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Abstract

This work addresses the relationship between major dynamical forcings and variability in NO column measurements. The

dominating impact on Siberia is due to El Niño, on Indonesia, Northern Australia and South America is due to IOD,and on

the remaining regions is due to NAO. That NO pollution in Indonesia is modulated by IOD contradicts previous work using

AOD and El Niño. Simultaneous impacts of present and lagged forcings are derived using multi-linear regression, demonstrating

El Niño impacts NO variability from 7 to 98 weeks ahead, while IOD and NAO are mostly impacted by past changes in NO

variability. In all cases, lagged forcings exhibit more impact than present forcings, hinting at non-linearity. Finally, dynamical

forcings are responsible for over 50% of the NO variability in most non-urban areas and over 40% in urban Indonesia and China.

These results demonstrate the significance of climate forcing on short-lived air pollutants.
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Key Points: 10 

 El Niño impacts NO2 pollution in Siberia; IOD in Indonesia, Northern 11 

Australia, and South America; and NAO in the rest of the world. 12 

 Dynamical forcings are responsible for over 50% of the NO2 variability in 13 

non-urban areas and over 40% in urban Indonesia and China. 14 

 Lagged dynamical forcings dominate present forcings on NO2 pollution, with 15 

El Niño 7 to 98 weeks forward, while IOD and NAO are past. 16 

 17 
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Abstract: This work addresses the relationship between major dynamical forcings and 21 

variability in NO2 column measurements. The dominating impact on Siberia is due to 22 

El Niño, on Indonesia, Northern Australia and South America is due to IOD, and on the 23 

remaining regions is due to NAO. That NO2 pollution in Indonesia is modulated by 24 

IOD contradicts previous work using AOD and El Niño. Simultaneous impacts of 25 

present and lagged forcings are derived using multi-linear regression, demonstrating El 26 

Niño impacts NO2 variability from 7 to 98 weeks ahead, while IOD and NAO are 27 

mostly impacted by past changes in NO2 variability. In all cases, lagged forcings 28 

exhibit more impact than present forcings, hinting at non-linearity. Finally, dynamical 29 

forcings are responsible for over 50% of the NO2 variability in most non-urban areas 30 

and over 40% in urban Indonesia and China. These results demonstrate the significance 31 

of climate forcing on short-lived air pollutants. 32 

 33 

Plain Language Summary 34 

We examine the relationships between three important sources of climate variability 35 

over the past decade: El Niño, IOD, and NAO, and rapid changes in the atmospheric 36 

amounts of the short-lived air pollutant NO2. The climate forcings give us examples of 37 

how the changes in the climate state may impact air pollution in the future, while the air 38 

pollution is selected as a proxy for urbanization and wildfires. The major regions of 39 

change of air pollution are related to the changes in the climate variability, with 40 

different forcings impacting different regions, and all regions are significantly 41 

impacted by at least one forcing. We further determine that past changes in El Niño 42 

impact the present-day pollution, and that the present-day pollution also impacts future 43 

changes in IOD and NAO. Finally, we determine that climate impacts over 40% of the 44 

change in air pollution in urban areas of Asia, and over 50% of the change in air 45 

pollution elsewhere. Therefore, we urge more attention to the impacts that future 46 

climate change is expected to have on air pollution. 47 

 48 

Key words:  49 
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1. Introduction 65 

Present approaches address the issue of a one-way impact of either the changes in 66 

large-scale average air pollution on the meteorology, or changes in the large-scale 67 

meteorology on the air pollution loadings (Chen et al., 2019b; Knippertz et al., 2015; 68 

Shen et al., 2017). Some studies have looked into the contribution from non-linear 69 

aspects in terms of large-scale overall changes that one system may have on the other 70 

system (Bollasina et al., 2011). To accomplish these goals, papers have used idealized 71 

perturbations of emissions with known past reanalysis or highly-constrained future 72 

meteorology and/or climatology (Cohen & Wang, 2014; Dewitt et al, 2019). Other 73 

studies have looked at the impact of well-known dynamical perturbations on fixed 74 

emissions, using both past and future meteorology, based on different future climate 75 

perturbations (Bollasina et al., 2013; Kim et al., 2017; Persad et al., 2014). There have 76 

been a small number of studies that have tried to look at the interactive changes, on a 77 

season-to-season scale, that occur between known urban pollution events and the 78 

climatology (Cohen, 2014; Cohen et al., 2011; Grandey et al., 2019; Guo et al., 2019). 79 

However, this past research has not been capable of allowing us to understand the 80 

largest and most polluted events, such as annually occurring extreme biomass burning 81 

events in Africa, South America, and Southeast Asia each year that are known to lead to 82 

pollution levels many times larger than the average pollution levels known to occur in 83 

heavily polluted cities (Aragão et al., 2018; Cohen, 2014; Cohen & Wang, 2014; Cohen 84 

et al., 2018; Ichoku et al., 2008; Lin et al., 2019). As a community we still cannot 85 

explain such differences as why there are vast differences between the clean and 86 

polluted seasons in some regions that have a high annual pollution loading such as 87 

China, India, and Southern Africa (Chen et al., 2019b; Jin & Wang, 2017). Furthermore, 88 

we have no way to do any sort of prediction in terms of why regions which are normally 89 

relatively clean, such as Singapore and London, can occasionally record PM2.5 levels 90 

higher than any other city on the planet (Velasco & Rastan, 2015; Wilkins, 1954). In 91 

addition to missing these extreme events, when extreme events are predicted by models 92 

tend to also not concur with the real timing of when such events occur, with the current 93 

generation of models and forecasts clearly having a mis-representation in terms of the 94 

timing of extreme events (Cohen & Wang, 2014; Lan et al., 2019). 95 

One of the major underlying issues at hand is that we are not clear as to what the 96 

major or most important factors are contributing to extreme air pollution events (Chen 97 

et al., 2019a). It is well known that models are not capable of capturing the actual El 98 

Niño signal (DiNezio et al., 2017). El Niño is a coupled atmospheric and oceanic 99 

phenomenon that influences the distribution of heat, energy, and moisture throughout 100 

the tropical atmosphere. Its impact is found to occur over the tropics around the entire 101 

world, as well as in mid-latitude zones in southern South America and Eastern US 102 

(Diaz & Markgraf, 2000). This phenomenon also has a strong inter-annual variation, 103 

with the largest influence over the past three decades occurring in 1997 and 2015. 104 



While there has been a significant amount of work focusing on El Niño and its impact 105 

on wildfires in Indonesia (Cohen, 2014; Field et al., 2016; Reid el al., 2012; Siegert et 106 

al., 2001; Sun et al., 2013; Tosca et al., 2011), there are currently no modeling studies 107 

that have been able to dynamically link these two extremes together (Leung et al., 2007; 108 

Martin et al., 2012; Tsigaridis et al., 2014). 109 

Two other important dynamical phenomena also addressed include the Indian 110 

Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO). The former is known to 111 

be a significant source of climate variability in Indian Ocean that modulates the 112 

atmospheric circulation all over the globe (Saji et al., 1999). The latter impacts areas 113 

stretching from the Eastern United States to Siberia, and from the Arctic to the 114 

Subtropical Atlantic (Hurrell, 1995; Hurrell et al., 2003). 115 

For these reasons, we will strive to integrate measurements of drivers of extreme 116 

events from both the chemical and dynamical forcing perspectives, and investigate how 117 

these are coupled to each other. By using real remotely sensed and reanalysis data 118 

products, at high frequency, we can capture the relationship between the air pollution 119 

and dynamical extremes. Our focus is on those regions which are rapidly changing, or 120 

have large-scale variability inter-annually or intra-annually. The reason for this is to 121 

aim for our ability to make recommendations in terms of how to achieve co-benefits or 122 

account for co-costs of the changing air pollution and climate systems, with a focus on 123 

large-scale biomass burning and the growth of new urban regions.  124 

 125 

2.Data and Methods 126 

2.1 Geography 127 

This study explores the impacts that some significant dynamical drivers of the 128 

climate system have on various regions of highly variable air pollution found 129 

throughout the world over the past 15 years. In order to better understand how 130 

meteorology and air pollution interplay over different parts of the globe, we group the 131 

world according to the role the meteorological drivers play, as well as the timing and 132 

loading patterns of the air pollution measurements. This process looks globally at the 133 

data, while ensuring that each region is both spatially and temporally orthogonal. In 134 

addition, geographical considerations are taken into account to group things which 135 

have underlying similarities. Results of various dynamical and air pollution 136 

classifications will be elaborated upon at a later point. 137 

 138 

2.2 Air Pollution Data 139 

To represent air pollution, we employ a weekly average dataset of remotely sensed, 140 

cloud filtered NO2 columns. This product is derived from daily NO2 tropospheric 141 

column measurements, with a spatial resolution of 13km by 24km, from the version 3 142 

Level 2 cloud screened Ozone Monitoring Instrument (OMI) satellite product. We 143 

further adapt a variance maximization filter to represent those regions undergoing the 144 

most change over the time period from January 2006 through December 2015, as 145 

shown in Figure 1a and Table S1. This combination guarantees that we have found 146 



those regions which are undergoing either intense annual or interannually varying fires, 147 

or other long-term urban changes (Lan et al., 2019; Lin et al., 2019). As observed in the 148 

time series of the absolute magnitude of NO2 column loading over these 13 maximal 149 

regions in this work (Figures 1b1-1b5) the peak values range from 1.7 to 6.0 times 150 

higher than the median, with a duration from 1 to 11 weeks a year (based on a 151 

normalized cutoff of 1.5). These peaks occur annually (except for Siberia and Western 152 

US and Canada) and contain a considerable amount of inter- and intra-annual variation. 153 

 154 

 155 

Figure 1: (a) Global distribution of the most significant regions of NO2 variation (black 156 

outlines with red colors) and dynamical forcings (single-colored boxes: El Niño yellow, 157 

IOD green, and NAO blue) as in Table S1. Time series of normalized weekly OMI 158 



NO2 over: (b1) Southeast Asia and Australia, (b2) East Asia, (b3) Eurasia, (b4) Africa, 159 

and (b5) the Americas. (c) Time series of normalized weekly NOAA climate indices. 160 

 161 

2.3 Climate Data 162 

The specific dataset we employ here to represent El Niño is the weekly data from 163 

the NOAA Ocean Observation Panel for Climate (OOPC) dataset, as shown in Figure 164 

1a,c. We specifically use the region referred to Niño3.4, which is based on the 165 

measurements of Sea Surface Temperature (SST) over the tropical regions bounded by 166 

170°W to 120°W, and 5°S to 5°N. Furthermore, the strong interannual variation is 167 

observed to have two significant peaks (in 2009 and 2015) and one weak peak (in 2006) 168 

over the period studied here. 169 

The specific dataset used to represent the IOD is the Dipole Mode Index (DMI) 170 

obtained from the NOAA OOPC, also shown in Figure 1a,c. The DMI is calculated by 171 

the SST anomaly difference between the western and southeastern tropical Indian 172 

Ocean regions (50°E - 70°E and 10°S - 10°N) and (90°E - 110°E and 10°S - 0°) 173 

respectively (Saji et al., 1999). The climate variability casts its greatest impact on 174 

tropical Indian Ocean, peaking in the years 2006, 2008, 2012, 2015 and reaching its 175 

nadir in 2010 over the past 15 years. 176 

The specific dataset used for the NAO is the monthly NOAA Climate Prediction 177 

Center NAO index. This is calculated as the leading component of rotated empirical 178 

orthogonal function of 500mb geopotential height north of 20°N, centered over the 179 

Atlantic Ocean. The NAO has its largest impact over Greenland and the Subtropical 180 

Atlantic Ocean, and exhibits great intra-annual variability, with the largest peak and 181 

trough over this study being in 2011 and 2015 respectively. 182 

We linearly interpolate the NAO index to a weekly frequency to be consistent with 183 

the other datasets used in the work, and include the values from 2006 to 2015, as shown 184 

in Figure 1a,c. The spatial distribution employed is based on the July loading map, 185 

spanning the three most positive and negative regions at (NOAA Climate Prediction 186 

Center Internet Team, 2005). We specifically choose the July map since it represents a 187 

decent compromise between the maximum spatial response in January and the 188 

minimum spatial response in October. 189 

 190 

2.4 Analytics 191 

2.4.1 Variance Maximization 192 

 To consider only those regions which are undergoing the most significant amount 193 

of NO2 change, we employ a normalized standard deviation maximization approach. 194 

This approach is further refined by filtering the data to ensure that the difference 195 

between the localized mean and the mean of the peak conditions are separated by a 196 

factor of at least 2 standard deviations. Finally, the data is filtered so that it has a local 197 

maximum value which is at least as great as 2 times the global annual mean value. More 198 

details can be found in Cohen, 2014 and Lan et al., 2019. 199 

 200 



2.4.2 Correlation and Regression 201 

 We employ a t-test for means of a linear correlation between different datasets. In 202 

all cases we require that the p value be smaller than 0.05 to be considered successful. 203 

We exclude all cases where the absolute value of the R statistic is smaller than 0.10. 204 

 In the case of least squares multiple linear regression to fit multiple air pollution 205 

and dynamical datasets simultaneously, we require that the p value be smaller than 0.05 206 

to be successful. We also only include those terms which contribute at least 10 percent 207 

to the normalized final best fit result. 208 

 209 

3. Results 210 

3.1 Correlations between NO2 and Dynamical Forcings 211 

We compute the correlation coefficient between the weekly NO2 column 212 

measurements and each of the weekly indices of the three dynamical forcings 213 

respectively spanning the period of study. Global maps of this impact over regions 214 

which have an R value with an absolute value greater than 0.1 are given in Figure 2. 215 

We find that El Niño has an impact over the tropical belt stretching from Northern 216 

Southeast Asia to Africa. Extra-tropical areas impacted include Eastern China, Japan, 217 

Northern Australia and Eastern United States. However, we do not find a statistically 218 

significant impact of El Niño on the NO2 column loadings in Indonesia, which is 219 

contradictory to many other previous published works showing El Niño as the major 220 

driving force of fires occurring in the Maritime Continent (Marlier et al., 2013; Reid et 221 

al., 2012).  222 

The impact of the IOD occurs throughout tropical areas stretching from Indonesia, 223 

to Africa and further onto South America. In addition to this, subtropical areas 224 

including Eastern China and Japan are also impacted. It is worth mentioning that there 225 

is a belt over the Indian Ocean as observed in Figures 2a,b in which both El Niño and 226 

the IOD have an aligned congruence in phase. This is possibly associated with 227 

long-range transport of smoke from fires, as has been observed in other parts of Asia 228 

(Lin et al. 2019; Sun et al., 2013), although there is no known work demonstrating this 229 

over the Southern Indian Ocean. 230 

The impact of the NAO is felt over most parts of the world in a wavelike manner. It 231 

is interesting to note that the impacts from the NAO seem to not be spatially correlated 232 

with either of those from the previous two forcings in general, although there are 233 

significant areas of overlap between both regions at the same phase as well as the 234 

opposite phase, leading to addition and subtraction respectively. 235 



 236 

Figure 2: Map of regions with a statistically significant correlation coefficient between 237 

weekly column NO2 measurements and the respective indices for: (a) El Niño, (b) IOD, 238 

and (c) NAO. 239 

 240 

a)

b)

c)



To examine which dynamical forcings are modulating or interacting with the 241 

regions of highest variations in NO2 loadings, we choose to look at each of the 13 242 

classified regions individually (as given in Figure 1 and Table S1). First, we observe 243 

that the El Niño is the sole dynamical pattern having an impact in Siberia. It is also 244 

found to make a difference over Northern Australia, Northern Southeast Asia, Southern 245 

China Land and Sea, Northern Eurasia and Western United States and Canada, with the 246 

absolute value of R greater than 0.10.  247 

Second, the IOD plays a dominant role in Indonesia, Northern Australia and South 248 

America. Specifically, we notice that the IOD is dominating the correlation over 249 

Indonesia, with R as high as 0.21. This stands in stark contrast to some previous 250 

findings that El Niño dominates the dynamical forcing in this region (Marlier et al., 251 

2013; Reid et al., 2012). In fact, the correlation coefficient between El Niño and 252 

averaged NO2 over Indonesia does not even pass the t-test. This contradiction may be 253 

due to a few things. Firstly, previous studies used monthly dynamical and AOD data, 254 

whereas we are employing weekly data. Secondly, we are using NO2, which has a 255 

shorter life time than aerosols in-situ and therefore does not flow as far from the source 256 

region as aerosols. Our approach focuses on the source region only, not the combined 257 

source and downwind regions of transport. 258 

Third, we observe that the NAO has a significant impact over most of the regions, 259 

including Northern Southeast Asia, Southern China Sea and Land, Populated Northern 260 

China, Northern and Arctic Eurasia, Central and Southern Africa and Western United 261 

States and Canada. Over these regions, the absolute value of R is always larger than 262 

0.20. It is worth mentioning that over Populated Northern China, the NAO is dominant 263 

(with R as high as 0.25), consistent with previous work (Chen et al., 2019b). 264 

All three dynamical forcings seem to converge over Central and Southern Africa, 265 

with there being a significant correlation between each individual forcing and the NO2 266 

over the regions. Overall, the NAO seems is slightly more dominant, with the IOD 267 

having the second strongest contribution, and El Niño the weakest. However, the 268 

timing and loading patterns of the NO2 over these two regions respond in the opposite 269 

direction to each other, and hence all three climate variables. This anti-correlation 270 

signal is due to the fact that the two regions are located in different hemispheres and 271 

thus also influenced by the movement of the Intertropical Convergence Zone (ITCZ). 272 

 273 

3.2 Developing a Multi-Linear Model of NO2 Concentrations from Different 274 

Present-day and Lagged Dynamical Forcings 275 

We first use the extended dynamical time series from 2004 to 2017 to quantify the 276 

idealized lag time between each dynamical forcing and NO2 measurement, assuming a 277 

maximum of a two-year lag. The time lag is chosen so as to maximize the correlation 278 

between the dynamical forcing and the NO2 measurements. The results are given in 279 

Table 1.  280 

On one hand, we observe that El Niño exclusively impacts future loadings of NO2 281 

over all studied regions. This is because when the dry-phase extreme occurs, it makes 282 



the associated region more prone to enhanced fire in the future, and visa verse for the 283 

wet-phase extreme. On the other hand, the IOD and NAO are found to lag behind the 284 

NO2 measurements over almost all studied areas, which means that NO2 or other 285 

co-emitted species produced by the fires (such as aerosols) may pose a significant 286 

feedback onto the energy balance or dynamics underlying these forcings. 287 

Next we employ a statistical multi-linear regression approach over each individual 288 

region, to quantify the measured NO2 as a weighted function of the Niño3.4, DMI, and 289 

NAO indices, both with and without a time lag respectively. The resulting coefficients 290 

and R square values of the multi-linear regression are also listed in Table 1. The point 291 

is to quantify which dynamical systems play the largest role in modulating NO2 from 292 

these rapidly varying regions, when considering both their magnitude and their 293 

maximum lag, in combination with each other as felt in the true environment where 294 

these forcings are not clearly separated from each other. 295 

First, we find that the lagged dynamical forcings are at least as important as the 296 

present-day dynamical forcings in all cases. Specifically, lagged El Niño and lagged 297 

NAO make a significant difference in all regions studied, while the lagged IOD makes a 298 

difference in all regions, except for Northern Southeast Asia and South America. 299 

Second, we find present-time dynamical forcings generally exhibit a weaker coefficient. 300 

For instance, the unlagged El Niño makes an impact only on Northern Southeast Asia, 301 

the unlagged IOD makes an impact solely on Indonesia, Northern and Arctic Eurasia, 302 

and Central and Southern Africa, while the unlagged NAO makes an impact on 303 

Northern Southeast Asia, Southern China Sea, Populated Northern China, Northern and 304 

Arctic Eurasia, Central and Southern Africa and the Western United States and Canada. 305 

Additionally, apart from impacting more regions, the lagged terms also yield their 306 

highest magnitude everywhere other than the IOD term in South America. 307 

Furthermore, the multi-linear regression model fit is superior to the individual 308 

correlations over all regions, with the greatest improvement in R
2
 ranging from 0.09 to 309 

0.37. In fact, the multi-linear regression model fit is very capable of reproducing the 310 

normalized standard deviation of the measured OMI NO2 column loadings over the 311 

regions of interest presented here, as observed in Figure 3. In specific, this approach is 312 

able to reproduce at least half of the known variability in regions which have been 313 

previously shown to be highly impacted by one or more of these dynamical systems 314 

(Aragão et al., 2018; Ichoku et al., 2008; Lan et al., 2019; Lin et al., 2019; Sun et al., 315 

2013). Three of the four regions not meeting this threshold have a large fraction (over 316 

40 percent) of their total variability due to high levels of urbanization (Indonesia and 317 

China). 318 

 319 



 320 

Table 1: The lag time of the dynamical forcings [weeks] (in columns 3-5); and the 321 

best-fit coefficients of the constant term (in column 6), of the present-day Niño3.4, 322 

DMI and NAO (in columns 7-9), of the lagged Niño3.4, DMI and NAO (in columns 323 

10-12), and the associated R squared (in column 13), of the multi-linear regression 324 

model. A positive lag means that the NO2 lags behind the dynamical forcings, and vice 325 

versa a negative lag. Coefficients of the non-constant terms are marked in red when 326 

they contribute 10% or more to the total regression weighting. 327 

 328 

 329 

Figure 3: Map of reconstructed normalized variability using the respective best fit 330 

multi-linear regression model from each region. Note that this fraction represents the 331 

amount of the total variability of the NO2 column measurements reproduced by the 332 

climate variables. 333 

 334 

4. Discussion and Conclusions 335 

Region El Niño IOD NAO b0 b1 b2 b3 b4 b5 b6 R
2

1 Indonesia 87 -16 -40 -0.06 -0.07 0.21 -0.05 -0.22 -0.26 -0.29 0.29

2 Northern Australia 91 5 -87 -0.13 0.03 0.04 0.07 -0.37 0.26 -0.34 0.31

3 Northern Southeast Asia 7 -25 -67 -0.04 0.38 -0.07 0.13 -0.50 0.09 -0.33 0.26

4 Southern China Land 48 -6 -52 -0.04 -0.07 -0.08 0.10 -0.37 -0.21 0.34 0.28

5 Southern China Sea 47 -5 -30 -0.05 -0.05 -0.07 0.20 -0.29 -0.14 -0.32 0.31

6 Populated Northern China 25 -7 22 0.04 0.01 0.05 0.15 0.13 -0.20 -0.25 0.20

7 Siberia 65 -32 -57 -0.03 0.06 -0.03 -0.04 -0.20 -0.14 -0.19 0.13

8 Northern Eurasia 51 -2 -78 0.00 -0.02 -0.13 0.21 -0.20 -0.16 -0.36 0.31

9 Arctic Eurasia 98 -6 -80 -0.02 -0.01 -0.12 0.26 -0.29 -0.12 -0.42 0.37

10 Central Africa 48 -3 -78 0.01 0.00 -0.17 0.19 -0.21 -0.18 -0.41 0.38

11 Southern Africa 79 -25 -48 -0.04 0.03 0.11 -0.22 -0.14 -0.13 -0.36 0.32

12 South America 32 -3 -43 -0.09 0.05 0.09 -0.05 -0.28 0.06 -0.39 0.29

13 Western US and Canada 53 -7 -82 -0.00 -0.02 -0.08 0.19 -0.20 -0.19 -0.41 0.30



 The approach employed here successfully finds strong relationships between some 336 

extreme climate events and resulting chemical extreme events over the 14 years from 337 

2004 to 2017. First, we determine that El Niño is the dominant term contributing to the 338 

variability of extremes in NO2 over Siberia, which has not been previously reported in 339 

literature. On top of this, our multi-regression model demonstrates that the El Niño 340 

always impacts on future loadings of NO2 in all studied regions, with its most 341 

significant impact (about 34 percent) occurring in both Northern Australia and 342 

Northern Southeast Asia when lags of 91 weeks and 7 weeks are applied respectively. 343 

Conversely, we find that the El Niño does not have a significant correlation on the 344 

extreme NO2 columns measured over Indonesia, even though many previous works 345 

have stated that it is the major driving force between the fires observed in the Maritime 346 

Continent. This combination of findings is an important conclusion and warrants 347 

further study to understand more deeply the driving forces between these two highly 348 

variable and significant phenomena. 349 

 The IOD is found to dominate the NO2 variability in many places in the world, 350 

including Indonesia, Northern Australia and South America. In our multi-regression 351 

model, the IOD lags behind the NO2 columns in all regions except Northern Australia, 352 

where there is instead a possible proposed connection between the IOD and the 353 

emissions of NO2 or other species co-emitted with NO2 from biomass burning (i.e. heat 354 

or aerosols). The largest influence of the IOD is observed over Populated Northern 355 

China (also about 34 percent), when a lag of 7 weeks is applied. 356 

The NAO influences the NO2 columns across the globe in an overall wavelike 357 

manner, and plays a dominant role over most studied regions, including Northern 358 

Southeast Asia, Southern China Sea and Land, Populated Northern China, Northern 359 

and Arctic Eurasia, Central and Southern Africa and Western United States and Canada. 360 

Moreover, in the statistical multi-regression model, the NAO is found to lag behind 361 

almost all studied regions except Populated Northern China, which means that NO2 362 

along with other species co-emitted (including heat and aerosols) may also pose a 363 

significant feedback on the NAO. It is most significantly influenced over South 364 

America (found to contribute 42 percent), when a lag of 43 weeks is applied. 365 

Over all of the non-heavily populated regions except for Siberia, we find that the 366 

climate variability is responsible for 50% to 60% of the total variability in measured 367 

NO2 column loadings. Even in urban regions such as Indonesia and China the 368 

contribution is still more than 40%. Based on these results, it is suggested that the 369 

community look deeper into the roles of multiple dynamical forcings simultaneously 370 

acting on pollution extremes, as well as the possibility that extremes in pollution may 371 

have an impact on modulation of some of the largest global-scale dynamical systems. 372 

 373 
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