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Abstract

In the predominantly oxic, upland soils, periods of high wetness trigger anaerobic processes such as iron (Fe) reduction within the
soil microsites, with implications for organic matter decomposition, the fate of pollutants, and nutrient cycling. In fluctuating O
conditions, Fe reduction is maintained by the re-oxidation of ferrous iron, which renews the electron acceptor, Fe, for microbial
Fe reduction. To characterize such processes, it is fundamental to relate the redox cycling of iron between the two redox states
to the hydro-climatic conditions. Here, we link iron cycling to soil moisture variability through a model of iron-redox dynamics
and find the hydrologic regime that maximizes Fe reduction, under non-limiting organic carbon availability. Away from the
optimal cycle, the duration of the oxic or the anoxic phase limits the regeneration of Fe or its reduction rate, respectively. We
relate the average duration of the oxic and anoxic intervals to the frequency and mean depth of precipitation events that drive
the dynamics of soil moisture, effectively linking iron cycling to the hydrologic regime. We then compare a tropical (Luquillo
CZO) and a subtropical (Calhoun CZO) forest to provide insights into the soil moisture control on iron-redox dynamics in these
ecosystems. The tropical site maintains a high potential for iron reduction throughout the year, due to quick and frequent
transitions between oxic and anoxic conditions, whereas the subtropical site is strongly affected by seasonality, which limits iron

reduction to winter and early-spring months with higher precipitation and lower evaporative demand.
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Figure 6. (a) Temporal evolution of soil moisture, simulated by means of the stochastic model in

(Laio et al., 2001), in Luquillo (blue line) and Calhoun (green line) over the course of a year. Soils are

silty clay loams and silty loams in Luquillo and Calhoun, respectively, with porosity of 0.48. Soil hydro-

logic properties for the simulation of the soil moisture dynamics from Fernandez-lllescas et al. (2001).

Soils are considered to have su cient anoxic microsites to support Fe reduction for soil moisture levels

above § = 0:85 in Luquillo and *s = 0:75 in Calhoun. (b) Anoxic fraction of the cycle, f, and (c) duration
of the cycle, T, for each month computed by means of equations ( ??) and (??) in the Appendix. (d) Tem-
poral evolution of Fe "' in Luquillo (gray line) and Calhoun (red line) over the course of a year, simulated
through equation (1). The reduction and oxidation rate constants are kr = 0:1 and ko = 10 mmol/kg/d,
respectively.

order of 10 1 d 1, while the oxidation rate constants at 21% O, are of the order of 10
d ! (Chen & Thompson, 2017; Ginn et al., 2017).

4.2 Oxic/anoxic cycles and iron reduction

To calculate the temporal dynamics of potential iron reduction (when limited only
by the hydrologic regime), we solved equation (1) coupled to a soil water balance that
generates a time series of soil moisture levels based on the frequency and mean depth
of precipitation events (Figure 6). For Luquillo these rainfall statistics are available in
Heartsill-Scalley et al. (2007) and Calabrese and Porporato (2019), while in Calhoun they
were obtained combining multiple sources ("http://criticalzone.org/calhoun/data/datasets/"
and "https://www.usclimatedata.com/climate/south-carolina/united-states/3210"). The
average anoxic fractionf and cycle length T of the oxic/anoxic cycles are then computed
for each month from the probability density function of soil moisture (see Appendix A).
Note that for each month the parametersf and T are computed assuming stationary
climatic conditions. For each month their values thus correspond to oxic/anoxic cycles
that would occur if the climatic conditions were stationary and typical of that specic
month. As a consequence, it can happen that the value of is greater than the dura-
tion of the month, e.g., T = 80 days in Calhoun in September. Of course, these large
values of T for a particular month only indicate that it is very unlikely to observe full
redox cycles (an Fe oxidation event and an Fe reduction event) in that given month, typ-
ically because soil moisture remains below the threshold set.

In Luquillo, the soil moisture frequently crosses thes‘threshold, generating redox
cycles of only a few days (2-3 days) throughout the year (Figure 6(a) and (c)). Similarly,
the calculated anoxic fraction f remains practically constant during the year and approx-
imately equal to 0.3 (Figure 6(b)). The mild seasonality here is almost not visible in the
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