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Abstract

Human activities constantly produce air pollutants, which may greatly impact climate change. Elucidating the relationship
between air quality and temperature change is essential to gain a better understanding of climate change. Up until now, machine
learning algorithms have been deployed to big data analysis in various fields. Here, we use the machine learning algorithms to
analyze temperature and air quality data of different cities across China. Multiple linear regression and tree-based methods,
including bagging, boosting and random forest, are used to train the model. With the tree-based methods, the factors highly
associated with temperature change will be elucidated, which indicate their significant impact on temperature change. The
results in this study demonstrate the possibility of using machine learning in atmospheric science field to predict air quality
and temperature change, and how different algorithms perform regarding temperature and air quality predictions, which is
informative for future air quality prediction research. The relationship between air quality and temperature change can also

provide guidance to policymakers.
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