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Abstract

While hydraulic fracturing is widely used to enhance the permeability of deep geothermal, gas and oil reservoirs, it remains

challenging to infer the heterogeneous distribution of permeability in the fractured zone. Typically, a limited number of boreholes

are available at which reservoir imaging and tracer testing can be conducted. The number of observations is often far fewer than

the number of estimable permeabilities, making model inversion ill-posed. To overcome this problem, this study combined the

autoencoder neural network (a deep learning approach) with Bayesian inversion algorithm (using Markov Chain Monte Carlo,

MCMC sampling) to estimate permeability in the enhanced geothermal reservoir, based on a single-well-injection-withdrawal

test (SWIW). The autoencoder neural network was used to reduce parameter dimensionality into low-dimension codes by four

orders of magnitude, while MCMC sampling was used to update the low-dimension codes according to the SWIW observations.

The spatial distribution of permeability was then reconstructed from these low-dimension codes using the original autoencoder

neural network. Application of the approach to a synthetic enhanced geothermal system demonstrated that the methodology

achieved rapid stabilization of the Bayesian inversion. When the root mean square error (RMSE) between modelled and observed

borehole temperature and flow rate values was less than unity, estimated permeability values were comparable to the synthetic

reference case, with a mean square error lower than 0.001 mD. The combination of the deep-learning based dimension reduction

technique and Bayesian inversion algorithm allow the estimate of permeability distribution in deep artificial reservoirs based on

limited number of boreholes.

1
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Key Points 8 

 Convolutional neural network was developed for 3D hydraulic parameters 9 
dimensionality reduction 10 

 Neural network released the prior Gaussian assumption and shortened the burn-in 11 
period of Bayesian inversion 12 

 Joint neural network and Bayesian inversion enabled permeability estimation in deep 13 
reservoirs based on single-well test 14 

Abstract 15 

While hydraulic fracturing is widely used to enhance the permeability of deep geothermal, 16 
gas and oil reservoirs, it remains challenging to infer the heterogeneous distribution of 17 
permeability in the fractured zone. Typically, a limited number of boreholes are available at 18 
which reservoir imaging and tracer testing can be conducted. The number of observations is 19 
often far fewer than the number of estimable permeabilities, making model inversion ill-20 
posed. To overcome this problem, this study combined the autoencoder neural network (a 21 
deep learning approach) with Bayesian inversion algorithm (using Markov Chain Monte 22 
Carlo, MCMC sampling) to estimate permeability in the enhanced geothermal reservoir, 23 
based on a single-well-injection-withdrawal test (SWIW). The autoencoder neural network 24 
was used to reduce parameter dimensionality into low-dimension codes by four orders of 25 
magnitude, while MCMC sampling was used to update the low-dimension codes according to 26 
the SWIW observations. The spatial distribution of permeability was then reconstructed from 27 
these low-dimension codes using the original autoencoder neural network. Application of the 28 
approach to a synthetic enhanced geothermal system demonstrated that the methodology 29 
achieved rapid stabilization of the Bayesian inversion. When the root mean square error 30 
(RMSE) between modelled and observed borehole temperature and flow rate values was less 31 
than unity, estimated permeability values were comparable to the synthetic reference case, 32 
with a mean square error lower than 0.001 mD. The combination of the deep-learning based 33 
dimension reduction technique and Bayesian inversion algorithm allow the estimate of 34 
permeability distribution in deep artificial reservoirs based on limited number of boreholes.  35 

Key words 36 

Markov chain Monte Carlo inversion; Deep learning; Tracer test; Enhanced geothermal 37 
system; Permeability 38 

Plain Language Summary 39 

Hydraulic fracturing is widely used to enhance permeability in deep oil, shale and geothermal 40 
reservoirs. However, the number of boreholes for hydraulic tests is often limited, which make 41 
the permeability inversion in deep reservoirs ill-posed. Deep learning approach is employed 42 
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in this study to reduce the parameters dimensionality, prior to the Bayesian inversion, which 43 
can balance the number of known and unknown and shorten the inversion period toward the 44 
optimum solutions. The joint application of deep learning and Bayesian inversion is tested to 45 
be an effective way to infer heterogeneous distribution of permeability in fractured zone in 46 
deep reservoirs based on single-well test.  47 

1 Introduction 48 

Hydraulic fracturing is a widely-used technique for enhancing the permeability of deep 49 
gas, oil and geothermal reservoirs [e.g. Hubbert and Willis, 1972; Legarth et al., 2005; 50 
Sovacool, 2014]. Characterization of the permeability of these fractured reservoirs is critical 51 
when locating production bores to maximize energy production. Currently, a limited number 52 
of methods are available for imaging fractures in deep reservoirs. These include downhole 53 
imaging [Prensky, 1999; Vidal et al., 2017], which can image near-well fractures. Surface or 54 
downhole geophysical prospecting, such as micro-seismic monitoring [Majer et al., 2007; 55 
Maxwell et al., 2010], can monitor fracturing processes and estimate the fractured volume. 56 
However, neither downhole nor surface geophysical prospecting can determine the spatial 57 
distribution of internal fracture structures, e.g. fracture aperture or equilibrium permeability. 58 
Characterization of these features is necessary for the prediction of the mass and energy 59 
transport in reservoirs.  60 

Tracer test can help inferring the internal fracture properties by monitoring surface tracer 61 
responses (e.g. temperature, fluid flux, chemical tracer concentrations) during cycling of 62 
featured fluid in a reservoir [LeBlanc et al., 1991; Sanjuan et al., 2006]. It has been used in 63 
the inverse estimation of inter-bore connectivity, water-rock interaction area, and 64 
permeability and dispersivity values [Garabedian et al., 1991; Maloszewski et al., 1999]. 65 
Most applications assume homogeneous reservoir properties when simulating mass and heat 66 
transport in the subsurface using analytical solutions [Tsang, 1995]. Conversely, one 67 
advanced approach to the estimation of heterogeneous reservoir properties is hydraulic 68 
tomography [Lee and Kitanidis, 2014; T C J Yeh and Liu, 2000]. This methodology, however, 69 
requires extensive cross-bore tracer tests in order to obtain a sufficient number of 70 
observations to undertake well-posed model inversion. Due to the high cost of drilling in 71 
deep reservoirs, the number of deep bores (and thus tracer tests) is typically limited, making 72 
the inference of heterogeneous reservoir parameters highly ill-posed [McLaughlin and 73 
Townley, 1996]. Alternatively, Bayesian inversion approaches can be used to estimate the 74 
summary statistics (e.g. mean and standard deviation) of reservoir parameters based on tracer 75 
observations [Vogt et al., 2012]. However, estimated parameters may be subject to 76 
considerable uncertainty, as the ill-posedness of the problem permits non-unique solutions. 77 

For solving the ill-posed problems, it is necessary to reduce parameter dimensionality, 78 
and thereby constrain uncertainty in the inversed parameters [Asher et al., 2015; W W G Yeh, 79 
1986]. Widely-employed dimensionality reduction methods include principal component 80 
analysis [Ding and He, 2004; Kambhatla and Leen, 1997], discrete wavelet transforms 81 
[Bruce et al., 2002], and singular value decomposition [Doherty and Hunt, 2010; Wall et al., 82 
2003]. Most of these methods assume that the model parameters are normally distributed. To 83 
avoid this limitation, Laloy et al. [2018; 2017] introduced two approaches using deep 84 
convolutional neural networks: variational autoencoder (VAE) and generative adversarial 85 
network (GAN), for dimensionality reduction of non-Gaussian parameters in channelized 86 
aquifer by a factor of 500.   87 

The deep-learning neural network above makes it possible to learn a customized low-88 
dimension latent space on which all prior models lie, that is, the prior model is to be learned 89 
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from complex geological realizations that cannot be described mathematically in the original 90 
parameter space by, for instance, a multivariate Gaussian model. When working with 91 
Bayesian framework, deep learning opens a door for faster and robust inversions of complex 92 
geological structures, for instance, continuous fracture permeability distribution in the 93 
reservoir. In this study, we establish a 3D autoencoder neural network, to express original 94 
high-dimension permeabilities into low-dimension codes; the correlations between codes and 95 
original permeability space in both horizontal and vertical direction can be addressed. 96 
Bayesian inversion is then used to estimate these codes based on single-well injection-97 
withdrawal test, prior to the estimation of high-dimension permeability directly. The method 98 
is tested on a synthetic fractured reservoir, which provides a new tool to estimate uneven 99 
distribution of fracture permeability in the reservoir based on the cost-flexible single-well test.   100 

2 Methods 101 

The methodology in this study is composed of three key parts: First, a deep learning 102 
approach featuring a 3D autoencoder neural network is used for the parameter dimensionality 103 
reduction and full-dimension parameter reconstruction; Second, forward fluid and heat 104 
transport model is used to relate full-dimension parameters to observations in tracer test (here 105 
the borehole temperature and fluid flux in a single-well injection-withdrawal test, SWIW); 106 
Third, a Bayesian inversion algorithm is used to update the low-dimension ‘codes’ in the 107 
autoencoder neural network by minimizing the root mean square error between modelled and 108 
observed  data in tracer test (Fig. 1).  109 

 110 

Figure 1. (a) 3D autoencoder neural network composed of (1) “encoder”, featuring full-dimension parameters 111 
as input and low-dimension ‘codes’ as output, and (2) “decoder”, reconstructing the full-dimension parameters 112 
from low-dimension codes; (b) Bayesian inversion model updating low-dimension codes according to the root 113 
mean square error between modelled and observed data (borehole temperature and flow fluxes) in tracer testing. 114 

2.1 Autoencoder neural network 115 

The autoencoder is a neural network that can be trained to compress high-dimension input 116 
parameters (here, a 3D spatial distribution of fracture permeability) into the low-dimension 117 
representative parameters (which are hereafter referred to as ‘codes’), and then uncompress 118 
the codes into original high-dimension parameters (Fig. 1a). The neural network connecting 119 
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the input high-dimension parameters to the low-dimension code is called ‘encoder’, while the 120 
one converting the code to high-dimension parameters is called ‘decoder’. The central layer 121 
containing the code is referred to as ‘latent layer’.  122 

The encoder is generally composed of two to four convolution layers, in which each layer 123 
converts the high-dimension input x into the low-dimension output h via [Hinton and 124 
Salakhutdinov, 2006]:  125 

𝐡(𝐱) = 𝑓(𝐰 ∙ 𝐱 + 𝒃) (1)  

where f is a nonlinear function that is referred to as an “activation function”, w is a 3D 126 
weights matrix (filter) and b is a bias vector; both follow a uniform distribution ranging from 127 
zero to unity. The output images of each convolutional layer provide the input for the next 128 
layer, and each layer is allowed to contain multiple images (Fig. 1a). For example, when the 129 
input to the encoder is a 3D image, a 3D weight filter of size Ni×Nj×Nk is used to calculate the 130 
p-th element in the output layer by [Laloy et al., 2017]:  131 

ℎ𝑚,𝑛,𝑜
𝑝 (𝐱) = 𝑓 (∑ 𝑤𝑖,𝑗,𝑘

𝑝𝑁𝑖,𝑁𝑗,𝑁𝑘
𝑖=1,𝑗=1,𝑘=1

𝑥𝑚+𝑖,𝑛+𝑗,𝑜+𝑘 + 𝑏
𝑝), (2)  

where m, n, o indicate the voxel position in the 3D image.  132 

The encoder starts from full-dimension parameters and output the low-dimension codes. 133 
Conversely, the decoder is composed of transposed convolution layers converting the low-134 
dimension codes to original full-dimension parameters. To enhance the mixing of the data 135 
flow via the decoder network, we added additional convolution layers after each transposed 136 
convolution layer in the decoder (Fig. 1a).  137 

Weight matrixes and the bias vectors in the encoder are updated to ensure the generated 138 
low-dimension codes following the standard normal distribution, by minimizing the 139 
Kullback–Leibler divergence (i.e. encoder loss function, L1) [Kullback and Leibler, 1951]:  140 

𝐿1 =
1

2
[∑ (𝜇𝑖

2 + 𝜎𝑖
2 − log𝜎𝑖

2)𝑑
𝑖=1 ] −

𝑑

2
, (3)  

where d is the number of training images used to train the neural network in each training, 141 
and 𝜇 and 𝜎 are the mean and standard deviation of the codes, respectively.  142 

The weights and biases used in the decoder are optimized to minimize the discrepancy 143 
between the original full-dimension parameters and those reconstructed by decoder; i.e. the 144 
decoder loss function (L2). This is defined as:   145 

L2= ∑ ‖𝑔(𝒛;𝐰, 𝒃) − 𝐱‖2𝑑
𝑖=1 , (4)  

where 𝐱 is the original full-dimension parameters, z is the code, and  𝑔(∙) represents the 146 
calculations in the decoder. Both weight and bias values used in the encoder and decoder are 147 
optimized using a stochastic gradient descent algorithm, i.e. the adaptive moment estimation 148 
algorithm [Kingma and Ba, 2014]. The autoencoder neural network above are implemented 149 
using the Tensorflow Python library [Abadi et al., 2016].  150 

2.2 Bayesian inversion 151 

Using a Bayesian inversion approach, a posterior distribution of parameters is 152 
proportional to the product of a prior distribution and a likelihood function as [Vrugt, 2016]:  153 

𝑝(𝒛|𝒚) ∝  𝑝(𝒛)𝐿(𝒛|𝒚). (5)  

In this study, y is the vector of tracer test observations (e.g. borehole temperature and fluid 154 
flux), p(z) is the prior distribution of the code z in the autoencoder (following a standard 155 
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normal distribution), and 𝐿(𝒛|𝒚) is the likelihood function, which is assumed to follow a log-156 
normal distribution, i.e.: 157 

𝐿(𝒛|𝒚) = −
𝑛

2
log(2𝜋) − 𝑛 log 𝜎 −

1

2
∑ (

𝑦𝑖−𝐹𝑖(𝐳)

𝜎
)
2

𝑛
𝑖=1 , 

(6)  

where n is the number of tracer test observations, 𝜎 is the standard deviation of the 158 
measurement error of the observations, 𝐹(𝐳) are the state variables (e.g. temperature and 159 
fluid flux) simulated via forward modelling.  160 

A Markov chain Monte Carlo algorithm implemented by the software DREAM(zs) 161 
rewritten in Python by Laloy et al. [2017] (https://github.com/elaloy/VAE_MCMC) is used to 162 
infer low-dimension codes in the autoencoder, which is then converted to the full-dimension 163 
parameters via the decoder and is used in the forward model to calculate the tracer test 164 
observations. Specifically, a random walk Metropolis-Hastings algorithm is used to draw and 165 
accept or reject random samples from prior distributions [Chib and Greenberg, 1995; 166 
Hastings, 1970; Metropolis et al., 1953].  167 

2.3 Forward model 168 

Heat and fluid transport in the subsurface are simulated using SEAWAT [Langevin et al., 169 
2008]. The governing equation for the density-dependent fluid flow is:  170 

𝜌𝑆
𝜕ℎ

𝜕𝑡
+ 𝜃

𝜕𝜌

𝜕𝑡
= 𝛻 [

𝜌𝑔𝑘

𝜇
𝜌0 (𝛻ℎ +

𝜌−𝜌0

𝜌0
𝑒)], (7)  

where ρ is fluid density [kg/m
3
], S is specific storage [m

-1
], h is the hydraulic head [m] of 171 

fluid at a reference temperature of 25 
o
C, t is time [s], 𝜃 is porosity [unitless], k is 172 

permeability [m
2
], μ is dynamic viscosity [kg/m.s], g is gravitational acceleration [m/s

2
], ρ0 is 173 

fluid density [kg/m
3
] at a reference temperature of 25 

o
C, and e is equal to unity in the 174 

vertical direction and zero in other directions [m].  175 

Fluid density and viscosity are both functions of temperature; i.e.: 176 

𝜌 = 𝜌 + 𝜌0𝛽(𝑇 − 𝑇0), (8)  

𝜇 = 𝑎 ∙ 10(
𝑏

𝑇+𝑐
)
, 

(9)  

where β is thermal expansion coefficient [-3.75×10
-4

 1/
o
C], T0 is the reference temperature, 177 

and a, b and c are unitless empirical coefficients, equal to 239.4×10
-7

, 248.37, and 133.15, 178 
respectively [Voss, 1984] 179 

Heat transport is simulated by solving the equation:  180 

(𝜃𝜌𝑐𝑓 + (1 − 𝜃)𝜌𝑠𝑐𝑠)
𝜕𝑇

𝜕𝑡
= 𝛻[(𝜆 + 𝛼𝑣𝜌𝑐𝑓)𝛻𝑇] − 𝜌𝑐𝑓𝛻(𝑣𝑇), 

(10)  

where 𝑐𝑓 and 𝑐𝑠 are the specific heat capacity[J/kg.
o
C] of fluids and solids, respectively, 𝜌𝑠 is 181 

rock density [kg/m
3
], T is temperature [

o
C], 𝛼 is thermal dispersivity [m], 𝑣 is the fluid 182 

velocity [m/s], and 𝜆 is the bulk thermal conductivity [W/m.
o
C].  183 

2.4 Performance metrics of autoencoder and Bayesian inversion  184 

The performance of the autoencoder in reconstructing full-dimension parameters from 185 
low-dimension codes is assessed using three metrics: peak signal to noise ratio, which is a  186 
voxel-wise independent criterion defining the accuracy of parameter estimation on each voxel; 187 
structure similarity index metric, which expresses the similarity between spatial correlations 188 
of calculated and real parameters;  and the coefficient of variation, which defines the 189 
sensitivity of output parameters to the input variables.  190 
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The peak signal to noise ratio (PSNR) is given as [Wang and Bovik, 2002]: 191 

 𝑃𝑆𝑁𝑅 = −10 log10 [
1

𝑁
∑ (�̃�𝑖 − 𝑥𝑖)

2𝑁
𝑖=1 ], (11)  

where x represents the real full-dimension parameters, �̃� are the full-dimension parameters 192 
estimated using decoder, N is the total number of parameters in space, i is the index of the 193 
voxel. The term enclosed in square brackets is the mean square error and N is the number of 194 
full-dimension parameters. A high PSNR value represents the high-quality of full-dimension 195 
parameters being reconstructed. 196 

The structure similarity index metric (SSIM) is given as [Wang et al., 2004]: 197 

 𝑆𝑆𝐼𝑀 =
2𝜇𝑥𝜇�̃�+𝜀

𝜇𝑥
2+𝜇�̃�

2+𝜀
∙
2𝑐𝑜𝑣(𝑥,   �̃�)+𝜀

𝜎𝑥
2+𝜎�̃�

2+𝜀
, (12)  

where 𝜇𝑥 and 𝜎𝑥
2 are the mean and variance of real full-dimension parameters, 𝜇�̃� and 𝜎�̃�

2 are 198 
the mean and variance of full-dimension parameters estimated by decoder, 𝑐𝑜𝑣 is the 199 
covariance of the original or reconstructed parameters, and 𝜀 is a small number (10

-6
) to avoid 200 

zero in denominator. SSIM ranges from zero to unity, with higher values indicating a better 201 
reconstruction. 202 

The coefficient of variation (CV) is given as:  203 

𝐶𝑉 =
𝜎�̃�

𝜇�̃�
 , (13)  

where 𝜎�̃� and 𝜇�̃� are the standard deviation and mean, respectively, of full-dimension 204 
parameters estimated by decoder at each spatial position under varying sets of low-dimension 205 
codes. Larger CV (often >0.5) indicates the greater sensitivity of full-dimension parameters 206 
to low-dimension codes.   207 

Moreover, the MCMC inversion is monitored by the misfit between modelled and 208 
observed tracer test observations (here borehole temperature and fluid flux), expressed by the 209 
root mean square errors metric: 210 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ ‖𝑦𝑖 − 𝐹𝑖(𝐳)‖

2𝑛
𝑖=1 . 

(14)  

where 𝑦 and  𝐹(𝐳) are the observed and modelled tracer test observations.  211 

3 Application 212 

Although several enhanced geothermal systems were constructed in the world, including 213 
such as France Soultz-Sous-Forets, Switzerland Basel, US Desert Peak, Australia Habanero, 214 
the heterogeneous distribution of fractured permeability in these geothermal reservoirs is still 215 
not fully determined. Micro-seismic monitoring during hydraulic fracturing indicates that 216 
fracture patterns in existing enhanced geothermal reservoirs typically feature an ellipsoid-like 217 
shape [e.g. Calò and Dorbath, 2013; Cuenot et al., 2008; Maurer et al., 2015], centred on the 218 
fracturing well, with major axes oriented in the direction of maximum stress, and minor axes 219 
oriented in the direction of minimum stress. These ellipsoid fracture zones can be skewed 220 
where mechanical properties of the rock are heterogeneous. Following these basic patterns, 221 
3D training images of fracture probability (which represents normalized equilibrium porosity 222 
and can be converted to equilibrium permeability) are generated. The generated fracture 223 
probability ranges from unity near the fracturing bore to zero at a given distance. Further 224 
details are given in the Appendix. Consequently, 6000 images (forming training dataset) of 225 
fracture probability are used to train weights and biases in the autoencoder neural network. 226 
Another 100 images (forming validation dataset) independent to the training images are used 227 



7 
 

to assess the efficacy of the autoencoder in parameter dimensionality reduction and 228 
reconstruction.  229 

For verification, the methodology in Section 2 is implemented to a synthetic case, with an 230 
ellipsoid-like fractured zone and a single vertical bore in geothermal reservoir. First, a single-231 
well injection-withdrawal (SWIW) test is simulated in order to generate synthetic 232 
observations; Second, the autoencoder neural network is trained to assure the efficacy in 233 
conversion between low-dimension codes and full-dimension parameters; Third, low-234 
dimension codes are estimated using a Bayesian inversion algorithm according to the SWIW 235 
test observations, which are then converted to the permeability by autoencoder to compare 236 
with the synthetic permeability distribution. 237 

3.1 Conceptual model  238 

The synthetic case study features an ellipsoid-like fractured zone created by hydraulic 239 
fracturing via single vertical well in a geothermal reservoir (Fig. 2a). Equilibrium 240 
permeability of the fractured zone decreases outward from the fracturing well, ranging from 241 
0.01 to 10 mD (i.e. 10

-17
 to 10

-14
 m

2
) in the fracture zone, and up to 0.01 mD outside the 242 

fracture zone (detail in Appendix). The other parameters affecting the heat and fluid transport 243 
are listed in Table 1 and fixed in this study [Langevin, 2009].   244 

 245 

Figure 2. (a) Conceptual model of a single-well injection-withdrawal test in a fractured zone, under constant-246 
pressure operations on the well head in five stress periods (b), leading to transient extraction/injection rates (c) 247 
and bottom borehole temperatures (d), artificially adding white noise with standard deviation of 1.0 to mimic the 248 
measurement errors.  249 

To estimate the spatial distribution of reservoir permeability, a single-well injection-250 
withdrawal (SWIW) test can be conducted by manipulating the well-head pressure. An initial 251 
hydraulic head in the reservoir equal to 3000 m (representing a fracture zone at depth of 3000 252 
m) is specified. A wellhead pressure of -2 MPa (corresponding to a hydraulic head of 2800 m) 253 
is assigned on the first day, followed by zero MPa (3000 m), -1.5 MPa (2850 m), zero MPa 254 
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(3000 m) and -0.5 MPa (2950 m) on subsequent days (Fig. 2b). A model domain of 100 × 255 
100 × 100 m

3
 is discretised into 64 × 64 × 64 pixels (i.e. a total of 262,144 pixels). Zero-flux 256 

Neumann boundary conditions for both fluid and heat are specified on all model boundaries. 257 
Modelling testing demonstrated that these boundary conditions did not affect borehole 258 
temperature and fluid fluxes during five-day periodic injection and extraction scheme. A 259 
spatially uniform initial temperature of 90 

o
C is specified across the model domain at a scale 260 

of 100 m without considering the vertical temperature changes under natural geothermal 261 
gradient.  262 

Table 1. Hydraulic and thermal parameters used in the fluid and heat transport modelling [Langevin, 2009] 263 
Parameters Values Parameters Values 

Permeability [mD] <10 Heat conductivity of water [W/m.oC] 0.58 

Effective porosity [unitless] <0.1 Thermal dispersivity [m] 50 

Heat capacity of granite [J/kg.oC] 790 Reference temperature [oC]  25 

Heat capacity of water [J/kg.oC] 4.2 Water density at reference temperature [kg/m3] 1000 

Heat conductivity of granite [W/m.oC] 3.59 Granite density at reference temperature [kg/m3] 2750 

Simulated borehole temperatures and fluid fluxes are presented in Fig. 2c and 2d. 264 
Temperature and fluid flux observations are recorded at a frequency of 10 cycles per day over 265 
the total simulated period of five days, resulting in 50 observations of either type. These 266 
observations represent a tracer test observation dataset. Gaussian white noises with standard 267 
deviations of 1.0 

o
C or 1.0 m

3
/d are added to the observations of temperature and fluid flux, 268 

respectively, to represent measurement errors. Since the value of outflow flux and 269 
temperature are on the same order of magnitude, they are mixed in RMSE calculation in Eq. 270 
(14) to monitoring inversion processes.  271 

In summary, the model domain features over 200,000 parameters, to be estimated based 272 
on 100 observations in tracer test. Autoencoder is used to reduce the parameter 273 
dimensionality.  274 

3.2 Autoencoder optimization 275 

A classical autoencoder neural network [Hinton and Salakhutdinov, 2006] consisting of 276 
four layers in both the encoder and decoder is used in this study. To enhance the mixing of 277 
data flow (data transferring among multiple layers in the neural network) in the decoder, we 278 
add one convolution layers after each transposed convolution layers in the decoder. The 279 
number and size of the images contained in each layer is illustrated in Fig. 1a. Since the 280 
number of weights is sufficient to recreate the original parameters after parameter dimension 281 
reduction and reconstruction, we do not investigate the influence of network structure on the 282 
accuracy of the result. Details of network structure selection can be found in e.g. Liu et al. 283 
[2017] and Goodfellow et al. [2016]. Alternatively, this study focuses on minimizing the 284 
number of codes in the latent layer that is able to fully represent the full-dimension 285 
parameters. This can help release the burden of Bayesian inversion and constrain the 286 
inversion uncertainties.  287 

As shown in Fig. 3, encoder loss function (Eq. 3) finalizes at a value < 0.01 after 6000 288 
iterations, while the value of decoder loss function (Eq. 4) finalizes at < 1000/262144 (0.004) 289 
after 10,000 iterations. The former indicates that the resulting codes from the encoder follow 290 
the standard normal distribution, while the latter indicates the calculated 3D fracture 291 
probability via the decoder aligning with original full-dimension parameters. PSNR and 292 
SSIM metric values exceed 20 and 0.9, respectively, after 10,000 iterations (Fig. 3c and 3d). 293 
Moreover, the PSNR and SSIM calculated on the validation dataset fit with those resulting 294 
from the training dataset, meaning that (1) the trained autoencoder is applicable in the dataset 295 
independent to the training dataset without overfitting problem, and (2) the trained 296 
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autoencoder is capable to reconstruct 3D images outside the training image pool. This is 297 
important, as it indicates that the autoencoder neural network, learned from 6000 training 298 
images, is applicable to fracture patterns beyond the training dataset, since the validation 299 
images are generated independent to the training images, by varying number and ranges of 300 
free variables (Appendix).  301 

 302 

Figure 3. Monitoring loss functions of encoder (Eq. 3) (a) and decoder (Eq. 4) (b); and (c) PSNR and (d) SSIM 303 
between the original and reconstructed fracture probability, with the number of codes in the latent layer of 5, 20, 304 
50, respectively.  305 

Both finalized PNSR and SSIM values increase with the number of codes, and tend to be 306 
less variable, suggesting that the performance of the autoencoder in reconstructing the full-307 
dimension parameters can be enhanced by increasing the number of codes (Fig. 3c and 3d). 308 
However, the lager number of codes can increase the computational burden and uncertainty 309 
of Bayesian inversion. Thus, an optimized number of codes is desirable. To this end, the 310 
finalized PNSR and SSIM for the validation images are then calculated under varying 311 
numbers of codes by five parallel computations. In each computation, the PNSR and SSIM 312 
increase with the number of codes, but are highly variable (Fig. 4). This is due to the applied 313 
method of stochastic optimization for autoencoder weights, which do not consistently identify 314 
the global minimum encoder and decoder losses (Eqs. 3 and 4, respectively). Based on five 315 
parallel computations, it is found that the PNSR and SSIM can reach 30 and 0.95, 316 
respectively, at minimum number of codes of 20, and the reconstructed 3D fracture 317 
probability compares well with the original values, with a mean square error < 0.001. Further 318 
increasing the number of codes does not improve the accuracy of parameter reconstruction 319 
significantly.  320 
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 321 

Figure 4. The average PNSR (a) and SSIM (b) for 100 validation images under the number of codes in the 322 
latent layer varying from 5 to 50, based on five parallel computations.   323 

 324 

Figure 5. Coefficient of variation values of the reconstructed full-dimension parameters (fracture probability) 325 
by the decoder with the number of codes in the latent layer of (a)-(c) 5, (d)-(f) 20, and (g)-(i) 50, respectively. 326 

Furthermore, to ensure that the full-dimension parameters are sensitive to codes in the 327 
latent layer (rather than controlled merely by the weights in the autoencoder neural network), 328 
a sensitivity analysis is conducted with 5, 20, 50 codes in the latent layer. For each number of 329 
codes, 1000 sets of codes are generated from a standard normal distribution (Fig. 5a, 5d and 330 
5g) which result in 1000 sets of full-dimension parameters via the decoder. Coefficient of 331 
variation (CV) of full-dimension parameters are subsequently calculated at each voxel (Eq. 332 
13). When five codes are used in the latent layer, CV values are less than 1.0 for 20 % of 333 
voxels (Fig. 6b) and are less than 0.5 for 5% of voxels (Fig. 5c). When 20 codes are used, 334 
only 7 % of voxels feature CV values less than 1.0 (Fig. 5e) and CV are greater than 0.5 at all 335 
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voxels (Fig. 5f). This indicates that the sensitivity of output full-dimension parameters to the 336 
input codes in the decoder can be enhanced by increasing the number of codes in the latent 337 
layer from 5 to 20. Further increasing the number of codes from 20 to 50 do not enlarge the 338 
CV values (Fig. 5h and 5i).   339 

3.3 Bayesian inversion 340 

The decoder is then combined with the Bayesian inversion, with 20 codes in the latent 341 
layer to update according to the discrepancies between calculated borehole temperatures and 342 
fluid flux with the observations (Fig. 2c and 2d). Markov Chain Monte Carlo (MCMC) 343 
inversion approaches with five chains are employed. During the inversion processes, the 344 
objective function expressed by RMSE (Eq. 14) between observed and calculated tracer test 345 
observations decreases rapidly along each chain during the inversion (Fig. 6a). After a burn-346 
in period of 800 iterations, objective function values decrease to about 1.0, which is 347 
equilibrium to the measured errors of the tracer observations. Spatial distributions of 348 
permeability generated by the decoder are examined after every 100 iterations of the 349 
Bayesian inversion algorithm (Fig. 6). Prior to inversion, high fracture permeabilities (with 350 
values >0.01 mD) are sparsely distributed throughout the model domain (Fig. 6b). After 200 351 
iterations of the inversion algorithm, high permeability values are clustered at the centre of 352 
the domain (Fig. 6c). After 800 iterations, the extent of the high-permeability zone is further 353 
constrained at the centre of the model domain (Fig. 6d).   354 

 355 

FigurFigure 6. (a) Trace plot of RMSE values along five Markov chains over 1600 iterations and spatial distributions 356 
of fractured zone permeability values higher than 0.01 mD after 1 (b), 200 (c), and 2000 (d) iterations. 357 

The 3D permeability in the iterations of 1400 to 1600 are selected to calculate the mean 358 
and CV at each voxel. As illustrated in Fig. 7b, the inversion based on multiple-stage SWIW 359 
tests can recreate the pattern of permeability, which decreases outwards from the centre of 360 
model domain and is comparable to the synthetic realisation in Fig. 7a. PNSR and SSIM 361 
metric values between inversed permeabilities and synthetic values are greater than 30 and 362 
0.70, respectively.  363 
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 364 

Figure 7. (a) Synthetic permeability in the illustrated case with value > 0.01 mD, which is comparable to (b) 365 
mean permeability generated by combining Bayesian inversion and decoder in the last 200 iterations; and (c) 3D 366 
and (d) 2D cross-sectional coefficient of variation (CV) of the generated permeability which is low in central 367 
permeable zones and high in the low-permeability area. 368 

4 Discussion 369 

4.1 Improvement of autoencoder structure 370 

To improve the efficacy of the autoencoder, we added the convolution layers in the 371 
decoder after each transposed convolution layer (Fig. 1a). A small filter size of 2 ×2 ×2 was 372 
used. In contrast to a decoder without additional convolution layers, PSNR and SSIM metric 373 
values increased by more than 10 and 0.1, respectively (Fig. 8). This suggests that the 374 
performance of the autoencoder is improved significantly, because the additional convolution 375 
layers can enhance the mixing of the data flow via the network. Even when a small filter was 376 
used, the relationship between codes and full-dimension parameters can be improved by 377 
adding additional convolution layers.  378 

 379 
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Figure 8. The performance of autoencoder network expressed by (a) PSNR and (b) SSIM by adding 380 
convolution layers in the decoder and without convolution layers in the decoder.   381 

4.2 Calculation efficiency 382 

Training of the autoencoder network using 15,000 iterations on a high-performance 383 
computer (Tesla P-100-SXM2-M-16GB) required approximately one hour of computation 384 
time. Once trained, the conversion of codes to full-dimension parameters via the decoder on a 385 
desktop computer (Intel Core i7-7600 CPU-2.80GHz-M-16GB) required less than five 386 
seconds of computation time. The estimates of low-dimension codes via MCMC were also 387 
fast, requiring less than two seconds on the same desktop computer. The most time-388 
consuming aspect of the methodology presented was the forward modelling of fluid and heat 389 
transport. A single forward model run required more than 200 seconds. Bayesian inversion 390 
with 1600 iterations required 95.5 hours on a desktop machine. However, as demonstrated in 391 
Fig. 6, the burn-in period (i.e. approximately 800 iterations) was relatively short. Less 392 
iteration was required when estimating merely 20 codes in the Bayesian model rather than 393 
high-dimension parameters directly. Therefore, the considerable reduction of parameter 394 
dimensionality (i.e. from 262,144 voxels to 20 codes) achieved using the autoencoder 395 
network enabled efficient Bayesian inversion.  396 

4.3 Advantages and Limitations 397 

By combining deep learning methods of parameter dimensionality reduction with 398 
Bayesian inversion, it becomes possible to infer the heterogeneous distribution of fracture 399 
permeability in deep reservoirs based on single-well injection-withdrawal tests. It was 400 
observed in Fig. 7c and 7d that the CV of permeability values in the central zone of the model 401 
domain was <0.5, suggesting that permeability in this zone was well constrained by SWIW 402 
observations. However, as the influence range of SWIW testing was limited, model inversion 403 
based on SWIW observations cannot robustly constrain permeability values beyond the 404 
fracture zone. CV values (Fig. 7d) increased with distance from the central zone, indicating 405 
that permeability values fluctuated considerably during Bayesian inversion. Because 406 
permeability values distant to the fractured zone had limited influence on SWIW responses, it 407 
was difficult for the inversion model to update these parameters according to the 408 
discrepancies between tracer test observations and calculations. As a consequence, in Fig. 7b, 409 
there appeared an isolated high-permeable area which was disconnected to the major 410 
permeable zone. This can be overcome by adding additional well(s) and conducting cross-411 
well tests or multiple single-well tests to assure that the tracer test observations can reflect the 412 
properties in the entire domain, which however depends on the deep borehole availability.  413 

This study focused on the methodology development and tested it with a local-scale 414 
model. The size of model domain was given as 100 m×100 m×100 m with the fractured zone 415 
occupying the central part. A successful enhanced geothermal system may involve a fractured 416 
zone larger than the scale demonstrated in this work. In that case the model domain can be 417 
discretised into more voxels to assure the convergence of the forward model. 418 
Correspondingly, the training images with large number of voxels should be generated. Also, 419 
the hydraulic fracturing is often operated via horizontal wells, which creates parallel-plate-420 
shape fracture zones. To train the neural network, the training images pool should be updated 421 
following the prior knowledges on the engineering realizations. However, if the structure of 422 
autoencoder network and number of weights are same as those in this work, the time taken to 423 
train the network will not increase with the size of training images.  424 

The generation of training images is critical for training the autoencoder. An ideal method 425 
for the training images generation is to simulate the hydraulic fracturing processes by coupled 426 
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fluid flow, heat transport and mechanical modelling, under extensively varying boundary and 427 
initial conditions. However, the coupled modelling is time consuming and the limited number 428 
of results from constrained boundary and initial conditions may not yield representative 429 
training images. We here proposed an empirical approach to generate a large training image 430 
pool, based on prior knowledges of artificial fracture patterns in hot dry rocks. The validation 431 
of joint autoencoder-Bayesian approach based on images independent to the training images 432 
suggested that the relationship between low-dimension codes and full-dimension parameters 433 
established on training images is reproducible.  434 

A fixed permeability-porosity relationship (Appendix) was assumed in this study, which 435 
can be modified according to the specific situation (e.g. tectonic stress field, lithology, 436 
temperature and pressure) in the geothermal reservoir. We can also consider the permeability-437 
porosity equation as an unknown factor to update in the inversion model, the accuracy of the 438 
results could be further improved. Tackling these problems is beyond the scope of this 439 
contribution and requires further investigation. 440 

5 Conclusions 441 

A deep learning approach featuring an autoencoder neural network was combined with a 442 
Bayesian inversion algorithm to estimate the high-dimension hydraulic parameters based on a 443 
single-well injection-withdrawal test. The following conclusions were drawn: 444 

(1) An autoencoder network composed by four convolution layers in the encoder and four 445 
transposed convolution layers and three additional convolution layers in the decoder reduced 446 
parameter dimensionality by at least four orders of magnitude and was able to reconstruct the 447 
high-dimension parameters from low-dimension codes accurately. Importantly, there was no 448 
prior assumption on the probability distribution of the original high-dimension parameters, 449 
while the low-dimension codes can be designed to follow normal distribution, which made 450 
the estimates of these codes via subsequently Bayesian inversion much easier.  451 

(2) Bayesian inversion based on Markov Chain Monte Carlo sampling was used to 452 
estimate low-dimension codes (rather than high-dimension parameters). By minimizing the 453 
misfit between modelled and observed tracer test responses (borehole temperature and fluid 454 
flux), parameter values were estimated after a short burn-in period, and parameter uncertainty 455 
was constrained. 456 

(3) Application of the methodology to a simulated single-well injection-withdrawal test 457 
demonstrated that 262,144 high-dimension parameters could be represented using only 20 458 
low-dimension codes. High-dimension parameters were subsequently reconstructed 459 
successfully using a decoder. The estimation of 20 codes via Bayesian inversion reproduced a 460 
heterogeneous spatial distribution of fracture zone permeability after 2000 iterations. 461 
Coefficient of variation values observed in the fractured zone were < 0.5.  462 

The proposed methodology provided an efficient way to characterise complex spatial 463 
distributions of fracture zone permeability in deep reservoirs based on a single-well test.  464 

Appendix Training dataset generation 465 

Training images pool in this study is generated based on an empirical approach. Given an 466 
arbitrary position x, y, z in space, its spherical coordinate can be written as:  467 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

𝛼 = atan (
𝑦

𝑥 + 𝜀
) 

(A1)  
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𝛽 = atan (
𝑧

√𝑥2 + 𝑦2 + 𝜀
) 

where 𝑟 is the radial distance (< 50 m), 𝛽 is the polar angle measured in zenith direction (-π/2, 468 
π/2), 𝛼 is the azimuth angle measured on a reference plane orthogonal to the zenith (0, 2π). 469 
The reference position is located at the centre of the model, with 𝑟, α and β equal to zero.  470 

Assuming that the fracture zone has an ellipsoid-like shape, the radial distance between 471 
model centre and outline of ellipsoid (R) at the direction of β and α can be expressed by:  472 

𝑅 =
1

√(𝑐𝑜𝑠𝛼∙𝑐𝑜𝑠𝛽/𝑎)2+(𝑠𝑖𝑛𝛼∙𝑐𝑜𝑠𝛽/𝑏)2+(𝑠𝑖𝑛𝛽/𝑐)2
, (A2)  

where R is defined as the range. a, b and c are main axes in x, y, z direction, respectively, 473 
which are randomly generated in 1 to 50 m following a uniform distribution.  474 

475 
Figure A1. Training images with fracture zone of irregular shape and fracture probability reducing outward.  476 

R at the angle (α and β) of every 45
o
, 30

o
 and 20

o
, respectively, are then interrupted by 477 

noise following uniform distribution in 0 to 25m, and R at other angles are obtained by the 478 
bicubic interpolation. Thus, fracture zones of irregular shapes can be created to represent the 479 
influence of heterogeneous mechanical rock properties, stresses and initial fractures (Fig. A1). 480 
In such manner, the freedom of the fracture zone shape is determined by the frequency of R 481 
variation. For instance, R varying among α and β by every 20

o
 corresponds to a freedom of 18 482 

(in α direction)× 9 (in β direction) +1(interpolation method).  483 

Furthermore, from the centre to the outline of fracture zone, the fracture probability (P) is 484 
defined to decrease from 1.0 to zero following linear and exponential randomly: 485 

𝑃(𝑟, 𝛼, 𝛽) =

{
 
 

 
 exp (−

5𝑟2

𝑅2
) , 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

exp (−
5𝑟

𝑅
) , 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

1 −
𝑟

𝑅
, 𝑙𝑖𝑛𝑒𝑎𝑟

. (A3)  
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The resultant P values are contaminated by 10% random noise following a uniform 486 
distribution. Based on the method above, we created 6000 3D images of fracture probability 487 
with values ranging from 0.0 to 1.0 to train the autoencoder neural network.   488 

For the Bayesian inversion, the fracture probability needs to be converted to the porosity 489 
and permeability. Since the permeability in the enhanced geothermal reservoir is often lower 490 
than 10.0 mD and the effective porosity is lower than 0.1 [Ghassemi and Kumar, 2007; 491 
Zimmermann and Reinicke, 2010], P is simply regarded as a normalized porosity, and 492 
converted to the porosity by:  493 

𝜃(𝑟, 𝛼, 𝛽) = 𝑃/10, (A4)  

and the porosity is converted to the permeability by a modified Kozeny–Carman equation 494 
[Latief and Fauzi, 2012; Ma, 2015]: 495 

𝑘 = 10(
𝜃

0.1
)11, (A5)  

Radom variation of R directions, interpolation method and fracture probability formula 496 
allow the resulting training images to follow the basic fracture permeability patterns created 497 
by artificial hydraulic fracturing via single vertical well. A single training image of fracture 498 
probability (or permeability) is of high freedom and do not necessarily follow a standard 499 
distributions (e.g. uniform or Gaussian). Thus, these images of fracture permeability cannot 500 
be compressed by zonation or pilot points approach, but require an advanced new tool like 501 
deep-learning neural network to reduce the dimensionality. Autoencoder neural network 502 
allows the automatic conversion between low-dimension codes (following standard normal 503 
distribution) and full-dimension parameters (with unknown probability distribution). Then, 504 
updating the codes following standard normal distribution made the Bayesian inversion well 505 
constrained and stabilized rapidly. 506 

To guarantee the generic feature of training images, the fracture patterns in the synthetic 507 
study (Fig. 2) and validation images pool are generated by randomly varying R at angles of 508 
every 10

 o
 and 60

o
 (which is not involved in training images generation) and the probability is 509 

calculated by a Gaussian model in Eq. A3, while the other factors controlling the fracture 510 
pattern are proceeded following the method above.  511 
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