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Abstract

The impacts of heat waves in a warming climate depend not just on changing temperatures but also on changing humidity.

Using 35 simulations from the Community Earth System Model Large Ensemble (CESM LENS), we investigate the long-term

evolution of the joint distribution of summer relative humidity (RH) and daily maximum temperature () in four U.S. cities (New

York City, Chicago, Phoenix, New Orleans) under the high-emissions Representative Concentration Pathway (RCP) 8.5. We

estimate the conditional quantiles of RH given by quantile regression models, using functions of temperature for each month

and city for three time periods (1990-2005, 2026-2035, and 2071-2080). Quality of fit diagnostics indicate that these models

accurately estimate conditional quantiles for each city. As expected, each quantile of increases from 1990-2005 to 2071-2080,

while mean RH decreases modestly. For a fixed , the high quantiles of RH (and thus of heat index and dew point) increase

from 1990-2005 to 2071-2080 in all four cities. This result suggests that the health impacts of a day of a given will increase

in a warming climate due to the increase of RH. Conditional upon a fixed quantile of , the median and high quantiles of RH

decrease, while those of heat index and dew point both increase. This result suggests that, despite a modest decrease in median

relative humidity, heat stress impacts in a warming climate will increase faster than temperatures alone would indicate.

1
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Abstract 1 

The impacts of heat waves in a warming climate depend not just on changing temperatures but 2 

also on changing humidity. Using 35 simulations from the Community Earth System Model 3 

Large Ensemble (CESM LENS), we investigate the long-term evolution of the joint distribution 4 

of summer relative humidity (RH) and daily maximum temperature (Tmax) in four U.S. cities 5 

(New York City, Chicago, Phoenix, New Orleans) under the high-emissions Representative 6 

Concentration Pathway (RCP) 8.5.  We estimate the conditional quantiles of RH given Tmax by 7 

quantile regression models, using functions of temperature for each month and city for three time 8 

periods (1990-2005, 2026-2035, and 2071-2080). Quality of fit diagnostics indicate that these 9 

models accurately estimate conditional quantiles for each city. As expected, each quantile of 10 

Tmax increases from 1990-2005 to 2071-2080, while mean RH decreases modestly. For a fixed 11 

Tmax, the high quantiles of RH (and thus of heat index and dew point) increase from 1990-2005 12 

to 2071-2080 in all four cities. This result suggests that the health impacts of a day of a given 13 

Tmax will increase in a warming climate due to the increase of RH. Conditional upon a fixed 14 

quantile of Tmax, the median and high quantiles of RH decrease, while those of heat index and 15 

dew point both increase. This result suggests that, despite a modest decrease in median relative 16 

humidity, heat stress impacts in a warming climate will increase faster than temperatures alone 17 

would indicate. 18 
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1. Introduction 19 

Heat waves, events in which sweltering weather lasts days to weeks, negatively impact 20 

human health, ecosystems, crop yields, and physical infrastructure (Allen et al., 2010; Fontana, 21 

Toreti, Ceglar, & De Sanctis, 2015; Ramamurthy, Li, & Bou-Zeid, 2017; Zuo et al., 2015). As the 22 

climate continues to warm, heat waves are projected to increase in frequency and duration (Collins 23 

et al., 2013; Meehl & Tebaldi, 2004; Papalexiou, AghaKouchak, Trenberth, & Foufoula-Georgiou, 24 

2018). In addition, the portion of the world's population and land area that are exposed to deadly 25 

heat (referring to extremely hot conditions that may cause death) is projected to increase under 26 

even a scenario with aggressive mitigation of greenhouse gas emissions (Mora et al., 2017). Thus, 27 

climate change raises serious concerns on the growing impact of heat waves (Stocker et al., 2013). 28 

Although many studies have targeted heat waves and their impact on human health (Basu 29 

& Samet, 2002; Mazdiyasni et al., 2017; Meehl & Tebaldi, 2004; Mora et al., 2017; Orlowsky & 30 

Seneviratne, 2012; Tebaldi, Hayhoe, Arblaster, & Meehl, 2006), there is still debate on the most 31 

appropriate ways to identify extreme values of heat for the assessment of heat-related mortality 32 

and illness. Much of the literature only uses temperature to describe heat extremes (Carleton et al., 33 

2019; Dosio, Mentaschi, Fischer, & Wyser, 2018; Kodra & Ganguly, 2014; Mazdiyasni et al., 34 

2017; Meehl & Tebaldi, 2004; Tebaldi et al., 2006). However, other climate variables (e.g. 35 

humidity, solar radiation, wind speed) may also contribute to human discomfort and mortality. 36 

Mora et al. (2017) assessed multiple pairs of climate variables: surface temperature, relative 37 

humidity, solar radiation, and wind speed. They found the pair combining surface temperature and 38 

relative humidity most accurately identifies lethal conditions. High humidity is an important 39 

contributor to heat stress as it can reduce the human body's capability to remove metabolic heat by 40 

sweating. Some studies consider both temperature and humidity to identify the extreme value of 41 
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heat. Fischer and Knutti (2013) suggested that the quantities jointly defined by temperature and 42 

relative humidity can reduce uncertainty of future projections of heat extremes. Heat index, which 43 

is broadly used in weather warning systems for heat stress, can be estimated by a multiple-44 

regression model of temperature and relative humidity (Rothfusz, 1990). Russo et al. (2017) 45 

introduced a new Apparent Heat Wave Index (AHWI) that utilizes both daily maximum 46 

temperature and daily minimum relative humidity to define heat waves and physiologic stress.  47 

In the context of global warming, the long-term trend of land surface temperature is 48 

positive in both present observations and future projections (Byrne & O’Gorman, 2018; Dai, 2006; 49 

Sutton, Dong, & Gregory, 2007). Although the specific humidity increases as climate 50 

warms(Stocker et al., 2013), the long-term trend of surface relative humidity (RH) over land 51 

decreases in both observations and future projections. Willett et al. (2014) found that RH averaged 52 

over land in-situ observations decreased from 2000 and 2013. Coupled Model Intercomparison 53 

Project Phase 5 (CMIP5) global climate models project that surface RH will decrease over most 54 

land areas (except for parts of tropical Africa and South Asia) by the end of this century, possibly 55 

due to the faster increase in surface air temperature over land than over the ocean (Byrne & 56 

O’Gorman, 2018; Flato et al., 2013; O’Gorman & Muller, 2010). Given projected increases in 57 

temperature and decreases in RH, the combined effects of temperature and RH on future heat 58 

extremes is unclear. In this study, we use both temperature and RH as contributing variables to 59 

identify heat extremes and investigate the long-term evolution of their joint distribution. 60 

Conventional approaches assessing extreme events may apply an assumption about the tail 61 

of distribution of the contributing variable (e.g. Kharin, Zwiers, Zhang, & Wehner, 2013; Kodra 62 

& Ganguly, 2014), and assume only the parameters of the presumed distribution changes when 63 

climate gets warmer. However, the distributions of these contributing variables generally do not 64 



 5 

follow a standard distribution.  Furthermore, shapes of distributions may change quite substantially 65 

in a warming climate (Haugen et al. 2018). In this study, we develop a statistical model to 66 

characterize the distribution of relative humidity (RH) conditional on daily maximum temperature 67 

(Tmax), as well as its evolution, without assuming any particular parametric form for this 68 

distribution. To reach this end, we applied quantile regression to the Community Earth System 69 

Model Large Ensemble (LENS, Kay et al., 2015), which provides sufficient volume of samples to 70 

allow accurate estimation for the tails of the distribution of a climate variable (Haugen, Stein, 71 

Moyer, & Sriver, 2018).  72 

Quantile regression is a form of regression analysis that estimates conditional quantile 73 

functions – models in which, for any given quantile (𝜏) between 0 and 1, the 𝜏"#  conditional 74 

quantile of the response variable is expressed as a linear function of predictor variables (Koenker 75 

& Hallock, 2001), where the coefficients in this linear function can vary with 𝜏. Haugen et al. 76 

(2018) applied quantile regression to temperature in an ensemble of simulations from CESM 77 

(Sriver, Forest, & Keller, 2015) to study the evolving distribution of temperature in a warming 78 

climate. They constructed a quantile regression model which continuously represents the smooth 79 

evolution of temperature distributions both day-to-day over an annual cycle and year-to-year over 80 

longer temporal trends over North America. Quantile regression provides a natural way to study 81 

the nuanced changes in distributions and, especially tails, which is essential for studies of weather 82 

extremes. Haugen et al. (2018) used temperature as the response and function of days in a year and 83 

years as predictors. Here, we focus on using functions of temperature as predictors for RH. 84 

Estimating the distribution of RH conditional on Tmax (RH | Tmax) provides flexibility for 85 

quantifying heat extremes by RH and Tmax simultaneously. This way allows us to look at RH at 86 

given temperature or RH at given temperature quantile. In addition, it allows us to assess any 87 
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variables that take both temperature and RH into account, such as dew point, heat index, and wet 88 

bulb temperature. 89 

We developed models for four major U.S. cities (Fig. S1 in Supplement Information) in 90 

different climate settings: New York City (NYC) has a humid subtropical climate; Chicago (CHI) 91 

has a hot-summer humid continental climate; Phoenix (PHX) has a hot-desert climate; New 92 

Orleans (NOLA) also has a humid subtropical climate, but has warmer and more humid winters 93 

than New York City. These four cities were selected to test the sensitivity of the approach in a 94 

variety of climates. Our approach can be applied to different locations with different climate 95 

background. 96 

Section 2 describes the data sources used in this study, as well as the approaches used to 97 

calculate key metrics. Section 3 numerically diagnoses the joint distribution of RH and Tmax, 98 

identifying features used to help select the form of basis functions used in the statistical models. 99 

Section 4 describes the statistical methodology. Section 5 presents the approaches used to validate 100 

the quality of fit of the statistically estimated joint distribution. Section 6 presents key results, 101 

including the estimated quantiles of RH | Tmax, and discusses the implications of the estimated 102 

quantiles of RH | Tmax for extreme heat in future projections. Details on the selection of basis 103 

functions for the statistical models are described in the Appendix. 104 

2. Data Sources and meteorological metrics 105 

2.1 Data 106 

The CESM LENS provides sufficiently large samples to yield accurate estimates of 107 

conditional quantiles via quantile regression. The LENS dataset is a 40-member initial-conditions 108 

ensemble forced by Representative Concentration Pathway (RCP) 8.5, which represents a high-109 

emissions scenario in which emissions continue to rise through the 21st century (van Vuuren et al., 110 
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2011). Of the 40 ensemble members, 35 were run on the Yellowstone supercomputer, while the 111 

other 5 members were run on University of Toronto supercomputer. To avoid systematic biases, 112 

we used the 35 members obtained from the same machine. The principal variables used in this 113 

study were six-hourly surface temperature (TREFHT) and six-hourly surface specific humidity 114 

(QREFHT, kg/kg). These six-hourly data are only available for three periods: 1990-2005, 2026-115 

2035, and 2071-2080. We extract the Tmax based on the 6-hourly data. RH was determined from 116 

the specific humidity 𝑞  and surface pressure 𝑃  at the time at which the Tmax was observed 117 

(Lawrence, 2005). 118 

 𝑅𝐻 =	
𝑞
𝑞*+"

=
𝑞	(𝑃 − 𝑒*+")
0.622 × 𝑒*+"

 (1) 

 𝑒*+" = 𝐶	exp 9
𝐴	𝑇𝑚𝑎𝑥
𝑇𝑚𝑎𝑥 + 𝐵A (2) 

Where A = 17.625, B = 243.04℃, C = 610.94℃. These coefficients are evaluated by Alduchov 119 

and Eskridge (1996), who recommend that the equation (2) provides an estimation of 𝑒*+"	with a 120 

relative error of <0.4% over the range −40℃ ≤ 𝑇𝑚𝑎𝑥 ≤ 50℃ .  121 

We select four grid cells corresponding to the four focal cities (Figure S1): (41.00°N, 122 

73.75°W) for NYC, (41.00°N, 271.25°W) for CHI, (29.69°N, 270.00°W) for NOLA, and (33.46°N, 123 

247.50°W) for PHX. Note that we use a grid cell southwest of the urban area of Chicago to 124 

represent CHI. The urban Chicago cell, of which Lake Michigan comprises about half, produces 125 

some extremely hot and humid days, for which the corresponding heat indices in the period of 126 

1990-2005 are substantially higher than the historical record at Chicago (Fig. S2). This mismatch 127 

may arise due to the poor representation of Lake Michigan in CESM (Subin, Riley, & Mironov, 128 

2012), and motivates our choice of a more inland cell. 129 
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To validate the model data with historical observational data, we use version 3.0 of Hadley 130 

Centre Global Sub-Daily Station Observation’s (HadISD) air temperature and dew point 131 

temperature (Td). HadISD is a quality controlled global sub-daily dataset that contains weather 132 

data at the station level (Dunn et al., 2012). HadISD has hourly temporal resolution, but was 133 

converted to six hourly data by taking the instantaneous temperature and dew-point temperature 134 

(Td) at 0:00, 6:00, 12:00, and 18:00 of the Coordinated Universal Time, to be consistent with the 135 

LENS data. Then, we select Tmax based on the 6-hourly data and the Td at time when the Tmax is 136 

selected.  The RH is obtained from Tmax and the corresponding 𝑇F (Lawrence, 2005): 137 

𝑅𝐻	 = 		expG𝐴	 9
𝑇F

𝑇F + 𝐵
	−	

𝑇𝑚𝑎𝑥
𝑇𝑚𝑎𝑥	 + 𝐵AH (3) 

2.2  Computation of meteorological metrics 138 

 The dew-point temperature (𝑇F) is the temperature when an air particle reaches saturation 139 

by cooling the air isobarically. We use an empirical metric called Magnus formula (Alduchov & 140 

Eskridge, 1996; Gibbins, 1990) to calculate 𝑇F from RH and Tmax. 141 

𝑇F 	= 	
𝐵	𝛾

𝐴	 − 	𝛾 (4) 

𝛾 = ln𝑅𝐻	 + 	𝐴
𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥 + 𝐵 (5) 

The United States National Weather Service (NWS) uses a heat index in their heat stress 142 

early warning system. Similarly, we use the empirical equation developed by Rothfusz (1990) 143 

who performed a multiple regression analysis on the data of heat index from Steadman’s comfort 144 

model (Steadman, 1979). The heat index is calculated using temperature and RH (Rothfusz, 145 

1990). The NWS defines several categories for heat wave by heat index:	27℃ − 32℃ is caution;  146 
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Figure 1. Joint distribution of RH and Tmax in summer months of three periods at (a) New York 

(NYC), (b) Chicago (CHI), (c) Phoenix (PHX), (d) New Orleans (NOLA). Gray dots are 

observations of Tmax and RH from CESM LENS simulations. Shading represents the density of 

the observations. Contours are the dew point temperature calculated from RH and Tmax (Units: 

℃ ) 
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32℃-41℃ is extreme caution; 41℃-54℃ is danger; >54℃ is extreme danger (NWS Weather 147 

Forecast Office 2011). 148 

3. Joint distribution between RH and Tmax 149 

To determine the form of basis functions used in the statistical models, we examine 150 

numerically the joint distribution of RH and Tmax for three different periods at four cities in the 151 

three summer months (June, July, August) (Fig. 1). From 1990-2005 to 2071-2080, the shape of 152 

joint distributions in each month and city changes, and the location of the joint distribution shifts 153 

toward hotter dew point. In NYC, CHI and some months in NOLA (e.g. June in three periods, 154 

August in 1990-2005), the joint distribution is constrained by two boundaries at the high end of 155 

each variable: a cap at 100% relative humidity and a cutoff (a sharp boundary of the scatters 156 

preventing the RH reaching 100%) at the hot end of the temperature. A kink is observed at the 157 

intersection of these two boundaries. Above the temperature at the kink (𝑇N), the maximum 158 

observed RH decreases in a fairly linear fashion.   159 

The cutoff may be due to a maximum in surface air moisture availability, constrained by 160 

local meteorological conditions. Since saturated vapor pressure increases with temperature, if the 161 

water vapor supplied to the air does not change, relative humidity will decrease with 162 

temperature. The relation of the cutoff to contours of constant dew point supports this hypothesis 163 

(Fig. 1). In NYC and CHI, the cutoff generally tracks a dew point contour, with the level of the 164 

dew point contour increasing with time. For instance, the cutoff in NYC is near a dew point of 165 

25°C during 1990-2005, 26°C during 2026-2035, and 29°C during 2071-2080. As the diurnal 166 

variability of dew point is small in most regions of North America (Schwartzman, Michaels, & 167 

Knappenberger, 1998), the dew point paralleled by the cutoff is approximately equivalent to the 168 

dew point in the morning when the air parcel is saturated. In other words, the morning dew point 169 
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largely determines the moisture for the day when the water supply is not the limiting factor. As 170 

the climate warms, the daily attainable dew point elevates because of the increase in capacity of 171 

containing water vapor in the air. Therefore, the cutoffs shift toward higher dew point in a 172 

warmer climate. Other factors may also influence the local moisture, e.g. regional enhancement 173 

of convection, which could pump moisture from the boundary layer to the free atmosphere 174 

(Schwartzman et al., 1998; Sherwood, Roca, Weckwerth, & Andronova, 2010). By contrast, the 175 

cutoffs in NOLA are not parallel with the dew point contours. This may be because factors other 176 

than dew point (e.g. convection) play an important role in constraining the air moisture. A 177 

specific investigation is out of the scope of this study. In PHX, the local moisture supply is 178 

insufficient to produce saturated air due to the desert climate, so the cutoffs and kinks are not 179 

observed in the joint distributions of PHX. 180 

To test if these features are also shown in the observations, we examined the joint distribution 181 

of RH and Tmax at stations near the four cities, respectively (Fig. S3). As we just have one climate 182 

realization for the observations, the station data (gray dots) are sparse. We used a period from 1980 183 

to 2005 for the station data. This period is longer than the historical period 1990-2005 in the LENS 184 

simulations, because this choice was a compromise between having more data and wanting to 185 

match the LENS historical period reasonably well. The general pattern for the joint distributions 186 

based on the HadISD station data is similar whether one uses observations during 1980-2005 or 187 

1990-2005.  The patterns from the HadISD data in the period of 1980-2005 qualitatively resemble 188 

the patterns from the LENS simulations in the period of 1990-2005 in all months and at all four 189 

cities.  In particular, a fairly clear cutoff is observed in the joint distribution from station data for 190 

all summer months in NYC and in June and July in CHI. These results suggest that the patterns of 191 

joint distribution between RH and Tmax simulated by LENS are real physical patterns.  192 
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Figure 2. Frequency distribution of dew point temperatures calculated from RH and Tmax in 

June, July, and August at New York (NYC), Chicago (CHI), Phoenix (PHX), New Orleans 

(NOLA) using the CESM LENS data (Units: ℃). Blue lines denote the period 1990-2005, grey 

2026-2035, red 2071-2080. 
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We note that LENS generally shows lower maximum dew points than HadISD.  Here, the focus is 193 

on changes in heat extremes from the historical to future periods, so we do not consider bias 194 

correction.  Haugen et al. (2019) show how to use quantile regressions to combine observational 195 

records with simulations of present and future climate to produce bias-corrected future climate 196 

simulations. 197 

As the kinks generally correspond to the maximum dew point of the simulations in a time 198 

period, we investigate the density of dew points in each month of each time period to find an 199 

objective criterion for the kink temperature (Fig. 2). The densities of dew point in NYC and CHI 200 

display a cliff shape at the hot end. The cliff feature is also seen in some months of NOLA, but is 201 

not as sharp as that in NYC and CHI. There is no cliff feature observed in PHX. This is consistent 202 

with the cutoff of the joint distribution between RH and Tmax. Therefore, we select the kink 203 

temperature (T0) based on the cliff feature in the density distribution of the dew point. The criteria 204 

for T0 selection are described in Appendix A.  205 

4. Statistical methodology  206 

Standard parametric distributions can not well capture the features of joint distributions 207 

between Tmax and RH, especially when a kink occurs. Here we construct conditional quantile 208 

regression models of RH | Tmax for each quantile. The quantile regression approach is applied to 209 

the joint distribution of RH and Tmax in summer months (June, July, August) over the three periods, 210 

respectively. Based on the empirical characteristics of the joint distributions, we use two kinds of 211 

basis functions in the quantile regression models: one is a kink function to capture the kink when 212 

it is apparent in the dew point density; the other is a set of cubic-spline basis functions of Tmax, 213 

which is used to capture smooth variation in RH as Tmax varies. Cubic splines in Tmax were used 214 
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to flexibly model RH as a function of Tmax within each month. Our models for the 𝜏"# quantile of 215 

RH | Tmax are of the form: 216 

 𝑅𝐻OP(𝑇𝑚𝑎𝑥) 	= 	𝜃 + 𝛾	(𝑇𝑚𝑎𝑥	 −	𝑇N)R 	+S𝜂U	𝐾U(𝑇𝑚𝑎𝑥)
W

UXY

 (6) 

where 𝑇N is the temperature at the kink. (𝑇𝑚𝑎𝑥	 −	𝑇N)R denotes the basis functions that capture 217 

the kink, and (	)R is defined as 218 

 (𝑥)R = Z𝑥,							𝑥 ≥ 0
0,							𝑥 < 0 (7) 

Here, 𝜃 is the intercept; 𝛾, 𝜂U  are coefficients of basis functions; 𝐾U(𝑇𝑚𝑎𝑥) represents a cubic 219 

spline basis function; and m is the number of cubic spline basis functions. The metrics for selecting 220 

the m and 𝑇N for each city are described in the Appendix. The conditional quantile regression 221 

model estimates 𝑅𝐻PO  at specific quantile 𝜏 , so that the 𝜏"#  fraction of the residual between 222 

estimated RH (𝑅𝐻PO ) and observations RH (RHi) in LENS is positive, while a fraction of 1 − 𝜏 of 223 

the residual is negative. Mathematically, the quantile regression obtains the best estimates of 224 

coefficients through solving a minimization problem as follows (Koenker & Bassett, 1978): 225 

𝜏S	_𝑅𝐻` − 𝑅𝐻PO (𝑇𝑚𝑎𝑥`)aR 	+	(1 − 𝜏)S_𝑅𝐻PO (𝑇𝑚𝑎𝑥`) − 𝑅𝐻`aR

b

`XY

b

`XY

 (8) 

where Tmaxi and RHi indicate the observed value of a quantity on day i. 𝑅𝐻PO (𝑇𝑚𝑎𝑥`) is the 226 

estimated quantile on day i, obtained by replacing 𝜃, 𝛾, 𝜂Y,c,...,W	by estimates that minimize equation 227 

(7). 228 

The estimated quantiles produced by the quantile regression models closely match the 229 

variation of RH | Tmax in the simulated data from LENS for each month, period and city (Figure 230 

3). These quantiles show the differences in RH as Tmax varies within a month, and the feature of 231 

kink/cutoff when it is available. Using the estimated quantiles of RH | Tmax, we can flexibly 232 
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Figure 3. Estimated quantiles of RH | Tmax based on CESM LENS simulations in June-August 

of three periods at (a) NYC, (b) CHI, (c) PHX, (d) NOLA. Gray dots are observations of Tmax 

and RH from CESM LENS simulations. Lines represent the estimated quantiles at 0.05, 0.1, 0.3, 

0.5, 0.7, 0.9, 0.95. 
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estimate distributions of multiple metrics that describe heat extremes, such as dew point and heat 233 

index. There are some spikes shown in the lines of low quantiles in some months in some cities, 234 

e.g. 0.025 – 0.7 quantiles in August of 2071-2080 in Chicago. These spikes are due to the 235 

overfitting by the kink function. As the spikes only appear in low quantiles that are not important 236 

for studies of extremes, we still use the kink function in the model as it is important for estimating 237 

the kink in high quantiles, but recognize that these model specifications may not be optimal for all 238 

quantiles in all cities in all months. 239 

5. Model validation 240 

To evaluate how well the statistical model fits the observations (quality of fit), we construct 241 

empirical inverse quantiles of the relative humidity data in various temperature ranges. The 242 

empirical inverse quantiles are calculated as follows. 243 

1. Use the quantile regression model to estimate values of 𝑅𝐻OP(𝑇𝑚𝑎𝑥)	in 99 quantiles from 244 

0.01 to 0.99 and for the range of Tmax present in the data. Use these 99 quantiles as 245 

boundaries of 100 bins between 0 and 1. 246 

2. For temperature intervals of two-degree width, assign each day to an interval based on the 247 

observed value of Tmax for that day.  248 

3. For a particular temperature interval, the RH in these selected days are compared with the 249 

values of the 99 𝑅𝐻OP(𝑇𝑚𝑎𝑥) quantiles, and assigned to the corresponding RH quantile 250 

bins. 251 

4. The estimated quantiles of the corresponding RH in the temperature interval are displayed 252 

in a histogram to show the number of days falling into 100 bins from 0-0.01 quantile to 253 

0.99-1 quantile (e.g. see Fig. 4). The more uniform the histogram is, the better the quantile 254 

model fits the data.  255 
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Figure 4. Empirical inverse quantiles of the statistical models emulating the quantiles of 

simulated data in LENS in New York during (a) 1990-2005; (b) 2026-2035; (c) 2071-2080. The 

histograms represent the number of RH events falls into 100 bins of estimated quantiles of RH at 

three given temperature intervals (2 degrees per interval) in June, July, August. 

 

 

 

 

 

 

 

 

 

19
90

-2
00

5 
20

26
-2

03
5 

20
71

-2
08

0 



 18 

Taking NYC as an example (Fig. 4), the simulated RH data from LENS are evenly distributed in 256 

the 100 bins edged by quantiles, which are estimated by the quantile regression models, given 257 

randomly picked temperature intervals for all three months in three periods. Similar features are 258 

observed in the other three cities (Fig. S4, S5, S6). These results indicate that the models we 259 

selected fit the data well for all four cities. 260 

6. Results  261 

To investigate the long-term evolution of heat extremes, we focus upon the conditional 262 

median of RH | Tmax and upon the conditional 0.95 quantile of RH | Tmax, which we take as 263 

representative of the tail of the conditional distribution (upper panels of Fig. 5). As noted, the shape 264 

of the marginal Tmax distribution in each time period (lower panels of Fig. 5) noticeably deviates 265 

from a normal distribution. Furthermore, the changes from the period 1990-2005 to the period 266 

2071-2080 include not only increases in mean and changes in standard deviation, but also changes 267 

in skewness and kurtosis. For example, in CHI in July, the mean increases from 26.9°C and 32.0°C, 268 

while the standard deviation grows from 2.7°C and 3.3°C. The skewness and kurtosis of Tmax also 269 

increase over time, indicating a more right-skewed and fatter tail distribution in the future climate. 270 

The changes in marginal distribution of RH are smaller (Fig. S7). The means of RH decrease in 271 

all cities and all months (in a range between -0.4% and -7.3%), while changes in other moments 272 

of RH are not consistent across cities and months. The standard deviations of RH slightly increase 273 

in CHI, exhibit almost no change in NYC, and decrease in PHX and NOLA.  274 

Two alternative ways of investigating RH | Tmax are to look at the change in RH at a fixed 275 

quantile of Tmax (Tmaxτ; Tables 1, 2) and to look at the change in RH at a fixed value of Tmax 276 

(Tables 3, 4). The former is more representative of the overall shift in the joint distribution, while 277 

the latter is relevant to characterizing the impacts of a day of a particular Tmax. 278 
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Figure 5. Estimated quantiles of relative humidity (RH) given daily maximum temperature 

(Tmax) in the three periods: 1990-2005, 2026-2036, and 2071-2080. Median and 0.95 quantiles 

are displayed by dashed and solid lines, respectively. Marginal distribution of temperature is also 

shown on the lower panel. The dashed black lines denote the values of Tmax at 0.95 quantile 

during the period of 1990-2005. 
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Table 1   Summary of relative humidity (RH), dew point (DP), and heat index (HI) at 0.5 

quantile in the period of 1990-2005 (denoted by Hist.) given 0.5 and 0.95 quantiles of Tmax in 

the same period. The changes in the conditional median of RH, DP, and HI from the period of 

Hist to the period of 2026-2035 (denoted by 2030) and to the period of 2071-2080 (denoted by 

2075) given 0.5 and 0.95 quantiles of Tmax in the same period are shown in the table, where the 

0.5 and 0.95 quantiles of Tmax in the period of 2030 and 2075 are also displayed as the deviation 

from the Tmax in the period of Hist. (Units of Tmax: °C; units of RH: %; units of dew point: °C; 

units of HI: °C). 

City Tmax 
quantiles Periods 

June July August 

Tmax RH DP HI Tmax RH DP HI Tmax RH DP HI 

NYC 

0.5 
Hist. 26.3 51.6 15.6 26.9 27.9 55.2 18.1 28.8 27.2 52.3 16.6 27.8 

2030 +1.6  -1.2 +1.1 +1.5 +1.8  -0.3 +1.6 +2.5 +1.9  -3.9 +0.5 +1.8 

2075 +4.9  -6.0 +2.5 +5.3 +5.0  -3.4 +3.6 +7.8 +5.4  -2.5 +4.2 +7.8 

0.95 
Hist. 30.3 41.4 15.8 30.3 31.3 44.5 17.8 32.1 30.7 45.0 17.4 31.3 

2030 +1.7  -0.4 +1.3 +2.1 +1.8  -2.2 +0.8 +2.3 +2.0  -2.2 +1.1 +2.8 

2075 +5.3  -8.4 +1.2 +6.1 +5.6  -6.9 +2.3 +8.1 +5.9  -6.6 +2.8 +8.6 

CHI 

0.5 
Hist. 25.1 66.8 18.5 26.1 26.8 67.5 20.3 28.4 26.3 67.0 19.7 27.6 

2030 +1.6  -1.7 +1.1 +1.9 +1.7  -0.8 +1.4 +2.8 +2.0  -2.0 +1.3 +2.8 

2075 +5.0  -5.8 +3.2 +7.1 +4.9  -3.4 +3.8 +9.3 +5.4  -4.3 +4.0 +9.5 

0.95 
Hist. 29 65.6 21.7 31.6 31.4 58.3 22.2 35.1 31.9 53.4 21.2 34.8 

2030 +2.0  -3.5 +1.0 +3.3 +2.3  -9.3  -0.6 +2.4 +2.6  -9.1  -0.6 +2.6 

2075 +5.6  -14.4 +1.1 +8.0 +6.8  -21.4  -1.3 +7.2 +6.6  -17.4  -0.5 +7.8 

PHX 

0.5 
Hist. 36.4 9.6 -0.6 33.6 40.5 11.1 4.5 37.7 40.1 12.5 5.8 37.5 

2030 +1.3  -0.1 +0.8 +1.2 +1.5 +0.0 +1.2 +1.5 +1.7  -0.0 +1.3 +1.8 

2075 +4.4  -0.4 +2.8 +4.1 +4.4  -0.5 +2.6 +4.5 +4.5  -0.1 +3.4 +5.1 

0.95 
Hist. 41.5 8.2 1.0 38.1 44.2 9.0 4.1 40.8 43.7 9.7 4.9 40.6 

2030 +1.5 +0.3 +1.6 +1.5 +1.5  -0.1 +1.0 +1.5 +1.5 +0.1 +1.2 +1.5 

2075 +4.4 +0.2 +3.5 +4.2 +4.6  -0.3 +2.9 +4.5 +4.7  -0.3 +3.0 +4.8 

NOLA 

0.5 
Hist. 28.2 66.0 21.2 30.4 29.6 64.7 22.3 33.0 30.0 63.9 22.4 33.7 

2030 +1.2  -0.8 +1.0 +2.2 +1.2  -1.3 +0.9 +2.4 +1.2  -1.5 +0.8 +2.4 

2075 +3.5  -2.1 +2.8 +7.1 +3.6  -2.5 +2.8 +8.0 +3.6  -3.5 +2.5 +7.7 

0.95 
Hist. 30.2 55.6 20.4 32.4 31.7 54.3 21.3 34.9 31.9 54.2 21.5 35.2 

2030 +1.2  -0.2 +1.1 +2.3 +1.2  -0.5 +0.9 +2.3 +1.1  -1.3 +0.7 +2.1 

2075 +3.5 +0.3 +3.4 +7.6 +3.3 +0.7 +3.2 +7.7 +3.4  -1.3 +2.8 +7.5 
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As expected, both Tmax0.5 and Tmax0.95 increase over time (Table 1). The conditional 279 

median of RH at the increasing Tmax0.5 decreases over time in all cities, except for PHX between 280 

July 1990-2005 and 2026-2035, a period over which the conditional median of RH is effectively 281 

constant. The same pattern holds most cities at Tmax0.95, with the conditional median of RH 282 

decreasing over time for NYC, CHI, and August of NOLA, while changing only slightly (absolute 283 

changes <1%) in PHX, as well as in June and July for NOLA (Table 1).  The conditional 0.95 284 

quantile of RH | Tmax0.5 decreases consistently over time in all four cities and all three months 285 

(Table 2). The same pattern holds for most cities for RH | Tmax0.95, except for June of PHX, in 286 

which 0.95 quantile of RH | Tmax0.95 shows a slightly increase (+0.24% between 1990-2005 and 287 

2071-2080) (Table 2).  The projected decrease in the conditional median quantile of RH at a fixed 288 

quantile of Tmax indicates that the growth in saturation vapor pressure due to increased 289 

temperature is larger than the growth in the vapor pressure of the air. The result is consistent with 290 

findings in previous studies (Byrne & O’Gorman, 2018; Flato et al., 2013; Joshi, Gregory, Webb, 291 

Sexton, & Johns, 2008; O’Gorman & Muller, 2010), which show a decrease in RH over land in 292 

response to a warming climate, as well as with the marginal decrease in mean RH noted early 293 

(Figure S7).  294 

 Given the increase in Tmax0.5 and Tmax0.95, the conditional median and 0.95 quantile of 295 

heat index both increase in 2026-2035 and 2071-2080 relative to that in 1990-2005 (Table 1 and 296 

2, Fig. 6). The increase in heat index in the two future periods is faster than the increase in Tmaxτ 297 

in most cities, except for PHX where the increase in heat index is close to the increase in Tmaxτ. 298 

The conditional median and 0.95 quantiles of dew point at both quantiles of Tmax increase over 299 

time except for July and August in CHI, where the decrease in RH is large enough that there is a 300 

minimal change in conditional dew point (Table 1 and 2, Fig. 7). This result suggests that,  301 
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Table 2 Same as Table 1 except for relative humidity (RH), dew point (DP), and heat index (HI) 

at the conditional 0.95 quantile.  

City Tmax 
quantiles Periods 

June July August 

Tmax RH DP HI Tmax RH DP HI Tmax RH DP HI 

NYC 

0.5 
Hist. 26.3 78.4 22.3 28.2 27.9 76.1 23.3 31.3 27.2 78.2 23.1 30.0 

2030 +1.6  -2.4 +1.0 +3.1 +1.8  -3.5 +0.9 +3.5 +1.9  -4.3 +0.9 +3.7 

2075 +4.9  -8.3 +2.9 +10.0 +5.0  -8.3 +2.9 +11.0 +5.4  -9.8 +3.0 +11.7 

0.95 
Hist. 30.3 58.5 21.3 33.2 31.3 60.8 22.8 35.7 30.7 63.0 22.8 35.0 

2030 +1.7  -0.9 +1.2 +3.0 +1.8  -3.8 +0.6 +2.9 +2.0  -3.9 +0.9 +3.8 

2075 +5.3  -8.8 +2.2 +8.9 +5.6  -10.7 +2.0 +9.9 +5.9  -12.7 +1.8 +10.0 

CHI 

0.5 
Hist. 25.1 90.3 23.4 25.9 26.8 88.5 24.8 30.1 26.3 91.0 24.7 28.9 

2030 +1.6  -2.6 +1.0 +3.7 +1.7  -3.4 +1.0 +4.3 +2.0  -5.7 +0.8 +4.7 

2075 +5.0  -10.4 +2.8 +11.9 +4.9  -9.5 +2.9 +12.8 +5.4  -12.7 +2.7 +13.6 

0.95 
Hist. 28.8 78.2 24.6 33.9 31.4 71.9 25.6 39.1 31.9 67.5 25.0 39.0 

2030 +2.0  -4.6 +0.9 +4.2 +2.3  -8.5 +0.1 +3.7 +2.6  -10.4  -0.4 +3.1 

2075 +5.6  -13.8 +2.1 +11.4 +6.8  -22.6  -0.0 +9.4 +6.6  -22.6  -0.7 +8.0 

PHX 

0.5 
Hist. 36.4 18.1 8.4 34.4 40.5 18.3 11.8 39.6 40.1 19.6 12.5 39.4 

2030 +1.3  -0.1 +1.0 +1.5 +1.5  -0.2 +1.0 +2.0 +1.7  -0.1 +1.3 +2.4 

2075 +4.4  -0.8 +2.9 +5.3 +4.4  -1.7 +2.0 +5.5 +4.5  -1.3 +2.6 +6.2 

0.95 
Hist. 41.5 14.4 9.0 39.6 44.2 14.4 11.0 43.0 43.7 15.1 11.4 42.7 

2030 +1.5  -0.3 +0.8 +1.8 +1.5  -0.7 +0.4 +1.7 +1.5  -0.3 +0.8 +1.8 

2075 +4.4 +0.2 +3.7 +5.8 +4.6  -1.1 +2.3 +5.6 +4.7  -1.3 +2.3 +5.8 

NOLA 

0.5 
Hist. 28.2 74.3 23.1 31.6 29.6 71.0 23.8 34.3 30.0 70.0 23.9 35.0 

2030 +1.2  -2.1 +0.7 +2.5 +1.2  -1.3 +0.9 +2.8 +1.2  -1.9 +0.7 +2.7 

2075 +3.5  -3.2 +2.7 +8.4 +3.6  -3.4 +2.6 +8.8 +3.6  -4.0 +2.5 +8.6 

0.95 Hist. 30.2 63.7 22.6 34.1 31.7 60.8 23.2 36.6 31.9 60.1 23.2 36.9 

2030 +1.2  -0.6 +1.0 +2.7 +1.2  -1.3 +0.7 +2.4 +1.1  -1.3 +0.7 +2.4 

 

despite a modest decrease in mean RH, heat stress impacts in a warming climate will increase 302 

faster than temperatures alone would indicate in many locations.  303 

At a fixed value of Tmax (e.g., the 0.95 quantile of Tmax during 1990-2005), the 304 

conditional 0.95 quantiles of RH increase over in all three month and all cities (upper panels of 305 

Fig. 5, and Table 3). Changes in the conditional median quantiles of RH show similar pattern, 306 

except for June in CHI, where the conditional medians of RH decrease (Table 4).  307 
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Table 3 Summary of relative humidity (RH), dew point (DP), and heat index (HI) at the 

conditional 0.95 quantile in the period of 1990-2005 (denoted by Hist.), conditional upon the 

0.95 quantile of Tmax during the Hist period. Changes in RH at 0.95 quantile in the period of 

2026-2030 (denoted by 2030) and the period of 2071-2080 (denoted by 2075) deviating from the 

Hist period, as well as changes in 0.95 quantile of DP and HI converted by the RH and Tmax are 

shown in the corresponding rows (Units of Tmax: °C; units of changes in RH: %; units of 

changes in dew point: °C; units of changes in HI: °C). 

City  
Period 

June July August 

Tmax RH DP HI Tmax RH DP HI Tmax RH DP HI 

NYC 
Hist 

30.29 
58.5 21.3 33.2 

31.29 
60.8 22.8 35.7 

30.73 
63.0 22.8 35.0 

2030 +4.8 +1.3 +1.0 +4.9 +1.2 +1.3 +3.8 +1.0 +1.0 
2075 +16.1 +4.0 +4.0 +16.6 +4.1 +5.3 +16.8 +4.0 +5.0 

CHI 
Hist 

28.8 
78.2 24.6 33.9 

31.37 
71.9 25.6 39.1 

31.85 
67.5 25.0 39.0 

2030 +0.7 +0.1 +0.0 +3.7 +0.8 +1.2 +5.8 +1.4 +2.1 
2075 +7.6 +1.5 +1.4 +8.2 +1.9 +3.2 +10.4 +2.5 +4.0 

PHX 
Hist 

41.48 
14.4 9.0 39.6 

44.15 
14.4 11.0 43.0 

43.65 
15.1 11.4 42.7 

2030 +0.7 +0.7 +0.2 +0.9 +1.0 +0.5 +1.5 +1.4 +0.6 
2075 +2.9 +2.8 +0.9 +4.0 +3.8 +2.0 +4.7 +4.1 +2.2 

NOLA 
Hist 

30.23 
63.7 22.6 34.1 

31.67 
60.8 23.2 36.6 

31.94 
60.1 23.2 36.9 

2030 +5.1 +1.2 +1.1 +4.2 +1.1 +1.2 +4.1 +1.2 +1.4 
2075 +18.0 +4.1 +4.7 +16.9 +4.1 +5.5 +18.0 +4.4 +6.5 

High conditional quantiles of heat index and dew point similarly display large increases over time 308 

in the four cities (Table 3, Fig. 6 and Fig. 7). Conditional medians of dew point and heat index 309 

given Tmax at the historic 0.95 quantile increase over time except for June of Chicago, where both 310 

conditional dew point and heat index are decrease due to the large reduction of RH (Table 4, Fig. 311 

6 and 7). Many previous impact analysis on heat waves (Carleton et al., 2019; Dosio et al., 2018; 312 

e.g. Mazdiyasni et al., 2017) only considered increases in extreme temperature. Our results suggest 313 

that, at a fixed extreme temperature, increase in both median and high quantiles of RH due to 314 

warming climate will increase the health impacts of heat extremes in future days. In other words, 315 

a day of a given temperature will be more impactful in a warmer climate than a day of the same 316 

temperature in the current climate. 317 
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Table 4  Same as Table 3 except for relative humidity (RH), dew point (DP), and heat index (HI) 

at the conditional median quantile. 

 

7. Discussions and Conclusions 318 

In this study, we use a large ensemble of simulations to investigate the joint distribution of 319 

summertime RH and Tmax for three time periods (1990-2005, 2026-2035, 2071-2080) in four U.S. 320 

cities that represent a range of climates. For each month in a city, the joint distribution changes 321 

shape and shifts toward higher dew point values over time. A cutoff in the highest Tmax for which 322 

RH of 100% can occur, followed by a steep drop in the maximum attainable RH as Tmax increases 323 

beyond this cutoff is observed in the joint distribution in all months for NYC and CHI, and some 324 

months for NOLA (Fig. 1). The cutoff shifts toward higher dew point temperature as climate 325 

warms. 326 

Based on the information provided by the joint distribution diagnostics, we developed 327 

statistical models to capture the conditional distribution of RH | Tmax using quantile regression, 328 

where a kink function is used to capture the kink, and a number of cubic spline basis functions are 329 

used to describe smooth variation in RH quantiles with Tmax within a month.  330 

City  
Period 

June July August 

Tmax RH DP HI Tmax RH DP HI Tmax RH DP HI 

NYC 
Hist 

30.29 
41.4 15.8 30.3 

31.29 
44.5 17.8 32.1 

30.73 
44.5 17.8 32.1 

2030 +0.9 +0.3 +0.1 +3.4 +1.1 +0.6 +3.4 +1.1 +0.6 
2075 +7.9 +2.8 +1.2 +17.7 +5.5 +4.1 +17.7 +5.5 +4.1 

CHI 
Hist 

28.8 
65.6 21.7 31.6 

31.37 
58.3 22.2 35.1 

31.85 
58.3 22.2 35.1 

2030 -0.7 -0.2 -0.2 +5.1 +1.4 +1.3 +5.1 +1.4 +1.3 
2075 -8.2 -2.2 -1.3 +6.2 +1.8 +1.9 +6.2 +1.8 +1.9 

PHX 
Hist 

41.48 
8.2 1.0 38.1 

44.15 
9.0 4.1 40.8 

43.65 
9.0 4.1 40.8 

2030 +0.3 +0.5 +0.1 +0.8 +1.2 +0.3 +0.8 +1.2 +0.3 
2075 +0.9 +1.4 +0.2 +2.4 +3.5 +1.0 +2.4 +3.5 +1.0 

NOLA 
Hist 

30.23 
55.6 20.4 32.4 

31.67 
54.3 21.3 34.9 

31.94 
54.3 21.3 34.9 

2030 +6.1 +1.6 +1.1 +4.5 +1.3 +1.1 +4.5 +1.3 +1.1 
2075 +16.3 +4.2 +3.6 +16.9 +4.4 +4.9 +16.9 +4.4 +4.9 
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Figure 6. Estimated quantiles of heat index given daily maximum temperature (Tmax) in June, 

July, and August of three periods at New York (NYC), Chicago (CHI), Phoenix (PHX), and New 

Orleans (NOLA). Shadings represent the central 95% range of the distribution. Blue denotes the 

period of 1990-2005, green 2016-2035, red 2071-2080. Heavy lines are median of the 

distribution. The horizontal dashed lines denote the thresholds for the categories defined by 

national weather service.  
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Figure 7. Estimated quantiles of dew point given daily maximum temperature (Tmax) in June, 

July, and August of three periods at New York (NYC), Chicago (CHI), Phoenix (PHX), and New 

Orleans (NOLA). Shadings represent the central 95% range of the conditional distribution. Blue 

denotes the period of 1990-2005, green 2016-2035, red 2071-2080. Heavy lines are median of 

the distribution.  
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The quality of fit diagnostic indicates the distribution of RH | Tmax estimated by these quantile 331 

regression models fit the data of LENS well (Fig. S4-S6). In addition, the quantile regression 332 

models could estimate the distribution and tails of conditional distribution of RH | Tmax without 333 

any parametric assumptions. 334 

The conditional quantiles of RH | Tmax allow us to investigate the changes in heat extremes 335 

in multiple ways. First, we investigate the changes in RH, heat index and dew point given a fixed 336 

quantile of Tmax during any of the three periods. As expected, both Tmax0.5 and Tmax0.95 increase 337 

over time. At the Tmax0.5 and Tmax0.95 during future periods, the conditional quantiles of heat 338 

index or dew point are generally higher than that during the historical period, even though the 339 

conditional quantiles of RH are lower (Table 1 and 2). These results suggest that, despite a modest 340 

decrease in relative humidity, heat stress impacts in a warming climate will tend to increase faster 341 

than temperatures alone would indicate.  342 

Second, we investigate the changes in RH, heat index and dew point given a fixed Tmax. 343 

Consider Tmax at its historical 0.95 quantile, for instance, the conditional 0.95 quantiles of RH, 344 

dew point and heat index increase from 1990-2005 to 2071-2080 in all four cities (Table 3). The 345 

increase pattern holds in the conditional median quantiles of these three variables given the fixed 346 

Tmax, except for June in CHI (Table 4). Our results indicate that, in a warming climate, a future 347 

day will tend to have higher RH than a day of the same temperature under the historic climate. 348 

Therefore, even at the same temperature, the increase in RH will increase the impact of heat 349 

extremes in the future day. Ignoring this conditional increase in RH, as many previous studies have 350 

done in assessing the heat impact (Carleton et al., 2019; Dosio et al., 2018; e.g. Mazdiyasni et al., 351 

2017), may lead to underestimating impact of heat waves in a warmer world. 352 
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This study gives us confidence about applying quantile regression models to quantify the 353 

conditional distribution of RH | Tmax in different climate background. For a specific city, although 354 

these statistical models capture the variability of RH given Tmax for each summer month and each 355 

time period, respectively, we see a need for a uniform model for all days of the year and all the 356 

time period that could capture the seasonal variability and long-term evolution with the same set 357 

of parameters. To reach this end, we have to include more terms in the statistical model to capture 358 

the variability of RH with time (e.g. days of the year, and years) and the interaction between the 359 

Tmax and time. These statistical models developed based on quantile regression approaches could 360 

be eventually applied to estimating the future climate projections that require less computing 361 

resources than the climate models (Haugen et al., 2019). 362 

Appendix 363 

a. Selecting the temperature at the kink 364 

As discussed in the Section 3, the cutoff indicates the moisture in the atmosphere is largely 365 

constrained by the dew point. Therefore, we select the T0 value through examining the density 366 

distribution of dew point converted by corresponding RH and Tmax (Fig. 2). When there is a 367 

kink of the joint distribution, the distribution of dew point displays a cliff-like shape at the high 368 

end of temperature (e.g. NYC, CHI, and some months of NOLA). There is no such feature 369 

observed in the density distribution of dew point in PHX. Therefore, we use the following rule 370 

for deciding whether to include a kink function: First, we check if the differences between 0.99 371 

quantile and 0.9 quantile of dew point is < 9% of differences between maximum and minimum 372 

values of dew point. If it is, then we include a kink function, and so must obtain a value for T0, 373 

which we set to the empirical 0.999 quantile of dew point for that month and period. Note that 374 
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this method is only feasible because of the use of a large ensemble of simulations. The selected 375 

T0 values are listed in Table S1 in supplement information. 376 

b. Selecting number of basis functions 377 

The number of basis functions (m) in the model is an important parameter that influences 378 

how well the model fits the observations. Increasing m improves the quality of fit of the model. 379 

However, if m is too large, the model runs the risk of overfitting the data, which can lead to 380 

diminished performance in assessments with out of sample data. Here we use a cross-validation 381 

metric to select the simplest model that provides overall good estimation of quantiles and prevent 382 

overfitting the data.  383 

Figure A1. 𝑺e𝒕𝒆𝒔𝒕(𝒂𝒋, 𝝉)	 in July of New York during period of 1990-2005 for the quantile 𝝉 =

𝟎. 𝟗𝟓		estimation. 20 temperature bins are edged by equally spaced quantiles (0.05) from 0 to 1 

of the Tmax distribution in July.  The black dot and error bars indicate the mean and standard 

deviation in a temperature bin. 

 
To estimate the appropriate number of basis functions used in a quantile-regression model, 384 

we apply a cross validation on the model. We extract samples by randomly selecting 34 members 385 
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from the 35 members of LENS and drop one member without replacement. By this way, we 386 

obtained 35 samples. Then, we apply quantile regression on each sample and calculate the 387 

fraction of RH events that exceeds a particular quantile 𝜏 given Tmax bins 388 

𝑆p"q*"(𝑎U, 𝜏) 	= 	
1
𝑛S𝐼[(𝑅𝐻`(𝑎U) 	− 𝑅𝐻O`,P(𝑎U)) > 0]

b

`XY

 (9) 

where n = 35 is the number of samples. 𝑎U represent temperature bins whose boundaries are 389 

defined by equally spaced quantiles (0.05) from 0 to 1 of the Tmax distribution in a month. The 390 

𝑅𝐻` represents the observed values from model output, and 𝑅𝐻O`,P is the estimated value at 391 

quantile 𝜏. I is the indicator function. An appropriate model which is fit to the data requires the 392 

estimated quantiles to contain approximately the desired fraction of positive and negative 393 

residuals. Therefore, we seek an appropriate model to satisfy  𝑆p"q*"(𝑎U, 𝜏) ≈ (1 − 𝜏). Figure A1 394 

show an example of 𝑆p"q*"(𝑎U, 𝜏)	in July of NYC during period of 1990-2005 for the 0.95 quantile 395 

estimation. As we expected the 𝑆p"q*"(𝑎U, 𝜏) at each temperature bin is generally close to 0.05. 396 

The mean square error between 𝑆p"q*"(𝑎U, 𝜏)	and 0.05 is used to measure the variability of 397 

𝑆p"q*"(𝑎U, 𝜏). As the model complexity increases with the growth of m, the variability of 398 

𝑆p"q*"(𝑎U, 𝜏) should decrease until reaching a minimum when m reaches an optimal number of 399 

basis functions. Once m exceeds this point, the model starts to overfit the data and the mean 400 

square error between 𝑆p"q*"(𝑎U, 𝜏) and 0.05 will grow. For each city, we sum up the mean square 401 

error across three months (June, July, and August) and three time periods: 402 

𝐶𝑉	 = 	
1
3S

1
5 S

1
𝑘 S(𝑆p"q*"(𝑎U, 𝜏)z,W{b − 0.05)c

|

+}	~�

�

W{bXY

�

zXY

 (11) 
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where g represents 3 time periods, and mon represents 3 months. CV is used to quantify the 403 

averaged variability of 𝑆p"q*"(𝑎U) for a city (Fig. A2). Based on Fig. A2, the selected number of 404 

cubic-spline basis functions are 14 for NYC, 13 for CHI, 13 for PHX, and 9 for NOLA. 405 

 

Figure A2. Averaged mean square error between  𝑺e𝒕𝒆𝒔𝒕(𝒂𝒋, 𝝉)	 and 0.05 at estimated quantile 𝝉 =

𝟎. 𝟗𝟓 across 3 months and 3 periods for New York (NYC), Chicago (CHI), Phoenix (PHX), and 

New Orleans (NOLA). X-axis is the number of cubic-spline basis functions used in the statistic 

model. 
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