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Abstract

The atmospheric aerosol dynamics model (AADM) has been widely used in both comprehensive air quality model systems

and chemical transport modeling from road to global scales. The AADM consists of the Smoluchowski coagulation equation

(SCE) which describes the atmospheric aerosol size growth due to coagulation. The numerical solution to the SCE undergoing

Brownian coagulation in the free molecular regime is a direct challenge because of a stumbling block for the kernel to be

expressed by an equivalent linear expression and a predefined lognormal size distribution, which is inconsistent with aerosols

having bimodal or multimodal size distribution. Thus, a new mathematical method for solving the SCE without the strong

assumption of log-normal size distribution is proposed and developed. This method is verified with a referenced sectional

method (SM) with excellent agreement. The accuracy of the method approaches closely to the TEMOM, but overcomes the

limitation of the classical log MOM. The computational time of this scheme is largely reduced when comparing to the SM. The

new method is successfully implemented to reveal the formation and growth of secondary particles emitted from the vehicle

exhaust tailpipe. It is surprisingly found that the formation of new particles only appears in the interface region of the turbulent

exhaust jet which is very close to the tailpipe exit, while there is no new particle formation in the strong mixture along the

downstream. The new method is finally verified to be an efficient and reliable numerical scheme for studying atmospheric

aerosol dynamics.
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Abstract 19 

The atmospheric aerosol dynamics model (AADM) has been widely used in both comprehensive air 20 

quality model systems and chemical transport modeling from road to global scales. The AADM 21 

consists of the Smoluchowski coagulation equation (SCE) which describes the atmospheric aerosol size 22 

growth due to coagulation. The numerical solution to the SCE undergoing Brownian coagulation in the 23 

free molecular regime is a direct challenge because of a stumbling block for the kernel to be expressed 24 

by an equivalent linear expression and a predefined lognormal size distribution, which is inconsistent 25 

with aerosols having bimodal or multimodal size distribution. Thus, a new mathematical method for 26 

solving the SCE without the strong assumption of log-normal size distribution is proposed and 27 

developed. This method is verified with a referenced sectional method (SM) with excellent agreement. 28 

The accuracy of the method approaches closely to the TEMOM, but overcomes the limitation of the 29 

classical log MOM. The computational time of this scheme is largely reduced when comparing to the 30 

SM. The new method is successfully implemented to reveal the formation and growth of secondary 31 

particles emitted from the vehicle exhaust tailpipe. It is surprisingly found that the formation of new 32 

particles only appears in the interface region of the turbulent exhaust jet which is very close to the 33 

tailpipe exit, while there is no new particle formation in the strong mixture along the downstream. The 34 

new method is finally verified to be an efficient and reliable numerical scheme for studying 35 

atmospheric aerosol dynamics.  36 

https://epubs.siam.org/doi/abs/10.1137/S1064827503429132


1 Introduction 37 

There has been increased recognition of the importance of aerosols to both 38 

climate change (Rosenfeld, 2006; Rosenfeld et al., 2014, 2019) and air pollution 39 

(Huang et al., 2014; Kumar et al., 2014; Y. Wang et al., 2019; Yao et al., 2018; Yuan 40 

et al., 2019). Correspondingly, the inclusion of the aerosol dynamics models in both 41 

global chemistry and transport simulations and regional air quality simulations has 42 

been carried out over half a century (Gama et al., 2019; Hass et al., 2003; Herzog et 43 

al., 2004; Jasor et al., 2005; Karydis et al., 2007; Lauer et al., 2005; Sportisse, 2007; 44 

Vignati et al., 2004; Whitby & McMurry, 1997; C. Zhou et al., 2016). In all 45 

developed aerosol dynamics models, aerosol dynamics which dominates the evolution 46 

of particle size distribution are dealt with separately to meet the requirement of 47 

numerical simulation. These aerosol dynamic processes usually include nucleation, 48 

coagulation, condensation-evaporation, deposition, etc. Brownian coagulation is an 49 

important mechanism leading to the instability of aerosols, which is also attracted 50 

more interest by scientists than other aerosol dynamics because it is not easily dealt 51 

with mathematically. The end result of coagulation is a continuous decrease in 52 

particle number concentration and an increase in particle size. The theory for 53 

illustrating this phenomenon was originally introduced from Smoluchowski’s 54 

equation and was then followed by Muller’s development (Müller, 1928; Petitti et al., 55 

2013). The Muller’s equation is expressed as,  56 

𝜕𝑛(𝑣,𝑡)

𝜕𝑡
=57 

1

2
∫ 𝛽(𝑣1, 𝑣 − 𝑣1)𝑛(𝑣1, 𝑡)𝑛(𝑣 − 𝑣1, 𝑡)d𝑣1
𝑣

0
− 𝑛(𝑣, 𝑡) ∫ 𝛽(𝑣1, 𝑣)𝑛(𝑣1, 𝑡)d𝑣1

∞

0
               58 

(1) 59 

where particle volume, 𝑣, is used rather than particle diameter because the volumes 60 

are additive. The first term on the right-hand side of Equation (1) is the rate of 61 

formation of particles of size 𝑣 by smaller particles of sizes 𝑣1 and 𝑣 − 𝑣1. The factor 62 

1/2 is introduced because collisions are counted twice in the integral. The second 63 

term of Equation (1) accounts for the loss of particles of size 𝑣 by collisions with all 64 

other particles. Equation (1) was known as Smoluchowski’s Coagulation Equation 65 

(SCE), which was further developed later in the community of aerosols to include 66 

other aerosol dynamic processes including nucleation, condensation-evaporation, 67 

deposition and also to couple with climate models by considering air convection and 68 

diffusion. The developed Equation (1) is recognized now as the particle general 69 

dynamics equation (PGDE), which is the key equation of all weather and air pollution 70 

forecast codes, including Weather Research and Forecasting model coupled to 71 

Chemistry (WRF-Chem), University of Helsinki Multicomponent Aerosol model and 72 

European Air Pollution Dispersion modelling system (EURAD (Ackermann et al., 73 

1998; Grabowski et al., 2019; Korhonen et al., 2004; Kukkonen et al., 2012).  74 

In theory, almost all important aerosol quantities, which determine the 75 

property of aerosol as well as it directly or indirectly affects air pollution and 76 



climates, such as number concentration, mass concentration and size distribution of 77 

particles, can be obtained by solving the PGDE numerically(Wright et al., 2001). The 78 

PGDE is usually solved by numerical methods and there have been some important 79 

achievements including the sectional method (SM) (Bruns & Ezekoye, 2012; Gelbard 80 

et al., 1980; Kostoglou, 2007; Landgrebe & Pratsinis, 1990), method of moments 81 

(MOM) (Fox et al., 2008; S. Liu, Chan, Lin, et al., 2019; Petitti et al., 2013; Pratsinis, 82 

1988; Rani et al., 2014; Tang & Lin, 2013), Monte Carlo (MC) method (Kraft, 2005; 83 

Morgan et al., 2006), and stochastic particle method (Debry et al., 2003; Kruis et al., 84 

2012; Menz et al., 2014; Rani et al., 2014; Sabelfeld, 1998). Now, these three 85 

different types of numerical methods have been widely applied in weather and air 86 

pollution forecast codes. Among all these three numerical methods, the MOM is 87 

usually regarded as the most economic one and is also the most suitable to be coupled 88 

with the air transport equation, such as Navier-Stokes equations (McGraw et al., 89 

2008; Passalacqua et al., 2018; Yu & Lin, 2018) To be noted here, the MOM with 90 

predefined log-normal size distribution is still the classical method used in the most 91 

common weather and air pollution forecast codes, such as WRF-Chem and EURAD 92 

(Cai et al., 2016; Gama et al., 2019). It should be noted that the SM is also used for 93 

modeling aerosol dynamics in nuclear reactor safety (Herranz et al., 2018). 94 

The key of the MOM is to implement a transformation from particle size 95 

distribution (PSD) function space, {𝑛(𝑣)} in Equation (1), to the space of moments, 96 

{ 𝑚𝑘}. When transferring from {𝑛(𝑣)}to { 𝑚𝑘}, the closure problem for ordinary 97 

differential equations (ODEs) appears which needs to be resolved using closure 98 

schemes. There have been several schemes to achieve closure, which can be divided 99 

into two categories, namely quadrature-based MOM (QBMOM) and non-quadrature-100 

based MOM (NBMOM). The predefined particle size distributed method, 𝑝th-order-101 

polynomial MOM, MOM with interpolative closure (MOMIC) and Taylor series 102 

expansion MOM belong to the NBMOM. An advantage of the NBMOM is that the 103 

transferred moment ODEs can be written as its explicit form (Yu & Lin, 2018). It 104 

should be noted that the QBMOM, especially Gaussian quadrature MOM (QMOM 105 

and direct QMOM (DQMOM)) (Marchisio & Fox, 2005; Robert McGraw, 1997a) is 106 

the most widely used MOM to couple with computational fluid dynamics (CFD) until 107 

nowadays. Among all the NBMOMs, the predefined log-normal MOM was the first 108 

proposed for solving PGDE (Cohen & Vaughan, 1971), and now it governs the 109 

establishment of atmospheric aerosol models, including WRF-Chem and EURAD. 110 

When implementing the log-normal MOM by transferring from the particle size 111 

distribution function space, {𝑛(𝑣)} to the space of moments, {𝑚𝑘}, the collision 112 

kernel must be written as an equivalent linear expression for 𝑣𝑝𝑣1
𝑞
 (𝑝 and 𝑞 are 113 

arbitrary real numbers). This requirement limits the application of log MOM because 114 

some kernels cannot easily be obtained with an equivalent linear expression for 𝑣𝑝𝑣1
𝑞
.  115 

Although the QBMOM is the widely used MOMs today due to main contributions 116 

from the research groups of Fox  (Heylmun et al., 2019; Kong & Fox, 2017; 117 

Marchisio & Fox, 2005; Vikas et al., 2013) and McGraw (McGraw et al., 2008; 118 

McGraw, 1997b), the NBMOM, such as the log MOM and TEMOM, can still find its 119 



wide applications due to their high numerical efficiency without eigensystems’ 120 

calculation and ill-conditioned matric problems.  121 

Brownian coagulation in the free molecular is a key mechanism affecting the 122 

evolution of aerosol size distribution with particle Knudsen number (Kn = 
𝜆

𝑟
, where 𝜆 123 

is the mean free path of air, and 𝑟 is particle diameter) larger than 50 (Park et al., 124 

1999a). The collision kernel in this regime has a term (1/𝑣 + 1/𝑣1)
1/2, which is the 125 

major stumbling block for the kernel to be expressed by an equivalent linear 126 

expression, so does the transfer of SCE to the moment ODEs. Some efforts have been 127 

made to overcome this technical difficulty. The most success is the strategy proposed 128 

by Lee et al. (1984), in which the factor (1/𝑣 + 1/𝑣1)
1/2 was substituted by 𝑏[(1/129 

𝑣)1∕2 + (1/𝑣1)
1/2]; the SCE can then be transferred to moment ODEs with both 130 

implicit and explicit moments. In order to achieve the final closure of moment ODEs, 131 

Equation (11) below is needed. Unfortunately, the value of 𝑏 is an unmanageable 132 

issue in Equation (9) below, which has to be obtained through solving integral 133 

equations with varying initial particle size distributions. Pratsinis (1988) then further 134 

developed and expressed the term, 𝑏 , as a function of geometric standard deviation of 135 

particle size distribution. However, both of their studies have the limitation that the 136 

expression of the value 𝑏 has to be determined numerically in advance, which 137 

inevitably leads to uncertain in mathematics. Hence, a high efficient and precise 138 

method becomes essential to approximate this collision kernel. 139 

The TEMOM was proposed by Yu et al. (2008) to solve SCE. The key of the 140 

TEMOM is to approximate any expressions using their truncated Taylor expansion 141 

series with adjusted errors, thus the technical difficulty in the log MOM might be 142 

overcome by the TEMOM. Although the TEMOM has been successfully applied to 143 

solve the SCE due to Brownian coagulation in the free molecular regime, (1/𝑣 +144 

1/𝑣1)
1/2 and implicit moments are both implemented by the Taylor-series expansion 145 

technique. Whether (1/𝑣 + 1/𝑣1)
1/2 is implemented by the TEMOM and implicit 146 

moments are implemented by the log MOM simultaneously or conversely, it remains 147 

an open question. 148 

In the present study, a new method to explicitly solve the SCE undergoing 149 

Brownian coagulation in the free molecular regime is presented. The underlying idea 150 

of this method is that the approximations of collision kernel and explicit moments are 151 

achieved by the hybridization of the well-established log MOM and TEMOM. For 152 

distinguishing this new hybrid method from other MOMs, a hybrid TEMOM-log 153 

MOM is used. Since there are two different hybrid processes involvement, namely 154 

hybrid TEMOM-log MOM (I) and hybrid TEMOM-log MOM (II), are used for their 155 

distinguishment. The SM as a reference is used to validate this new scheme of hybrid 156 

TEMOM-log MOM, which has regarded as an exact solution of SCE by the aerosol 157 

society (Otto et al., 1999) as well as our previous works (Yu et al., 2016; Yu & Lin, 158 

2017a). In addition, the results from both TEMOM and log MOM are presented for 159 

comparative studies. The moment ODEs obtained from the proposed scheme have the 160 

explicit expressions, thus to be easier programed than the well-established log MOM. 161 

http://www.baidu.com/link?url=cN5w-QI_DBUAHRDCccShgOw6bqLrYtv7Ra8E0rMR5-qW-MzJGrkGV74ijjtgbc1VQFkxETy62mgcQtHieM1aPrNPEapEtRP15-LixnVPoh3


The newly proposed hybrid TEMOM-log MOM (I) is further utilized to study the 162 

formation and growth of secondary particles emitted from the vehicle exhaust tailpipe, 163 

in which an advanced parameterized model for binary homogeneous nucleation of 164 

sulfuric acid-water vapors is introduced. The competing processes of binary 165 

nucleation, condensation and coagulation are clearly revealed.  166 

The paper is organized as follows: In Section 2, the model description related 167 

to the hybrid TEMOM-log MOM method is presented, and the numerical errors are 168 

fully analyzed. In Section 3, the numerical details of studied cases are provided and 169 

all the governing equations are dealt with a normalized method. In Section 4, the 170 

results and discussion are presented for the comparison among new hybrid TEMOM-171 

log MOM, TEMOM, log MOM, and SM, and the validation of the new method is 172 

carried out. In this section, the new scheme is further utilized to study the exhaust 173 

particles emitted from the vehicle tailpipe. The factors affecting the secondary 174 

nanoparticle formation and subsequent growth in a turbulent jet exhaust plume are 175 

revealed. 176 

2 Materials and Methods 177 

In the present study, Brownian coagulation in the free molecular regime is 178 

considered because it is the most difficult to deal with using the MOM 179 

(Pratsinis,1988). For the studied case, the coagulation kernel is given by (Friedlander, 180 

2000): 181 

𝛽(𝑣, 𝑣1) = 𝐵1(1/𝑣 + 1/𝑣1)
1/2(𝑣1/3 + 𝑣1

1/3)2       (2) 182 

where 𝐵1 = (3 ∕ 4𝜋)
1∕6(6𝑘B𝑇 ∕ 𝜌p)

1∕2
, 𝑘B is the Boltzmann constant, 𝑇 is the gas 183 

temperature and 𝜌p is the mass density of the particles.  184 

In order to implement the MOM, the system of Equation (1) is transferred to a 185 

system of moment ODEs with respect to the moment. The moment transformation 186 

involves multiplying Equation (1) by 𝑣 and then integrating over the entire particle 187 

size distribution, and then the moment transformed equations of the PSD are obtained 188 

(Lee et al., 1984):    189 

d𝑚𝑘

d𝑡
=
1

2
∫ ∫ 𝜅(𝑣, 𝑣1, 𝑘)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)d𝑣d𝑣1

∞

0

∞

0
          (3)                               190 

where κ(𝑣, 𝑣1, 𝑘) = [(𝑣 + 𝑣1)
𝑘 − 𝑣𝑘 − 𝑣1

𝑘]𝛽(𝑣, 𝑣1) and the moment 𝑚𝑘 is defined 191 

by:  192 

𝑚𝑘 = ∫ 𝑣𝑘𝑛(𝑣)
∞

0
d𝑣                     (4)                                                              193 



The dynamic behavior of an aerosol can be described from the rate of change of its 194 

first three moments(Pratsinis, 1988). According to the present study on the log MOM 195 

and TEMOM, only the first three moments are considered here, 196 

κ(𝑣, 𝑣1, 𝑘) = [(𝑣 + 𝑣1)
𝑘 − 𝑣𝑘 − 𝑣1

𝑘]𝛽(𝑣, 𝑣1) 

           = {
−𝛽(𝑣, 𝑣1),       𝑘 = 0,
0,                        𝑘 = 1,
2𝑣𝑣1𝛽(𝑣, 𝑣1),  𝑘 = 2.

                      (5) 197 

2.1. Two technical difficulties in the MOM 198 

    If only k = 0, 1 and 2 are involved, Equation (3) can be written as 199 

{
  
 

  
 
d𝑚0

d𝑡
= −

1

2
∫ ∫ 𝛽(𝑣, 𝑣1)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)d𝑣d𝑣1,

∞

0

∞

0

d𝑚1
d𝑡

= 0,                                                                        

d𝑚2

d𝑡
= ∫ ∫ 𝑣𝑣1𝛽(𝑣, 𝑣1)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)d𝑣d𝑣1.

∞

0

∞

0

  (6) 

The purpose of the MOM is to remove an integral operator on the right hands of 200 

Equation (6). Unfortunately, two essential technical difficulties arise from the particle 201 

size distribution function space, {𝑛(𝑣)}, to the space of moments, {𝑚𝑘}, i.e. the 202 

binary polynomial approximation and the closure function for any order moment.  203 

2.1.1 Binary polynomial approximation 204 

To introduce the Equation (4) into Equation (6), the collision kernel, 𝛽(𝑣, 𝑣1) 205 

must be expressed as a binary additive form, i.e., 206 

𝛽̃(𝑣, 𝑣1) = ∑∑𝑎𝑝𝑞𝑣
𝑝𝑣1

𝑞

𝑞∈𝑅𝑝∈𝑅

≈ 𝛽(𝑣, 𝑣1)    (7) 

where 𝑝 and 𝑞 are arbitrary real numbers, 𝑎𝑝𝑞 is coefficient. Unfortunately, the 207 

presence of the term (1/𝑣 + 1/𝑣1)
1/2 in Equation (2) makes the binary additive form 208 

unavailable. 209 

2.1.2 Closure function 210 

Even if Equation (7) is available and the terms on the right sides of Equation (6) 211 

can be expressed as functions of moments, these moments are usually not explicit 212 

which makes the non-closure of transferred moment ODEs. A general closure 213 

function that can be used to replace any 𝑘-th moments becomes necessary. In 214 



Equation (6), only the first three moments, namely 𝑚0, 𝑚1 and 𝑚2, are explicit, and 215 

thus the general closure function can be expressed as,  216 

𝑚𝑘 = 𝑓closure(𝑚0, 𝑚1, 𝑚2)     (8) 

where 𝑘 is an arbitrary real number.  217 

It should be noted that both log MOM and TEMOM have the same above 218 

mentioned problems, and the corresponding solutions of them have been given by 219 

direct and explicit formulations as Equations (7) and (8). 220 

2.2. Two polynomial approximations to the kernel in the free-molecule regime 221 

2.2.1. log-normal kernel (Log-kernel) 222 

In the previous work of Lee et al (1984), the term (1/𝑣 + 1/𝑣1)
1/2 is 223 

approximated as 224 

(
1

𝑣
+

1

𝑣1
)1/2 ≈ 𝑏 (

1

𝑣1/2
+

1

𝑣1
1/2)               (9)  225 

where 226 

𝑏 = ∫ ∫ 𝑣𝑘𝛽(𝑣, 𝑣1)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)d𝑣d𝑣1

∞

0

∞

0

 

× {∫ ∫

[
 
 
 
 (

1
𝑣1/2

+
1

𝑣1
1/2)

(𝑣 + 𝑣1)
1/2

]
 
 
 
 

× 𝑣𝑘𝛽(𝑣, 𝑣1)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)d𝑣d𝑣1

∞

0

∞

0

}−1 

                                                                                                    (10) 227 

To obtain the coefficient 𝑏 in Equation (10), the numerical calculation must be 228 

carried out. In addition, 𝑏 is a value depending on the initial geometric standard 229 

deviation, 𝜎0 in the work of Lee et al. (1984) and Pratsinis (1988). It implies that 𝑏 230 

has different values for different particle size distribution. This makes the approach to 231 

deal with the uncertainty of (1/𝑣 + 1/𝑣1)
1/2 in mathematics. Although Pratsinis 232 

(1988) tried to write 𝑏 as a function of 𝜎0, the relative errors to real values of such an 233 

approach cannot be obtained. Furthermore, for calculating the value of 𝑏, many 234 

hypotheses and simplifications have to be involved, including the assumption of 235 

time-dependent log-normal size distribution. It leads to the motivation for developing 236 

a more reliable way in order to deal with the approximation of (1/𝑣 + 1/𝑣1)
1/2 in 237 

the present study. 238 



The collision kernel in the free molecular regime, i.e. Equation (2), can be 239 

further expressed if the log MOM is implemented as follows, 240 

𝛽(𝑣, 𝑣1) = 𝐾𝑏𝑘(𝑣
2
3𝑣1

−
1
2 + 2𝑣

1
3𝑣1

−
1
6 + 𝑣1

1
6 + 𝑣

1
6 + 2𝑣−

1
6𝑣1

1
3 + 𝑣−

1
2𝑣1

2
3) 

≜ 𝛽̃Log(𝑣, 𝑣1)                      (11) 241 

Here, the approximating kernel 𝛽̃Log(𝑣, 𝑣1) is called a log-normal kernel (Log-kernel). 242 

2.2.2. Binary Taylor expansion kernel (Taylor-kernel) 243 

In the TEMOM, the term (1/𝑣 + 1/𝑣1)
1/2 is approximated with a binary 244 

additive form by implementing a binary Taylor-series expansion technique 245 

(Mingzhou Yu et al., 2008). Without loss of generality, 𝑓(𝑣, 𝑣1) = (𝑣 + 𝑣1)
1∕2 can 246 

then be defined as, 247 

𝑓(𝑣, 𝑣1) = 

𝑓(𝑢, 𝑢) + [(𝑣 − 𝑢)
𝜕

𝜕𝑣
+ (𝑣1 − 𝑢)

𝜕

𝜕𝑣1
] 𝑓(𝑢, 𝑢) +248 

1

2!
[(𝑣 − 𝑢)

𝜕

𝜕𝑣
+ (𝑣1 − 𝑢)

𝜕

𝜕𝑣1
]
2
𝑓(𝑢, 𝑢) + ⋯+249 

1

𝑛!
[(𝑣 − 𝑢)

𝜕

𝜕𝑣
+ (𝑣1 − 𝑢)

𝜕

𝜕𝑣1
]
𝑛
𝑓(𝑢, 𝑢) +

1

(𝑛+1)!
[(𝑣 − 𝑢)

𝜕

𝜕𝑣
+ (𝑣1 − 𝑢)

𝜕

𝜕𝑣1
]
𝑛+1

𝑓(𝑢 +250 

𝜃(𝑣 − 𝑢), 𝑢 + 𝜃(𝑣1 − 𝑢)), (0 < 𝜃 < 1).    (12) 251 

The error 𝑅𝑛 is denoted as    252 

𝑅𝑛 =
1

(𝑛+1)!
[(𝑣 − 𝑢)

𝜕

𝜕𝑣
+ (𝑣1 − 𝑢)

𝜕

𝜕𝑣1
]
𝑛+1

𝑓(𝑢 + 𝜃(𝑣 − 𝑢), 𝑢 + 𝜃(𝑣1 − 𝑢)),   (13) 253 

and the absolute error|𝑅𝑛| is denoted as 254 

|𝑅𝑛| ≤
𝑀

(𝑛 + 1)!
(|𝑣 − 𝑢| + |𝑣1 − 𝑢|)

𝑛+1 =
𝑀

(𝑛 + 1)!
𝜌𝑛+1(|𝑐𝑜𝑠 𝛼| + |𝑠𝑖𝑛 𝛽|)𝑛+1 

=
(√2)𝑛+1

(𝑛+1)!
𝑀𝜌𝑛+1         (14) 255 

where 𝑀 is a positive number and 𝜌 = √(𝑣 − 𝑢)2 + (𝑣1 − 𝑢)
2. When 𝜌 → 0, i.e., 256 

𝑣 → 𝑢 and 𝑣1 → 𝑢 simultaneously, the absolute error |𝑅𝑛| → 0 and the rate of 257 

convergence is 𝑂(𝜌𝑛+1) . It implies the binary additive form in Equation (12) is 258 

theoretically reasonable when the volume of aerosol particles approaches the average 259 



value. If the Taylor-series expansion point is 𝑢, the term (1/𝑣 + 1/𝑣1)
1/2 is 260 

approximated by the following expression,  261 

(𝑣 + 𝑣1)
1/2 ≈

3√2𝑢

8
+
3√2𝑣

8√𝑢
+
3√2𝑣1

8√𝑢
−
√2𝑣2

32𝑢3/2
−
√2𝑣𝑣1
16𝑢3/2

−
√2𝑣1

2

32𝑢3/2
.       (15)  

Then the collision kernel in the free-molecule regime is now approximated as follows: 262 

𝛽(𝑣, 𝑣1) 

≈ 𝐵1 [
3

8
(2𝑢)

1
2(2𝑣

1
6𝑣1

−
1
2 + 2𝑣−

1
6𝑣1

−
1
6) +

3

8
(
2

𝑢
)
1
2(2𝑣

7
6𝑣1

−
1
2 + 4𝑣

5
6𝑣1

−
1
6 + 2𝑣

1
2𝑣1

1
6) 

     −
1

32
(
2

𝑢3
)
1
2(4𝑣

5
6𝑣1

5
6 + 4𝑣

7
6𝑣1

1
2 + 2𝑣

3
2𝑣1

1
6 + 2𝑣

13
6 𝑣1

−
1
2 + 4𝑣

11
6 𝑣1

−
1
6)] 

≜ 𝛽̃Taylor(𝑣, 𝑣1).     (16) 263 

Here, the approximating kernel 𝛽̃Taylor(𝑣, 𝑣1) is called binary Taylor expansion 264 

kernel (Taylor-kernel).  265 

Substituting the log-kernel into Equation (11) and the Taylor-kernel in Equation 266 

(16) into the moment ODEs of Equation (5) results in the following system, 267 

respectively, 268 

{
  
 

  
 
d𝑚0

d𝑡
= −

1

2
∫ ∫ 𝛽̃Log(𝑣, 𝑣1)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)d𝑣d𝑣1

∞

0

∞

0

             

d𝑚1
d𝑡

= 0                                                                                   (17)

d𝑚2

d𝑡
= ∫ ∫ 𝑣𝑣1𝛽̃Log(𝑣, 𝑣1)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)d𝑣d𝑣1

∞

0

∞

0

.             

 

and 269 

{
  
 

  
 
d𝑚0

d𝑡
= −

1

2
∫ ∫ 𝛽̃Taylor(𝑣, 𝑣1)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)d𝑣d𝑣1

∞

0

∞

0

            

d𝑚1
d𝑡

= 0                                                                                    (18)

d𝑚2

d𝑡
= ∫ ∫ 𝑣𝑣1𝛽̃Taylor(𝑣, 𝑣1)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)d𝑣d𝑣1.           

∞

0

∞

0

 



2.3. Two closure functions in the MOM 270 

Both log MOM and TEMOM have been widely verified to be promising 271 

methods for solving SCE with very little computational costs. As discussed in Section 272 

2.1, both Equations. (17) and (18) are needed to be further closed using suitable 273 

closure functions. In the log MOM, the closure function is obtained based on an 274 

assumption of time-dependent log-normal size distribution, whereas in the TEMOM 275 

the closure function is obtained by expanding 𝑣𝑘 within a manageable error. If the log 276 

MOM closure function (Lee et al., 1984) is applied to Equation (17) and the TEMOM 277 

closure function (Yu et al., 2008) is applied to Equation (18), the new schemes are 278 

presented as below. 279 

2.3.1. Hybrid TEMOM-log MOM (I) 280 

In the TEMOM, the closure function has the following expression, 281 

𝑚𝑘 = (
𝑢𝑘−2𝑘2

2
−
𝑢𝑘−2𝑘

2
)𝑚2 + (−𝑢

𝑘−1𝑘2 + 2𝑢𝑘−1𝑘)𝑚1 + (𝑢
𝑘 +

𝑢𝑘𝑘2

2
−
3𝑢𝑘𝑘

2
)𝑚0 

      ≜ 𝑚𝑘_Taylor，(𝑢 =
𝑚1
𝑚0
)    (19) 

As Equation (19) is applied to Equation (17), a new scheme of hybrid TEMOM-log 282 

MOM (I) is derived, 283 

{
 
 

 
 
𝑑𝑚0

𝑑𝑡
= 𝐵1𝑏

𝑚0
11/6

(41𝑚0
2𝑚2

2−190𝑚0𝑚1
2𝑚2−2443𝑚1

4)

648𝑚1
23/6

𝑑𝑚1

𝑑𝑡
= 0                                                                  

𝑑𝑚2

𝑑𝑡
= −𝐵1𝑏

65𝑚0
2𝑚2

2−670𝑚0𝑚1
2𝑚2−1987𝑚1

4

324𝑚0

1
6𝑚2

11
6

.       

 (20) 284 

2.3.2. Hybrid TEMOM-log MOM (II)  285 

In the log MOM, the closure function is obtained by assuming the log-normal 286 

particle size distribution (Lee et al., 1984),  287 

𝑚𝑘 = 𝑚0

1−
3

2
𝑘+

1

2
𝑘2

𝑚1
2𝑘−𝑘2𝑚2

−
1

2
𝑘+

1

2
𝑘2

.    (21) 288 

The derivation of Equation (21) is shown in Appendix 7.3. As Equation (21) is 289 

applied to Equation (18), another new scheme of hybrid TEMOM-log MOM (II) for 290 

solving SCE can be expressed as  291 



{
 
 
 
 

 
 
 
 𝑑𝑚0
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𝑑𝑚1
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                                                                                                                           (22) 292 

2.4. Family of TEMOM-log MOM 293 

According to the above-mentioned schemes, four MOM models can be classified 294 

for solving SCE through adjusting the combination of the binary polynomial kernels 295 

and the closure functions, which constitutes a family of TEMOM-log MOM 296 

 297 

Figure 1   Spanning map of the family of TEMOM-log MOM.  298 

 299 

Both the log MOM and TEMOM have been verified as reliable methods for 300 

solving SCE. However, the newly proposed and developed hybrid TEMOM-log 301 

MOM (I) and (II) have never been verified before. Equations (20) and (22) have 302 

explicit expressions, thus the numerical algorithms can be written using a very simple 303 

way. In the well-established log MOM widely used in AADM (Pratsinis, 1988), 304 

however, the ODEs have to be closed using a log-normal size distributed assumption. 305 

3 Computational description 306 

The SM is selected as a reference and is implemented under the same condition 307 

as the hybrid TEMOM-log MOM (I) and (II) models. The relative errors of the hybrid 308 



TEMOM-log MOM (I) and (II) models to the SM are discussed in Section 4. In the 309 

present study, the SM model is usually used for validating MOMs which is solved 310 

using the same computer code as that used in (Yu & Lin, 2017b). The log MOM and 311 

TEMOM are also implemented for comparison purposes. The solution with the 312 

assumption of an initial log-normal particle size distribution is used (Barrett & Jheeta, 313 

1996). Hence, 𝑘-th moment can be represented by 314 

𝑚𝑘 = 𝑀𝑘(𝑁0𝑣g0
𝑘 ) (23) 

where 𝑣g0  is the initial geometric mean volume. When the normalized terms are 315 

implemented in the moment ODEs as shown in Equations (20) and (23), 𝑁0 and 𝑣g0 316 

are included in the normalized time. Under this condition, the dimensionless time with 317 

respect to the coagulation kernel in the free molecular regime is 318 

𝜏 = 𝐵1𝑁0𝑣g0
1/6
𝑡                         (24) 

When the Equation (25) is introduced into Equations (20) and (22), the 319 

normalized equations for the hybrid models (I) and (II) are obtained, which are 320 

presented in Appendix 7.4. The initial moments can be expressed as  321 

𝑀𝑘0 = 𝜒
𝑘2                            (25) 

where 𝜒 = 𝑒(3ln𝜎g0)
2/2.  The normalization using Equations (23-25) are applied to the 322 

study in Sections 4.1 and 4.3. To be consistent with the study in Yu et al. (2009).,  323 

𝑁0 = 5.0 × 10
19 #/m

3
   and 

 𝑑g0 = 0.4 × 10
−9 m . 𝑑g0 is selected for the diameter of 324 

the H2SO4 molecular.  325 

4     Results and Discussion 326 

Both the numerical precision and efficiency of the newly proposed method for 327 

solving SCE are evaluated to verify its reliability in Sections 4.1 and 4.2. In Section 328 

4.3, the application of the newly proposed method in the study of the formation and 329 

growth of secondary particles in the turbulent exhaust jet plume is discussed.   330 

4.1 Model validation  331 

The purpose is to verify the numerical precision of the newly proposed and 332 

developed hybrid (I) and (II) models. To achieve this, the hybrid models (I) and (II), 333 



log MOM, TEMOM and SM are applied to solve the same SCE under the same 334 

conditions. Four crucial moments, namely 𝑀0, 𝑀1/3, 𝑀2/3, and 𝑀2, are evaluated. 335 

The relative errors of the 𝑘-th moments of the investigated methods of moments to the 336 

SM are expressed as: 337 

RE (%) =
𝑀𝑘(MOM) −𝑀𝑘(SM)

𝑀𝑘(SM)
                    (26)  

where 𝑀𝑘(MOM) is the 𝑘-th moments obtained from the investigated method of 338 

moments and 𝑀𝑘(SM) is the corresponding moments obtained from the referenced 339 

SM. All numerical calculations are implemented using the fourth-order Runge–Kutta 340 

method with a fixed time step of 0.001. The SM, log MOM and TEMOM are verified 341 

in Park et al. (1999b), Yu et al. (2008; 2015) and Yu & Lin (2017b).  342 



 343 

 344 

Fig. 2. The variance of 𝒌-th moments with time produced by the family of TEMOM-log MOM 345 



Fig.2 shows the comparison of the variances of four essential moments with 346 

respect to time among these two new hybrid models, log MOM (Lee et al., 1984), and 347 

TEMOM (Yu et al., 2008). In the numerical calculation, the initial geometric standard 348 

deviation of particle number distribution, 𝜎g0 = 1.2. The zeroth moment, 𝑀0, 349 

represents the particle number concentration; the 1/3th moment, 𝑀1/3, is a quantity 350 

characterizing particle surface concentration. The 2/3th moment (𝑀2/3) and 2th 351 

moment (𝑀2) have no actual physical meanings, but these two moment variables are 352 

essential parts to get other important physical quantities of aerosols such as geometric 353 

standard deviation of particle number distribution is given in Equation (27). For three 354 

investigated moments, namely 𝑀0, 𝑀1/3, and 𝑀2/3, all curves overlap with each 355 

other, while for 𝑀2 only the hybrid TEMOM-log MOM (II) deviates slightly from the 356 

other three models. The comparison implies that the hybrid TEMOM-log MOM (I), 357 

log MOM and TEMOM have nearly the same numerical precision for solving SCE 358 

undergoing Brownian coagulation in the free molecular regime. The hybrid TEMOM-359 

log MOM (II) has only a slight difference with the other three models.  360 

     361 



 362 

 363 

Fig. 3. Relative errors of 𝒌-th moments of the family of TEMOM-log MOM to the referenced SM in the free molecular regime 364 

 365 

 366 



For a better evaluation of the reliable new method, the relative errors (REs) of the 367 

four moments of the family of TEMOM-log MOM are investigated to the referenced 368 

SM as shown in Fig. 3. The SM is usually considered as an exact numerical solution 369 

to the SCE (Otto et al., 1999). It is clear that these four methods in the family of 370 

TEMOM-log MOM have almost the same variance trend and the maximum relative 371 

error of the hybrid TEMOM-log MOM (II) has found in 𝑀0, 𝑀1/3, 𝑀2/3, and 𝑀2, 372 

respectively. In addition, the other three methods almost overlap with each other 373 

especially for 𝑀2/3. The relative errors of these four methods almost overlap with 374 

each other again as 𝜏 → 102 for 𝑀0, 𝑀2/3, and 𝑀2, respectively. It is concluded that 375 

the newly proposed and developed hybrid models, especially the TEMOM-log MOM 376 

(I) has nearly the same numerical accuracy as the TEMOM and log MOM. As 377 

compared with the models of TEMOM-log MOM (I) and (II), the TEMOM-log MOM 378 

(I) has higher numerical accuracy.  379 
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 380 

Fig. 4. Comparison of the geometric standard deviations of the particle number 381 

distributions derived from the family of TEMOM-log MOM. 382 

The geometric standard deviation, 𝜎g of the particle number distribution (PSD) is 383 

a crucial indicator for characterizing the properties of PSD. The log MOM has the 384 

capability to directly produce the value of 𝜎g according to the first three moments 385 

(Lee et al., 1984). The other MOMs such as QMOM and TEMOM are verified to 386 



have the same capability of producing 𝜎g  using the same moments as the log MOM 387 

(Yu et al., 2008). Thus, 𝜎g  can be used as an indicator to verify the investigated 388 

methods. It is verified that this method has the ability to capture the polydispersity of 389 

particle size distribution. If an aerosol can be assumed to be a log-normal particle size 390 

distribution,  𝜎g can be expressed as a function of the first three moments (Pratsinis, 391 

1988), 392 

ln2 𝜎g =
1

9
ln(
𝑀0𝑀2
𝑀1
2 )  (27) 

In Fig. 4, the values of 𝜎g for various investigated methods are presented and 393 

compared. The values of 𝜎g from all MOMs of the family of TEMOM-log MOM 394 

achieve their own asymptotic values. The asymptotic value of 𝜎g of TEMOM is 395 

1.345, which is the closest to the value 1.346 produced by the QMOM with 6 nodes 396 

(Yu et al., 2008). As expected, both the hybrid TEMOM-log MOM (I) and (II) models 397 

achieve their asymptotic values. The values of 𝜎g of the log MOM, and the hybrid 398 

TEMOM-log MOM (I) and (II) models are 1.355, 1.365 and 1.315, respectively (Yu 399 

et al., 2008). The hybrid TEMOM-log MOM (I) model generates nearly the same 400 

𝜎g as the TEMOM and log MOM, whereas the hybrid TEMOM-log MOM (II) model 401 

deviates from the other three investigated methods. It is concluded the hybrid 402 

TEMOM-log MOM (I) model is a more precise method than the hybrid TEMOM-log 403 

MOM (II) by evaluating the four moments and their geometric standard deviations. 404 

The TEMOM-log MOM (I) model has very nearly the same numerical precision as 405 

the TEMOM and log MOM in numerical precision. 406 

4.2 Numerical efficiency  407 

Table 1  Computational time through executing the fourth-order Runge-Kutta 408 

method with a fixed time step, 0.001.  409 

Methods Computational time 

SM ~72.00 hour 

TEMOM ~5.05 s 

Log MOM ~6.00 s 

TEMOM-log MOM (I) ~5.00 s 

TEMOM-log MOM (II) ~8.08 s 



The numerical precision and efficiency are equally important to determine the 410 

feasibility of any numerical models. Here, all the four investigated moment models as 411 

well as the SM, are implemented to 𝜏 = 100  The numerical efficiency of investigated 412 

models is also evaluated by comparing their computational times. For the SM, the 413 

section number is 500, which ensures the high numerical accuracy of this SM method.  414 

Table 1 shows the computational time consumed by different investigated 415 

models. The ODEs are all solved numerically by executing the fourth-order Runge-416 

Kutta method with a fixed time step, 0.001 under an Intel(R) Core (TM) i7-3820 CPU  417 

and Microsoft Visual Studio 2008. The time step, 0.001 is selected because the 418 

numerical accuracy under the same time step has been validated in our previous study 419 

(Yu et al., 2008). Relative to all the MOMs, the SM consumes relatively very huge 420 

computational time. The consumed time of the TEMOM-log MOM (I) model is 421 

nearly the same as TEMOM but is smaller than log MOM and TEMOM-log MOM 422 

(II) models. By comparing Equations (22) with (22), the mathematical form of the 423 

TEMOM-log MOM (II) is much more complex than that of the TEMOM-log MOM 424 

(I), thus the former one needs more numerical calculations at each time step. 425 

Therefore, it is concluded that the numerical efficiency of the TEMOM-log MOM (I) 426 

model has clearly greater than the SM, log MOM and TEMOM-log MOM (II) 427 

models, and is even greater than the well-known TEMOM. 428 

In conclusion, the TEMOM-log MOM (I) model is verified to be a promising 429 

model for solving SCE in terms of both numerical efficiency and accuracy. In 430 

addition, this model has wider applications than the current log MOM because it 431 

overcomes the shortcoming of the log MOM with the pre-requirement of assumed 432 

log-normal particle size distribution. In the present study, the TEMOM-log MOM (I) 433 

model is utilized to study the secondary nanoparticle formation and subsequent 434 

growth in a turbulent jet plume in Section 4.3. 435 

4.3 Application of the TEMOM-log MOM (I) model 436 

In the atmospheric environment, it has been realized that most nanoparticles 437 

come from a multicomponent route, i.e. binary homogeneous nucleation process of 438 

water-sulfuric acid vapors, whereas a complete theoretical understanding of this 439 

phenomenon is still a challenge due to it's complicated chemical/physical processes 440 

(Chan et al. 2010a and 2010b, Harrison et al., 2018; Liu & Chan, 2016; Maurya et al., 441 

2018; Nagpure et al., 2011; Olin et al., 2019; Zhou & Chan, 2011). Due to the 442 

unignorable contribution of gaseous and particulate emissions which are emitted from 443 

the power plants and motor vehicles into the atmosphere (Chan, Liu, et al., 2010; 444 

Chan, Zhou, et al., 2010; Chan & Ning, 2005; Ning et al., 2005a; Wang et al., 2006; 445 

Zhou & Chan, 2011), a lot of attention has been focused on the secondary particles. 446 

Most of the particle number emitted by engines is in the nanoparticle range (i.e., 447 

𝑑𝑝 <50 nm), especially with the improvement of advanced engine technologies and 448 

aftertreatment devices, much higher concentrations of nanoparticles than older 449 



designs are produced nowadays. More and more evidence confirmed that these 450 

nanoparticles might have a more negative effect on human health than micrometer 451 

and larger particles(Gnach et al., 2015; Harrison et al., 2018). This has raised a 452 

question about how to control the emission of nanoparticles before and after the 453 

emission conditions. Hence, it is essential to have a better understanding the dynamic 454 

processes of nanoparticle formation and subsequent growth in the atmospheric 455 

environment.  456 

The evolution of secondary particles in the exhaust is a complicated physical-457 

chemical process, which involves the momentum, heat and mass transfer, binary 458 

homogeneous nucleation, Brownian coagulation, Brownian and turbulent diffusions, 459 

condensation and thermophoresis (Liu et al., 2019). The appropriate numerical model 460 

is coupled the Navier-Stokes equations for flows and the general dynamic equation 461 

for particles. The coupling is implemented in a one-way coupling way since 462 

nanoparticles have very little effect on the surrounding continuum.  463 

4.3.1 Governing equations  464 

4.3.1.1  Governing equations for fluid flow  465 

Nanoparticles have very small Stokes number in fluid flows to suggest that 466 

particles can follow the fluid without disturbing it. In the present study, the Navier-467 

Stokes equations for incompressible flows are: 468 

                 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0,                                            (28(a)) 

𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
(𝜈
𝜕𝑢𝑖
𝜕𝑥𝑗
),    (28(b)) 

𝜕𝜌ℎ

𝜕𝑡
+
𝜕𝜌ℎ𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
(
𝑘𝑡
𝐶𝑝

𝜕ℎ

𝜕𝑥𝑗
),                      (28(c)) 

where 𝑢𝑖 is the velocity, 𝑝 is the filtered pressure, ℎ is the specific enthalpy, 𝑘𝑡 is the 469 

thermal conductivity, 𝐶𝑝is the specific heat at constant pressure, the index i , j  is 470 

taken as 1, 2 and refers to the 𝑥 and 𝑦 directions, respectively.  The 𝑘 − 𝜀 turbulent 471 

model scheme is utilized to solve Equation (28) regarding the effect of turbulence on 472 

the flow. 473 

4.3.1.2 Governing equations for particles 474 

Within the Smoluchowski mean-field theory, the particle number concentration, 475 

𝑛(𝑣, 𝑡), is represented as a function in terms of particle volume, 𝑣, and time, 𝑡. Taking 476 

into consideration the physical terms of fluid convection, thermophoretic drift, 477 

Brownian and turbulent diffusion, Brownian coagulation, condensation and 478 

nucleation, the governing equation for 𝑛(𝑣, 𝑡) can be expressed as:                      479 



𝜕𝑛(𝑣, 𝑡)

𝜕𝑡
+
𝜕 (𝑢𝑗𝑛(𝑣, 𝑡))

𝜕𝑥𝑗⏟        
convection

+
𝜕 ((𝑢𝑡ℎ)𝑗𝑛(𝑣, 𝑡))

𝜕𝑥𝑗⏟          
thermophoresis

=    
𝜕

𝜕𝑥𝑗
(Γ 

𝜕𝑛(𝑣, 𝑡)

𝜕𝑥𝑗
)

⏟          
diffusion

                      

+
1

2
∫ 𝛽(𝑣 − 𝑣′, 𝑣′)𝑛(𝑣 − 𝑣′, 𝑡)𝑛(𝑣′, 𝑡)𝑑𝑣′
𝑣

𝑣∗

− 𝑛(𝑣, 𝑡)∫ 𝛽(𝑣, 𝑣′)𝑛(𝑣′, 𝑡)𝑑𝑣′
∞

𝑣∗⏟                                                
coagulation

+
𝜕𝐺𝑁(𝑣, 𝑡)

𝜕𝑣⏟      
condensation

+ 𝐽(𝑣∗)𝛿(𝑣 − 𝑣∗)⏟          
nucleation

              (29)

     

 

where 𝐺 is the growth rate of nucleus volume due to condensation, 𝛤 is the sum of the 480 

turbulent diffusion and Brownian diffusion coefficients (𝛤 = 𝛤𝑡 + 𝛤𝐵), 𝛽(𝑣, 𝑣′) is the 481 

coagulation kernel between particles of two volumes as shown in Equation (2), 𝐽 is 482 

the nucleation rate, 𝑣∗ is the volume of a stable sulfuric acid-water (H2SO4-H2O) 483 

monomer, 𝛿 is the Kronecker Delta function and 𝑢th is the thermophoretic velocity.  484 

The Equation (29) is usually called the general dynamics equation (GDE), 485 

which cannot be directly coupled with Equation (28) for calculation due to its too 486 

many degrees relative to the particle volume 𝑣. In order to overcome the shortcoming 487 

of the GDE, the suitable numerical scheme is to transfer Equation (29) with respect to 488 

{𝑛(𝑣, 𝑡)} to the moment {𝑚𝑘}.  The moment transformation involves multiplying 489 

Equation (29) by 𝑣 and then integrating over the entire particle size distribution, and 490 

then the governing equation for the 𝑘 −th moment is expressed as, 491 

 492 

𝜕𝑚𝑘

𝜕𝑡
+
𝜕(𝑢𝑗 + (𝑢𝑡ℎ)𝑗)𝑚𝑘

𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
(𝛤 
𝜕𝑚𝑘

𝜕𝑥𝑗
) + 𝑘𝐵1ℏ𝑚𝑘−

1
3

1

𝛼
+ 𝐽(𝑣∗)𝑣∗ 𝑘

+ [
𝜕𝑚𝑘

𝜕𝑡
]
coag

(𝑘 = 0,1,2)        (30) 

 493 

where [
𝜕𝑚𝑘

𝜕𝑡
]coag is calculated using the Equation (20) of TEMOM-log MOM (I) 494 

model. For the unresolved moment, 𝑚𝑘−1/3 in Equation (30), the closure model in 495 

Equation (19) needs to be used to achieve the final closure of equations. In the 496 

implementation of TEMOM-log MOM (I) model, only the first three order moments 497 

need to be explicitly solved.  498 

Many studies have indicated that sulfuric acid tends to gather water molecules 499 

around to form hydrates. These hydrates are considered to stabilize the vapor and 500 

reduce the nucleation rate by a factor 103~108 (Vehkamaki et al., 2003). In the 501 



present study, the advanced parameterization model of Vehkamaki et al. (2003) 502 

accounting for high-temperature emissions is used, which is verified to be suitable for 503 

the study of particulate matters emitted from engine (Yu et al., 2009). In this new 504 

model, the key variables such as nucleation rate 𝐽(𝑣∗), the mole fraction and the total 505 

number of molecules of sulfuric acid in a critical cluster are taken as functions of 506 

temperature, relative humidity and total gas-phase concentration of sulfuric acid.  507 

In the model of Vehkamaki et al. (2003), the mole fraction of sulfuric acid 508 

𝑥∗ in a critical cluster is given by 509 

 510 

𝑥∗ = 0.847012 − 0.0029656𝑇 − 0.00662266ln(𝑁𝑎) + 0.0000587835𝑇 ln(𝑁𝑎)                    

+0.0592653ln(𝑅𝐻) − 0.000363192𝑇 ln(𝑅𝐻) + 0.0230074(ln(𝑅𝐻))2                       

+0.0000851374𝑇(ln(𝑅𝐻))2 + 0.00217417(ln(𝑅𝐻))2

−7.923 × 10−6𝑇(ln(𝑅𝐻))3

 

                                                                                                                                 (31) 511 

where 𝑁𝑎 is the total gas-phase concentration of sulfuric acid, 𝑇 is the absolute 512 

temperature and 𝑅𝐻 is the relative humidity in percentage. The nucleation rate is 513 

given by an exponential of a third-order polynomial of ln(𝑅𝐻) and ln(𝑁𝑎) 514 

 515 

𝐽(𝑣∗) = exp[𝑎(𝑇, 𝑥∗) + 𝑏(𝑇, 𝑥∗)ln(𝑅𝐻) + 𝑐(𝑇, 𝑥∗)(ln(𝑅𝐻))2 + 𝑑(𝑇, 𝑥∗)(ln(𝑅𝐻))3

                      + 𝑒(𝑇, 𝑥∗)ln(𝑁𝑎) + 𝑓(𝑇, 𝑥∗)ln(𝑅𝐻)ln(𝑁𝑎) + 𝑔(𝑇, 𝑥∗)(ln(𝑅𝐻))2ln(𝑁𝑎)       

                    + ℎ(𝑇, 𝑥∗)(ln(𝑁𝑎))2 + 𝑖(𝑇, 𝑥∗)ln(𝑅𝐻)(ln(𝑁𝑎))2 + 𝑗(𝑇, 𝑥∗)(ln(𝑁𝑎))3                    

 

                                                                                                                                 (32) 516 

where the coefficients 𝑎(𝑇, 𝑥∗) … 𝑗(𝑇, 𝑥∗) are functions of temperature 𝑇 and critical 517 

cluster mole fraction 𝑥∗. The total number of molecules in the critical cluster Ntot
∗  is 518 

given by  519 

 520 

𝑁tot
∗ = exp[𝐴(𝑇, 𝑥∗) + 𝐵(𝑇, 𝑥∗)ln(𝑅𝐻) + 𝐶(𝑇, 𝑥∗)(ln(𝑅𝐻))2 + 𝐷(𝑇, 𝑥∗)(ln(𝑅𝐻))3

                  + 𝐸(𝑇, 𝑥∗)ln(𝑁𝑎) + 𝐹(𝑇, 𝑥∗)ln(𝑅𝐻)ln(𝑁𝑎) + 𝐺(𝑇, 𝑥∗)(ln(𝑅𝐻))2ln(𝑁𝑎)      

+ 𝐻(𝑇, 𝑥∗)(ln(𝑁𝑎))2 + 𝐼(𝑇, 𝑥∗)ln(𝑅𝐻)(ln(𝑁𝑎))2 + 𝐽(𝑇, 𝑥∗)(ln(𝑁𝑎))3    

 

                                                                                                                               (33) 521 

where the coefficients 𝐴(𝑇, 𝑥∗)… 𝐽(𝑇, 𝑥∗) are also functions of temperature 𝑇 and 522 

critical cluster mole fraction 𝑥∗. The detailed definitions for these coefficients can be 523 

found in the study of Vehkamaki et al. (2003). 524 

In addition, several key functions or parameters, including the velocity of 525 

thermophoresis, 𝑢𝑡ℎ, subgrid-scale turbulent diffusivity coefficient, 𝛤t, and Brownian 526 

diffusion coefficient, 𝛤b, the growth rate of particle size due to the arrival and loss of 527 

the sulfuric acid (H2SO4) molecules to the entire droplet surface, 𝐺, can be found in 528 

(Liu et al., 2019). 529 

4.3.1.3 Governing equations for gas species 530 

During the numerical simulation, the evolution of gas species including 531 

sulfuric acid and water vapors, must be determined before making the calculation of 532 

moment ODEs. Based on the moment transformation in Equation (4), the differential 533 



equations for the evolution of gas species, including sulfuric acid, 𝑌1, water vapors, 534 

𝑌2, and CO2 tracer, 𝑌3  are expressed as: 535 

𝜕𝑌1
𝜕𝑡
+
𝜕𝑢𝑗𝑌1
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
(𝐷1

𝜕𝑌1
𝜕𝑥𝑗
) + 𝑅 − 𝐽(𝑣∗)𝑘∗ −

𝐵1
𝑣∗
ℏ𝑚2 3⁄                    (34(𝑎)) 

𝜕𝑌2
𝜕𝑡
+
𝜕𝑢𝑗𝑌2
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
(𝐷2

𝜕𝑌2
𝜕𝑥𝑗
)                                                                     (34(b)) 

𝜕𝑌3
𝜕𝑡
+
𝜕𝑢𝑗𝑌3
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
(𝐷3

𝜕𝑌3
𝜕𝑥𝑗
)                                                                    (34(c)) 

where 𝑘∗is the number of sulfuric acid molecules in the critical cluster which is 536 

denoted by 𝑘∗ = Ntot
∗ · 𝑥∗, and 𝑅 is the birth rate. 𝐷1, 𝐷2 and 𝐷3 are molecular 537 

diffusion coefficients of sulfuric acid, water vapors and CO2 tracer respectively. 𝑘∗is 538 

obtained from the nucleation model of Vehkamaki et al. (2003). 539 

4.3.1.4 Configuration of the computational domain 540 

 541 

Figure 5 Cartesian coordinate system (x, y, z) of the computational 542 

domain 543 

Fig.5 is the Cartesian coordinate system (x, y, z) used in the numerical 544 

simulations for the vehicle exhaust plume, which is consistent with the experimental 545 

setup shown in  (Ning et al., 2005b) and the same as the numerical calculation shown 546 

in Yu et al. (2009). The diameter of the vehicle tailpipe is D = 0.03 m. The 547 

computational domain is 1000D in x-coordinate × 333𝐷 in y-coordinate. In order to 548 

make comparison with the experimental data and the previous numerical calculation 549 

data using the TEMOM model, the tailpipe exit velocity used is 4.8 m/s and the 550 

exhaust temperature used is 400 K; H2O and CO2 are accounted for 6% and 12% in 551 

mole fraction, respectively. The velocity of surrounding air is taken as 0 m/s for the 552 

present numerical simulation. The numerical calculation is simplified to be a two-553 

dimensional axisymmetric model which the vehicle tailpipe is a circular pipe. 554 



All the governing equations are discretized by the finite-volume method. The 555 

Quadratic Upwind Interpolation for Convective Kinematics (QUICK) scheme is 556 

adopted for the convective terms in Equations (28), (30) and (34). For the governing 557 

equations accounting for particles and gas species in Equations (30) and (34), a user-558 

defined functions (UDF) in ANSYS Fluent are utilized. The TEMOM-log MOM (I) 559 

in Equation (20) is utilized to calculate the evolution of nanoparticle dynamics due to 560 

Brownian coagulation. The calculation time step t is fixed to be 0.001 s for all the 561 

numerical simulations regarding both the numerical efficiency and accuracy. In the 562 

numerical simulation, all calculations are implemented using normalized parameters; 563 

the details for the normalization are the same as in our previous research works (Liu, 564 

et al. Liu, 2019; Yu et al., 2009). 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 



  584 

Figure 6  The contours of (a) the velocity magnitude (m/s)), (b) the normalized secondary particle number concentration, M0 ,  (c) 585 

normalized particle volume concentration, M1   and (d) nucleation rate of secondary particles, 𝑱(𝒗∗) (#/(s∙ 𝐦𝟑). 586 

a 

d 

b 

c 



 587 

(a)                                                                                 (b) 588 

 589 

                                                                                                                                        (c) 590 

Figure 7   The radial distance, y (m) of (a) the normalized secondary particle number concentration, M0 , (b) normalized particle volume 591 

concentration, M1  and (c) nucleation rate of secondary particles at the axial tailpipe exit, x/D = 3.33,  16.67, 33.33 and 66.66. Red dot line 592 

= 3.33,  Pink dot line =16.67, Green dot line = 33.33 and blue dot line = 66.66  in Figures 6(a), (b) &(c). 593 

 594 

 595 
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Figure 6 shows the distribution of (a) the velocity magnitude, (b) normalized secondary 596 

particle number concentration, (c) normalized particle volume concentration and (d) nucleation 597 

rate of secondary particles. It should be noted both 𝑀0 and 𝑀1 shown in Figures 6(b) and (c) are 598 

normalized values according to the normalized equation presented in Eq. (23). In the turbulent jet 599 

flow, the evolution of large vortex is found to dominate the distribution and evolution of particle 600 

quantities, including the particle number concentration, particle volume concentration, averaged 601 

particle size and geometric standard deviation of particle number distribution in the surrounding 602 

air condition (Garrick & Khakpour, 2004; Lin et al., 2016).  603 

The effect of the large vortex on the distribution of statistical moment quantities are 604 

represented in Figures 6(b) and (c), where the maximum value of particle number concentration 605 

appears at the near tailpipe exit 𝑥 ≈ 0.25~0.35 m due to the strong mixture between the exhaust 606 

jet flow and the surrounding cold air occurs. In the jet region, the exhaust jet plume temperature 607 

decreases to a lower level due to the mixing with the surrounding cold air, and makes the 608 

occurrence of binary homogeneous nucleation. It also leads to the high nucleation rate for 609 

H2SO4-H2O monomers occurs there, so as the high concentration for the particle number 610 

concentration as shown in Figure 6(b). However, it is not surprisingly observed that the main 611 

nucleation rate appears only at near tailpipe exit region as shown in Figure 6(d) especially the 612 

region is much closer to the tailpipe exit than the high particle number concentration region as 613 

shown in Figure 6(b). Further exhaust jet flow downstream, eddies form and entrain the 614 

surrounding cold air into the main exhaust jet flow and decrease the gas temperature in the 615 

mixing region but no high particle number concentration is formed.  616 

In Figure 6(c), it can be observed that the particle mass concentration reaches the maximum 617 

value away from the tailpipe exit at 𝑥 ≈ 0.50~0.70 m. Contrary to the particle number 618 

distribution and nucleation rate, the particle mass distribution mainly distributes in the centerline 619 

of exhaust jet flow rather in the jet interface. The evolution and distribution of particle dynamics 620 

obtained in this study is consistent with the results obtained from the transient method, such as 621 

large eddy simulation (Yu et al., 2009), which is the result of external effect such as convection, 622 

diffusion and  thermophoresis, and the internal dynamic processes (i.e.,  nucleation, condensation 623 

and coagulation). In research group of Garrick (Garrick, 2011; Miller & Garrick, 2004; Murfield 624 

& Garrick, 2013) on nanoparticle-laden jet and boundary flows, the new formation of particles 625 

on the turbulent interface in boundary layers is also observed, which is considered to be the main 626 

source of particle formation in a turbulent flow. 627 

The radial distance of normalized 𝑀0 and 𝑀1, and nucleation rate at different axial exhaust 628 

jet distances from the tailpipe exit are shown in Figure 7. Both the newly proposed TEMOM-log 629 

MOM (I) model and the widely recognized log MOM model are implemented for the 630 

comparative study. There are no obvious difference in the investigated three physical quantities 631 

for both MOMs. It should be noted  the log MOM is still now the most widely used method in 632 

the atmospheric aerosol dynamics due to its high numerical efficiency, for example WRF-Chem 633 

in the field of earth science. In Figures 7(a) and (b), it is clear in the region very close to the 634 

tailpipe exit, i.e. 𝑥 = 0.1 m, the values of both 𝑀0 and 𝑀1 reach their maximum at the region 635 

away from the centerline of the exhaust jet flow, while further exhaust jet flow downstream,  636 

𝑥 = 0.5 to 2.0 m, the values of both 𝑀0 and 𝑀1 in the centerline region of exhaust jet flow are 637 



Confidential manuscript submitted to replace this text with name of AGU journal 

 

larger than that in the surrounding region. It implies that in the downstream region, the 638 

surrounding air is entrained by large vortices into the nanoparticle-laden multiphase system, 639 

which dominates the evolution of the particle dynamics rather than the nucleation process. In 640 

Figure 7(c), the nucleation process only appears at 𝑥 = 0.1 and 0.2 m, while further exhaust jet 641 

flow downstream at 𝑥 = 1.0 m and 2.0 m, no new particle formation takes place. This is further 642 

verified the conclusion from Figure 6(d) that in only the region which new particle can be 643 

formed at very near region to the tailpipe exit.  In addition, it is clear that the nearer to the 644 

tailpipe exit, the higher nucleation rate is formed. The finding would be contrary to the common 645 

knowledge that new particles are mostly formed in the region where the jet and the surrounding 646 

cold air can be strongly mixed in the downstream exhaust jet flow region (Lin et al., 2016). In 647 

the present study, only new particle formation is observed in the jet flow boundary which is very 648 

close to the tailpipe exit, while in the downstream exhaust jet flow region where the strong 649 

mixture is achieved but no new particle formation is observed. This should contribute to the fact 650 

that the number concentration formed of new particles by the main precursor (i.e., H2SO4 vapor) 651 

cannot meet the minimum requirement to achieve thermally stable H2SO4- H2O monomer in the 652 

exhaust jet flow downstream.  653 

5 Conclusions 654 

In the present study, a new mathematical method for solving the SCE undergoing Brownian 655 

coagulation in the free molecular regime is firstly proposed and developed. In this method, the 656 

concept of well-established TEMOM and log MOM for approximating collision kernel and 657 

implicit moments are hybridized. The numerical precision and efficiency of the new method are 658 

evaluated by comparing to the SM as well as the TEMOM and classic log MOM. The results 659 

imply that the new method in which the collision kernel is approximated with the concept of log 660 

MOM and the implicit moments are closed by the concept of TEMOM which has nearly the 661 

same numerical precision and efficiency as the TEMOM and log MOM. This new method is 662 

further successfully applied to the study of secondary nanoparticle formation and subsequent 663 

growth of H2SO4-H2O in a turbulent jet plume. With the new method, the formation of new 664 

particles only appears in the interface region of the turbulent exhaust jet which is very close to 665 

the tailpipe exit, while there is no new particle formation in the strong mixture between the 666 

exhaust jet plume and the surrounding cold air along the downstream. The new method 667 

overcomes the limitation of the classical log MOM that the particle size distribution must follow 668 

log-normal particle size distributions with respect to time. Thus this new method provides wide 669 

applications where the atmospheric aerosol size distribution is typical bimodal or multi-modal 670 

cases.  671 
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7 Appendix   679 

7.1  The derivation of Equation (11) 680 

𝛽(𝑣, 𝑣1) = 𝐾(1/𝑣 + 1/𝑣1)
1
2(𝑣

1
3 + 𝑣1

1
3)2 

= 𝐾(𝑣 + 𝑣1)
1
2(𝑣

1
6𝑣1

−
1
2 + 2𝑣−

1
6𝑣1

−
1
6 + 𝑣−

1
2𝑣1

1
6) 

≈ 𝐾𝑏𝑘(𝑣
1
2 + 𝑣1

1
2)(𝑣

1
6𝑣1

−
1
2 + 2𝑣−

1
6𝑣1

−
1
6 + 𝑣−

1
2𝑣1

1
6) 

= 𝐾𝑏𝑘(𝑣
2
3𝑣1

−
1
2 + 2𝑣

1
3𝑣1

−
1
6 + 𝑣1

1
6 + 𝑣

1
6 + 2𝑣−

1
6𝑣1

1
3 + 𝑣−

1
2𝑣1

2
3) 

≜ 𝛽̃Log(𝑣, 𝑣1)                                                                                                                            (A1) 681 

7.2 The derivation of Equation (16) 682 

𝛽(𝑣, 𝑣1) 

= 𝐾(1/𝑣 + 1/𝑣1)
1
2(𝑣

1
3 + 𝑣1

1
3)2 

= 𝐾(𝑣 + 𝑣1)
1/2(𝑣1/6𝑣1

−1/2 + 2𝑣−1/6𝑣1
−1/6 + 𝑣−1/2𝑣1

1/6) 
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−
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−
1
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≜ 𝛽̃Taylor(𝑣, 𝑣1)                                                                                                                          (A2) 683 

7.3 The derivation of Equation (23) 684 

The k-th moment with closure function by assuming the log-normal particle size distribution 685 

takes the following expression 686 

𝑚𝑘 = ∫ 𝑒𝑘𝑦
∞

0

⋅
𝑁0

3√2𝜋ln𝜎
𝑒
−
(𝑦−ln𝑣𝑔)

2

18ln2𝜎 d𝑦 

       =
𝑁0

3√2𝜋ln𝜎
∫ 𝑒

−
𝑦2−2(ln𝑣𝑔+9kln

2𝜎)𝑦+ln2𝑣𝑔
18ln2𝜎

∞

0

d𝑦 
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= 𝑒𝑘ln𝑣𝑔+
9
2𝑘

2ln2𝜎 ⋅
𝑁0

3√2𝜋ln𝜎
∫ 𝑒

−
(𝑦−ln𝑣𝑔−9𝑘ln

2𝜎)
2

18ln2𝜎

∞

0

d𝑦 

= 𝑚0𝑒
𝑘ln(𝑣𝑔)+

9

2
𝑘2ln2𝜎

                                                                                                        (A3)  687 

where 𝑁0(= 𝑚0) is the initial total number of particles, 𝑣𝑔 is the geometric mean volume. 688 

Equation (A3) can be further expressed in terms of 𝑚0, 𝑚1 and 𝑚2: 689 
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7.4 Normalized moment ODEs 691 

When the Equation (25) is introduced into Equations (20) and (22), the normalized equations for 692 

the hybrid models (I) and (II) are obtained as, respectively, 693 
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and  695 
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