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Abstract

There can be few greater scientific challenges than predicting the response of the global system to anthropogenic disruption,

even with the array of sensing tools available in the “digital Anthropocene”. Rather than depend on one approach, climate

science thus employs a hierarchy of models, trading off the tractability of Energy Balance Models (EBMs) [1] against the detail

of Global Circulation Models. Since the 70s Hasselmann-type stochastic EBMs have allowed treatment of climate fluctuations

and noise. They remain topical, e.g. their use by Cox et al to propose an emergent constraint on climate sensitivity [2]. Insight

comes from exploiting a mapping between Hasselmann’s EBM and the original stochastic model in physics, the Langevin

equation of 1908. However, it has recently been claimed that the wide range of time scales in the global system may require a

heavy-tailed response [3,4] to perturbation, instead of the familiar exponential. Evidence for this includes long range memory

(LRM) in GMT, and the success of a fractional Gaussian model in predicting GMT [5]. Our line of enquiry is complementary

to [3-5] and proposes mapping a model well known in statistical mechanics, the Green-Kubo “Generalised Langevin Equation”

(GLE) to generalise the Hasselmann EBM [6]. If present LRM then simplifies the GLE to a fractional Langevin equation (FLE).

As well as a noise term the FLM has a dissipation term not present in [3,4], generalising Hasselmann’s damping constant. We

describe the corresponding EBM [7] that maps to the FLE, discuss its solutions, and relate it to existing models. References:

[1] Ghil M (2019) Earth and Space Sciences, in press. [2] Cox P et al. (2018) Nature 553: 319-322 [3] Rypdal K. (2012) JGR

117: D06115 [4] Rypdal M and Rypdal K (2014) J Climate 27: 5240-5258. [5] Lovejoy et al (2015) ESDD 6:1–22 [6] Watkins

N W (2013) GRL 40:1-9 [7] Watkins et al, to be submitted.

1



Leith, 1994

Simplest energy balance models for the global 
temperature anomaly are deterministic, c.f. 
those used in IAMs (DICE/PAGE/FUND).

Hasselmann’s approach of adding white (delta-
correlated) noise improved realism.

However as noted by Leith, 1994  there is a 
case for making the noise itself in this model red 
[c.f Padilla et al, 2011], or even long-range 
dependent (“1/f”), and/or exploring non-
exponential long tailed response kernels to 
replace constant lambda  [c.f. ongoing work of 
Tromso group starting with Rypdal, JGR, 2012]. 

In this poster we modify the kernel, and propose 
using the mapping between the Langevin 
equation of Brownian motion and the 
Hasselmann equation in climate to suggest 
other equations. Noise can be left white-we 
don’t assume presence of a fluctuation 
dissipation theorem relating kernel to noise.

We show how this  approach gives  a 
“generalised Hasselmann model” for arbitrary 
forcing and noise, and a “fractional Hasselman 
model” in the  special1/f  case of long range 
memory. The LHS of the latter is the same as 
that of Lovejoy et al’s FEBE model.
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