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Abstract

We develop an algorithm to integrate GPS and InSAR data for a 3-dimensional crustal deformation field at the Earth’s surface.

In the algorithm discrete GPS data points are interpolated to obtain a 3-dimensional continuous velocity field, which is then

combined with the InSAR line-of-sight (LOS) velocity data pixel by pixel using the least-squares method. Advantages of our

method over previous ones are that: 1) The GPS data points are optimally interpolated by balancing a trade-off between

spatial resolution and solution stability. 2) A new algorithm is developed to estimate realistic uncertainties for the interpolated

GPS velocities, to be used as weights for GPS data in GPS-InSAR combination. 3) Realistic uncertainties for the InSAR LOS

rate data are estimated and used as weights for InSAR data in GPS-InSAR combination. 4) The ramps and/or offsets of the

InSAR data are globally estimated for all the images to minimize data misfit, particularly at regions where the data overlaps.

Application of this method to real data from southern California shows its capability of successfully restoring 3-dimensional

continuous deformation field from spatially limited GPS and dimensionally limited InSAR data. The deformation field reveals

water withdrawal induced subsidence and drought caused uplift at various regions in southern California.
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Abstract 16 

 17 

We develop an algorithm to integrate GPS and InSAR data for a 3-dimensional crustal 18 

deformation field at the Earth’s surface. In the algorithm discrete GPS data points are 19 

interpolated to obtain a 3-dimensional continuous velocity field, which is then combined with the 20 

InSAR line-of-sight (LOS) velocity data pixel by pixel using the least-squares method. 21 

Advantages of our method over previous ones are that: 1) The GPS data points are optimally 22 

interpolated by balancing a trade-off between spatial resolution and solution stability. 2) A new 23 

algorithm is developed to estimate realistic uncertainties for the interpolated GPS velocities, to 24 

be used as weights for GPS data in GPS-InSAR combination. 3) Realistic uncertainties for the 25 

InSAR LOS rate data are estimated and used as weights for InSAR data in GPS-InSAR 26 

combination. 4) The ramps and/or offsets of the InSAR data are globally estimated for all the 27 

images to minimize data misfit, particularly at regions where the data overlaps. Application of 28 

this method to real data from southern California shows its capability of successfully restoring 3-29 

dimensional continuous deformation field from spatially limited GPS and dimensionally limited 30 

InSAR data. The deformation field reveals water withdrawal induced subsidence and drought 31 

caused uplift at various regions in southern California. 32 

 33 

1. Introduction 34 

 35 

The Global Positioning System (GPS) and the Interferometric Synthetic Aperture Radar (InSAR) 36 

are two satellite geodesy methods that have been widely used in recent years to measure crustal 37 

deformation.  The GPS method can be used to precisely measure 3-dimensional positions and 38 

displacements at discrete locations, with up to one millimeter accuracy in horizontal directions 39 

and several millimeters accuracy in vertical direction (Bock and Melgar, 2016). The InSAR 40 

techniques can be used to measure areal displacements in the direction of radar line-of-sight 41 

(LOS) up to several millimeters to centimeter accuracy (Gens and Van Genderen, 1996). These 42 

two methods are therefore complementary to each other for crustal deformation monitoring, and 43 

efforts have been made to combine these two kinds of observations with common spatial and 44 

temporal span, for better spatial and temporal resolution than using either one of them. Such 45 

kinds of efforts include: 1) Construct a 3-dimential velocity field using a GPS derived velocity 46 

model to control the long-wavelength deformation and InSAR data to constrain the short-47 

wavelength deformation (e.g. Tong et al., 2013). 2) Interpolate 3-dimensional GPS velocity and 48 

combine that with the InSAR LOS rate data by point-by-point least-squares regression (e.g. 49 

Samsonov et al., 2007, 2008). 3) Integrate 3-dimensional GPS time series at discrete locations 50 

with 1-dimensional InSAR LOS time series data for 3-dimensional continuous time series (e.g. 51 

Gudmundsson et al., 2002). In this study we focus on the approach 2), and develop an algorithm 52 

to optimally integrate GPS and InSAR data sets for the production of 3-dimensional crustal 53 

velocity solution. We will also demonstrate the usefulness of the algorithm with a case study at a 54 

selected region in southern California. This method can be extended further to the combination 55 

of GPS and InSAR time series data. The code to perform the combination is released to 56 

interested users as a supporting information dataset to this paper.  57 

 58 

2. Methodology 59 

 60 

2.1. GPS data interpolation and uncertainty estimation 61 
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GPS station velocities can be derived from position time series of either campaign or continuous 62 

GPS observations. In this study as an example, we use velocity solutions of continuous GPS 63 

(CGPS) sites produced by the MEaSUREs project (ftp://sopac-64 

ftp.ucsd.edu/pub/timeseries/measures/ats/), and of campaign GPS sites from the SCEC Crustal 65 

Motion Map version 4 (CMM4) solution (Shen et al., 2011) (Figs. 1 and 2). The CMM4 66 

velocities are rotated to align with the CGPS solution which is referenced to the stable North 67 

America reference frame (SNARF) (Herring et al., 2008). We divide the GPS data into two 68 

groups. The first group utilizes the 3-dimential velocity components for solution, which includes 69 

most of the CGPS sites from the MEaSUREs project. The second group utilizes only the 70 

horizontal velocity components, which includes the CMM4 sites and a small portion of the 71 

CGPS sites whose vertical velocities show anomalously large and possibly non-tectonic signals. 72 

Both data sets are screened to remove outliers, and 1052 horizontal and 542 vertical site 73 

velocities are employed. Separate interpolations are performed for the horizontal and vertical 74 

velocity fields, to account for different data populations.  75 

 76 

In our algorithm of GPS and InSAR data integration, point-based discrete GPS velocities are first 77 

interpolated to produce continuous 3-D vector map at chosen grids. The interpolation is based on 78 

an algorithm of Shen et al. (2015), which takes into account GPS network density and 79 

configuration for data weighting. A Gaussian distance weighting function (wd) and a Voronoi 80 

 
Figure 1. Study area in southern California. Black curves are active faults, red and blue squares are 

GPS sites whose 3D and 2D (horizontal only) data are used in this study respectively. The green frames 

denote the imprints of 4 InSAR tracks whose data are used in this study.  

ftp://sopac-ftp.ucsd.edu/pub/timeseries/measures/ats/
ftp://sopac-ftp.ucsd.edu/pub/timeseries/measures/ats/
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cell spatial weighting function (wv) are used in the interpolation, which allow greater weighting 81 

for sites located closer to the chosen grid and/or occupying greater Voronoi cell areal space. The 82 

amount of weighting and degree of smoothing can be spatially variable and optimally determined 83 

based on in situ data strength, and are realized by assigning a common weighting parameter W 84 

for all the grid points: 𝑊 =∑ 𝑤𝑑
𝑖 (𝑘) ∗ w𝑣

𝑖 (𝑘)
𝑛_𝑘

𝑖=1
. n_k is the number of neighboring data points 85 

used for the k
th

 grid point, 𝑤𝑑
𝑖 (𝑘) = exp (−

𝑟𝑖
2

𝜎𝑘
2) is the Gaussian distance weighting function, ri is 86 

the distance between the i-th GPS site and the grid point, and σk is the distance decay constant. 87 

At each grid point σk is adjusted to meet W, which is a predetermined constant. With this 88 

adjustment, less smoothing is performed and better resolution is achieved for grids with denser 89 

data coverage, and vice versa. This approach can also effectively smooth out the incoherencies in 90 

 

 
Figure 2. GPS velocities and interpretation result. (a) White vectors are GPS horizontal velocities in 

SNARF reference frame that are used in the combination with InSAR data. The background colors denote 

the amplitudes of interpolated horizontal velocity field. (b) Filled circles are GPS vertical observations, 

and the background colors denote the interpolated vertical velocity field. (c) and (d) are uncertainties of 

east and up components of interpolated GPS velocities, respectively. Magenta triangles denote the 

locations of GPS sites. 



Confidential manuscript submitted to Earth and Space Science 

5 

 

discretized GPS velocity data and make robust joint inversion result. Selection of the parameter 91 

W allows an overall control of the degree of smoothing for the solution. Greater W would result 92 

in more sites included for interpolation and more smoothed solution with less resolution, and 93 

smaller W would result in less sites included and less smoothed solution with better resolution. 94 

An optimal balance can be achieved by assessing the overall data strength of the project.  95 

 96 

To combine the interpolated GPS data with InSAR data, we need adequate estimates of GPS 97 

velocity uncertainties, to be used as data weighting in the combination. Formal GPS velocity 98 

uncertainties deduced in the interpolation process, however, are not fit for the job because they 99 

are largely determined by the amount of a priori information (i.e. the degree of smoothing) 100 

imposed during interpolation, which varies from grid to grid. It usually leads to apparently 101 

unreasonable results, that regions with sparser data points would have smaller uncertainty than 102 

regions with denser data points, and vice versa. To overcome the problem, we propose to 103 

propagate errors from GPS data input to interpolation output using the same interpolation 104 

functional form and least-square procedure as before, but not to alter the smoothing distance 105 

parameter σk. Instead, σk will be kept as a constant σ0 for all the region, usually chosen as an 106 

average of previous σk in relatively denser network region. In this way  the same kind of a priori 107 

assignment algorithm will be applied for all the grids, and the only difference reflected in the 108 

output uncertainty estimates will be the in situ data strength; the denser the local observation 109 

network is, the smaller the uncertainty will be, and vice versa. The overall weighting for GPS 110 

data is also rescaled proportionally by a constant factor applied to the solution uncertainties to 111 

satisfy: Σi 1/αi
2
 = Σi 1/βi

2
, where αi is the input horizontal or vertical velocity uncertainty for the 112 

i-th GPS site in the region, and βi is the rescaled corresponding uncertainty for the interpolated 113 

velocity component at the site, respectively. The sum is over all the GPS sites in the study 114 

region. The only free parameter in the derivation is therefore σ0, which is set by the user and 115 

should be on the order of average spacing of the GPS station network.  116 

 117 

2.2. InSAR data processing, LOS rate and uncertainty estimation 118 

 119 

Here we briefly describe InSAR processing and analysis steps for the InSAR data used in the 120 

case study for southern California. We processed the raw SAR data of ERS-1,2 and Envisat 121 

satellites from 1992 to 2010 for interferograms using a modified version of JPL/Caltech 122 

ROI_PAC software package. Major processing steps include interferometric phase flattening 123 

using precise orbit, topography phase correction based on 2-arc SRTM digital elevation model 124 

(DEM), baseline re-estimation for orbital error correction when needed, phase unwrapping, 125 

filtering and geocoding. For the ERS-2 data after 2001 that have Doppler issue due to gyroscope 126 

failure, we employ a maximum entropy approach to resolve Doppler ambiguity and identify all 127 

usable ERS-2 interferometric pairs. For Envisat ASAR sensors, we correct temporally correlated 128 

range ramp error due to long-term local oscillator frequency drift by adopting an empirical 129 

approach (Marinkovic and Larsen, 2013). Comparison with in-situ GPS shows that such a 130 

correction works well and reduces the RMS error between InSAR and GPS velocities to less than 131 

2 mm/yr (Liu et al., 2014).  132 

 133 
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We use a variant of the Small Baseline Subset InSAR time series approach to solve for InSAR 134 

LOS time series and mean velocity (e.g., Sansosti et al., 2010). We incorporate topography 135 

dependent troposphere delay correction, residual DEM error and earthquake offset estimate, and 136 

employ spatiotemporal filtering to remove high frequency turbulent troposphere noise 137 

(Samsonov, 2010; Liu et al., 2014). Since orbital ramp error for data from the same track is 138 

typically limited to a few acquisitions (e.g., Fattahi & Amelung, 2014) and small, we correct 139 

only affected interferograms through baseline re-estimation with the constraint of a priori GPS 140 

based deformation model. The number of pairs with such correction is much less than the total 141 

number of interferograms that went into the analysis. This ensures that the influence of a priori 142 

model is negligible. Hundreds of interferograms that meet spatial and temporal baseline criteria 143 

are formed and used in the time series inversion.  144 

  

 
Figure 3. InSAR LOS data from 4 selected tracks of D170, D399, A349, and A120 that are used in the 

combination. The upper panel shows the LOS velocities, and the lower panel shows the corresponding 

uncertainties, respectively.  
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The InSAR data are weighted by their LOS uncertainties. To characterize the uncertainties 145 

associated with InSAR deformation map, we adopt a Jackknife variance estimation approach 146 

[Efron and Stein, 1981], which provides a reasonable way to account for uncertainties arisen 147 

from lacking or missing dates, uncorrected residuals or other noises, and/or the influence of 148 

reference pixel and date.  149 

 150 

2.3. GPS and InSAR velocity data combination  151 

 152 

We combine GPS interpolated velocities and InSAR LOS rate data to produce a spatially 153 

continuous 3-dimensional velocity field. We first divide the region into rectangle grid cells. At 154 

each grid cell, all of the available InSAR LOS rate data from different tracks (with different 155 

viewing geometries) are used. For each of the LOS rate images all the pixel data within the grid 156 

cell are averaged to produce a mean rate, weighted by the uncertainties. The binned averages are 157 

also made for azimuth angle, look direction, and LOS uncertainty (which is averaged the same 158 

way as the other observables) associated with the LOS measurements, and used as data inputs of 159 

subsequent analysis.  160 

 161 

Because of relative measurements and selections of different reference regions, the InSAR LOS 162 

velocities usually have offsets between different tracks. The residual orbital error and/or 163 

remaining atmospheric phase noise that are not fully corrected may also introduce some subtle 164 

ramp difference between tracks. The first step in GPS/InSAR combination is to solve for the 165 

offsets/ramps of InSAR images. Since InSAR data provide only LOS measurements from 166 

ascending and/or descending viewing geometry, the offset/ramp parameters have to be solved 167 

together with the 3-D deformation components, and some GPS data and their interpolated values 168 

are therefore needed in the estimate to stabilize the inversion. Because these offset/ramp 169 

parameters are correlated with all the deformation parameters in the study area, an optimal 170 

estimate of the offsets/ramps means a global solution for all the parameters involved. However, 171 

the number of parameters for the 3-D velocity field can be huge, up to millions or even billions 172 

depending on the scope of the study area and the size of the grid cells provided, thus it may not 173 

be practical and/or even necessary to solve for all the parameters in a single least-squares 174 

solution. We therefore include GPS data at only a limited number of grid points in the solution in 175 

this step. Two groups of grid points are accounted: the first group includes all the grid points 176 

containing direct GPS velocity observations, and the second group involves decimated grid 177 

points with multiple InSAR data entries. Incorporation of the data in the second category helps 178 

reinforce the solution for the offsets/ramps, but only at decimated grid points (e.g. by a factor of 179 

10 in each dimension in the overlapped regions) would be sufficient for the purpose.  180 

 181 

In the second step the components of offsets/ramps are removed from the InSAR LOS data, and 182 

the 3D velocity is solved for each grid cell through least-squares regression, with GPS 183 

interpolated velocity and LOS data for the cell incorporated.  The adaptive GPS and InSAR data 184 

uncertainties are used to weight the data input.  The GPS vertical data may or may not be used to 185 

constrain the final solution, depending on the quality and reliability of the data.  186 

 187 

3. GPS-InSAR combination in Southern California 188 

 189 

3.1. GPS-InSAR data combination 190 

 191 
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We apply the GPS-InSAR combination method to a region in southern California covered by 4 192 

ground tracks of ERS and Envisat satellites (Fig. 1).  The InSAR data delineate an area of 193 

approximately 32.5°-36°N, 116°-118.5°W, covering the southern part of the Eastern California 194 

Shear Zone, the Mojave Desert, the central Transverse Ranges, and the coastal area from Los 195 

Angeles to San Diego. Active faults in the region include the Mojave and San Bernardino 196 

segments of the San Andreas, Garlock, Mojave Shear Zone, Owens Valley, San Jacinto, and 197 

Elsinore faults. 198 

 199 

The GPS velocity dataset used in the study is shown in Fig. 2, along with the interpolated 200 

velocities and their uncertainties. As described in the previous section, we adopt an algorithm to 201 

determine uncertainties of the interpolated velocities, which employs the same degree of 202 

smoothing for all the grid cells, and considers GPS network distribution and site-specific 203 

uncertainties to determine uncertainties of the velocity solution. Here we set the data weighting 204 

threshold W for southern California to be 3, and the smoothing constant σ0 for uncertainty 205 

evaluation to be 20 km.  These parameters are determined after some trial-and-error, in 206 

accordance with the network spatial density in southern California. We also assign the lower 207 

thresholds of uncertainties for horizontal and vertical GPS velocity data input as 0.5 mm/yr and 208 

1.0 mm/yr respectively, considering epistemic errors of the CGPS site velocity estimates. The 209 

final solution does not seem to be sensitive to the changes of these values within the same order 210 

of magnitude.   211 

 212 

Four tracks of InSAR data sets are used in the study (Fig. 3). The data are the LOS velocities 213 

from our previous InSAR time series analysis (Liu et al., 2014), including the following: (a) 214 

descending track 170 derived from ERS/Envisat data over the period of 1992-2010; (b) 215 

descending track 399 from Envisat over the period of 2003-2010; (c) ascending track 349 from 216 

Envisat over the period of 2003-2010; and (d) ascending track 120 from Envisat over the period 217 

of 2003-2010. The lower panel of Fig. 3 shows the estimated uncertainties for the LOS velocity 218 

data, which shows that although uncertainties are relatively uniform for track 170, they vary 219 

considerably for tracks 399, 349, and 120. For tracks 399, 349, and 120, we only use Envisat 220 

data for interseismic velocity estimates as these tracks spanning the East California Shear Zone 221 

(ECSZ). The ERS data from these tracks are not used because they are likely affected by 222 

postseismic deformation following the 1992 Landers and 1999 Hector Mines earthquakes in the 223 

ECSZ area. This is resulted in fewer SAR images for tracks 399, 349, and 120 than for track 170, 224 

and among which a few images were affected significantly by atmospheric disturbance with 225 

strong spatial variations. This is particularly true for track 120, with the residual atmosphere 226 

noise resulting in the largest errors for the northern part of the track where the LOS rate 227 

uncertainties are up to 4 mm/yr.  228 

 229 

A suite of combination models are tested with various selection of model parameters, including 230 

the choices of InSAR data uncertainties, the use of GPS vertical data for model constraints, and 231 

the InSAR offset/ramp estimation, etc. Table 1 lists parameter setups of six models tested and the 232 

modeling statistics.  233 

 234 

Table 1. Combination model results.  235 

Model #  InSAR-  GPS Vertical  Ramp/Offset  χw
2
   χw

2
/n  χuw

2 
χuw

2
/n 236 
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Figure 4. Combined GPS and InSAR 3-D velocities for Model A, with estimated InSAR data 

uncertainties to weight the data and SAR satellite orbital ramps estimated. (a) shows amplitudes of the 

horizontal components, and (b) the vertical components, respectively. Round dots in (b) are GPS 

vertical velocities, which are used in the orbital ramps estimation but not the 3-D velocity solution. 

Name abbreviations: CG, Coso Geotherm site; DV, Death Valley; LAB, Los Angeles Basin; LC, 

Lancaster; PS, Palm Springs; SB, San Gabriel Basin; SL, Searles Lake.  

A  Estimated Not used  Ramp   30479 0.76 35393 0.88 237 

B  Default Not used  Ramp   9090 0.23 36360 0.91 238 

C  Estimated Used   Ramp   52783 1.32 62138 1.55 239 

D  Default Used   Ramp   20500 0.51 81999 2.05 240 

E  Estimated Not used  Offset   55032 1.37 64130 1.60 241 

F  Default Not used  Offset   16403 0.41 65612 1.64 242 

χw
2
: Total weighted postfit residual χ

2
. 243 

χw
2
/n: Reduced weighted postfit residual χ

2
. 244 

χuw
2
: Total unweighted postfit residual χ

2
. 245 

χuw
2
/n: Reduced unweighted postfit residual χ

2
. 246 

 247 

Fig. 4 shows the result of model A, which has 3 common parameters solved for each InSAR 248 

image, namely the constant offset and the east and north trends for the ramp. The estimated LOS 249 

uncertainties are used to weight the data, with a lower cut-off threshold of 1 mm/yr. This ad hoc 250 

cut-off threshold is set to account for the effects of residual atmospheric noise or other 251 

unmodeled noise. The GPS vertical data are used in derivation of the ramps of the InSAR data 252 

but not the final solution of the vertical velocities. The InSAR data postfit residuals and the 253 
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model formal uncertainties are demonstrated in Fig. 5. Only the uncertainties of the east and 254 

vertical components are shown. Uncertainties of the north component are not shown which are 255 

very similar to that of the east component.   256 

Fig. 6 shows the 3-D velocity solution for Model B, which is similar to Model A except that 257 

instead of estimated uncertainties for InSAR data, a default LOS uncertainty of 2 mm/yr is 258 

adopted to constrain the solution. The InSAR data postfit residuals and the model formal 259 

uncertainties are demonstrated in Fig. S1.  260 

 
Figure 5. Data postfit residuals and solution uncertainties for Model A. (a), (b), (c), and (d) are InSAR 

LOS postfit residuals for tracks D170, A349, A120, and D399, respectively. (e) and (f) are solution 

uncertainties for the east and vertical components respectively.  
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 261 

Four other solutions for Models C, D, E, and F are shown in Figs. 7, $3, S5, and S7, whose 262 

parameterizations are defined in Table 1. Figs. S2, S4, S6, and S8 plot the InSAR data postfit 263 

residuals and the solution uncertainties for the four models respectively.  264 

 265 

3.2. Result discussion 266 

 267 

In this study we explored six models of GPS-InSAR data combination with different options of 268 

model constraints, such as (a) whether to estimate the ramps of satellite orbits, (b) whether to use 269 

default of estimated uncertainties to condition the InSAR data, and (c) whether to use GPS 270 

vertical velocities to constrain the final solution of vertical velocity field. Comparing all the 271 

solutions, we find that the GPS-InSAR combined horizontal velocity fields of the six models are 272 

very similar to the GPS interpolated horizontal velocity field, and the differences are at the sub-273 

millimeter per year level for all the data points. The results suggest that the horizontal velocity 274 

solution is mostly resolved by the GPS data, and contribution from the InSAR data is relatively 275 

minor. Consistency of all the model results also suggests that InSAR and GPS observations are 276 

in good agreement in documenting the horizontal deformation field, with both velocity solutions 277 

deduced using data of overlapped time span of 6-20 years.  278 

 
Figure 6. Combined GPS and InSAR 3-D velocities for Model B, with default InSAR data uncertainties 

(2 mm/yr) to weight the data and SAR satellite orbital ramps estimated. (a) shows amplitudes of the 

horizontal components, and (b) the vertical components, respectively. Round dots in (b) are GPS vertical 

velocities, which are used in orbital ramps estimation but not the 3-D velocity solution. 
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 279 

The difference in model constraints and/or parameterization, however, can have significant 280 

impact on vertical velocity solution and its error assessment. One of the factors involved in the 281 

combination is whether to use the GPS vertical data to constrain the pixel solution. Figs. 4 and 7 282 

show the velocity solutions of Models A and C, for which all the parameterizations are the same 283 

except that Model C incorporated GPS vertical data to constrain the model and Model A did not. 284 

Comparison of the two solutions reveals that, although inclusion of the GPS vertical data has 285 

provided additional constraints to the solution, its lack of detailed spatial resolution smeared and 286 

missed some regional deformation signals. For example, up to 8 mm/a subsidence is shown in 287 

the Lancaster, Los Angeles basin, and San Gabriel basin regions in the solutions without using 288 

GPS vertical data as constraints (Model A, Fig. 4), which are however absent or significantly 289 

suppressed in the solutions using GPS vertical data constraints (Model C, Fig. 7). These signals, 290 

detected by InSAR observations are caused by ground water withdrawal and shallow aquifer 291 

compaction (e.g., Galloway et al., 1998; Hoffmann et al., 2003) and are real, but cannot be 292 

picked up by GPS due to limited network spatial coverage (or missed time window).  293 

 294 

The GPS data, on the other hand, provide effective constraints for mid to long range vertical 295 

deformation (>100 km in scale), associated with earthquake cycle and tectonic deformation. This 296 

is evidenced by the vertical deformation pattern shown in Fig. 4, which is similar to that reported 297 

t  
Figure 7. Combined GPS and InSAR 3-D velocities for Model C, with estimated InSAR data uncertainties 

to weight the data and SAR satellite orbital ramps estimated. (a) shows amplitudes of the horizontal 

components, and (b) the vertical components, respectively. Round dots in (b) are GPS vertical velocities, 

which are used in both estimation of orbital ramps and the final 3-D velocity solution.  
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by Howell et al. (2016). We therefore use GPS vertical data to correct for the offsets/ramps of 298 

the InSAR data and to stabilize the long range deformation, but not to use that to constrain the 299 

local deformation.  300 

 301 

Two sets of InSAR LOS data errors are adopted to constrain the solution in this study. One set of 302 

solutions assumes a uniform data error of 2 mm/a (Models B, D, and F), which is a common 303 

practice when no detailed error analysis is available. Another set of solutions takes the estimated 304 

uncertainties derived using the Jackknife variance estimation approach (Models A, C, and E). 305 

Using the estimated uncertainties to weight the InSAR data, the result shows no noticeable 306 

difference from the one assuming uniform InSAR data uncertainty (e.g. Fig. 4 vs. Fig. 6). 307 

However, solution uncertainties hence derived for the two kinds of models are quite different. 308 

The models assuming uniform LOS rate error deduce the uncertainty estimates with a spatial 309 

pattern dictated mostly by InSAR data coverage, i.e. the redundancy distribution of the 310 

observations (e.g. Fig. S1f). The models using the estimated LOS rate error yield the uncertainty 311 

estimates taking into account of the InSAR data quality and observation history, reflecting better 312 

the true data strength and weakness. For example, the solution uncertainty estimates shown in 313 

Fig. 5f illuminates not only the impact of spatial pattern of InSAR data redundancy, but also the 314 

relative strength of the data input, such as the largest uncertainties (up to 4 mm/yr) in the 315 

northwest corner of the studied region, resulted from weak data entry of track 120.  316 

 317 

We test different ways to remove the orbital effect from the InSAR data, and examine how that 318 

affect the data fitting of the model. Two model parameterizations are tested, one is to solve for 319 

an offset (i.e. Models E and F), and another is to solve for a ramp and an offset (i.e. Models A 320 

and B) for each of the InSAR data images respectively. The results show that by adding two free 321 

parameters for each track of the InSAR data, the orbital ramp model is able to reduce the data 322 

postfit residual chisquares by half with respect to the orbital offset model (see statistics in Table 323 

1), attesting the necessity of ramp correction in a joint inversion involving multiple InSAR data 324 

entries. Significant jumps can also be seen for vertical solutions across some of the InSAR data 325 

boundaries for the models adopted offset correction only (Figs. S5 and S7), which however are 326 

much reduced for the vertical solutions of the models adopted ramp corrections (Figs. 4 and 6). 327 

And for the data postfit residual plots, the ones for the offset removal model show significant 328 

jumps at the edges of image overlaps (Figs. S6 and S8), which however are much suppressed for 329 

the ones in the ramp removal model (Figs. 5 and S1).  330 

 331 

3.3. Result interpretations 332 

 333 

Based on the above discussion, we think that Model A takes the most optimal approach, and its 334 

result is therefore the basis for our following interpretation (Fig. 4).  335 

 336 

For the region in southern California under investigation, the horizontal velocity solution is 337 

mostly determined by GPS data, with the formal uncertainties below 0.7 mm/yr for most of the 338 

area (Fig. 5). The highest velocity gradient appears across the San Andreas and San Jacinto fault 339 

system, consistent with previous findings about the deformation pattern in southern California 340 

(e.g. Feigl et al., 1993; McCaffrey, 2005; Zeng and Shen, 2017). The formal uncertainties for the 341 

vertical component are mostly determined by InSAR data, with < 1.5 mm/yr uncertainties for 342 

most of the region with more than one LOS data entry, and < 2.5 mm/yr for most of the regions 343 
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with only one LOS data entry (Fig. 5). One significant exception is for the region near southeast 344 

Central Valley at the northwest corner of the study region, where the formal uncertainties are up 345 

to 4.5 mm/yr. This is due to relatively short duration and fewer observations for the A120 track 346 

of InSAR data. Close to zero residuals usually appear at edges of the study region, where only 347 

data from a single InSAR LOS image are available, and the solution uncertainties are relatively 348 

larger.  349 

 350 

Local subsidence is found at several locations in southern California, such as the Los Angeles 351 

basin, Lancaster area in western Mojave, Coso geotherm site, Searles Lake, San Gabriel basin, 352 

Death Valley, Palm Springs, and area spanning the southern sections of the San Jacinto and 353 

Elsinore faults (Fig. 4). The subsidence ranges 3-8 mm/yr, and possibly caused by the loss of 354 

ground water or contraction of geothermal/volcanic activity. Most of these subsidence features 355 

are recorded by more than one SAR images, and reliable. About 1-2 mm/yr subsidence appears 356 

across the southern plate boundary fault system including the San Andreas, San Jacinto, and 357 

Elsinore faults, which is slightly higher than most of the GPS observed vertical velocities. The 358 

result is mainly derived from the southeast edge of the image of track A349, and suffers from 359 

relatively larger uncertainties (~1.8 mm/yr, Fig. 5f). More SAR data coverage in the region is 360 

needed to further confirm the feature of deformation. 361 

  362 

Scattered uplift of about 1-3 mm/yr appears in southern Great Valley, and may be due to 363 

hydrologic effect associated with drought and crust rebound of the region (Fig. 4). The solution 364 

uncertainties however are ~2-3 mm/yr and impede further interpretations. Uplift of about 1-3 365 

mm/yr is also found from northern San Jacinto Mountains across the Banning and Northern San 366 

Andreas faults to southern Mojave Desert. The result is in general consistent with the GPS 367 

vertical measurements and seems to be credible, with the solution uncertainties less than 1 368 

mm/yr (Fig. 2). The area around the east end of the Garlock fault shows 2-4 mm/yr uplift, which 369 

however is not consistent with the GPS vertical velocities in the region. This deformation pattern 370 

is solved with InSAR data from the descending track 399 only, with the solution uncertainties of 371 

~2 mm/yr. Input of more InSAR data from this area will help resolve deformation pattern of the 372 

region.  373 

 374 

4. Conclusions 375 

 376 

We devise an algorithm to optimally combine GPS and InSAR data and produce 3-dimensional 377 

velocity field at Earth’s surface. At the locations where both InSAR and interpolated GPS data 378 

are available, optimal 3-dimensional velocity components are derived using a weighted least-379 

square method. Both GPS and InSAR data uncertainties are used to weight the observables in 380 

joint inversion. A GPS-InSAR combination code is provided for public use.  This algorithm is 381 

applied to modeling deformation field at a selected region in southern California. Conclusions 382 

are the following.  383 

1. Using optimally estimated GPS and InSAR uncertainties to weight the data provides proper 384 

accounting of the solution uncertainties, and helps adequately assess the solution quality and 385 

reliability.  386 

2. Including InSAR data from both ascending and descending viewing geometry, if available, 387 

provides improved constraint on the 3-D deformation when integrating with GPS data.  388 

3. The approach of using GPS vertical data to constrain deformation field should be subject to 389 
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evaluation of data quality and deformation pattern. In southern California, the current GPS 390 

network is still too sparse to adequately detect localized vertical deformation, particularly in 391 

regions affected by hydrologic processes. Existence of certain outliers in the dataset makes 392 

identification of localized deformation even more challenging. The optimal approach is 393 

therefore to use the GPS vertical data to constrain the satellite orbital ramps only, and leave 394 

the localized vertical deformation solved by InSAR, aided by GPS horizontal constraints.  395 

4. The GPS and InSAR data are generally consistent for the horizontal velocities at sub-396 

millimeter per year level. The vertical velocity field is determined much better of the 397 

combined solution than using GPS data only, especially for regions experiencing localized 398 

deformation. These regions include the Los Angeles basin, San Gabriel basin, Lancaster, 399 

Palm Springs, Searles Lake, and Death Valley where hydrologic processes caused induced 400 

subsidence of up to 3-8 mm/yr. They also include the southern Great Valley region which 401 

underwent drought related uplift of 2-3 mm/yr. Uplift of 1-3 mm/yr is detected across a 402 

transect from the northern San Jacinto Mountains to southern Mojave Desert.  403 
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