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Abstract

Changes in climate are usually considered in terms of trends or differences over time. However, for many impacts requiring

adaptation, it is the amplitude of the change relative to the local amplitude of climate variability which is more relevant.

Here, we develop the concept of ‘signal-to-noise’ in observations of local temperature, highlighting that many regions are

already experiencing a climate which would be ‘unknown’ by late 19century standards. The emergence of observed temperature

changes over both land and ocean is clearest in tropical regions, in contrast to the regions of largest change which are in the

northern extra-tropics - broadly consistent with climate model simulations. Significant increases and decreases in rainfall have

also already emerged in different regions with the UK experiencing a shift towards more extreme rainfall events, a signal which

is emerging more clearly in some places than the changes in mean rainfall.
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Key Points: 13 

• The signal of changes in observed temperature and rainfall due to global warming has 14 
clearly emerged in many regions and at meso-scales 15 

• Tropical regions have experienced the largest changes in temperature relative to the 16 
amplitude of internal variability 17 

• Signals of increasing extreme rainfall are emerging more quickly than signals in mean 18 
rainfall over many parts of the UK 19 
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Abstract 22 

Changes in climate are usually considered in terms of trends or differences over time. However, 23 
for many impacts requiring adaptation, it is the amplitude of the change relative to the local 24 
amplitude of climate variability which is more relevant. Here, we develop the concept of ‘signal-25 
to-noise’ in observations of local temperature, highlighting that many regions are already 26 
experiencing a climate which would be ‘unknown’ by late 19th century standards. The emergence 27 
of observed temperature changes over both land and ocean is clearest in tropical regions, in 28 
contrast to the regions of largest change which are in the northern extra-tropics – broadly 29 
consistent with climate model simulations. Significant increases and decreases in rainfall have 30 
also already emerged in different regions with the UK experiencing a shift towards more extreme 31 
rainfall events, a signal which is emerging more clearly in some places than the changes in mean 32 
rainfall. 33 

Plain Language Summary 34 

Changes in climate are translated into impacts on society not just though the amount of change, 35 
but how this change compares to the variations in climate that society is used to. Here we 36 
demonstrate that significant changes, when compared to the size of past variations, are present in 37 
both temperature and rainfall observations over many parts of the world. 38 

1 Introduction 39 

It was first noted that surface air temperatures were increasing at both local and global scales 40 
more than 80 years ago [Kincer 1933, Callendar 1938]. At the time it was unclear whether the 41 
observed changes were part of a longer term trend or a natural fluctuation – the ‘signal’ had not 42 
yet clearly emerged from the ‘noise’ of variability – although Callendar [1938] did suggest that 43 
the increase in atmospheric carbon dioxide concentrations was partly to blame. 44 

The concept of the emergence of a climate change signal has since been discussed extensively, 45 
often linked with the detection & attribution of climatic changes. For example, Madden & 46 
Ramanathan [1980] and Wigley & Jones [1981] could not robustly detect the carbon dioxide 47 
warming signal, but Hansen et al. [1988] predicted that the ratio of temperature change and the 48 
magnitude of interannual variability – the signal-to-noise ratio – would be above 3 in large parts 49 
of the tropics by the 2010s, with smaller values over high latitude land regions. Mahlstein et al. 50 
[2011, 2012] subsequently demonstrated that the signal had indeed emerged in the observations, 51 
especially in the tropics in boreal summer, and with a similar pattern to that expected from 52 
climate model simulations. Lehner et al. [2017] subsequently highlighted emergence of observed 53 
temperature changes in both winter and summer in the northern extra-tropics. Significant 54 
changes in precipitation are often harder to detect because both thermodynamic and dynamic 55 
factors are crucial [e.g. Zappa & Shepherd, 2017] and because internal variability in precipitation 56 
is larger. However, precipitation changes are apparent in some regions [e.g. Zhang et al. 2007] 57 
including in extremes [e.g. Min et al. 2011]. 58 

Many studies have also considered when further changes in climate will emerge, for both mean 59 
temperature [Mahlstein et al. 2011, Hawkins & Sutton 2012] and precipitation [Giorgi & Bi 60 
2009, Fischer et al. 2014]. Other studies have considered when changes in climate extremes 61 
should have emerged in the past [King et al. 2015] or future [Diffenbaugh & Scherer 2011, 62 
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Fischer et al. 2014]. However, rather than examine the timing of any climate emergence, we 63 
focus here on the related quantity – signal-to-noise.  64 

The clearest emergence of warming – and largest signal-to-noise values – tend to be found in the 65 
tropics, which are regions with large and vulnerable populations [Frame et al. 2017, Harrington 66 
et al. 2017]. Signal-to-noise (S/N) is important for climate impacts, especially for ecosystems 67 
which have a limited ability to adapt and so large changes outside past experience could be 68 
particularly harmful [Deutsch et al. 2008; Beaumont et al. 2011]. Crop growing areas also face 69 
unprecedented heat [Battisti & Naylor 2009] and changes in rainfall which may move outside 70 
past experiences [Rojas et al. 2019]. The impacts of shifts in snowfall [Diffenbaugh et al. 2012] 71 
and Köppen–Geiger zones [Mahlstein et al. 2013] have also been discussed in terms related to 72 
the natural variability of the local conditions. Quantifying the changes that have already occurred 73 
may help determine which regions are suffering the largest adverse consequences of a warming 74 
world. 75 

Here, we revisit the question of where and how the climate change signal is emerging from the 76 
background noise of internal variability. In contrast to most previous studies we focus our 77 
analysis on observational datasets of temperature and precipitation, with model simulations used 78 
only to test the methodology. 79 

2. Observed emergence and signal-to-noise 80 

2.1 Methodology 81 

Our aim is to produce estimates of signal-to-noise (S/N) for changes in observed climate 82 
variables without utilising data from any climate model simulations. The simple approach 83 
adopted is to linearly regress local variations in climate onto annual global mean surface 84 
temperature change (GMST), i.e. 85 

L(t) = aG(t) + b, 86 

where L(t) is the local change (in temperature or precipitation) over time, G(t) is a smoothed 87 
version of GMST change over the same period, a defines the linear scaling between L and G, 88 
and b is a constant. Sutton et al. [2015] highlighted that a large fraction of variance in local 89 
climate changes can be represented by GMST changes, and Fischer et al. [2014] demonstrated 90 
that a similar regression approach provided robust estimates of S/N when examining future 91 
changes in precipitation in climate model simulations. 92 

For G(t) we use GMST from the Berkeley Earth temperature dataset for 1850-2018 (Rohde et al. 93 
[2013], combined with HadSST3 from Kennedy et al. [2011]), relative to the mean of 1850-94 
1900, and smoothed with a lowess filter of 41-years to highlight the long-term variations (Figure 95 
1a). The conclusions are insensitive to whether the smoothing parameter is slightly larger or 96 
smaller. The ‘signal’ of global temperature change is defined as the value of the smoothed 97 
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GMST in 2018 (G2018 = 1.19K), the ‘signal’ of local climate change described by GMST is aG 98 
and the ‘noise’ is defined as the standard deviation of the residuals (L – aG).  99 

Although we do not formally attribute the observed change in GMST, and hence local changes, 100 
to particular radiative forcings or feedbacks, applying the method of Haustein et al. [2017] to 101 
derive a GMST change that is attributable to human activity gives 1.22K, similar to G2018. 102 
Although 1850-1900 is often considered as a proxy for ‘pre-industrial’ GMST, the Haustein et 103 
al. [2017] approach also suggests an additional anthropogenic warming of around 0.05K 104 
occurred between 1750 and 1850-1900, based on radiative forcing estimates back to 1750. 105 
Although this plausible pre-1850 attributable warming is not included in our analysis, we refer to 106 
the 1850-1900 period as the early-industrial era, rather than pre-industrial. 107 

2.2 Example for annual mean temperatures in Oxford 108 

To demonstrate our approach we consider a case study of temperature change in Oxford, UK. 109 
Burt & Burt [2019] produced an extended temperature record for the Oxford Radcliffe 110 
Observatory with annual means available for 1814-2018. The temporal evolution of GMST and 111 
temperatures in Oxford are similar, showing that the ‘fingerprint’ of GMST change is clearly 112 
visible at the spatial scale of a single continuous weather station, although with more noise at the 113 
local scale (Figure 1b, also see Sutton et al. [2015]). We note that there is likely an urban heat 114 
island influence on temperatures in Oxford of around 0.1-0.2K [Burt & Burt 2019].  115 

We regress this local temperature dataset onto smoothed GMST and obtain a = 1.45 ± 0.25 (95% 116 
confidence interval). The ‘signal’ for Oxford is aG2018 = 1.72 ± 0.30K and the ‘noise’, i.e. the 117 
local variations that are not explained by GMST variations, is 0.54K. Oxford therefore exhibits a 118 
S/N ratio of 3.2 ± 0.5 (Figure 1b). 119 

We adopt the language of Frame et al. [2017] to describe how the climate has changed from 120 
being familiar, to being ‘unusual’ relative to lived experience (S/N > 2), ‘unknown’ (S/N > 3), 121 
and here we introduce ‘inconceivable’ for S/N values above 5 (Fig. S1). Using this terminology, 122 
temperatures in Oxford have become unknown relative to the early-industrial era. Two other 123 
regional examples are illustrated in Fig. S2. 124 

2.3 Local climate data and methodological tests 125 

We perform a similar S/N analysis for each land and ocean gridpoint in the Berkeley Earth 126 
temperature dataset (1850-2018) and in the GPCCv2018 land precipitation dataset (1891-2016, 127 
Schneider et al. [2017]). We use the 1º x 1º datasets for both Berkeley Earth and GPCC. We also 128 
use the HadUK-Grid dataset for the UK [Hollis et al. 2019] at 25km spatial resolution for 129 
monthly (1862-2017) and daily (1891-2017) precipitation data to examine changes in mean 130 
rainfall and extremes. Note that smoothed GMST (1850-2018) is used as G for both local 131 
temperature and precipitation analyses. 132 

As the local data is not necessarily available for all years back to 1850 we perform the regression 133 
only over the period where local temperatures or precipitation are defined. The signal relative to 134 
the early-industrial era can still be calculated assuming that the estimated regression parameter 135 
(a), is representative for the whole period, i.e. the signal is always aG2018, irrespective of the 136 
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time period used to calculate a. However, we require that there must be at least 100 years of 137 
local climate data available. 138 

We test our methodology using a large ensemble of climate simulations for the historical period 139 
[Maher et al. 2019], specifically to examine the uncertainty due to internal variability in derived 140 
S/N values for temperature and precipitation. Figs. S3 and S4 demonstrate that the methodology 141 
produces S/N values with small uncertainties (typically <0.4 over land regions) and robust 142 
patterns. 143 

3. Emergence of unknown temperatures 144 

The map of the current observed signal of annual temperature change, relative to the early-145 
industrial era, is shown in Figure 2a. It shows the familiar pattern of more warming over land 146 
than over the oceans, more warming at high northern latitudes, and less warming in the tropical 147 
regions and the southern hemisphere. Virtually all locations have experienced more than 1K 148 
change since the early-industrial era, and many regions have exceeded 2K. The estimated noise 149 
shows a similar pattern with larger variability at higher northern latitudes, but the differences 150 
between the tropics and extra-tropics are more pronounced than for the signal (Figure 2b). 151 

The ratio of these two patterns results in a signal-to-noise (S/N) map with the largest values in 152 
the tropical regions (Figure 2c). Although these areas generally have smaller signals than higher 153 
latitude regions, they have experienced a larger amplitude change relative to the (smaller) 154 
background variations in temperature than other regions. This is important as societies, 155 
infrastructure and ecosystems are often adapted for the range of local climate experienced. S/N 156 
measures how far the climate is being shifted from that past range; the climate in large parts of 157 
the tropics has shifted such that the mean climate would have been inconceivable in the early-158 
industrial era. More than half of the land area has experienced S/N above 3, and so has moved 159 
into a climate that is unknown by early-industrial standards (Fig. S5). 160 

Over the oceans the largest S/N values are found in the tropical Atlantic and tropical Indian 161 
Oceans. Fish species such as tuna have already been seen to be moving away from the tropics to 162 
the sub-tropics, likely to avoid these warmer waters [Monllor-Hurtado et al. 2017]. Large parts 163 
of the North Atlantic have seen little warming overall, likely due to changes in ocean circulation 164 
providing a local cooling influence to offset global warming [e.g. Dima & Lohmann 2010].  165 

Although there are variations in magnitude, the estimated S/N pattern is relatively robust to the 166 
choice of temperature dataset [Morice et al. 2012, Cowtan & Way 2014, Lenssen et al. 2019, 167 
Zhang et al. 2019]. However, there are notable local differences between datasets over south-east 168 
USA and parts of South America (Fig. S6). The overall observed emergence pattern is broadly 169 
similar to that found in models under future climate change scenarios [Frame et al., 2017] 170 
though there are regional-scale differences; especially in the oceans but over some land areas 171 
too. 172 

When considering how changes in climate may be experienced, it may in many cases be more 173 
relevant to examine seasonal or monthly timescales, depending on the impact being considered. 174 
For example, Figure 3 shows that S/N values can still be significant for monthly average 175 
temperatures. Again, the largest S/N values are found in the tropics and tend to be larger for the 176 
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climatologically warmest month than the climatologically coldest month for each location. This 177 
is because weather variability tends to be larger in the colder months. Around 40% of land areas 178 
have moved into an unusual climate in their warmest months, and 20% in the coldest months 179 
(Fig. S5). This suggests a comparatively large increase in likelihood of heat-related extreme 180 
events in already warm months of already hot countries. One example is south-east Asia where 181 
the S/N values are large and the combined effects of El Nino events and climate change on 182 
extreme heat in the warmest months of the year has previously been noted [Thirumalai et al. 183 
2017]. 184 

4. Emergence of unusual precipitation amounts 185 

The S/N analysis is repeated for annual mean precipitation using the GPCC dataset. In this case, 186 
some regions are getting significantly wetter and others are getting significantly drier (Figure 4) 187 
but, unsurprisingly, the signals are less clear than for temperature. Notable emergence of 188 
‘unfamiliar’ (S/N > 1) or unusual precipitation changes are observed in west Africa, Brazil, Chile 189 
and south-west Australia (drier), and the northern high latitudes and Argentina (wetter). The 190 
seasonal values of S/N are shown in Fig. S7. The changes in several of these regions have been 191 
discussed as being consistent with the expected response to increased greenhouse gas forcing, 192 
e.g. for south-west Australia [Delworth & Zeng 2014], for Chile [Boisier et al. 2016] and the 193 
northern extra-tropics [Zhang et al. 2007]. 194 

To demonstrate that this framework can be applied to a range of gridded datasets and spatial 195 
scales, we consider one small region in more detail. The UK has a gridded rainfall dataset 196 
available, covering 1891-2017 (daily) and 1862-2017 (monthly), which is suitable for examining 197 
changes in mean and extreme rainfall [Hollis et al. 2019].  198 

Figure 5 shows the signal and S/N for annual mean rainfall, highlighting a tendency for 199 
increasing rainfall in large parts of the northern UK and the western coasts of up to 20% per K of 200 
GMST change. The corresponding S/N values exceed 1 in several areas, and these tend to be 201 
mountainous regions. Fig. S8 shows the seasonal mean S/N values. 202 

When considering the wettest day of the year (RX1day) as L(t), there is a clear signal of 203 
increasing extreme rainfall, but the pattern is strikingly different to the mean. This signal is 204 
visible across large parts of the UK, even in regions where there are only small changes in mean 205 
rainfall. The signal has only clearly emerged in a few locations (Fig. 5) but the spatial average of 206 
RX1day across the UK suggests an increase in extreme rainfall amounts of around 4mm (or 207 
11%) per K of GMST change (Fig. S9), which is around 8% per K of UK temperature change, 208 
approximately consistent with Clausius-Clapeyron expectations [Pall et al. 2007].  209 

These findings are consistent with Min et al. [2011] who showed that the signal of changes in 210 
extreme rainfall were detectable and attributable to human activity over large parts of the 211 
northern hemisphere land areas, and with Fischer et al. [2014] used climate model simulations to 212 
suggest that emergence of changes in extreme rainfall can occur earlier than changes in mean 213 
rainfall. Continued recovery of millions of undigitized weather observations, including for daily 214 
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rainfall, will improve and lengthen these gridded datasets [e.g. Ashcroft et al. 2018; Hawkins et 215 
al. 2019]. 216 

5. Summary and discussion 217 

We have estimated the signal-to-noise ratio (S/N) of observed temperature and precipitation 218 
changes since the early-industrial era (1850-1900). Although we do not formally attribute these 219 
local changes to specific radiative forcings or feedbacks, the emergence of significantly different 220 
climates is related to increases in GMST, which itself is largely due to anthropogenic factors 221 
[e.g. IPCC 2018]. 222 

Consistent with previous studies and expectations from climate model simulations, the largest 223 
S/N values for historical temperature changes are seen in the tropical regions, over both land and 224 
ocean. Large regions have already experienced a shift to a climate state that is unknown, and 225 
even inconceivable, compared to that in the late 19th century. These signals of change are also 226 
clear in monthly average temperatures, with warmer months showing more significant changes. 227 

Precipitation signals are emerging in several regions when considering observed rainfall changes, 228 
particularly West Africa, parts of South America and northern Eurasia. Some regions in South 229 
America and central Africa exhibit simultaneously high S/N for temperature (S/N>4) and 230 
significantly drier precipitation (S/N<-1) which may compound impacts. 231 

As a demonstration of the methods in a data-rich region, and over a range of spatial scales, our 232 
analysis shows there are clear shifts towards more annual rainfall over the UK, focussed over 233 
northern and western areas. Significant increases in extreme heavy rainfall are emerging over 234 
large parts of the UK and are emerging more quickly than changes in mean rainfall in some 235 
places. The magnitude of the increase in extreme rainfall (~8% per K of local temperature 236 
change) is approximately consistent with expectations from the Clausius-Clapeyron relationship. 237 

Many of the largest global shifts in climate, relative to the background variability, are found in 238 
countries with large, vulnerable populations, and this will be exacerbated if policy targets such as 239 
those in the Paris Agreement are not met [Frame et al. 2017, King & Harrington 2018]. There 240 
are also implications for ecosystems in these regions, which may not be able to adapt to such an 241 
unknown climate, especially given the rates of change. The rates of change of signal-to-noise to 242 
which societies and ecosystems can adapt is an important topic for future analyses. 243 
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 410 

Figure 1: Emergence of global and local temperature change from 1850-2018. (top) GMST 411 
(grey), smoothed with a 41-year lowess filter (black). (bottom) Oxford annual temperature (grey) 412 
and scaled smoothed GMST (black). The correlation between Oxford temperatures and 413 
smoothed GMST is 0.67, and if the Oxford data is also smoothed with a 41-year lowess filter the 414 
correlation increases to 0.98. The shaded bands indicate 1 and 2 standard deviations of the noise. 415 
Fig. S2 shows other regional examples. 416 
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 421 

Figure 2: Signal, noise (both in K) and S/N for observed annual mean temperature change in the 422 
Berkeley Earth dataset. Many tropical regions show the smallest signal, but also the smallest 423 
noise and largest S/N. Grey regions denote lack of sufficient data. The S/N values in stippled 424 
areas are not significantly different from zero. 425 

  426 
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 427 

Figure 3: Signal-to-noise ratio for monthly average temperatures, for the climatologically 428 
warmest (left) and coldest (right) months at each grid point. Grey regions denote lack of 429 
sufficient data. The S/N values in stippled areas are not significantly different from zero.  430 

 431 

Figure 4: Signal-to-noise ratio for annual mean precipitation over land using the GPCC dataset. 432 
Blue colours denote regions becoming wetter, and red colours denote regions that are becoming 433 
drier. Grey regions are either unobserved (oceans) or deserts (<250mm/year). Stippling indicates 434 
where the regression parameter is not statistically significant from zero. 435 
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 438 
Figure 5: Signal (left) and signal-to-noise ratio (right) for annual mean precipitation over the UK (top row, 1862-439 
2017) and extreme daily rainfall (RX1day, bottom row, 1891-2017) using the HadUK-Grid dataset. The signal is 440 
presented in units of % per K of GMST change. Blue colours denote regions becoming wetter, and red colours 441 
denote regions that are becoming drier. Stippling in the S/N panels indicates where the regression parameter is not 442 
statistically significant from zero. 443 
 444 
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S.1 Shifting distributions 22 
 23 
The emergence of a signal can be visualised using shifting normal distributions (Fig. S1). Frame 24 
et al. (2017) described S/N>1 as a shift to an ‘unfamiliar’ climate, S/N>2 as an ‘unusual’ climate 25 
and S/N>3 as an ‘unknown’ climate, in terms of an individual’s lifetime. We add the term 26 
‘inconceivable’ for S/N>5, as the new mean climate would be experienced once every 3 million 27 
years in the old climate.  28 
 29 
Two regional average examples are shown in Fig. S2, for tropical America and northern 30 
America, highlighting the differences in signal and noise characteristics. Even though northern 31 
America has a larger signal, the change is more apparent in tropical America. 32 
 33 

 34 
Figure S1: Shifting a normal distribution by 0 (black) to 6 (dark red) standard deviations.   35 
 36 
 37 

 38 
 39 
Figure S2: Two regional examples of how observed temperature changes have become apparent, 40 
using the Berkeley Earth land-only temperature dataset. The red shaded bands represent 1 and 2 41 
standard deviations of the noise. 42 
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S.2 Using model simulations to test the emergence methodology 43 
 44 
We can test the robustness of the methodology to estimate the S/N using a large ensemble of 45 
model simulations. Maher et al. (2019) describe the 100-member ensemble of the MPI GCM, 46 
from which we use the simulated SAT for the historical period (1850-2005), extended to 2018 47 
with the RCP4.5 scenario. First, we apply the same methodology used for the observations to 48 
each ensemble member individually. The ensemble mean S/N, which is expected to be smoother 49 
than the observed S/N due to averaging, is shown in Fig. S3a, and the spread in S/N across the 50 
ensemble is shown in Fig. S3c. The uncertainty in S/N is generally between 0.2-0.4 over land, 51 
which is typically far smaller than the mean S/N. The maritime continent, North Atlantic and 52 
Southern Ocean are regions with largest uncertainty in this GCM. The percentage uncertainty in 53 
S/N is less than 30% over most land areas (Fig. S3d). A simpler approach, which is not possible 54 
using observations, is to calculate the S/N by averaging the simulated temperature anomaly 55 
patterns in 2018, relative to the mean of 1850-1900, from all ensemble members, and dividing by 56 
the standard deviation of the 2018 anomalies (Fig. S3b). This pattern is virtually identical to Fig. 57 
S3a, highlighting that the regression approach produces S/N estimates that are robust. These 58 
results also demonstrate that the uncertainty in S/N due to simulated internal variability is 59 
relatively small. 60 
 61 
Note that the patterns of simulated S/N in this ensemble are noticeably different from the 62 
observed patterns. One important example is in parts of west Africa where the MPI ensemble 63 
S/N is close to zero but is larger than 5 in the observations. India also has a low S/N in the 64 
ensemble, but significant values in the observations. This finding highlights the benefit of using 65 
the observations alone, as in the current study. 66 
 67 
Fig. S4 shows the same maps for simulated precipitation change in the MPI ensemble. Again, the 68 
two methods produce similar patterns (Fig. S4a, b), with the ensemble method showing slightly 69 
larger values. The simulated uncertainty in S/N due to internal variability is typically 0.3-0.4 70 
over land regions. The patterns are again different from that derived from the observations, 71 
especially in west Africa which is significantly wetter in the simulations but drier in the 72 
observations.  73 
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 74 

 75 
Figure S3: Testing the S/N methodology using the MPI Large Ensemble (Maher et al. 2019). 76 
(top left) S/N calculated as for the observations in each individual ensemble member, averaged 77 
across the 100-members. (top right) Mean simulated temperature in 2018 minus the average of 78 
1850-1900 across all ensemble members, divided by the standard deviation of simulated 79 
temperature in 2018. (bottom left) Standard deviation in the S/N estimated using the 80 
observational method across the 100-members. (bottom right) The percentage uncertainty in S/N, 81 
i.e. bottom left panel divided by top left. 82 
 83 
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 84 
Figure S4: as Fig. S3 for precipitation. 85 
 86 
  87 
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 88 
S.3 Additional metrics 89 
 90 
Figure S5 shows the fraction of land area which has a S/N for temperature exceeding the value 91 
indicated, using the Berkeley Earth dataset. For the annual mean, around 15% of the land area 92 
has a S/N larger than 5, and 40% shows a S/N larger than 2 for the warmest climatological 93 
month of the year. The warmest months tend to show larger S/N values than the coldest months. 94 
 95 
Figure S6 repeats the S/N temperature analysis using other datasets: HadCRUT4 (Morice et al. 96 
2012), Cowtan & Way (2014, hereafter CW14) infilled version of HadCRUT4, GISTEMP 97 
(Lenssen et al. 2019) and NOAA GlobTemp (Zhang et al. 2019). For this sensitivity test we have 98 
used the same smoothed GMST from Berkeley Earth in all cases. These datasets generally 99 
produce similar patterns to that from Berkeley Earth (Fig. 2c), but with varying amplitudes. 100 
NOAA GlobTemp has larger S/N values in the tropics than the other datasets and Berkeley Earth 101 
has larger S/N for the south-east USA. There are other notable differences for west Africa and 102 
parts of south America, mainly due to different estimates for the signal, rather than the noise (not 103 
shown). There is consistent agreement that the tropical Atlantic and Indian Oceans exhibit the 104 
highest S/N for the ocean areas, and that there has been very little warming overall in the central 105 
North Atlantic. 106 
 107 
Figure S7 shows the S/N patterns for precipitation in different seasons, highlighting that the west 108 
Africa signals are present in all seasons except DJF, and the south-west Australia drying signal is 109 
mainly present in JJA. The wetter northern latitude signal is mainly present in DJF and MAM. 110 
 111 
Figure S8 shows the S/N patterns for UK mean precipitation in different seasons. There are 112 
tendencies towards wetter seasons, except for JJA where the S/N is rarely significant. Note that 113 
the observed signal in southern UK is for drier summers but it has not yet emerged. 114 
 115 
Figure S9 shows the UK mean RX1day time-series with maps for two example years. 116 
  117 
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 119 
Figure S5: The fraction of land area with an observed temperature S/N larger than the ratio 120 
shown, for different seasons, the annual average, and warmest and coldest months (using the 121 
Berkeley Earth dataset). 122 
 123 
  124 
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 127 

 128 
 129 
Figure S6: Observed S/N for temperature using the CW14 dataset (top left), HadCRUT4 (top 130 
right), GISTEMP (bottom left) and NOAA GlobTemp (bottom right). Stippled cells indicate that 131 
the regression coefficient is not statistically significant. Grey regions are where there is less than 132 
100 years of data in that location for that dataset. 133 
 134 
 135 
 136 
 137 
 138 
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 139 
Figure S7: Signal-to-noise for precipitation in different seasons. Grey regions are either 140 
unobserved (oceans), have a seasonal precipitation of less than 62.5mm or annual precipitation 141 
less than 250mm. Stippled regions denote areas where the regression parameter is not 142 
statistically significant. 143 
 144 
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 146 
Figure S8: Signal-to-noise for UK mean precipitation in different seasons. Stippled regions 147 
denote areas where the regression parameter is not statistically significant. 148 
 149 
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 151 
Figure S9: UK extreme rainfall (RX1day, mm): average across the UK (1891-2017, black line) 152 
with regression on smoothed GMST (red dashed line), and maps for two example years (1968 153 
and 2003). 1968 shows the effect of three significant storm events, in contrast to 2003 which 154 
mainly shows larger rainfall over higher orographic features. 155 
 156 
 157 


