Analyzing Wildland Fire Smoke Emissions Data Using Compositional Data Techniques

David Weise¹, Javier Palarea-Albaladejo², Timothy J. Johnson³, and Heejung Jung⁴

¹USDA Forest Service ²Biomathematics and Statistics Scotland ³Pacific Northwest National Laboratory ⁴University of California, Riverside

November 22, 2022

Abstract

By conservation of mass, the mass of wildland fuel that is pyrolyzed and combusted must equal the mass of smoke emissions, residual char and ash. For a given set of conditions, these amounts are fixed. This places a constraint on smoke emissions data which violates key assumptions for many of the statistical methods ordinarily used to analyze these data such as linear regression, analysis of variance, and t-tests. These data are inherently multivariate, relative, and non-negative parts of a whole and are then characterized as so-called compositional data. This paper introduces the field of compositional data analysis to the biomass burning emissions community and provides examples of statistical treatment of emissions data. Measures and tests of proportionality, unlike ordinary correlation, allow one to coherently investigate associations between parts of the smoke composition. An alternative method based on compositional linear trends was applied to estimate trace gas composition over a range of combustion efficiency which reduced prediction error by 4 percent while avoiding use of modified combustion efficiency as if it were an independent variable. Use of log-ratio balances to create meaningful contrasts between compositional parts definitively stressed differences in smoke emissions from fuel types originating in the southeastern and southwestern U.S. Application of compositional statistical methods as an appropriate approach to account for the relative nature of data about the composition of smoke emissions and the atmosphere is recommended.

Hosted file

agusupporting-information weise et al.docx available at https://authorea.com/users/537272/ articles/599279-analyzing-wildland-fire-smoke-emissions-data-using-compositional-datatechniques

1	Analyzing Wildland Fire Smoke Emissions Data Using Compositional Data
2	Techniques
3	David R. Weise ¹ , Javier Palarea-Albaladejo ² , Timothy J. Johnson ³ , and Heejung Jung ⁴
4	¹ USDA Forest Service, Pacific Southwest Research Station, Riverside, CA, 92507, USA
5	² Biomathematics and Statistics Scotland, Edinburgh, Scotland, UK
6	³ Pacific Northwest National Laboratories, Richland, WA, USA
7	⁴ Department of Mechanical Engineering, University of California, Riverside, CA, USA
8	Corresponding author: David R. Weise (david.weise@usda.gov)
9	Key Points:
10	• Emissions data involve multiple and interrelated elements that can be more effectively
11	analyzed using multivariate statistical techniques.
12	• By mass conservation, the range of emissions data is inherently constrained, making
13	techniques for compositional data appropriate.
14	• Relating trace gas emissions to modified combustion efficiency using compositional
15	linear regression accounts for these features.
16	

17 Abstract

18 By conservation of mass, the mass of wildland fuel that is pyrolyzed and combusted must 19 equal the mass of smoke emissions, residual char and ash. For a given set of conditions, these 20 amounts are fixed. This places a constraint on smoke emissions data which violates key 21 assumptions for many of the statistical methods ordinarily used to analyze these data such as 22 linear regression, analysis of variance, and t-tests. These data are inherently multivariate, 23 relative, and non-negative parts of a whole and are then characterized as so-called compositional 24 data. This paper introduces the field of compositional data analysis to the biomass burning 25 emissions community and provides examples of statistical treatment of emissions data. Measures 26 and tests of proportionality, unlike ordinary correlation, allow one to coherently investigate 27 associations between parts of the smoke composition. An alternative method based on 28 compositional linear trends was applied to estimate trace gas composition over a range of combustion efficiency which reduced prediction error by 4 percent while avoiding use of 29 30 modified combustion efficiency as if it were an independent variable. Use of log-ratio balances 31 to create meaningful contrasts between compositional parts definitively stressed differences in 32 smoke emissions from fuel types originating in the southeastern and southwestern U.S. 33 Application of compositional statistical methods as an appropriate approach to account for the 34 relative nature of data about the composition of smoke emissions and the atmosphere is 35 recommended.

36 **1 Introduction**

Wildland fire is a complex phenomenon of chemical and physical processes. Two of thechemical processes which are key to wildland fire are pyrolysis and combustion (Shafizadeh,

39	1984; Ward, 2001). During pyrolysis, a solid wildland fuel is heated and breaks down into
40	constituent parts consisting of gases, tars and a solid material called char (Di Blasi, 2008).
41	During combustion, pyrolysis products react with oxygen releasing energy and a large
42	assortment of gaseous and solid chemical compounds (e.g. Akagi et al., 2011; Andreae & Merlet,
43	2001; May et al., 2014). Oxidation reactions involving atmospheric gases such as nitrogen occur
44	(Crutzen & Brauch, 2016; Lobert et al., 1990). By conservation of mass, the mass of the products
45	is equal to the sum of the masses of the reactants. For the moment we assume that all products
46	can be measured with complete accuracy. The measured masses of the individual products
47	cannot exceed the total mass and are thus numerically related. Measuring a subset of the
48	complete list of products simply makes the total mass unknown but does not change the inherent
49	numerical dependency. For example, a simplified balanced global reaction describing
50	combustion of wood containing water and no inorganic content, shows 1 kg dry wood ($M=0$)
51	produces 1.82 kg CO ₂ and 0.32 kg H ₂ O for a total mass of products of 2.14 kg (Byram, 1959)

52
$$\frac{4C_{6}H_{9}O_{4} + 25O_{2} + [0.322M H_{2}O + 94 N_{2}] \rightarrow}{18H_{2}O + 24CO_{2} + [0.322M H_{2}O + 94 N_{2}] + energy}.$$
 (1)

53 Because of the chemical complexity of wood, Byram approximated the proportion of C, 54 H, and O atoms in wood by C₆H₉O₄. Complete combustion with no dissociation is an idealized 55 situation which explains the maximum product mass possible. Incomplete combustion and 56 thermal dissociation will yield additional products and less CO₂. The foliage of woody plants has 57 a different chemical composition from the wood component which can affect both combustion 58 and combustion products (Hough, 1969; Jolly et al., 2016; Rogers et al., 1986). The addition of 59 elements such as N and S, and a host of other elements (many inorganic) to the wood, along with 60 inclusion of a) the oxidation of atmospheric N by fire (Paul et al., 2008) as well as b) incomplete

61 combustion changes Eq.(1) but does not change conservation of mass. The total mass of the

62 products (*T*) can be partitioned to consist of CO, CO₂, particulate matter (*PM*), other gases, char

63 and ash

64
$$T = CO + CO_2 + other gases + PM + char + ash$$
. (2)

65 If the masses in Eq. (2) are transformed into mass ratios by dividing by the total of CO and CO_2 66 as in

$$\frac{T}{CO + CO_2} = \frac{CO_2 + CO + \text{other gases} + PM + \text{char + ash}}{CO + CO_2}$$

$$67 \qquad \qquad = \frac{CO_2}{CO + CO_2} + \frac{CO}{CO + CO_2} + \frac{\text{other gases}}{CO + CO_2} + \frac{PM}{CO + CO_2} + \frac{\text{char}}{CO + CO_2} + \frac{\text{ash}}{CO + CO_2}, \quad (3)$$

$$= MCE + \frac{CO}{CO + CO_2} + \frac{\text{other gases}}{CO + CO_2} + \frac{PM}{CO + CO_2} + \frac{\text{char}}{CO + CO_2} + \frac{\text{ash}}{CO + CO_2},$$

it can be easily seen that modified combustion efficiency $MCE = CO_2/(CO + CO_2)$ is part of the 68 total and numerically dependent on the other parts because T is fixed. The above example places 69 70 the masses on a relative basis to the amount of CO and CO₂ produced by a fire, demonstrably 71 two of the three primary products (water being the third). Emissions data have been expressed as 72 relative measures such as emission ratios and emission factors, concentrations, mixing ratios, 73 mole fractions, mass fractions, and volume fractions for a very long time (e.g. Darley et al., 74 1966; Gerstle & Kemnitz, 1967). However, the statistical properties of relative data have not 75 typically been considered when these data have been analyzed. Compositional data analysis (CoDA) is an approach that explicitly considers the statistical properties of relative data 76 77 (Aitchison, 1986). Compositional data are contained in the positive orthant of multidimensional 78 real space (Barceló-Vidal et al., 2001). [An orthant is the multidimensional analogue of a 79 quadrant in the more familiar two-dimensional Cartesian space.] A recent paper presented 80 analysis of emissions data using positive matrix factorization which recognized the non-negative

81 nature of emissions data (Sekimoto et al 2018). From a compositional point of view,

82 stoichiometric equations such as (1) have characteristics that discourage, for example, measuring

83 association (correlation) between parts of the composition in the ordinary way (Egozcue et al.,

84 2014).

85 Individual gases produced during pyrolysis and combustion have long been associated 86 with the different phases or conditions (pre-ignition, flaming, smoldering, mixed phase) under 87 which the pyrolysis and combustion have occurred (Lobert & Warnatz, 1993; Tangren et al., 88 1976). Combustion efficiency (CE) and MCE are indices developed to describe the completeness 89 of the conversion of the carbon contained in the fuel to CO₂ (Ward et al., 1980; Ward & Hao, 90 1991; Yokelson et al., 1997). Theoretically CE includes all carbon produced; however, the 91 challenge to account for all products and the predominance of CO₂ and CO in smoke emissions 92 led to the development of MCE (Ward & Hao, 1991). It has become common practice to 93 correlate emission factors of products other than CO₂ and CO with MCE (e.g. Amaral et al., 94 2014; Burling et al., 2010; Ferek et al., 1998; Goode et al., 2000; Janhäll et al., 2010; 95 McMeeking et al., 2009; Shen et al., 2013; Urbanski, 2013; Ward & Hao, 1991; Yokelson et al., 96 2013) using ordinary linear regression. While linking combustion products to CE and MCE is 97 physically sound, the approach to statistical analysis has to date often ignored the intrinsic 98 multivariate and relative nature of these data. As shown above by Eq. (3), MCE as an 99 explanatory variable is automatically correlated to every other wildland fire emission (response 100 variable) by its formulation, not because of physical causation.

Aitchison (2003) showed for illustration how two scientists examining the correlation
 between animal, vegetable, mineral, and water proportions of a sample can arrive at very
 different correlations (and conclusions) if one scientist dried the sample removing all water

before calculating the correlations between the components. We present a similar example
(Table 1) using emission factors previously reported (Radke et al., 1988). The original emission
factors (g/kg) comprise a composition of *D* parts which were put on a consistent relative scale by
applying the closure operation

(4)

- 108 $C(\mathbf{x}) = \frac{[x_1, x_2, \dots, x_D]}{\sum_{i=1}^{D} x_i}$
- 109 which divides the emission for each gas (x_i) by the sum of emissions and express the data as 110 fractions of a fixed total, this being 1 by default to be expressed in proportions but in general any 111 other total by simple multiplication (e.g $C(\mathbf{x}) \cdot 10^2$ for percentages or $C(\mathbf{x}) \cdot 10^6$ for parts per 112 million). After closure, the CO₂ emission factor of 1664 g/kg becomes the proportion 0.948. 113

114 **Table 1. Example illustrating how ordinary correlation of relative data such as emission**

Emission fact	Emission factors (g/kg)													
CO	CO_2	CH_4	C_3H_6	C_2H_6	C_3H_8	C_2H_3	PM							
74	74 1664		0.58	0.35	0.21	0.32	13.5							
75	1650	3.6	0.46	0.55	0.32	0.21	23.0							
106	1626	3.0	0.70	0.60	0.25	0.22	6.1							
89	1637	2.6	0.08	0.56	0.42	0.19	20.2							
Full composition (after closure <i>C</i>)														
4.22E-02	9.48E-01	1.37E-03	3.30E-04	1.99E-04	1.20E-04	1.82E-04	7.69E-03							
4.28E-02	2 9.41E-01	2.05E-03	2.62E-04	3.14E-04	1.83E-04	1.20E-04	1.31E-02							
6.08E-02	9.33E-01	1.72E-03	4.02E-04	3.44E-04	1.43E-04	1.26E-04	3.50E-03							
5.09E-02	9.35E-01	1.49E-03	4.57E-05	3.20E-04	2.40E-04	1.09E-04	1.15E-02							
No CO ₂ subc	omposition													
8.10E-01		2.63E-02	6.35E-03	3.83E-03	2.30E-03	3.50E-03	1.48E-01							
7.27E-01	l	3.49E-02	4.46E-03	5.33E-03	3.10E-03	2.04E-03	2.23E-01							
9.07E-01	l	2.57E-02	5.99E-03	5.13E-03	2.14E-03	1.88E-03	5.22E-02							
7.87E-01	l	2.30E-02	7.08E-04	4.95E-03	3.72E-03	1.68E-03	1.79E-01							
Pearson corre	elation													
CO ₂ Full	(F)	-0.25	0.18	-0.93	-0.49	0.82	0.25							
CO F	-0.88	-0.01	0.19	0.69	0.06	-0.44	-0.68							
Sub	(S)	-0.59	0.40	-0.10	-0.67	-0.03	-1.00							
CH ₄ F			0.19	0.58	0.12	-0.53	0.31							
S			0.29	0.37	0.00	0.01	0.53							
C ₃ H ₆ F				-0.17	-0.92	0.51	-0.71							
S				-0.36	-0.95	0.61	-0.47							
C_2H_6 F					0.54	-0.93	-0.01							
S					0.38	-0.92	0.09							
C_3H_8 F						-0.81	0.65							
S						-0.53	0.72							
C_2H_3 F							-0.34							
S							0.01							

115 factors produces spurious results. Data from Radke et al. (1988).

116

117 Regardless of the total, it is important to note that the resulting relativized data vector is 118 equivalent to the original emission factors and lives in what is known as a *D*-part simplex and, 119 hence, statistical analysis on any equivalent representation of the data should provide the same 120 results. In the example in Table 1, D = 8 for the full composition. The familiar Pearson 121 correlation coefficient (*r*) was then calculated for all pairs of gases. In the full composition, CO 122 was negatively correlated with CO₂ (r=-0.88), positively correlated with C₂H₆ (0.69) and not 123 correlated with C₃H₈ (0.06). The emission factor for CO₂ was then removed from the full

124 composition as if it had not been measured and the closure operation was performed on the 125 subcomposition (subset), producing the second set of values, and correlation between the pairs 126 was calculated. Correlation coefficients which changed appreciably are highlighted. Note that 127 CO is now negatively correlated with C_3H_8 (-0.67) and not correlated with C_2H_6 (-0.10). 128 Similarly, CH_4 was negatively correlated with C_2H_3 in the full composition (-0.53) and not 129 correlated (0.01) when CO₂ is not in the composition. The point of this illustration is that this 130 index (Pearson correlation coefficient) that is generally trusted as a measure of pairwise 131 association can produce different results depending on something that should not affect it. This is 132 an artifact not related to the actual relationship between the variables. Hence, it is not a reliable 133 measure with this type of data, regardless of the magnitude of the difference in a particular case, 134 which will be arbitrarily big or small. That the interpretation of these changing correlations could 135 lead to spurious conclusions is well known (Pearson, 1896). This simple example illustrates the 136 problem using correlation with relative data. Linear regression utilizes correlation so it is also 137 affected by this constraint: measuring associations in terms of proportionality is a coherent and 138 meaningful alternative to ordinary correlation for compositional data (Egozcue et al., 2014, 139 2018; Lovell et al., 2015).

The use of predictions resulting from correlations and linear regressions that do not account for the relative nature of emissions data may produce misleading estimates in emissions inventories developed by various regulatory agencies. This is true for operational tools such as the Fire Emissions Production Simulator and its successors (Anderson et al., 2004) as well as the First Order Fire Effects Model and its successors. It also represents just one of many sources of potential error in emissions calculations (Ottmar et al., 2008; Surawski et al., 2016). In this paper we therefore propose a different approach to analyze emissions data that reflects their

147	compositional nature. A well-principled methodological body to analyze compositional data has
148	been developed in the past 30 years and this is an active area of statistical research so we have
149	chosen to apply it to fire emissions data, in particular gas-phase emissions. Interestingly, it has
150	been successfully applied in varied fields, but appears to have seldom been applied to
151	combustion or emissions data (Bandeen-Roche, 1994; Billheimer, 2001; Buccianti &
152	Pawlowsky-Glahn, 2006; Speranza et al., 2018). A recent analysis that ercognized
153	The relative nature of emissions data defines emissions data as compositional data which
154	are coherently analyzed using CoDA (Aitchison, 1986; Barceló-Vidal et al., 2001; Lovell et al.,
155	2015; Pawlowsky-Glahn et al., 2015b). CoDA methodology has three underlying principles. The
156	first is scale invariance-vectors with proportional positive components represent the same
157	composition, and form what is known as an equivalence class. This means changing the units
158	should not change relative relationships between the parts nor affect results and scientific
159	conclusions. The second is that inferences about subcompositions, i.e. smaller compositions
160	formed from subsets of parts, must not contradict the inferences from the full composition (as in
161	the example in Table 1). The third principle states that the order of the parts of the composition
162	must not affect the inferences. While the initial work on CoDA explicitly assumed in the
163	definition of a composition that the parts sum (are closed) to a constant total, theory has
164	developed to show that this is only a particular representation of the data in a simplex and
165	equivalent non-closed compositions carry the same relative information (Barcelo-Vidal &
166	Martín-Fernández, 2016). So the "conservation of mass" argument presented earlier is not
167	necessary for emissions data to be considered compositional as shown by Egozcue (2009). The
168	structural relationship and interdependence between MCE and other emissions as shown in (3)
169	still holds.

170	Aitchison (1982) showed that a meaningful approach to compositional data is to analyze
171	log-ratios of the parts which carry the relative information. Aitchison (1986) defined the two
172	basic operations of perturbation (\oplus , analogous to addition or translation with ordinary real-
173	valued data)
174	$\mathbf{z} = \mathbf{x} \oplus \mathbf{p} = C[x_1 \cdot p_1, \dots, x_d \cdot p_d] $ (5)
175	and power transformation (\otimes , analogous to multiplication by a scalar)
176	$\mathbf{z} = \lambda \otimes \mathbf{x} = C \Big[x_1^{\lambda}, \dots, x_d^{\lambda} \Big] $ (6)
177	where x is the initial composition, p is a perturbation vector and λ is a constant. These operations
178	are foundational to CoDA.
179	In CoDA today, in order to use familiar statistical techniques such as exploratory data

180 analysis, linear regression, multivariate analysis of variance and other multivariate techniques, 181 the mainstream approach is to transform the parts from the simplex to real numbers using 182 isometric log-ratio (ilr) coordinates (van den Boogaart & Tolosana-Delgado, 2013; Egozcue & 183 Pawlowsky-Glahn, 2005; Mateu-Figueras et al., 2011; Pawlowsky-Glahn et al., 2015b). The 184 linear algebra theory supporting these transformations also provides the underpinnings for 185 "standard" or "classical" statistics routinely used in the sciences (Graybill, 2002). Several texts 186 describe the theory and methods of compositional data analysis (Aitchison, 1986; van den 187 Boogaart & Tolosana-Delgado, 2013; Filzmoser et al., 2018; Pawlowsky-Glahn et al., 2015b; 188 Pawlowsky-Glahn & Buccianti, 2011). Software to perform compositional data analysis is 189 available, including the stand-alone point-and-click CoDaPack package (Thió-Henestrosa & 190 Comas, 2016) (http://www.compositionaldata.com/codapack.php) and comprehensive libraries 191 on the open-source R statistical computing system (R Core Team, 2018): compositions (van den

192	Boogaart &	Tolosana-Delgado.	2013). robCom	positions (Tem	pl et al., 2011) and <i>zCompositions</i>
			,	p = = = = = = = = = = = = = = = = = = =		,

193 (Palarea-Albaladejo et al., 2014; Palarea-Albaladejo & Martín-Fernández, 2015).

194 The above considerations borne in mind, the objectives of this manuscript are to re-195 analyze the Burling et al. (2010) emissions factors data to 1) determine if parts (individual gases) 196 were proportional to each other (in place of correlated in the usual way), 2) determine if a 197 compositional linear trend can be used to model the data as combustion efficiency changes (in 198 place of ordinary linear regression using MCE), and 3) determine if the composition of the gases 199 differed between fuel types using analysis of variance within a CoDA framework. We hope to 200 demonstrate that the CoDA approach can shed as much or more light on the relationships in and 201 between the emissions data by applying techniques consistent with the nature of the data instead 202 of using simple linear regression with MCE thus avoiding artifacts derived from the very own 203 nature of the data.

204 2 Statistical Methods

205 Burling et al. (2010) reported emission factors for 18 gases measured using an open-path 206 FTIR spectrometer (Burling et al., 2010) and characteristics of the combustion (fuel moisture 207 content, fuel consumption, MCE) for 65 laboratory fires (observations) in 15 different wildland fuel types. Each of the 65 observations comprised a vector $\mathbf{x}_i = [x_1 \dots x_{18}]_i$ where parts $x_1 \dots x_{18}$ 208 209 were the measured emission factors for CO₂, CO, CH₄, C₂H₂, C₂H₄, C₃H₆, CH₃OH, HCOOH, 210 CH₃COOH, HCHO, C₄H₄O, NH₃, NO, NO₂, HONO, HCN, HCl, and SO₂, respectively. In 211 actuality, these 18 gases were a subcomposition of a much larger composition of gaseous and 212 solid emissions sampled from these experimental fires by a variety of methods and instruments 213 described elsewhere (Burling et al., 2010; Chang-Graham et al., 2011; Gilman et al., 2015;

214 Hosseini et al., 2010, 2013; Roberts et al., 2010; Veres et al., 2010; Warneke et al., 2011; Weise 215 et al., 2015; Yokelson et al., 2013). The full composition for this experiment consisted of over 216 100 parts. The data set resulted from a laboratory study at the United States Forest Service's 217 Missoula Fire Sciences Lab (USFS-FSL). This FSL study characterized smoke emissions related 218 to prescribed burning of 15 different shrub and woodland fuel types from the southeastern and 219 southwestern U.S. and described the composition of gas and particulate matter in detail. In the 220 present paper, 18 gases were re-analyzed which had previously been measured using an open-221 path FTIR spectrometer (Burling et al., 2010) and then adjusted to field values using MCE 222 (Yokelson et al., 2013) While it is possible to measure H₂O (gas) in smoke emissions using FTIR 223 and while it is a significant product of combustion that can influence flame processes (Ferguson 224 et al., 2013), emission factors for H₂O are not typically reported. The gas-phase data analyzed 225 here are originally available as supplementary information to the Yokelson et al. (2013) paper. 226 Furan (C₄H₄O) and hydrochloric acid (HCl) had one and four (1.5 and 6 %) instances of below-227 detection limit (BDL) values, respectively. In order to facilitate statistical analysis, the log-ratio 228 EM algorithm included in the *zCompositions* package was used to impute the BDL values with 229 realistically small values while accounting for their compositionality (Palarea-Albaladejo & 230 Martín-Fernández, 2015). In the following, we introduce the basic compositional analyses 231 conducted using these data which are analogous to those commonly conducted on emission data.

232

2.1 Summary statistics and proportionality associations

The data were closed and compositional summary statistics consisting of the center (geometric mean) and the variation array (Aitchison, 1986) were estimated. The center (\overline{g}) is the closed vector of geometric means for each part estimated as

236
$$\hat{\mathbf{g}} = C[\hat{g}_1, \hat{g}_2, \dots, \hat{g}_D]$$
 (7)

where $\hat{g}_{j} = \left(\prod_{i=1}^{n} x_{ij}\right)^{1/n}$, j = 1, 2, ..., D. While there are different measures for the variability of compositional data (van den Boogaart & Tolosana-Delgado, 2013), a common summary is given by the variance (τ_{ij}) of the log-ratio of parts *i* and *j*; the variation matrix **V** is a *D* x *D* symmetric matrix containing elements estimated by

241
$$\hat{\tau}_{ij} = \operatorname{var}\left(\ln\frac{x_i}{x_j}\right)$$
 (8)

where *i* and *j* range from 1 to *D* and var is the usual variance. The total (or metric) variance
(Mvar) can be obtained from them as (Egozcue & Pawlowsky-Glahn, 2011; Pawlowsky-Glahn
& Egozcue, 2001):

245
$$\operatorname{Mvar}(\mathbf{x}) = \sum_{i} \sum_{j} \hat{\tau}_{ij} = \sum_{i=1}^{D} \operatorname{var}[\operatorname{clr}_{i}(\mathbf{x})]$$
(9)

246 where the centered log-transformation (clr) and its inverse are

247

$$\operatorname{clr}(\mathbf{x}) = \left[\ln \frac{x_1}{g_m(\mathbf{x})}, \ln \frac{x_2}{g_m(\mathbf{x})}, \dots, \ln \frac{x_D}{g_m(\mathbf{x})} \right], \quad g_m(\mathbf{x}) = \left(\prod_{i=1}^D x_i \right)^{1/D}$$

$$\operatorname{clr}^{-1}(\mathbf{x}) = C \left[\exp(\operatorname{clr}(\mathbf{x})) \right]$$
(10)

248 and the metric standard deviation (Mstd) is $\sqrt{\frac{Mvar}{D-1}}$. In general, the smaller the values of $\hat{\tau}_{ij}$, the

249 more proportional are the parts involved.

For non-compositional data, relationships between variables are ordinarily explored by examining correlation (parametric or nonparametric) between the variables. For compositional data, proportionality is the preferred measure to examine relationships between parts of a

253	composition in accordance with their relative scale (Aitchison, 1986; Lovell et al., 2015). As
254	stated in Lovell et al (2015), "measures of association produce results regardless of the data
255	they are applied to-it is up to the analyst to ensure that the measures are appropriate to the
256	data." They further state that proportional relative abundances imply that the absolute
257	abundances are proportional. Balance association (or b-association for short) was developed as a
258	consistent statistical concept of proportionality (Egozcue et al., 2018). A measure of b-
259	association, ϕ , has been defined and used to formulate a statistical hypothesis test of equality to
260	± 1 of the slope coefficient of a major or standardized major axis regression model (Warton et al.,
261	2006) relating one log-contrast of parts to another log-contrast. This is the so-called unitary slope
262	test, with significance based on a standard F distribution (Egozcue et al., 2018; Lovell et al.,
263	2015). Rejection of the hypothesis suggests that the data are not compatible with b-association
264	(or proportionality) between the parts; however, it does not distinguish whether the slope is
265	positive or negative. Following Egozcue et al. (2018), we rejected the hypothesis when the
266	estimated slope was negative and reported the p-value as a minus sign (-).

267

2.2 Compositional linear trend analysis

Since its introduction *MCE* has frequently been correlated to single emission factors (*EF*) by linear regression $EF = \beta_0 + \beta_1 (MCE)$ (Ward & Hao, 1991) which assumed that the predictor variable *MCE* could be treated separately from the response variable *EF*. As shown above in eq. 3 this is not the case, so an alternative method to estimate emission factors developed for compositional data was applied instead. Deriving principal components from multivariate data is a common practice. They were used in von Eynatten et al. (2003) to develop the compositional linear trend method which we apply to our data using recently developed R code (Rockwell et

al., 2014). The basic idea is that compositional data can be projected onto the first principal

276 component to produce a linear trend provided that the first principal component explains a large

277 proportion of the total variance. The projected (or fitted) composition can be transformed back to

the original units (Pawlowsky-Glahn et al., 2015a). We chose to apply this method because it has

been wellestablished that the composition of smoke changes as the combustion efficiency

changes (Byram, 1957). If the linear trend method works, it could potentially be applied to other

281 data sets to predict composition.

When originally developed, the linear trend method was applied to geological data to model the compositional changes in granitic rocks as they weathered from fresh parent material. The unweathered parent material served as the starting point of the linear trend which is formulated in the simplex as

286
$$\mathbf{x} = \mathbf{a} \oplus \left(k \otimes \mathbf{p}\right) = \mathbf{C}\left[a_1 p_1^k, \dots, a_d p_d^k\right]$$
(11)

and estimated by

 $\hat{\mathbf{x}} = \mathbf{a} \oplus \left(k \otimes \operatorname{clr}^{-1} \left[\mathbf{v}_{1} \right] \right)$ (12)

where **a** is the starting composition, *k* is the latent trend, **p** is a perturbation vector estimated by clr⁻¹(**v**₁), **v**₁ is the first eigenvector derived by noncentral principal component analysis of the original *n* observations **x**₁,...,**x**_n after they were adjusted to the starting point **a** by clr(**x**₁)-clr(**a**),...,clr(**x**_n)-clr(**a**). Noncentral principal component analysis indicates the variances were maximized relative to **a** instead of to the mean (von Eynatten, 2004). The full mathematical development can be found elsewhere (von Eynatten et al., 2003). The linear trend method describes changes within a compositional data set that are not attributed to variables

296 external to the composition. In the present study, we evaluated three compositions as the 297 potential starting composition a: the highest (High) and lowest (Low) MCE compositions and the 298 center composition of the data set. Linear regressions were not fit for CO and CO₂ since they 299 form MCE. In order to compare the performance of the linear trend to the ordinary linear 300 regression, common error measures were calculated using the observed and predicted emission 301 factors for each gas for each linear regression and linear trend. The estimated values were scaled 302 to the original units (Pawlowsky-Glahn et al., 2015a). The normalized mean absolute error 303 (NMAE) and root mean squared error (RMSE) of the observed and estimated values were 304 calculated using the *modStats* function in R (Carslaw, 2015; Carslaw & Ropkins, 2012). Since 305 multivariate linear regression is the extension of linear regression to data with correlated 306 response variables (Fox & Weisberg, 2018, 2019), we performed a multivariate linear regression 307 with all trace gases except CO and CO_2 as the dependent variables and MCE as the predictor 308 variable. The fitted values from the multivariate linear regression were identical to the individual 309 linear regressions so the error measures were identical and are not presented. Multivariate linear 310 regression, even though it takes into the account the correlation structure between the parts of the 311 composition, was still subject to the fact that the MCE ratio was not independent of the other 312 gases in the mixture. To examine the fits of the linear trend and multivariate linear regression for the entire composition, a coefficient of determination (R_{CLT}^2) for the linear trend (van den 313 314 Boogaart & Tolosana-Delgado, 2013; Cayuela-Sánchez et al., 2019) and the squared multiple correlation coefficient (R_{LR}^2) for the multivariate linear regression (Mardia et al., 1979) were 315 316 estimated. The metric standard deviation in the original emission factor units exp(Mstd) and the 317 root mean squared error of the multivariate linear regression (calculated as the square root of the 318 mean of the trace of the residual matrix) estimated $RMSE_{CLT}$ and $RMSE_{LR}$, respectively.

319 2.3 Multivariate analysis of variance

Analysis of variance was used to test for differences in the composition of the gases according to fuel type. Note that because of experimental design deficiencies resulting in a singular design matrix, it was not possible to consider fuel type and region simultaneously. Egozcue and Pawlowsky-Glahn (2005) devised a procedure to obtain sets of ilr coordinates by sequential binary partitioning that can be used for them to represent comparisons between scientifically meaningful subsets of parts of a composition. These ilr coordinates known as compositional balances \tilde{z}_t are defined as

327
$$\tilde{z}_{k} = \sqrt{\frac{r_{k}s_{k}}{r_{k} + s_{k}}} \ln \frac{\left(x_{i_{1}}x_{i_{2}}\dots x_{i_{k}}\right)^{1/r_{k}}}{\left(x_{j_{1}}x_{j_{2}}\dots x_{j_{k}}\right)^{1/s_{k}}}, \quad k = 1,\dots, D-1$$
(13)

328 where the log-ratio compares the geometric mean of r_k parts in one subset with the geometric 329 mean of s_k parts in another subset. Sequential binary partitioning of a composition containing D parts results in *D*-1 balances \tilde{z}_k , k = 1, ..., D-1. The emissions data were then transformed into 330 331 balance coordinates that partitioned the composition into various meaningful subsets of parts. 332 The matrix used to define the subsets contains 1, -1, or a blank to indicate that the part is in 333 subset 1 (numerator), subset 2 (denominator) or absent from the log-ratio, respectively. Once the 334 data were transformed into balance coordinates, analysis of variance was used on them to test for 335 differences in mean according to fuel type. Given the large number of statistical tests performed 336 in this analysis, we chose to adjust the p-values to control for false discovery rate (Benjamini & 337 Hochberg, 1995). Statistical significance was assessed at the usual 5% level.

338 **3 Results and Discussion**

339 3.1 Summary statistics

340 MCE ranged from 0.91 for the *lit* fuel type to over 0.98 for the *oas* fuel type. The 341 geometric mean of MCE for the data set was 0.96. [Details of the fuel types and fuel 342 consumption in the individual fires have been presented in the original publications (Burling et 343 al., 2010; Hosseini et al., 2010, 2013)]. Numerical differences in the MCE values reported by 344 Burling et al. (2010) and Yokelson et al. (2013) due to adjustment for field measurements are 345 described in the latter reference. Unsurprisingly, the chemical compositions changed as 346 combustion efficiency decreased from high to low (Table 2). Examination of the compositional makeup of the low MCE, geometric mean MCE, and high MCE revealed that relative abundance 347 348 of all gases except CO₂, NO, and NO₂ increased as the MCE decreased. By definition, CO₂ 349 increases and CO decreases as the MCE increases. Previously reported gas species associated 350 with flaming combustion (higher MCE) included CO₂, NO, NO₂, HCl, SO₂ and HONO; those 351 usually associated with smoldering combustion (lower MCE) include CO, CH₄, NH₃, HCN, 352 C₃H₆, CH₃OH, CH₃COOH, and C₄H₄O (Burling et al., 2010; Goode et al., 2000). Of the species 353 we measured, the remaining ones have been associated with both flaming and smoldering 354 combustion.

Large variation in the emission factor for HCl for this data set was previously reported (Burling et al., 2010). The large log-ratio variance associated with HCl was also readily apparent in a biplot (Aitchison & Greenacre, 2002) produced from the first two principal components of the data set (not shown). This can be also seen with its clr-variance (Table 2). The clr-variance for HCl (1.50) was approximately 25 percent of the total variance (6.09). The clr-variances for

360	the remaining 17 parts were similar in size, yet small compared to HCl. While there were several
361	low values of $\hat{\tau}_{ij}$ that suggested proportionality, only a few of the unitary slope tests were not
362	statistically significant (Table 2) suggesting that some of the gases might be pairwise
363	proportional. Potential pairwise proportionality relationships include: 1) propene (C_3H_6) with
364	acetic acid (CH ₃ COOH), formaldehyde (HCHO), furan (C ₄ H ₄ O), ammonia (NH ₃), and HCN, all
365	of which have been associated with smoldering combustion; and 2) acetic acid with furan,
366	nitrous acid (HONO) and hydrocyanic acid (HCN). The mean log-ratios of the five gases
367	potentially proportional with propene ranged from -0.62 (HCN) to 1.61 (acetic acid) suggesting
368	relatively less propene than HCN consistently in the smoke samples and relatively more propene
369	than acetic acid, consistently. While the log-ratio variances for these five gases with propene
370	were similar in size (0.25 to 0.33), the probabilities associated with the F-tests ranged
371	considerably (0.07 to 0.94); the higher probability levels provide better support the potential
372	proportionality of propene with the other hydrocarbons and less support for proportionality with
373	the two N gases (NH ₃ , HCN). Note that while the log-ratio variance of CH ₃ OH with propene was
374	lower than the log-ratio variances for CH ₃ COOH, HCHO, furan, ammonia and HCN, the slope
375	test rejected potential pairwise proportionality. Other smoldering compounds for which results
376	were compatible with proportionality included 3) formaldehyde with methanol, acetic acid, and
377	furan; 4) ethene (C_2H_4) with methane and ammonia; and 5) HCN with methane and furan. Of the
378	gases associated with flaming combustion, CO_2 was potentially proportional with NO_2 , C_2H_2 and
379	HONO. It was interesting to note that some gases normally associated with flaming show some
380	level of proportionality with smoldering gases: HONO with acetic acid, SO_2 with CO and
381	ammonia. Because of its large variability, HCl exhibited the lowest proportionality to any other
382	gases in the composition; all tests were rejected since the slope values were negative (J.J.

- 383 Egozcue et al., 2018). All log-ratio means for HCl were negative which indicated that the
- 384 proportion of HCl in the compositions was less than the proportions of the other gases.

Table 2. Variation array and center of smoke emissions. The upper right triangular matrix contains estimates of log-ratio variance $(\hat{\tau}_{ij})$ and

386 (probability of F-statistic for slope test of proportionality). The minus (-) sign denotes a negative slope and rejection of the null hypothesis of

perfect proportionality. Shading indicates that the hypothesis was not rejected at the 5% significance level suggesting potential

proportionality between parts. The lower left triangular matrix contains the log-ratio means. The three bottom rows are the compositional

makeup (as proportions) for the lowest, highest, and center MCE values $(x10^3)$.

	² 0	8	CH₄	C ₂ H ₂	C ₂ H ₄	C ₃ H ₆	Ю€Н	нсоон	сн₃соон	нсно	C ₄ H ₄ O	NH_3	ON	NO2	ONOH	HCN	HCI	SO ₂
CO ₂		0.12	0.37	0.50	0.43	0.69	0.65	0.92	0.73	0.71	0.63	0.24	0.06	0.16	0.23	0.95	2.88	0.14
		(0.00)	-	(0.11)	-	-	-	-	-	-	-	(0.02)	(0.00)	(0.23)	(0.11)		(0.00)	(0.00)
CO	-3.33		0.18	0.33	0.20	0.41	0.33	0.58	0.44	0.36	0.33	0.17	0.22	0.21	0.21	0.54	2.66	0.10
			-	(0.00)	-	-	-	-	-	-	-	(0.02)	(0.00)	(0.00)	(0.00)	-	(0.00)	(0.29)
CH_4	-7.05	-3.72		0.36	0.08	0.17	0.17	0.51	0.31	0.27	0.35	0.15	0.53	0.38	0.32	0.29	2.92	0.18
				(0.00)	(0.45)	(0.00)	(0.03)	-	-	-	-	(0.03)	-	-	-	(0.00)	-	-
C_2H_2	-9.61	-6.28	-2.56		0.28	0.64	0.70	1.05	0.88	0.67	0.85	0.42	0.63	0.67	0.48	0.87	2.78	0.44
					(0.00)	-	-		-	-	-	(0.00)		-	(0.00)	-	(0.00)	(0.00)
C_2H_4	-8.28	-4.95	-1.23	1.33		0.12	0.19	0.49	0.33	0.24	0.35	0.18	0.56	0.42	0.27	0.30	3.13	0.21
						(0.00)	(0.15)	-	-	(0.01)	-	(0.15)	-	-	-	(0.00)		-
C_3H_6	-9.43	-6.10	-2.37	0.18	-1.14		0.16	0.48	0.29	0.25	0.33	0.30	0.86	0.58	0.43	0.26	3.47	0.40
							(0.04)	(0.03)	(0.94)	(0.49)	(0.81)	(0.08)	-	-	-	(0.07)	-	-
CH₃OH	-8.48	-5.15	-1.43	1.13	-0.20	0.94		0.21	0.07	0.08	0.17	0.35	0.83	0.44	0.37	0.16	3.31	0.31
		c = c			1.00			(0.00)	(0.00)	(0.11)	(0.02)	-	-	-	-	(0.00)	-	-
нсоон	-10.11	-6.78	-3.05	-0.50	-1.83	-0.68	-1.63		0.13	0.12	0.22	0.74	1.14	0.61	0.49	0.44	3.81	0.59
	7.02	4 40	0.70	4 70	0.47	4 64	0.00	2.20	(0.00)	(0.00)	(0.01)	-	-	-	(0.00)	(0.56)	-	-
CH3COOH	-7.82	-4.49	-0.76	1.79	0.47	1.61	0.66	2.29		0.09	0.20	0.52	0.94	0.43	0.36	0.28	3.53	0.38
	0.42	F 40	4 20	4 4 0	0.45	4.00	0.05	1.00	0.64	(0.27)	(0.85)	-	-	-	(0.35)	(0.09)	-	-
нсно	-8.43	-5.10	-1.38	1.18	-0.15	1.00	0.05	1.68	-0.61		(0.17)	0.51	0.93	0.48	0.36	0.28	3.34	0.41
	10.17	C 0.4	2 1 2	0.50	1 00	0.75	1.00	0.00	2.25	1 74	(0.28)		-	-	-	(0.01)	-	-
C_4H_4O	-10.17	-6.84	-3.12	-0.56	-1.89	-0.75	-1.69	-0.06	-2.35	-1.74		0.45	0.81	0.52	0.46	(0.33)	3.51	0.38
	0.04	4 71	0.00	1 57	0.24	1 20	0.44	2.07	0.22	0.20	2 1 2	-	- 0.20	-	- 0.21	(0.14)	-	- 0.15
МП 3	-0.04	-4.71	-0.99	1.57	0.24	1.50	0.44	2.07	-0.22	0.59	2.15		(0.00)	0.52	0.51	(0.00)	2.95	(0.13)
NO	-6 70	-3 37	0 35	2 91	1 5 8	2 73	1 78	3 /1	1 1 2	1 73	3 /17	1 3/	(0.00)	0.28	0.34	1 1/	3 10	0.13
	0.70	5.57	0.55	2.31	1.50	2.75	1.70	5.71	1.12	1.75	5.47	1.54		(0.00)	(0.00)	-	-	(0.00)

NO ₂	-7.85	-4.52	-0.79	1.76	0.44	1.58	0.63	2.26	-0.03	0.58	2.32	0.19	-1.15		0.19 (0.59)	0.72 -	2.87 -	0.18 (0.00)
HONO	-8.87	-5.54	-1.82	0.74	-0.59	0.55	-0.39	1.24	-1.05	-0.44	1.30	-0.83	-2.17	-1.02		0.73	3.33 -	0.21 (0.02)
HCN	-10.05	-6.72	-2.99	-0.44	-1.76	-0.62	-1.56	0.06	-2.23	-1.62	0.12	-2.01	-3.35	-2.20	-1.17		3.49 -	0.48
HCI	-10.46	-7.13	-3.41	-0.85	-2.18	-1.04	-1.98	-0.36	-2.65	-2.03	-0.29	-2.42	-3.76	-2.62	-1.59	-0.42		3.01
SO ₂	-7.74	-4.41	-0.69	1.87	0.54	1.68	0.74	2.37	0.07	0.69	2.43	0.30	-1.04	0.11	1.13	2.30	2.72	
Low	900.	87.4	2.960	0.084	0.565	0.227	1.160	0.375	1.950	1.570	0.345	0.460	1.020	0.214	0.170	0.382	0.036	0.926
Center	961.	34.4	0.830	0.064	0.243	0.077	0.199	0.039	0.387	0.210	0.037	0.309	1.180	0.375	0.135	0.042	0.027	0.417
High	981.	15.5	0.287	0.020	0.064	0.017	0.060	0.018	0.181	0.063	0.016	0.110	1.610	0.316	0.093	0.005	0.001	0.363
clr(variance)	0.29	0.21	0.21	0.35	0.22	0.27	0.24	0.35	0.28	0.26	0.28	0.24	0.36	0.26	0.25	0.32	1.50	0.22

391 *3.2 Compositional linear trend as an alternative to MCE linear regression*

392 For all gases except CO₂, NO, and NO₂, the proportions decreased from the Low MCE 393 fire to the High MCE fire (Table 2, Table 3) which is consistent with previously reported 394 findings (Burling et al., 2010) suggesting the possibility of fitting a compositional linear trend 395 (Eq. (11)). The three possible starting compositions (a) for the linear trend and the estimated 396 perturbation vector (**p**) for each are contained in Table 3. The goodness of fit of the linear trend to the data (determined by the first eigenvalue λ_1 as a percentage of the total variation) was 72.9, 397 398 77.5, and 50.1 percent for the High, Low and GM starting points, respectively. Of the three linear 399 trends, using the Low MCE composition as the starting point produced the smallest absolute 400 errors, lowest RMSE, and highest correlation between the observed and predicted values for 14 401 of the 18 gases (Table 4). While Low MCE produced the lowest mean bias (NMB) for 8 of the 402 gases and GM for 6 gases, NMB was similar for several gases for all three linear trends. Using 403 the GM as the starting point provided a better fit for NO₂, HONO and HCl. There was no 404 correlation between observed and predicted values for C_2H_2 from any of the three linear trends. 405 The observed and predicted values for NO₂ and HCl were negatively correlated for the Low 406 MCE trend.

When compared to the fitted ordinary linear regressions for each gas, the Low MCE compositional trend had smaller errors (NMAE) for 12 of the 18 gases, lower RMSE for 8 of the 18 and higher correlation (r) for 13 of the 18 gases (Table 5). Overall, the geometric mean NMAE for the CLT (0.26) was less than LR (0.30) indicating the linear trend estimates had less error than the linear regression estimates; however, the CLT was negatively biased. Bias for linear regression was 0 in all cases because the residuals $(\hat{y}_i - y_i)$ sum to 0 for every linear

413 regression with an intercept term (Draper & Smith, 1981). Mean RMSE for the CLT and LR 414 were equal. The correlations between observed and estimated values for most of the trace gases 415 were similar between the linear trend and the linear regression models. For the linear trend, 416 correlation between observed and predicted values was not significant for C₂H₂ and NO; for 417 linear regression there was no significant correlation between observed and predicted values for 418 NO₂ and HCl. In some cases (such as HONO), the EF was fairly constant (Figure 1). For 9 of the 419 16 gases, correlation for the CLT was larger than for the LR. For the overall measures, the coefficient of determination R_{CLT}^2 for the Low MCE linear trend (0.283) was lower than the 420 comparable measure R_{LR}^2 for the multivariate linear regression (0.933). It is interesting to note 421 that R_{CLT}^2 GM linear trend was 0.501. Because R_{CLT}^2 is a measure of the entire composition 422 423 projected onto the first principal component, parts of the composition (gases) more strongly 424 associated with other principal components would contribute to the lack of fit of the linear trend. 425 Preliminary analysis of the data using a biplot (Aitchison & Greenacre, 2002) suggested that HCl 426 was not strongly associated with the first principal component (not shown) which decreased the 427 amount of variability that the linear trend would account for thus reducing its predictive ability. 428 Recall that the clr-variance for HCl was nearly 25% of the total variance. The fitted values of 429 HCL by both the linear trend and the linear regression were relatively constant (Figure 1). The $RMSE_{CLT}$ ranged from 0.426 to 0.511 for the three starting points which was much smaller than 430 $RMSE_{LR}$ (2.658). It is important to note that because compositional data are restricted to positive 431 432 upper orthant, predictions from the linear trend were always positive unlike predictions from the 433 linear regression. The predictions from the linear regression in Figure 1 are the fitted values, not 434 predictions made outside the range of the data. The fitted linear regressions for 6 of the 18 gases

435	produced values below zero. Scatterplots for all 18 gases are available in the supplementary
436	information. Generally, the CLT performed equal to or superior to the LR based on MCE. This
437	coupled with the fact that the compositional nature of emissions data were analyzed using
438	techniques appropriate to the type of data indicates the value of this analytical approach.
439	The data set used to demonstrate this technique was one that was readily available to the
440	authors. There are at several compilations of emission factor data that could be used to explore if
441	smoke composition changes linearly as efficiency of a fire changes (Akagi et al., 2011; Lincoln
442	et al., 2014; Yokelson et al., 2013). If a linear trend can be successfully fit for a larger data set
443	producing better goodness of fit measures, such a linear trend could be used to reliably estimate
444	emissions of gases not typically measured if the log-ratio variance of the parts is relatively low.

445 *3.3 Testing the effects of fuel type on compositional data*

446 In the original report (Burling et al., 2010), effects of fuel type on subsets of the 447 emissions were inferred from bar plots and error bars, but no formal hypothesis testing was 448 presented. The fuel types were representative of major local vegetation types in the southwestern 449 and southeastern U.S. The pine litter fuel type was the sole type composed of only dead pine 450 needles (*Pinus* spp.) and branches. All other fuel types included live foliage and branches in 451 addition to dead fuels. In the present study compositional balances 1 to 7 were designed to test 452 meaningful observations reported in Burling et al. (2010); whereas balances 8-17 were necessary 453 to obtain the full projection of the compositions from the simplex into real-valued ilr coordinates 454 but are not defined according to any particular scientific relevance (see supplemental data). The 455 intercept term, which is the mean for the 1-year rough fuel type due to ANOVA 456 parameterization, was statistically significant for 5 of the 7 balances of interest (Table 6). For the

457 significant intercepts, a positive value indicated that the numerator of the balance was on average 458 relatively larger than the denominator, while a negative value indicated it was relatively smaller. 459 For example, there was relatively less N compared to the other compounds (hydrocarbons, C 460 oxides, etc.; balance 1) but relatively more NOx than other N compounds (balance 2) for the 1-461 year rough fuel type. The estimated effect for a fuel type is the sum of the intercept and the fuel type value. Thus the estimate of balance 1 for pine litter was -2.02(-1.18 + -0.84); because the 462 463 fuel type value was significant, the composition of the emissions for pine litter had relatively 464 even less N compared to other compounds; similarly the oak savanna and woodland fuel types 465 had relatively more N compared to other compounds since the balance estimate was close to -0.2 466 for these fuels. For balance 1, the relative amount of N versus the other compounds for the other 467 fuel types was not significantly different from the 1 yr rough. In addition to the smoke containing 468 relatively more NOx compared to the other N compounds (balance 2 intercept), eight of the 469 southwestern fuel types had relatively more NOx compared to other N compounds than five of 470 the six southeastern fuel types. Not surprisingly, there were relatively more C oxides than 471 organic C compounds (balance 5). We observed CH₄ in relatively higher quantities compared to 472 the non-methane organic compounds (NMOC) (balance 6). While overall NMHC and OVOC 473 relative abundances were statistically comparable for the 1-year fuel type (balance 7 is not 474 significantly different from zero), a significant negative difference with respect to this baseline 475 was concluded for seven of the other fuel types, suggesting that relatively more OVOC 476 compared to NMHC was observed on average for those fuel types. The relative amount of NH₃ 477 to NO_x (balance 3) did not differ significantly between all fuel types except for the oak savanna 478 fuel type. The overall amounts of HCl and SO_2 observed were much smaller in comparison to the

- 479 quantities of C compounds (balance 4); however, eight of the fuel types significantly reduced
- 480 this difference in relative amounts.
- 481
- 482 Table 3. Starting point compositions (a) in original units (g kg⁻¹) and estimated perturbation
- 483 vectors (p) for a compositional linear trend fit to a data set of smoke emissions from
- 484 wildland fuels. The starting points after closure are contained in Table 2.
- 485

Gas	St	arting point (a	a)	Perturbation (p)				
	Low MCE	Center	High MCE	Low MCE	Center	High MCE		
	(0.911)		(0.984)					
CO_2	1584.6780	1739.8798	1745.3486	0.0716	0.0572	0.0722		
CO	153.7918	62.2174	27.5268	0.0552	0.0558	0.0569		
CH_4	5.2066	1.5030	0.5105	0.0500	0.0521	0.0525		
C_2H_2	0.1473	0.1167	0.0358	0.0654	0.0583	0.0510		
C_2H_4	0.9946	0.4395	0.1144	0.0553	0.0503	0.0491		
C_3H_6	0.3993	0.1402	0.0299	0.0515	0.0472	0.0464		
CH ₃ OH	2.0335	0.3601	0.1060	0.0434	0.0472	0.0506		
HCOOH	0.6595	0.0708	0.0317	0.0380	0.0442	0.0572		
CH ₃ COOH	3.4240	0.7000	0.3222	0.0448	0.0457	0.0574		
HCHO	2.7553	0.3799	0.1128	0.0408	0.0471	0.0507		
C_4H_4O	0.6071	0.0666	0.0282	0.0387	0.0465	0.0563		
NH ₃	0.8104	0.5600	0.1948	0.0627	0.0539	0.0534		
NO	1.7903	2.1428	2.8557	0.0736	0.0572	0.0785		
NO_2	0.3762	0.6791	0.5613	0.0795	0.0548	0.0680		
HONO	0.2986	0.2439	0.1652	0.0651	0.0503	0.0651		
HCN	0.6733	0.0754	0.0086	0.0386	0.0468	0.0389		
HCl	0.0631	0.0497	0.0025	0.0689	0.1327	0.0273		
SO_2	1.6302	0.7546	0.6450	0.0569	0.0528	0.0686		

486

- 488 Table 4. Ordinary measures of fit based on observed and predicted emission factors for
- 489 compositional linear trends that started at the High, Low or geometric mean (GM) value of

490 MCE for gases associated with smoke from wildland fire. Highlighted values indicate the

Gas	NMB				NMAE ¹			RMSE		r			
	High	Low	GM	High	Low	GM	High	Low	GM	High	Low	GM	
CO ₂	0.00	0.00	0.00	0.01	0.01	0.01	26.16	16.65	26.60	0.94	0.98	0.94	
CO	-0.07	0.04	-0.05	0.26	0.20	0.24	22.35	16.26	22.77	0.38	0.78	0.08 ^N	
CH_4	-0.15	-0.04	-0.14	0.40	0.30	0.42	1.08	0.68	1.10	0.32	0.79	0.24	
C_2H_2	-0.23	-0.24	-0.24	0.52	0.53	0.54	0.15	0.15	0.15	0.16 ^N	0.12 ^N	-0.10 ^N	
C_2H_4	-0.21	-0.19	-0.18	0.50	0.37	0.47	0.49	0.42	0.47	0.17 ^N	0.58	0.30	
C_3H_6	-0.28	-0.26	-0.23	0.59	0.41	0.55	0.17	0.14	0.17	0.24	0.74	0.32	
CH ₃ OH	-0.29	-0.12	-0.24	0.63	0.27	0.55	0.51	0.23	0.50	0.25	0.92	0.29	
HCOOH	-0.40	-0.11	-0.32	0.73	0.28	0.68	0.14	0.06	0.14	0.17 ^N	0.92	0.27	
CH ₃ COOH	-0.33	-0.21	-0.26	0.67	0.34	0.60	1.11	0.66	1.08	0.20 ^N	0.87	0.28	
HCHO	-0.31	-0.07	-0.27	0.65	0.26	0.59	0.58	0.24	0.56	0.19 ^N	0.91	0.32	
C_4H_4O	-0.33	0.02	-0.27	0.63	0.23	0.56	0.12	0.03	0.12	0.22 ^N	0.96	0.27	
NH ₃	-0.12	-0.12	-0.09	0.37	0.33	0.36	0.30	0.27	0.29	0.29	0.43	0.12 ^N	
NO	0.00	-0.01	-0.02	0.17	0.16	0.18	0.48	0.47	0.50	0.31	0.18 ^N	-0.21 ^N	
NO_2	-0.08	-0.17	-0.07	0.32	0.37	0.32	0.32	0.39	0.31	0.18 ^N	-0.43	0.21 ^N	
HONO	-0.16	-0.16	-0.09	0.41	0.35	0.35	0.16	0.14	0.14	-0.02 ^N	0.58	0.41	
HCN	-0.38	-0.14	-0.37	0.73	0.36	0.68	0.17	0.08	0.17	0.27	0.92	0.28	
HCl	-0.17	-0.47	-0.02	0.42	0.77	0.35	0.08	0.14	0.06	0.85	-0.32	0.90	
SO_2	-0.05	-0.01	-0.05	0.27	0.20	0.28	0.31	0.20	0.30	-0.03 ^N	0.75	0.25	

491 **best value for each measure by gas.**

1. NMB is normalized mean bias, NMAE is normalized mean average error, RMSE is root

493 mean squared error, r is Pearson correlation coefficient – N indicates that r is not significantly

494 different from 0 at 5% significance level based on t-test.

 $NMB = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i) / \overline{y}$ $495 \qquad NMAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i| / \overline{y}$ $RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$

496 where $y_i, \hat{y}_i, \overline{y}$ are observed, predicted, and mean emission factor (g/kg); *n* is number of

497 observations.

499 Table 5. Measures of goodness of fit¹ of estimates for the Low MCE compositional linear

	NN	NMAE		RM	RMSE		r
	CLT	LR	CLT	CLT	LR	CLT	LR
CO_2	0.01		0.00	16.65		0.98	
CO	0.20		0.04	16.26		0.78	
CH_4	0.30	0.30	-0.04	0.68	0.66	0.79	0.80
C_2H_2	0.53	0.55	-0.24	0.15	0.14	0.12 ^N	0.35
C_2H_4	0.37	0.34	-0.19	0.42	0.39	0.58	0.59
C_3H_6	0.41	0.45	-0.26	0.14	0.12	0.74	0.69
CH ₃ OH	0.27	0.41	-0.12	0.23	0.26	0.92	0.86
HCOOH	0.28	0.55	-0.11	0.06	0.08	0.92	0.81
CH ₃ COOH	0.34	0.50	-0.21	0.66	0.70	0.87	0.76
HCHO	0.26	0.42	-0.07	0.24	0.30	0.91	0.85
C_4H_4O	0.23	0.52	0.02	0.03	0.06	0.96	0.84
NH_3	0.33	0.32	-0.12	0.27	0.25	0.43	0.47
NO	0.16	0.15	-0.01	0.47	0.45	0.18 ^N	0.35
NO_2	0.37	0.31	-0.17	0.39	0.31	-0.43	0.24
HONO	0.35	0.41	-0.16	0.14	0.14	0.58	0.34
HCN	0.36	0.51	-0.14	0.08	0.09	0.92	0.83
HCl	0.77	0.82	-0.47	0.14	0.13	-0.32	0.04

500 trend (CLT) and linear regression (LR) with observed smoke emissions from wildland fire.

501 1. NMB is normalized mean bias, NMAE is normalized mean average error, RMSE is root

-0.01

-0.13

0.20

0.33

0.75

0.73

0.21

0.33

502 mean squared error, r is Pearson correlation coefficient – N indicates that r is not

503

significantly different from 0 at probability = 0.05 based on t-test.

0.21

0.30

0.20

0.26

NMB = $\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i) / \overline{y}$ 504 NMAE = $\frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i| / \overline{y}$ RMSE = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$

 SO_2

Mean

505 where $y_i, \hat{y}_i, \overline{y}$ are observed, predicted, and mean emission factor (g/kg); *n* is number of

506 observations. Mean value of NMAE calculated as geometric mean, mean RMSE calculated

507 square root of mean of squared RMSE.

508

Figure 1. Comparison of observed emission factors (EF) for several wildland fire gases with
fitted EF from a compositional linear trend (CLT) and a linear regression (LR) using
modified combustion efficiency as the predictor variable.

- 519 Table 6. Significance of mean differences in compositional balances of smoke emissions from wildland fire according to fuel
- 520 type. * = p-value < 0.05. Significant differences are shown in grey text. Dark grey denotes the balances of interest, light grey
- 521 denotes the other balances. P-values adjusted to control for false discovery rate.

ID	Balance	Intercept (1 year rough) ¹	2 year rough	California sagebrush	Ceanothus	Chamise/scrub oak	Coastal sage scrub	Chipped understory hardwood	Pine litter	Manzanita	Maritime chaparral	Masticated mesquite	Oak savanna	Oak woodland	Pocosin	Understory hardwood
1	N vs other	-1.18*	0.12	-0.08	0.25	0.02	-0.01	0.08	-0.84*	0.15	0.10	0.52	0.97*	0.99*	-0.39	0.39
2	NOx vs other N	1.17*	0.02	0.48	1.06*	0.70*	0.58*	0.99*	-0.20	1.22*	0.68*	1.01*	1.61*	0.88*	0.53	0.50
3	NH ₃ vs NO _x	-0.34	-0.04	0.08	-0.55	-0.44	-0.11	-0.43	0.09	-0.55	0.02	-0.26	-0.94*	-0.23	-0.45	-0.39
4	HCl & SO ₂ vs C	-3.61*	0.59	2.51*	2.10*	0.79	1.96*	1.80*	0.89	2.67*	2.97*	2.26*	0.86	0.15	1.94*	0.42
5	C oxide vs OC	8.17*	0.01	1.01*	1.10*	0.83*	1.34*	1.57*	-0.23	1.83*	1.20*	1.25*	1.75*	1.30*	0.44	0.59
6	CH ₄ vs NMOC	1.65*	0.04	0.42*	-0.01	-0.02	0.58*	0.77*	-0.14	0.09	0.55*	0.63*	0.27	0.35*	-0.15	-0.14
7	NMHC vs OVOC	0.40	-0.90*	0.39	-0.97*	-0.74*	0.55*	-0.27	-1.90*	-0.48	0.37	-0.47	-0.95*	-0.06	-1.64*	-1.27*
8	Alkene vs alkyne	1.08*	-0.06	-0.26	-0.18	0.03	-0.23	-0.11	0.05	-0.16	-0.12	0.00	0.04	-0.02	-0.06	-0.04
9	Furan vs OVOC	-1.80*	0.07	0.54*	0.38	0.45*	0.44*	0.57*	0.74*	0.96*	0.67*	0.24	0.59*	0.70*	0.20	0.37
10	Formaldehyde vs OVOC	0.44*	-0.28	-0.02	-0.15	-0.08	0.07	-0.05	-0.17	-0.01	0.04	-0.18	-0.37*	-0.17	-0.22	-0.12
11	$HCl vs SO_2$	-2.99*	0.28	1.84*	2.12*	0.78	1.28*	1.52*	0.96	2.05*	2.52*	1.37*	-0.61	-0.90	1.82*	-0.08
12	NO vs NO_2	0.48*	-0.04	0.57*	0.17	0.48*	0.70*	0.08	0.07	0.54*	0.50*	0.37*	0.65*	0.76*	-0.59*	0.04
13	CH3 vs HCOOH	1.47*	0.12	0.30	-0.13	0.07	0.26	0.28	0.02	-0.03	0.46	0.37	-0.08	0.27	-0.10	0.12
14	CH ₃ COOH vs CH ₃ OH	-0.53*	-0.06	0.24*	-0.04	0.07	0.20	0.25*	0.11	0.05	0.18	0.25*	-0.19	0.11	-0.28*	-0.11
15	HONO vs HCN	0.70*	-0.38	0.19	0.62*	0.73*	0.05	0.19	-1.40*	0.48*	-0.12	-0.13	0.82*	0.30	0.30	0.35
16	$CO vs CO_2$	-2.20*	0.08	-0.11	-0.15	-0.05	-0.07*	-0.34*	0.37	-0.16*	-0.22*	-0.25*	-0.59*	-0.46*	-0.24*	-0.26*
17	Acetylene vs Propene	-0.18	-0.40	0.60	0.19	-0.33*	1.14	-0.18	-0.70	0.52	-0.11	0.10	0.11	-0.30	-0.18	-0.24*

522 1. Standard ANOVA parameterization on balance ilr coordinates-the intercept term estimates the mean of the 1 year rough fuel

523 type and the value shown for the other types is the difference between the fuel type mean and the intercept (*1yr* fuel mean).

525 4 Conclusions

526 Smoke emissions data are inherently multivariate and relative in nature. While this has 527 been recognized for many years, the statistical techniques commonly used to analyze the data 528 ignore these features. This not only applies to the composition of the emissions, but also to the 529 different fuel types which burn to produce the emissions. Since emissions and fuel composition 530 represent parts of a whole, the measured values of the individual parts (elements, chemical 531 species, fuel component, etc.) are intrinsically not independent from each other. The measured 532 values are relative and are only meaningful in relation to each other. Such constraints violate 533 many of the underlying assumptions of ordinary statistical methods. Alternatively, compositional 534 data analysis as a well-developed body of statistical methodology provides models and methods 535 equivalent to traditional ones yet accounts for these special constraining features of relative data. 536 The approach has been used for decades to analyze analogous types of data in the geosciences 537 (Buccianti et al., 2006) and, more recently, in other disparate areas such as molecular biology to 538 analyze sequencing data (Quinn et al., 2018) or physical activity epidemiology for the analysis of 539 daily time-use patterns (Chastin et al., 2015; McGregor et al., 2019). While the statistical theory 540 may be unfamiliar and not typically taught in most statistics courses, recent publications and 541 software have made the use of these techniques both feasible and accessible.

The expression of emissions data as ratio data has long been reported. Even in this early work, conversion of the composition of emissions between different units by simple multiplication was presented, reinforcing the idea that emissions data form an equivalence class. Transformation of data using the arc-sine and square root transformations for count data to enable use of the normal distribution or to stabilize variance in linear regression and the log-odds

transformation used in logistic regression are familiar statistical techniques routinely used in the atmospheric sciences and other fields. Linear transformation of data is used to code data to simplify analysis for a variety of statistical calculations. The compositional data approach based on log-ratio coordinates essentially maps the data onto the ordinary real space so that familiar statistical techniques can be appropriately applied. This approach matches analysis techniques to the data type thus reducing the possibility of the reporting of spurious results that may or may not reflect the underlying relationships.

554 The linear regression approach as it has been typically applied uses one portion of the 555 composition (expressed as MCE) to predict other parts of the composition, which ignores the 556 intrinsic interplay between smoke emissions and can produce predictions beyond the domain of 557 their possible values, e.g. negative values. The compositional data analysis approach recognizes 558 the inherently positive-valued nature of the data thus eliminating the need for an analyst to 559 ignore or discount when a fitted model produces negative values. Robust methods have been 560 developed to allow inclusion of parts of a composition that are known to exist but fall below 561 detection limits thus permitting a more complete analysis. We have illustrated how the use of a 562 compositional linear trend to describe changes in the composition of smoke emissions as 563 combustion efficiency changed yielded predicted emission factors with error (difference between 564 observed and predicted) comparable to and, in some cases, superior to predictions from linear 565 regression models that used modified combustion efficiency as a predictor variable. Moreover, 566 the use of compositional balances to form log-ratios contrasting subsets of parts of interest 567 enabled the use of analysis of variance and hypothesis testing to examine differences in 568 meaningful trade-offs between smoke components with more formal rigor than was previously 569 presented by respecting the very relative nature of the data as derived from underlying natural

570 laws like conservation of mass. We have definitively shown that fuel type affected several 571 different ratios of groups of emissions and are assured that the results are not an artifact of the 572 analysis which can then be used to make various inferences and decisions. Near the end of the 573 article by Burling et al. (2010), there is discussion and hypothesis formation about the impacts of 574 wildland fuel management activities and influence of ocean proximity on the composition of 575 observed emissions. These impacts and hypotheses could be rigorously tested with the 576 techniques presented here. More complex analyses of log-ratios of gas pairs or groupings as 577 functions of external fire behavior variables such fire intensity (heat release rate) and flame 578 residence time are possible. More rigorous time series and spatial analysis to examine aging 579 smoke composition within the smoke plume and in response to atmospheric processes are 580 possible with compositional data. It is our view and recommendation that future analysis of the 581 composition of smoke emissions and other mixtures of atmospheric pollutants as well as general 582 atmospheric composition should consider the use of compositional data analysis methods to 583 provide more statistically rigorous and consistent results.

584

Acknowledgments, Samples, and Data

585 The data used in this paper resulted from projects the DOD/DOE/EPA Strategic 586 Environmental Research and Development Program projects RC-1648 and 1649. The senior 587 author appreciates the guidance and R scripts provided by Prof. Girty at San Diego State 588 University to estimate linear trends by perturbation. J. P.-A. was supported by the Spanish 589 Ministry of Science, Innovation and Universities under the project CODAMET (RTI2018-590 095518-B-C21, 2019-2021). The data used in this study have been previously published and are 591 available in the original publications. DRW conceived the initial manuscript (70 percent) and 592 performed the bulk of the data analysis. JPA provided statistical guidance and compositional data

593	expertise and contributed 20 percent of the manuscript. TJJ and HJ were extensively involved in
594	the study that provided the data. TJJ provide smoke emissions expertise and HJ provided
595	combustion expertise. The authors declare that they have no conflict of interest. The use of trade
596	or firm names in this publication is for reader information and does not imply endorsement by
597	the U.S. Department of Agriculture of any product or service.
598	References
599	Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal
600	Statistical Society. Series B (Methodological), 44(2), 139–177.
601	Aitchison, J. (1986). The statistical analysis of compositional data. London; New York:
602	Chapman and Hall.
603	Aitchison, J. (2003). A concise guide to compositional data analysis. In CDA Workshop, Girona
604	Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal
605	Statistical Society: Series C (Applied Statistics), 51(4), 375–392.
606	https://doi.org/10.1111/1467-9876.00275
607	Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., et al.
608	(2011). Emission factors for open and domestic biomass burning for use in atmospheric
609	models. Atmospheric Chemistry and Physics, 11(9), 4039–4072.
610	https://doi.org/10.5194/acp-11-4039-2011
611	Amaral, S. S., de Carvalho, J. A., Jr., Costa, M. A. M., Neto, T. G. S., Dellani, R., & Leite, L. H.
612	S. (2014). Comparative study for hardwood and softwood forest biomass: Chemical

- 613 characterization, combustion phases and gas and particulate matter emissions.
- 614 *Bioresource Technology*, *164*, 55–63. https://doi.org/10.1016/j.biortech.2014.04.060

615	Anderson, G. K., Sandberg, D. V., & Norheim, R.A. (2004, January). Fire Emission Production
616	Simulator (FEPS) User's Guide 1.0. USDA Forest Service, Pacific Northwest Research
617	Station.
618	Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass
619	burning. Global Biogeochemical Cycles, 15(4), 955–966.
620	https://doi.org/10.1029/2000GB001382
621	Bandeen-Roche, K. (1994). Resolution of additive mixtures into source components and
622	contributions: a compositional approach. Journal of the American Statistical Association,
623	89(428), 1450–1458. https://doi.org/10.1080/01621459.1994.10476883
624	Barcelo-Vidal, C., & Martín-Fernández, JA. (2016). The Mathematics of Compositional
625	Analysis. Austrian Journal of Statistics, 45(4), 57. https://doi.org/10.17713/ajs.v45i4.142
626	Barceló-Vidal, C., Martín-Fernández, J. A., & Pawlowsky-Glahn, V. (2001). Mathematical
627	foundations of compositional data analysis. In G. Ross (Ed.), Proceedings of IAMG'01
628	(Vol. CD-ROM, p. 20). Cancun, MX: International Association for Mathematical
629	Geosciences. Retrieved from http://ima.udg.edu/~barcelo/index_archivos/Cancun.pdf
630	Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
631	powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B
632	(Methodological), 57(1), 289–300.
633	Billheimer, D. (2001). Compositional receptor modeling. Environmetrics, 12(5), 451-467.
634	https://doi.org/10.1002/env.472
635	van den Boogaart, K. G., & Tolosana-Delgado, R. (2013). Analyzing compositional data with R.

636 Heidelberg: Springer.

637	Buccianti, A., & Pawlowsky-Glahn, V. (2006). Statistical evaluation of compositional changes in
638	volcanic gas chemistry: a case study. Stochastic Environmental Research and Risk
639	Assessment, 21(1), 25-33. https://doi.org/10.1007/s00477-006-0041-x
640	Buccianti, A., Mateu-Figueras, G., & Pawlowsky-Glahn, V. (Eds.). (2006). Compositional data
641	analysis in the geosciences: from theory to practice. London: The Geological Society.
642	Burling, I. R., Yokelson, R. J., Griffith, D. W. T., Johnson, T. J., Veres, P., Roberts, J. M., et al.
643	(2010). Laboratory measurements of trace gas emissions from biomass burning of fuel
644	types from the southeastern and southwestern United States. Atmospheric Chemistry and
645	Physics, 10(22), 11115–11130. https://doi.org/10.5194/acp-10-11115-2010
646	Byram, G. M. (1957). Some principles of combustion and their significance in forest fire
647	behavior. Fire Control Notes, 18(2), 47–57.
648	Byram, G. M. (1959). Combustion of forest fuels. In K. P. Davis (Ed.), Forest Fire: Control and
649	Use (1st ed., pp. 61–89). New York: McGraw-Hill.
650	Carslaw, D. C. (2015). The openair manual—open-source tools for analysing air pollution data
651	(Manual No. 1.1-4) (p. 287). London, UK: King's College. Retrieved from
652	http://www.openair-project.org/PDF/OpenAir_Manual.pdf
653	Carslaw, D. C., & Ropkins, K. (2012). openair — An R package for air quality data analysis.
654	Environmental Modelling & Software, 27–28, 52–61.
655	https://doi.org/10.1016/j.envsoft.2011.09.008
656	Cayuela-Sánchez, J. A., Palarea-Albaladejo, J., García-Martín, J. F., & Pérez-Camino, M. del C.
657	(2019). Olive oil nutritional labeling by using Vis/NIR spectroscopy and compositional

- 658 statistical methods. *Innovative Food Science & Emerging Technologies*, *51*, 139–147.
- 659 https://doi.org/10.1016/j.ifset.2018.05.018
- 660 Chang-Graham, A. L., Profeta, L. T. M., Johnson, T. J., Yokelson, R. J., Laskin, A., & Laskin, J.
- 661 (2011). Case study of water-soluble metal containing organic constituents of biomass
- burning aerosol. *Environmental Science & Technology*, 45(4), 1257–1263.
- 663 https://doi.org/10.1021/es103010j
- 664 Chastin, S. F. M., Palarea-Albaladejo, J., Dontje, M. L., & Skelton, D. A. (2015). Combined
- Effects of Time Spent in Physical Activity, Sedentary Behaviors and Sleep on Obesity
- and Cardio-Metabolic Health Markers: A Novel Compositional Data Analysis Approach.
- 667 PLOS ONE, 10(10), e0139984. https://doi.org/10.1371/journal.pone.0139984
- 668 Crutzen, P. J., & Brauch, H. G. (Eds.). (2016). *Paul J. Crutzen: a pioneer on atmospheric*669 *chemistry and climate in the anthropocene*. Zürich: Springer.
- 670 Darley, E. F., Burleson, F. R., Mateer, E. H., Middleton, J. T., & Osterli, V. P. (1966).
- 671 Contribution of Burning of Agricultural Wastes to Photochemical Air Pollution. *Journal*
- 672 *of the Air Pollution Control Association*, *16*(12), 685–690.
- 673 https://doi.org/10.1080/00022470.1966.10468533
- Di Blasi, C. (2008). Modeling chemical and physical processes of wood and biomass pyrolysis.
- 675 *Progress in Energy and Combustion Science*, *34*(1), 47–90.
- 676 https://doi.org/10.1016/j.pecs.2006.12.001
- 677 Draper, N. R., & Smith, H. (1981). *Applied regression analysis* (2d ed). New York: Wiley.
- 678 Egozcue, J.J. (2009). Reply to "On the Harker Variation Diagrams; ..." by J.A. Cortés.
- 679 *Mathematical Geosciences*, 41(7), 829–834. https://doi.org/10.1007/s11004-009-9238-0

- 680 Egozcue, J.J., & Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in
- 681 compositional data analysis. *Mathematical Geology*, *37*(7), 795–828.
- 682 https://doi.org/10.1007/s11004-005-7381-9
- 683 Egozcue, J.J., & Pawlowsky-Glahn, V. (2011). Basic Concepts and Procedures. In V.
- 684 Pawlowsky-Glahn & A. Buccianti (Eds.), *Compositional Data Analysis* (pp. 12–28).
- 685 Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119976462.ch2
- 686 Egozcue, J.J., Lovell, D., & Pawlowsky-Glahn, V. (2014). Testing compositional association. In
- 687 K. Hron, P. Filzmoser, & M. Templ (Eds.), *Proceedings of the 5th International*
- 688 Workshop on Compositional Data Analysis (pp. 28–36). Vorau, Austria. Retrieved from
- 689 http://www.statistik.tuwien.ac.at/CoDaWork/CoDaWork2013Proceedings.pdf
- 690 Egozcue, J.J., Pawlowsky-Glahn, V., & Gloor, G. B. (2018). Linear Association in
- 691 Compositional Data Analysis. *Austrian Journal of Statistics*, 47(1), 3.
- 692 https://doi.org/10.17713/ajs.v47i1.689
- 693 von Eynatten, H. (2004). Statistical modelling of compositional trends in sediments. Sedimentary
- 694 *Geology*, 171(1–4), 79–89. https://doi.org/10.1016/j.sedgeo.2004.05.011
- 695 von Eynatten, H., Barceló-Vidal, C., & Pawlowsky-Glahn, V. (2003). Modelling compositional
- 696 change: the example of chemical weathering of granitoid rocks. *Mathematical Geology*,
- 697 *35*(3), 231–251. https://doi.org/10.1023/A:1023835513705
- 698 Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., & Liousse, C. (1998). Emission factors of
- 699 hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil.
- 700 Journal of Geophysical Research: Atmospheres, 103(D24), 32107–32118.
- 701 https://doi.org/10.1029/98JD00692

- Ferguson, S. C., Dahale, A., Shotorban, B., Mahalingam, S., & Weise, D. R. (2013). The role of
- moisture on combustion of pyrolysis gases in wildland fires. *Combustion Science and*

704 *Technology*, 185, 435–453. https://doi.org/10.1080/00102202.2012.726666

- Filzmoser, P., Hron, K., & Templ, M. (2018). Applied compositional data analysis: with worked
- 706 *examples in R.* New York, NY: Springer Berlin Heidelberg.
- Fox, J., & Weisberg, S. (2018, September 21). Multivariate linear models in R: an appendix to
- 708 "An R Companion to Applied Regression", 3rd edition. Retrieved from
- 709 https://socialsciences.mcmaster.ca/jfox/Books/Companion/appendices/Appendix-
- 710 Multivariate-Linear-Models.pdf
- 711 Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third edition). Thousand
- 712 Oaks, California: Sage Publications, Inc.
- 713 Gerstle, R. W., & Kemnitz, D. A. (1967). Atmospheric Emissions from Open Burning. Journal
- 714 of the Air Pollution Control Association, 17(5), 324–327.
- 715 https://doi.org/10.1080/00022470.1967.10468988
- 716 Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., et al.
- 717 (2015). Biomass burning emissions and potential air quality impacts of volatile organic
- compounds and other trace gases from fuels common in the US. Atmospheric Chemistry
- 719 *and Physics*, *15*(24), 13915–13938. https://doi.org/10.5194/acp-15-13915-2015
- 720 Goode, J. G., Yokelson, R. J., Ward, D. E., Susott, R. A., Babbitt, R. E., Davies, M. A., & Hao,
- W. M. (2000). Measurements of excess O₃, CO₂, CO, CH₄, C₂H₄, C₂H₂, HCN,
- NO, NH₃, HCOOH, CH₃ COOH, HCHO, and CH₃ OH in 1997 Alaskan biomass

Confidential manuscript submitted to JGR Atmospheres

723	burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR). Journal of
724	Geophysical Research, 105(D17), 22147. https://doi.org/10.1029/2000JD900287
725	Graybill, F. A. (2002). Matrices with applications in statistics. Belmont: Duxbury.
726	Hosseini, S., Li, Q., Cocker, D., Weise, D., Miller, A., Shrivastava, M., et al. (2010). Particle size
727	distributions from laboratory-scale biomass fires using fast response instruments.
728	Atmospheric Chemistry and Physics, 10(16), 8065-8076. https://doi.org/10.5194/acp-10-
729	8065-2010
730	Hosseini, S., Urbanski, S. P., Dixit, P., Qi, L., Burling, I. R., Yokelson, R. J., et al. (2013).
731	Laboratory characterization of PM emissions from combustion of wildland biomass fuels:
732	particle emissions from biomass burning. Journal of Geophysical Research:
733	Atmospheres, 118(17), 9914-9929. https://doi.org/10.1002/jgrd.50481
734	Hough, W. A. (1969). Caloric value of some forest fuels of the southern United States (Research
735	Note No. SE-120) (p. 6). Asheville, NC: USDA Forest Service, Southeastern Forest
736	Experiment Station. Retrieved from http://www.treesearch.fs.fed.us/pubs/2778
737	Janhäll, S., Andreae, M. O., & Pöschl, U. (2010). Biomass burning aerosol emissions from
738	vegetation fires: particle number and mass emission factors and size distributions.
739	Atmospheric Chemistry and Physics, 10(3), 1427-1439. https://doi.org/10.5194/acp-10-
740	1427-2010
741	Jolly, W. M., Hintz, J., Linn, R. L., Kropp, R. C., Conrad, E. T., Parsons, R. A., & Winterkamp,
742	J. (2016). Seasonal variations in red pine (Pinus resinosa) and jack pine (Pinus
743	banksiana) foliar physio-chemistry and their potential influence on stand-scale wildland

- fire behavior. *Forest Ecology and Management*, *373*, 167–178.
- 745 https://doi.org/10.1016/j.foreco.2016.04.005
- Lincoln, E., Hao, W., Weise, D. R., & Johnson, T. J. (2014). Wildland fire emission factors
- 747 *database* (Archived data No. RDS-2014-0012). Fort Collins, CO: USDA Forest Service
- 748 Research Data Archive. Retrieved from http://dx.doi.org/10.2737/RDS-2014-0012
- 749 Lobert, J. M., & Warnatz, J. (1993). 2 Emissions from the combustion process in vegetation. In
- 750 P. J. Crutzen & J. G. Goldammer (Eds.), *Fire in the Environment: The Ecological*
- 751 Atmospheric, and Climatic Importance of Vegetation Fires (pp. 15–37). John Wiley &
- Sons Ltd.
- 753 Lobert, J. M., Scharffe, D. H., Hao, W. M., & Crutzen, P. J. (1990). Importance of biomass
- burning in the atmospheric budgets of nitrogen-containing gases. *Nature*, *346*(6284),
 552–554. https://doi.org/10.1038/346552a0
- 756 Lovell, D., Pawlowsky-Glahn, V., Egozcue, J. J., Marguerat, S., & Bähler, J. (2015).
- 757 Proportionality: A Valid Alternative to Correlation for Relative Data. *PLoS*
- 758 *Computational Biology*, *11*(3), e1004075. https://doi.org/10.1371/journal.pcbi.1004075
- Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). *Multivariate analysis*. London; New York:
 Academic Press.
- 761 Mateu-Figueras, G., Pawlowsky-Glahn, V., & Egozcue, J. J. (2011). The Principle of Working
- 762 on Coordinates. In V. Pawlowsky-Glahn & A. Buccianti (Eds.), Compositional Data
- 763 *Analysis* (pp. 31–42). Chichester, UK: John Wiley & Sons, Ltd.
- 764 https://doi.org/10.1002/9781119976462.ch3

765	May, A. A., McMeeking, G. R., Lee, T., Taylor, J. W., Craven, J. S., Burling, I., et al. (2014).
766	Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory
767	and aircraft measurements: Aerosols from US prescribed fires. Journal of Geophysical
768	Research: Atmospheres, 119(20), 11,826-11,849. https://doi.org/10.1002/2014JD021848
769	McGregor, D., Palarea-Albaladejo, J., Dall, P., Hron, K., & Chastin, S. (2019). Cox regression
770	survival analysis with compositional covariates: Application to modelling mortality risk
771	from 24-h physical activity patterns. Statistical Methods in Medical Research,
772	096228021986412. https://doi.org/10.1177/0962280219864125
773	McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J. C., Collett, J. L., et
774	al. (2009). Emissions of trace gases and aerosols during the open combustion of biomass
775	in the laboratory. Journal of Geophysical Research, 114(D19).
776	https://doi.org/10.1029/2009JD011836
777	Ottmar, R. D., Miranda, A. I., & Sandberg, D. V. (2008). Characterizing Sources of Emissions
778	from Wildland Fires. In Developments in Environmental Science (Vol. 8, pp. 61–78).
779	Elsevier. Retrieved from http://www.treesearch.fs.fed.us/pubs/34248
780	Palarea-Albaladejo, J., & Martín-Fernández, J. A. (2015). zCompositions — R package for
781	multivariate imputation of left-censored data under a compositional approach.
782	Chemometrics and Intelligent Laboratory Systems, 143, 85–96.
783	https://doi.org/10.1016/j.chemolab.2015.02.019
784	Palarea-Albaladejo, J., Martín-Fernández, J. A., & Olea, R. A. (2014). A bootstrap estimation
785	scheme for chemical compositional data with nondetects. Journal of Chemometrics,
786	28(7), 585–599. https://doi.org/10.1002/cem.2621

- Paul, K. T., Hull, T. R., Lebek, K., & Stec, A. A. (2008). Fire smoke toxicity: The effect of
 nitrogen oxides. *Fire Safety Journal*, 43(4), 243–251.
- 789 https://doi.org/10.1016/j.firesaf.2007.10.003
- Pawlowsky-Glahn, V., & Buccianti, A. (Eds.). (2011). *Compositional data analysis: theory and applications*. Chichester, West Sussex, U.K.: Wiley.
- Pawlowsky-Glahn, V., & Egozcue, J. J. (2001). Geometric approach to statistical analysis on the
 simplex. *Stochastic Environmental Research and Risk Assessment*, 15(5), 384–398.
- 794 https://doi.org/10.1007/s004770100077
- Pawlowsky-Glahn, V., Egozcue, J. J., Olea, R. A., & Pardo-Igúzquiza, E. (2015a). Cokriging of
 compositional balances including a dimension reduction and retrieval of original units.
- *Journal of the Southern African Institute of Mining and Metallurgy*, *115*, 59–72.
- Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosana-Delgado, R. (2015b). *Modelling and analysis of compositional data*. Chichester, West Sussex, U.K.: Wiley.
- 800 Pearson, K. (1896). Mathematical contributions to the theory of evolution.--on a form of
- spurious correlation which may arise when indices are used in the measurement of
- 802 organs. Proceedings of the Royal Society of London (1854-1905), 60(1), 489–498.
- 803 https://doi.org/10.1098/rspl.1896.0076
- 804 Quinn, T. P., Erb, I., Richardson, M. F., & Crowley, T. M. (2018). Understanding sequencing
- data as compositions: an outlook and review. *Bioinformatics*, *34*(16), 2870–2878.
- 806 https://doi.org/10.1093/bioinformatics/bty175
- 807 R Core Team. (2018). R: A language and environment for statistical computing (Version 3.5.0).
- 808 Vienna, Austria: R Foundation for Statistical Computing.

809	Radke, L., Hegg, D., Lyons, J., Brock, C., Hobbs, P., Weiss, R., & Rasmussen, R. (1988).
810	Airborne measurements on smokes from biomass burning. In P. V. Hobbs & M. P.
811	McCormick (Eds.), Aerosols and Climate (pp. 411-422).
812	Roberts, J. M., Veres, P., Warneke, C., Neuman, J. A., Washenfelder, R. A., Brown, S. S., et al.
813	(2010). Measurement of HONO, HNCO, and other inorganic acids by negative-ion
814	proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to
815	biomass burning emissions. Atmospheric Measurement Techniques, 3(4), 981–990.
816	https://doi.org/10.5194/amt-3-981-2010
817	Rockwell, B. G., Girty, G. H., & Rockwell, T. K. (2014). A statistical framework for calculating
818	and assessing compositional linear trends within fault zones: a case study of the NE block
819	of the Clark Segment, San Jacinto Fault, California, USA. Pure and Applied Geophysics,
820	171(11), 2919–2935. https://doi.org/10.1007/s00024-014-0851-6
821	Rogers, J. M., Susott, R. A., & Kelsey, R. G. (1986). Chemical composition of forest fuels
822	affecting their thermal behavior. Can. J. For. Res., 16(4), 721–726.
823	https://doi.org/10.1139/x86-129
824	Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., et al.
825	(2018). High- and low-temperature pyrolysis profiles describe volatile organic compound
826	emissions from western US wildfire fuels. Atmospheric Chemistry and Physics, 18(13),
827	9263–9281. https://doi.org/10.5194/acp-18-9263-2018
828	Shafizadeh, F. (1984). The Chemistry of Pyrolysis and Combustion. In R. Rowell (Ed.), The
829	Chemistry of Solid Wood (Vol. 207, pp. 489-529). Washington, D.C.: American
830	Chemical Society.

831	Shen, G., Xue, M., Wei, S., Chen, Y., Zhao, Q., Li, B., et al. (2013). Influence of fuel moisture,
832	charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC,
833	parent PAHs, and their derivatives from residential wood combustion. Journal of
834	Environmental Sciences, 25(9), 1808-1816. https://doi.org/10.1016/S1001-
835	0742(12)60258-7
836	Speranza, A., Caggiano, R., Pavese, G., & Summa, V. (2018). The study of characteristic
837	environmental sites affected by diverse sources of mineral matter using compositional
838	data analysis. Condensed Matter, 3(2), 16. https://doi.org/10.3390/condmat3020016
839	Surawski, N. C., Sullivan, A. L., Roxburgh, S. H., Meyer, C. P. M., & Polglase, P. J. (2016).
840	Incorrect interpretation of carbon mass balance biases global vegetation fire emission
841	estimates. Nature Communications, 7, 11536. https://doi.org/10.1038/ncomms11536
842	Tangren, C. D., McMahon, C. K., & Ryan, P. W. (1976). Chapter II - Contents and effects of
843	forest fire smoke. In Southern forestry smoke management guidebook (pp. 9–22).
844	Asheville, NC: USDA Forest Service, Southeastern Forest Experiment Station. Retrieved
845	from http://www.treesearch.fs.fed.us/pubs/683
846	Templ, M., Hron, K., & Filzmoser, P. (2011). robCompositions: An R-package for robust
847	statistical analysis of compositional data. In V. Pawlowsky-Glahn & A. Buccianti (Eds.),
848	Compositional Data Analysis (pp. 341-355). Chichester, UK: John Wiley & Sons, Ltd.
849	https://doi.org/10.1002/9781119976462.ch25
850	Thió-Henestrosa, S., & Comas, M. (2016, April 20). CoDaPack v2 User's Guide. University of
851	Girona, Dept. of Computer Science and Applied Mathematics. Retrieved from
852	http://ima.udg.edu/codapack/assets/codapack-manual.pdf

853	Urbanski, S. P. (2013). Combustion efficiency and emission factors for wildfire-season fires in
854	mixed conifer forests of the northern Rocky Mountains, US. Atmospheric Chemistry and
855	Physics, 13(14), 7241-7262. https://doi.org/10.5194/acp-13-7241-2013
856	Veres, P., Roberts, J. M., Burling, I. R., Warneke, C., de Gouw, J., & Yokelson, R. J. (2010).
857	Measurements of gas-phase inorganic and organic acids from biomass fires by negative-
858	ion proton-transfer chemical-ionization mass spectrometry. Journal of Geophysical
859	Research, 115(D23), D23302. https://doi.org/10.1029/2010JD014033
860	Ward, D. E. (2001). Combustion chemistry and smoke. In E. A. Johnson & K. Miyanishi (Eds.),
861	Forest Fires: Behavior and Ecological Effects (pp. 55–77). San Diego, CA: Academic
862	Press. Retrieved from http://www.doi.org/10.1016/B978-012386660-8/50006-3
863	Ward, D. E., & Hao, W. M. (1991). Projections of emissions from burning of biomass for use in
864	studies of global climate and atmospheric chemistry (p. 19). Presented at the Annual
865	Meeting of the Air and Waste Management Association, Vancouver, British Columbia,
866	Canada: Air and Waste Management Association. Retrieved from
867	http://www.treesearch.fs.fed.us/pubs/43258
868	Ward, D. E., Clements, H. B., & Nelson, R. M., Jr. (1980). Particulate matter emission factor
869	modeling for fire in southeastern fuels. In Sixth Conference on Fire and Forest
870	Meteorology (pp. 276–284). Seattle, WA: American Meteorological Society.
871	Warneke, C., Roberts, J. M., Veres, P., Gilman, J., Kuster, W. C., Burling, I., et al. (2011). VOC
872	identification and inter-comparison from laboratory biomass burning using PTR-MS and
873	PIT-MS. International Journal of Mass Spectrometry, 303(1), 6–14.
874	https://doi.org/10.1016/j.ijms.2010.12.002

- Warton, D. I., Wright, I. J., Falster, D. S., & Westoby, M. (2006). Bivariate line-fitting methods
 for allometry. *Biological Reviews*, *81*(02), 259.
- 877 https://doi.org/10.1017/S1464793106007007
- 878 Weise, D. R., Johnson, T. J., & Reardon, J. (2015). Particulate and trace gas emissions from
- 879 prescribed burns in southeastern U.S. fuel types: Summary of a 5-year project. *Fire*

880 Safety Journal, 74, 71–81. https://doi.org/10.1016/j.firesaf.2015.02.016

- 881 Yokelson, R. J., Susott, R., Ward, D. E., Reardon, J., & Griffith, D. W. T. (1997). Emissions
- from smoldering combustion of biomass measured by open-path Fourier transform
- 883 infrared spectroscopy. Journal of Geophysical Research-Atmospheres, 102(D15), 18865–
- 884 18877. https://doi.org/10.1029/97JD00852
- Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J., et al.
- 886 (2013). Coupling field and laboratory measurements to estimate the emission factors of
- 887 identified and unidentified trace gases for prescribed fires. Atmospheric Chemistry and
- 888 *Physics*, *13*(1), 89–116. https://doi.org/10.5194/acp-13-89-2013

Figure 1.

