rest of the model is on T31L31 on the right panel.
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5 Conclusion779

We propose a new approach towards adaptivity in climate models. Our method is780

different from the traditional AMR approach, which constructs a completely new climate781

model using AMR. Our approach overcomes the difficulty in integrating AMR into op-782

erational climate models. We integrate an AMR passive tracer transport scheme into an783

existing atmospheric model, ECHAM6. Improvements in a single component of a climate784

model should also improve the overall performance of the climate model. Partially in-785

tegrating AMR into the existing climate model brings about an immediate improvement786

in accuracy and efficiency in operational climate simulations.787

We use our approach to simulate dust transport processes in ECHAM6. Our AMR788

approach avoids mesh refinement of the entire globe and successfully captures regions789

where high-resolution meshes are necessary. High-resolution simulations improve the ac-790

curacy of dust transport processes but the general accuracy of the climate simulation791

is limited by the spatial resolution of other components.792

Our idealized tests indicate that our AMR approach can potentially be as accu-793

rate as global high-resolution simulations when the tracer is present at local areas and794

the AMR scheme can access the exact wind field. Reducing local numerical errors can795

improve the overall accuracy of numerical solutions. Our AMR scheme leads to supe-796

rior accuracy and efficiency compared to non-adaptive schemes.797

Enabling AMR into existing climate models in each component relies on our in-798

vestigation of several techniques: transport schemes, AMR strategies, and data struc-799

tures, which is proposed by Chen et al. (2018). These techniques can be applied in a wider800

context than our applications.801

Our modification to the widely used flux-form semi-Lagrangian (FFSL) transport802

scheme in ECHAM6 allows the transport scheme to be used on adaptive meshes while803

the transport scheme retains its important properties: dimensionally split, mass conser-804

vation, and semi-Lagrangian time stepping. Preserving the dimensionally split property805

results in the possibility of a fair comparison between the AMR scheme and the origi-806

nal scheme. Mass conservation is essential for climate models as it is unphysical to ob-807

serve mass variation in transport processes. The semi-Lagrangian time stepping is par-808

ticularly useful for AMR because the property can use a uniform time step on adaptive809
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meshes without any stability issues. Hence, similar to the original FFSL scheme, our AMR810

scheme is a candidate for more complex systems (Lin, 2004; Jablonowski et al., 2009).811

We also demonstrate the effectiveness of our proposed AMR strategy for dimen-812

sionally split schemes. Our AMR strategy ensures that high-resolution information is813

always transported on a high-resolution mesh, which guarantees the accuracy of numer-814

ical results. Thus, our AMR strategy results in accurate simulations as discussed in Sec-815

tion 3. Our modified FFSL scheme and AMR strategy lay a foundation for integrating816

AMR into existing models.817

We expect that our results from dust simulations are applicable to other aerosols818

and gases as well. However, more rigorous investigations are needed. It is still of inter-819

est to explore a two-way coupling, where aerosols on adaptive meshes have an impact820

on processes such as cloud formation, radiation, and pressure, etc. The investigation on821

two-way coupling implies that we need to retain high-resolution information when we822

pass the information to low-resolution mesh. Averaging can lead to the loss of some fine-823

scale features. We require more sophisticated multi-scale methods to upscale high-resolution824

information to low-resolution meshes. These upscaling methods are a reverse of AMR,825

which upscales high-resolution information to low-resolution meshes (Simon & Behrens,826

2018).827

Our method may also be extended to more components of climate models. In ad-828

dition, the implementation of our AMR schemes demands significant work on code op-829

timizations and parallelizations for efficient operational climate models. Another pos-830

sible use of AMR could be the dynamical coarsening of the mesh for a single component.831

Dynamical coarsening can circumvent the limitation of coarse initial conditions and pa-832

rameterizations. However, it may require better data structures for it.833

Our approach enables AMR component-wise in existing climate models, which re-834

duces significant time of development compared to constructing a complete new AMR835

climate model.836
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