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Abstract

Stochastic parameterizations are broadly used in climate modeling to represent

subgrid scale processes. While different parameterizations are being developed

considering different aspects of the physical phenomena, less attention is

given to the technical and numerical aspects. In particular, the use of

Empirical Orthogonal Functions (EOFs) is well established whenever a spatial

structure is required, without considering its possible drawbacks. By applying

an energy consistent parameterization to the 2-layer Quasi-Geostrophic (QG)

model, we investigate the model sensitivity to the \emph{a priori} assumptions

made on the parameterization. In particular, we consider here two methods to

prescribe the spatial covariance of the noise. First, by using climatological

variability patterns provided by EOFs, and second, by using time-varying

dynamics-adapted Koopman modes, approximated by Dynamic Mode Decomposition

(DMD). The performance of the two methods are analyzed through numerical

simulations of the stochastic system on a coarse spatial resolution, and the

outcomes compared to a high-resolution simulation of the original

deterministic system. The comparison reveals that the DMD based noise

covariance scheme outperforms the EOF based. The use of EOFs leads to a

significant increase of the ensemble spread, and to a meridional misplacement

of the bi-modal eddy kinetic energy (EKE) distribution. On the other hand,

using DMDs, the ensemble spread is confined and the meridional propagation of

the zonal jet stream is accurately captured. Our results highlight the

importance of the systematic design of stochastic parameterizations with

dynamically adapted spatial correlations, rather than relying on statistical

spatial patterns.

1



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Spatial Covariance Modeling1

for Stochastic Subgrid-Scale Parameterizations2

Using Dynamic Mode Decomposition3

F. Gugole1and C. L. E. Franzke1
4

1Meteorological Institute and Center for Earth System Research and Sustainability, University of5

Hamburg, Hamburg, Germany6

Key Points:7

• The structure of the spatial noise covariance matrix of stochastic parameteriza-8

tions is important for flow dynamics and energy consistency9

• Our results show that a noise covariance matrix based on Dynamic Mode Decom-10

position produces better results then a typically used Empirical Orthogonal Func-11

tion based scheme12

• Our Dynamic Mode Decomposition scheme is flow adaptive13

Corresponding author: Federica Gugole, federica.gugole@uni-hamburg.de

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract14

Stochastic parameterizations are broadly used in climate modeling to represent subgrid15

scale processes. While different parameterizations are being developed considering dif-16

ferent aspects of the physical phenomena, less attention is given to the technical and nu-17

merical aspects. In particular, the use of Empirical Orthogonal Functions (EOFs) is well18

established whenever a spatial structure is required, without considering its possible draw-19

backs. By applying an energy consistent parameterization to the 2-layer Quasi-Geostrophic20

(QG) model, we investigate the model sensitivity to the a priori assumptions made on21

the parameterization. In particular, we consider here two methods to prescribe the spa-22

tial covariance of the noise. First, by using climatological variability patterns provided23

by EOFs, and second, by using time-varying dynamics-adapted Koopman modes, ap-24

proximated by Dynamic Mode Decomposition (DMD). The performance of the two meth-25

ods are analyzed through numerical simulations of the stochastic system on a coarse spa-26

tial resolution, and the outcomes compared to a high-resolution simulation of the orig-27

inal deterministic system. The comparison reveals that the DMD based noise covariance28

scheme outperforms the EOF based. The use of EOFs leads to a significant increase of29

the ensemble spread, and to a meridional misplacement of the bi-modal eddy kinetic en-30

ergy (EKE) distribution. On the other hand, using DMDs, the ensemble spread is con-31

fined and the meridional propagation of the zonal jet stream is accurately captured. Our32

results highlight the importance of the systematic design of stochastic parameterizations33

with dynamically adapted spatial correlations, rather than relying on statistical spatial34

patterns.35

1 Introduction36

Geophysical flows involve a multitude of phenomena with vastly different spatial37

and temporal scales (e.g. Franzke, Oliver, Rademacher, & Badin, 2019; Vallis, 2006). Due38

to the underlying nonlinear equations of motion all these scales interact with each other.39

In order to obtain dynamically consistent and stable long time simulations, geophysical40

models need, in principle, to cover the whole range of scales. This poses great compu-41

tational challenges: processes occurring on spatial scales smaller than the prescribed nu-42

merical grid scale and processes occurring on temporal scales faster than the prescribed43

numerical time step cannot be resolved. These unresolved subgrid-scale processes nev-44

ertheless may be energetically important, such as, for example, convection processes which45

are not resolved by current climate models, and may significantly affect the dynamics46

on the large resolved scales. To capture the effects of the subgrid-scale processes, parametriza-47

tions are typically introduced, whereby the unresolved scales are conditioned on the re-48

solved scales (Stensrud, 2007).49

Further complications, caused by the inevitable distinction between resolved and50

unresolved spatial scales, in numerical schemes occur for nonlinear fluid systems which51

exhibit energy and enstrophy cascades. For atmospheric dynamics it is well known that52

enstrophy is transferred from larger to smaller scales, until it is dissipated at the dissi-53

pation scale, whereas energy is transported from smaller to larger scales (Dubrulle, 2019;54

Vallis, 2006). For the majority of models, as for instance for general circulation models,55

the numerical resolution is not fine enough to resolve the dissipation processes. Subse-56

quently, the enstrophy piles up at the truncation level, making the numerical model un-57

stable and subject to numerical blow up. In order to guarantee numerical stability, ar-58

tificial hyper-viscosity is introduced, leading to an increased viscosity of the fluid, which59

dissipates also the kinetic energy. Furthermore, the injection of energy from the unre-60

solved subgrid-scales leads to an unphysical grid-size dependent representation of the ki-61

netic energy.62

In recent years there has been an extensive interest in the development of stochas-63

tic parameterizations for sub-grid scale processes (e.g. Berner et al., 2017; Franzke, O’Kane,64
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Berner, Williams, & Lucarini, 2015; Gottwald, Crommelin, & Franzke, 2017; Imkeller65

& von Storch, 2001; Palmer & Williams, 2010). To mitigate possible damaging effects66

on the predictability by artificial energy dissipation, there has been a growing interest67

in designing energy-conserving and energy-consistent stochastic parametrizations (e.g.68

Dwivedi, Franzke, & Lunkeit, 2019; Frank & Gottwald, 2013; Gugole & Franzke, 2019;69

Jansen & Held, 2014; Jansen, Held, Adcroft, & Hallberg, 2015; Mémin, 2014; Resseguier,70

Mémin, & Chapron, 2017b). Broadly speaking, energy-consistent parametrizations fall71

into two different categories. The first approach is to derive expressions for additional72

terms to augment current deterministic fluid equations, such as done for kinetic back-73

scatter (Dwivedi et al., 2019; Jansen & Held, 2014; Juricke, Danilov, Kutsenko, & Oliver,74

2019; Zurita-Gotor, Held, & Jansen, 2015). The second strategy is to instead derive new75

stochastic expressions of the geophysical flow equations such that they still conserve, for76

instance, energy (Mémin, 2014; Resseguier, Mémin, & Chapron, 2017a; Resseguier et al.,77

2017b; Resseguier, Pan, & Fox-Kemper, 2019) or the Kelvin circulation theorem (Cot-78

ter, Crisan, Holm, Pan, & Shevchenko, 2018, 2019; Cotter, Gottwald, & Holm, 2017; Holm,79

2015).80

We consider here a forced and damped 2-layer Quasi-Geostrophic (QG) model, and81

as stochastic parameterization we employ the projection operator approach introduced82

in Frank and Gottwald (2013). The energy-consistent parametrization developed in Frank83

and Gottwald (2013) had been devised only for a low-dimensional Hamiltonian ordinary84

differential equation. Subsequently it was successfully adapted for an unforced inviscid85

QG model in Gugole and Franzke (2019). However, the spatial covariance of the stochas-86

tic parametrization is not specified by the methodology suggested in Frank and Gottwald87

(2013), and in Gugole and Franzke (2019) it was shown to be crucial for the system to88

have physically meaningful results. Our aim is to further investigate the sensitivity of89

the model dynamics with respect to the definition of the noise covariance. Such a noise90

covariance is usually determined a priori and is not representative of some specific scale-91

dynamics. Very often Empirical Orthogonal Functions (EOFs) (von Storch & Zwiers,92

2003)) are employed for this purpose.93

In addition to using EOFs, which capture the climatological dominant patterns of94

the variability, we will investigate spatial covariances based on Dynamic Mode Decom-95

position (DMD) (Kutz, Brunton, Brunton, & Proctor, 2016; Schmid, 2010; Schmid, Li,96

Juniper, & Pust, 2011). DMD is a computationally cost-effective algorithm attempting97

to compute a finite-dimensional approximation of the Koopman operator. The infinite-98

dimensional Koopman operator encodes the dynamics of a dynamical system and prop-99

agates observables in time (Lasota & Mackey, 1994). The intimate relationship between100

DMD modes and the eigenfunctions of the Koopman operator was established in Row-101

ley, Mezić, Bagheri, Schlatter, and Henningson (2009). The patterns extracted by the102

DMD method, the so called DMD or Koopman modes, describe the dominant dynam-103

ical structures, and their corresponding eigenvalues characterize their temporal oscilla-104

tion periods and their growth rates. In contrast to EOFs, DMD decomposes the dynam-105

ics according to its local in time oscillatory behavior. Connections between DMD and106

other model reduction techniques such as EOF or linear inverse modeling are discussed107

in Penland (1989); Penland and Magorian (1993); Schmid et al. (2011); Tu, Rowley, Lucht-108

enburg, Brunton, and Kutz (2014). By projecting the full system onto the subspace spanned109

by the leading DMD modes, the governing equations may be approximated by a low-dimensional110

dynamical system allowing to study flow stability and bifurcations among other char-111

acteristics (Bagheri, 2013; Jovanovic, Schmid, & Nichols, 2014; Noack, Stankiewicz, Morzyaski,112

& Schmid, 2016; Schmid, 2010; Schmid et al., 2011; Schmid, Meyer, & Pust, 2009). Here113

we shall use DMDs to construct the spatial structure of the noise covariance matrix. DMDs114

have the same numerical complexity as EOFs, and have the advantage of using infor-115

mation of the system on the fly, with no additional information. For more details on DMDs116

and its limitations in approximating Koopman modes the interested reader is referred117

to Tu et al. (2014); Williams, Kevrekidis, and Rowley (2015)).118
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In contrast to approaches attempting to determine subgrid-scale information from119

highly resolved simulations (e.g. Berloff, 2005; Franzke, Majda, & Vanden-Eijnden, 2005;120

Hermanson, Hoskins, & Palmer, 2009; Porta Mana & Zanna, 2014), our approach us-121

ing DMDs has the potential to seamlessly adapt to any grid resolution and is, hence, scale-122

adaptive. Our results show that the use of a dynamically adapted noise covariance keeps123

the ensemble spread confined and the meridional propagation of the zonal jet is better124

captured than with EOFs.125

The remainder of this paper is structured as follows: In Section 2 we introduce the126

forced and damped 2-layer QG model. Section 3 describes the energy-consistent stochas-127

tic parameterization scheme. The spatial covariance of the noise is determined in Sec-128

tion 4 using EOF and DMD analysis. Section 5 presents results from numerical simu-129

lations exploring the effect of employing either climatological or dynamically adapted130

spatial covariances. We conclude with a discussion in Section 6.131

2 The QG model132

We consider the non-dimensional forced and damped 2-layer QG equations on a133

β-plane with double periodic boundary conditions (Vallis, 2006). This model represents134

synoptic-scale atmospheric dynamics around the mid-latitudes based on the quasi-geostrophic135

approximation, and simulates a jet-like zonal flow when suitable values for the param-136

eters are chosen. A vertical structure of two discrete layers, which we assume to have137

equal depth, is the minimal vertical resolution that allows the representation of baro-138

clinic processes (Holton, 2004).139

Subgrid-scale eddies and bottom friction are modeled by biharmonic viscosity, while
in the upper layer (i.e. i = 1) large-scale forcing is provided by a prescribed background-
flow U = 0.6 as, for instance, in Cotter et al. (2018); Jansen and Held (2014). The ex-
ternal forcing leads to the formation of a jet stream with non-trivial meridional struc-
ture whose location experiences meridional shifts - a prominent feature of the observed
atmospheric jet stream (Feldstein, 1998; James & Dodd, 1996; Riehl, Yeh, & La seur,
1950). Since we consider a non-dimensional description, the horizontal extensions have
been rescaled to a 2π×2π square. Finally the evolution equations for the potential vor-
ticities (PVs)

qi(x, t) = ∇2ψi + (−1)i
k2
d

2
(ψ1 − ψ2) + βy i ∈ {1, 2}

on the horizontal plane x = (x y)T ∈ R2, where x and y denote the zonal and the merid-
ional directions respectively, read

∂q1

∂t
= − J (ψ1 − Uy, q1)−∇2

(
ν1∇4ψ1

)
, (1a)

∂q2

∂t
= − J (ψ2, q2)−∇2

(
ν2∇4ψ2

)
− τ−1

f ∇
2ψ2 , (1b)

where ψi(x, t) i ∈ {1, 2} are the corresponding streamfunctions and τf = 10 the fric-
tional time-scale. The term k2

d/2 = (2f0/Nh)
2

quantifies the strength of the shear be-
tween the two layers and, hence, also the intensity of the baroclinic instability (N = 1.2·
10−2 being the Brunt-Väisälä frequency, h = 200 the mean depth of the layers and f ≈
f0 + βy the approximate Coriolis term with f0 = 1 and β = 0.509). These values im-
ply a Rossby deformation radius k−1

d ≈ 0.85. The strength of the effective damping of
the subgrid-scale eddies is quantified by νi = ν(ψi). We follow Jansen and Held (2014);
Leith (1996) and set

νi(x) = CLeith∆6
∣∣∇4ψi

∣∣ i ∈ {1, 2}

where CLeith = 0.005 is an empirical constant and ∆ is the size of the numerical grid-
spacing. ∇ and ∇2 denote, respectively, the horizontal gradient and the Laplacian op-

–4–
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erator, while the Jacobian operator J is defined as

J(A,B) =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
.

In order to have a better defined distinction between slow and fast modes, we rewrite
equations (1) as barotropic and baroclinic modes by assuming that barotropic modes evolve
more slowly then baroclinic modes. Barotropic and baroclinic streamfunctions, ψB and
ψT , can be defined as:

ψB =
1

2
(ψ1 + ψ2) , ψT =

1

2
(ψ1 − ψ2) ;

which lead to the corresponding barotropic and baroclinic potential vorticities, qB and
qT ,

qB = ∇2ψB + βy , qT = ∇2ψT − k2
dψT . (2)

It can easily be shown that barotropic and baroclinic PVs can also be written as

qB =
1

2
(q1 + q2) , qT =

1

2
(q1 − q2) ,

and we can use these relations to determine the evolution equations for qB and qT from
(1). After some manipulations we obtain

dqB
dt

= − J(ψB −
1

2
Uy, qB)− J(ψT −

1

2
Uy, qT )− 1

2
τ−1
f

(
∇2ψB −∇2ψT

)
− CLeith∆6

2
∇2
(∣∣∇4(ψB + ψT )

∣∣∇4(ψB + ψT ) +
∣∣∇4(ψB − ψT )

∣∣∇4(ψB − ψT )
)
,

(3a)

dqT
dt

= − J(ψT −
1

2
Uy, qB)− J(ψB −

1

2
Uy, qT ) +

1

2
τ−1
f

(
∇2ψB −∇2ψT

)
− CLeith∆6

2
∇2
(∣∣∇4(ψB + ψT )

∣∣∇4(ψB + ψT )−
∣∣∇4(ψB − ψT )

∣∣∇4(ψB − ψT )
)
,

(3b)

where the derivative operator d is only with respect to time, and the biharmonic viscos-
ity coefficient has been decomposed in its constant and non-constant parts. The unforced
inviscid part of system (3) is Hamiltonian with the Hamiltonian H given by

H(qB , qT ) =
1

2

∫∫ [
(∇ψB)2 + (∇ψT )2 + k2

dψT
2
]
dx , (4)

corresponding to the total energy. The Hamiltonian allows for the following relationships,
which we will use in the next Section,

∂H

∂qB
= −ψB ,

∂H

∂qT
= −ψT .

For a general review of Hamiltonian mechanics and its application to geophysical fluid140

dynamics see for example Badin and Crisciani (2018); Salmon (1988); Shepherd (1990).141

The numerical truncation affects deeply the dynamics by introducing a larger er-142

ror at coarser resolutions. In particular, since smaller scales are not represented, the re-143

injection of kinetic energy from the unresolved into the resolved scales is reduced. This144

implies that the kinetic energy is dependent on the grid resolution (Dwivedi et al., 2019;145

Jansen & Held, 2014) leading, for instance, to a misrepresentation of the eddy kinetic146

energy at coarser resolutions (Juricke et al., 2019; Porta Mana & Zanna, 2014). Since147

the computational cost of high resolution simulations is often prohibitive, we aim at re-148

covering the large scale variability induced by the faster modes, and hence increase the149

eddy kinetic energy at lower resolutions, by correcting the numerical error through the150

introduction of a stochastic parameterization for the sub-grid scales. In the next Sec-151

tion we present a stochastic parametrization which ensures that the stochastic noise does152

not break the inherent energy balance of the system.153
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3 Energy consistent stochastic parameterization154

Our underlying model assumption is that there are many fast baroclinic modes which155

drive both the resolved and the large-scale barotropic modes, and which can be efficiently156

represented by a stochastic Ansatz. Since barotropic modes are mainly large-scale, its157

spectra are dominated by the large-scales, and the noise forcing can effectively affect just158

the baroclinic modes. Hence, as in Gugole and Franzke (2019), we represent the unre-159

solved fast sub-grid processes by means of a stochastic forcing, which we assume to act160

directly on the baroclinic mode and only indirectly on the barotropic mode. In order to161

introduce only dynamically consistent perturbations, we employ the projection opera-162

tor method proposed in Frank and Gottwald (2013) to construct a stochastic forcing such163

that the energy of the unforced inviscid core of the 2-layer QG model is preserved. This164

choice allows to retain the balance between the external forcing and the dissipation, while165

redistributing the energy among the scales. The approach by Frank and Gottwald (2013)166

also introduces seamlessly state-dependent noise and dissipation. This potentially also167

allows for a realistic representation of subgrid-scale effects as in previous studies (Berner,168

Shutts, Leutbecher, & Palmer, 2009; Dwivedi et al., 2019; Franzke et al., 2015; Jansen169

et al., 2015) since this approach also predicts the corresponding nonlinear damping. In170

previous approaches the damping needed to be tuned in order to ensure numerical sta-171

bility (Whitaker & Sardeshmukh, 1998; Zhang & Held, 1999). Our approach avoids any172

empirical tuning of the damping.173

Since Gaussian white noise exists only as a distribution, stochastic evolution equa-
tions should be interpreted as integral equations (Gardiner, 2009; Pavliotis & Stuart, 2008).
Hence we slightly change notation towards this interpretation, where we dropped the in-
tegral symbol in order to have a not too heavy notation. In this work we adopt Itô’s in-
terpretation of the stochastic integrals (Gardiner, 2009). We propose the following stochas-
tically forced modification of the 2-layer QG system (1)

dqB = −
(
J(ψB −

1

2
Uy, qB) + J(ψT −

1

2
Uy, qT )

)
dt− 1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− CLeith∆6

2
∇2
(∣∣∇4(ψB + ψT )

∣∣∇4(ψB + ψT ) +
∣∣∇4(ψB − ψT )

∣∣∇4(ψB − ψT )
)
dt ,

(5a)

dqT = −
(
J(ψT −

1

2
Uy, qB) + J(ψB −

1

2
Uy, qT )

)
dt+

1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− CLeith∆6

2
∇2
(∣∣∇4(ψB + ψT )

∣∣∇4(ψB + ψT )−
∣∣∇4(ψB − ψT )

∣∣∇4(ψB − ψT )
)
dt

+ Σ(x, t) dWt + dYt , (5b)

dYt = Bdt+ SdWt, (5c)

where Wt denotes a Wiener process. The auxiliary stochastic process Yt, which is parametrized
by B = B(x, t) and S = S(x, t), is determined to ensure that the stochastic forcing
Σ(x, t)dWt preserves the energy given by the Hamiltonian (4) (Frank & Gottwald, 2013).
Using Itô’s formula (Gardiner, 2009) the change in the energy is given by

dH =
∂H

∂qB
· dqB +

∂H

∂qT
· dqT +

1

2

∂2H

∂qT∂qT
: dqT dq

T
T

= µHdt+ σHdWt ,

–6–
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where the matrix inner product is defined as A : B = aijbij = Tr(ABT ), and where

µH = + ψB ·
(
J(ψB −

1

2
Uy, qB) + J(ψT −

1

2
Uy, qT ) +

1

2
τ−1
f

(
∇2ψB −∇2ψT

))
+
CLeith∆6

2
ψB · ∇2

(∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT ) +

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt

+ ψT ·
(
J(ψT −

1

2
Uy, qB) + J(ψB −

1

2
Uy, qT )− 1

2
τ−1
f

(
∇2ψB −∇2ψT

)
−Bt

)
+
CLeith∆6

2
ψT · ∇2

(∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT ) +

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt

+
1

2

∂2H

∂qT∂qT
: (Σ + St)(Σ + St)

T ,

σH = − ψT · (Σ + St)

= ∇qTH · (Σ + St) .

Our aim is to control the stochastic forcing in order to preserve the energetic balance
between the external forcing and the dissipation. In order to guarantee the total energy
not to be affected by the stochastic forcing, we set σH and the sum of those terms in µH
due to the stochastic processes to be zero. The auxiliary process must be constructed
to force the deviations from the manifold of constant energy, caused by the stochastic
forcing Σ(x, t)dWt, back onto the manifold. It should therefore only have components
orthogonal to the manifold of constant energy. Thus we define a projection operator P,
which projects onto the tangent space of the energy manifold, and we require PS = PB =
0. Since the Wiener process affects only the evolution equation of the baroclinic mode,
it is sufficient to project onto the manifold of constant baroclinic energy, and we define
the projection operator P as

P = I− 1

|∇qTH|2
∇qTH(∇qTH)T

= I− 1

|ψT |2
ψTψ

T
T ,

where I stands for the identity operator. Using P (∇qTH) = 0, the condition σH = 0
provides an expression for S, while it is possible to determine B by considering only the
terms of µH due to the introduction of the stochastic processes:

S = − (I− P) Σ ,

B = +
1

2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT .

We can now finally express our stochastic forced and damped 2-layer QG model (5) as

dqB = −
(
J(ψB −

1

2
Uy, qB) + J(ψT −

1

2
Uy, qT )

)
dt− 1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− CLeith∆6

2
∇2
(∣∣∇4(ψB + ψT )

∣∣∇4(ψB + ψT ) +
∣∣∇4(ψB − ψT )

∣∣∇4(ψB − ψT )
)
dt ,

(6a)

dqT = −
(
J(ψT −

1

2
Uy, qB) + J(ψB −

1

2
Uy, qT )

)
dt+

1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− CLeith∆6

2
∇2
(∣∣∇4(ψB + ψT )

∣∣∇4(ψB + ψT )−
∣∣∇4(ψB − ψT )

∣∣∇4(ψB − ψT )
)
dt

+ PΣdWt +
1

2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT dt . (6b)

The stochastic forced and damped 2-layer QG model (6) contains multiplicative noise174

and nonlinear damping, due to the specific definition of the projection operator. The mul-175

tiplicative noise is in fact a correlated additive multiplicative (CAM) noise (Majda, Franzke,176

–7–
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& Crommelin, 2009; Sardeshmukh & Sura, 2009). The interested reader may find more177

details about the necessary steps for the derivation of (6) in Frank and Gottwald (2013);178

Gugole and Franzke (2019).179

In equations (6) the noise strength Σ(x, t), which specifies the spatial covariance180

of the noise, is still unspecified. In Gugole and Franzke (2019), it was shown that the181

choice of a dynamically consistent spatial structure of the noise covariance is crucial for182

a stochastic parametrization to be reliable. We propose in the next Section ways to pre-183

scribe the spatial structure.184

4 The spatial covariance structure of the noise185

We prescribe the spatial covariance of the noise by expressing Σ(x, t) through p dy-
namically relevant patterns of the large-scale dynamics φi (x, t), i = 1, . . . , p. In par-
ticular, we write

Σ(x, t) =

p∑
i=1

γiφi (x, t) (7)

where the γi ∈ R are weights associated with each pattern.186

We shall discuss here two choices of patterns φi: first, Empirical Orthogonal Func-187

tions (EOFs), which capture time-invariant climatological patterns, and, second, pat-188

terns obtained by means of Dynamical Mode Decomposition (DMD), which describe time-189

varying, dynamically adapted dominant patterns.190

4.1 Empirical Orthogonal Functions191

4.1.1 Theory192

EOF is a multivariate statistical analysis technique that derives the dominant pat-
terns of variability from a n-dimensional field, usually indexed by location in space (von
Storch, 1995; von Storch & Zwiers, 2003). Let X be an n-dimensional random vector,
whose mean is assumed to be zero; otherwise the anomalies of the field with respect to
the mean should be considered. At its first stage the EOF analysis computes the vec-
tor φ1 with

∥∥φ1

∥∥ = 1 such that

ε1 = E
(∥∥X− 〈X, φ1〉φ1

∥∥2
)

(8)

is minimized, where we denoted with E the expectation operator, the vector norm by∥∥·∥∥ and the inner product with 〈·, ·〉. Equation (8) describes the projection of the field
X onto a 1-dimensional subspace spanned by the vector φ1. Minimizing ε1 is equivalent
to maximizing the variance of X contained in this subspace, in fact it can be shown that

ε1 = Var(X)−Var(〈X, φ1〉) ,

where the variance of X is defined to be the sum of the variances of its elements. Let193

Γ denote the covariance matrix of X. It can be shown that φ1 is an eigenvector of Γ with194

corresponding eigenvalue λ1. Therefore, the minimum of equation (8) is achieved by the195

vector associated to the largest eigenvalue of Γ, i.e. vector φ1.196

The same procedure is repeated to find the second EOF, which is the vector φ2 with∥∥φ2

∥∥ = 1 minimizing

ε2 = E
(∥∥(X− 〈X, φ1〉φ1)− 〈X, φ2〉φ2

∥∥2
)
,

and corresponding to the second largest eigenvalue λ2 of Γ. Finally we remark that Γ197

is an Hermitian matrix, hence its eigenvectors are orthogonal to one another. Moreover198

in case of translationally invariant systems they correspond to Fourier modes.199
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4.1.2 Constructing Σ using EOF200

EOFs are computed on a time series of the baroclinic streamfunction (after the dy-
namics settled on the attractor) of the deterministic system (3) over a spatial grid with
128×128 elements. To construct the spatial structure of the noise, we compute a lin-
ear combination of the first p EOF patterns φEOFi for i = 1, . . . , p with weights given
by the square roots of their corresponding eigenvalues λEOFi i = 1, . . . , p writing (7)
as

Σ(x) =

l∑
i=p

√
λEOFi φEOFi (x) . (9)

Hence, Σ is constant in time and Λ = ΣΣT corresponds to the variance of the QG model’s201

baroclinic stream function as approximated by the first p EOFs.202

EOF patterns As in the majority of cases, the spectrum of the EOF eigenvalues203

rapidly decay, and the first 5 EOFs carry circa 95% of the variance. Higher EOFs do not204

carry significant variance and hence might be considered as numerical noise (see Figure205

1a). EOFs 1-2 (Figures 1b-1c) represent the predominant traveling Rossby wave sup-206

ported by the 2-layer QG model. EOF 3 (Figure 1d) does not represent any wave but207

captures the spatial dominant pattern associated with the jet stream. EOFs 4-5 (Fig-208

ures 1e-1f) capture again dominant wave patterns. In our numerical simulations, we use209

either only the first two EOFs, corresponding to Λ ≈ 0.36, or the first five EOFs, i.e.210

Λ ≈ 0.47.211
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Figure 1. EOF singular values spectrum of the first 10 eigenvectors and first 5 EOF pat-

terns. From left to right: top row; eigenvalues spectrum, EOF-1 and EOF-2; bottom row; EOF-3,

EOF-4 and EOF-5.

EOFs are widely used in the climate science, thanks to their robust computabil-212

ity given a large available data set. Nonetheless EOFs have known limitations. In par-213
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ticular, their physical interpretation is restricted. While it is possible to associate the214

first EOF with observed physical features, this becomes increasingly complicated for higher-215

order EOFs, because of the orthogonality constraint (von Storch & Zwiers, 2003). We216

therefore introduce in the next Section DMDs, which capture relevant modes, adapted217

to the prevailing dynamics.218

4.2 Dynamic Mode Decomposition219

4.2.1 DMD and the Koopman operator220

Here we briefly present the Koopman operator and its connection with Dynamic221

Mode Decomposition (DMD). Detailed reviews about the Koopman operator can be found,222

for instance, in (Budǐsić, Mohr, & Mezić, 2012; Mezić, 2013), while theory and applica-223

tions of DMD are provided, among others, in (Kutz et al., 2016; Schmid, 2010; Tu et al.,224

2014).225

Let ẋ = f(x) denote a general continuous-time dynamical system with initial con-
dition x(0) = x0 ∈ Rn. On the assumption that there exists a unique solution of this
initial value problem, it is possible to introduce the flow map ϕt such that x(t) = ϕt(x0).
Define an arbitrary observable ψ(x). The value of this observable ψ, which the system
sees starting in x0 at time t, is

ψ(t, x0) = ψ(ϕt(x0)) .

The Koopman operator is a semigroup of operators Kt, acting on the space of observ-
ables parameterized by time t

Ktψ(x0) = ψ(ϕt(x0)) .

It is important to underline that the operator Kt is linear also in case of non-linear dy-
namics f , thus it makes sense to consider its spectral properties, but the eigenfunctions
of the Koopman operator are not necessarily linear. Dynamic mode decomposition is a
data-driven technique for computing an approximation of the Koopman modes. Con-
sider a dynamical system as above, and two sets of data, either of the state variables or
of any observable of them,

X =

 | | |
x1 x2 · · · xm
| | |

 X′ =

 | | |
x′1 x′2 · · · x′m
| | |


such that

xk = x(tk) ∈ Rn , x′k = x(tk + δt) = Kδtxk ,
xk = x(tk−1 + ∆t) = K∆txk−1 , x′k = x(tk−1 + δt+ ∆t) = K∆tx

′
k−1 ,

where m∆t defines the time window, and δt ≤ ∆t determines the accuracy of the re-226

constructed dynamics. It is important to mention that matrices X and X′ are assumed227

to be tall and skinny, i.e. it is assumed that the size n of a snapshot is larger than the228

number m−1 of snapshots. In the DMD algorithm the Koopman operator is approx-229

imated by means of a least square fit operator Kδt relating data X′ ≈ KδtX. The nu-230

merically stable algorithm, based on a singular value decomposition and outlined for the231

first time in Schmid (2010) and improved in Tu et al. (2014), allows for a low-rank r ≤232

m representation of the operator Kδt onto the first r EOF modes of matrix X. Details233

about the algorithm, as well as a MATLAB c© function, are provided in Kutz et al. (2016).234

The DMD modes φi are the (complex) eigenvectors of Kδt, and they are not orthogo-235

nal. Furthermore, they represent dynamically relevant structures, the so called Koop-236

man modes, whose temporal oscillation periods and their growth rates are provided by237

their associated (complex) eigenvalues λi. There exists a real eigenvalue λ0 = 1 with238
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eigenvector φ0 corresponding to the mean of the observable x. Whereas EOF decomposes239

the dynamics according to dominant stationary patterns, DMD decomposes the dynam-240

ics according to its local in time oscillatory behavior.241

We remark that there exists an intimate relationship between the DMD matrix Kδt242

and the Koopman operator, first realized in Rowley et al. (2009). However, it is well es-243

tablished that DMD provides a good approximation of the actual Koopman operator -244

and hence constitutes a good representation of the underlying dynamics - only in case245

of sufficiently rich and diverse observations (Budǐsić et al., 2012; Tu et al., 2014; Williams246

et al., 2015). The least square approximation of the Koopman operator suggests that247

a good approximation is guaranteed for sufficiently small δt and for sufficiently small time248

intervals m∆t such that the dynamics is essentially linear.249

4.2.2 Defining the noise covariance by means of DMD250

As for EOFs, we choose the baroclinic stream function ψT to determine the DMD251

modes. In deterministic systems the eigenvalues of the Koopman operator lie on the com-252

plex unit circle and, apart from the eigenvalue λDMD
0 corresponding to the mean mode,253

appear as complex conjugate pairs. In stochastic systems, however, eigenvalues inside254

or outside the unit circle may appear; see Figure 2 for an instance of the DMD eigen-255

values for the stochastic QG model (6). Since we want to capture the dynamically rel-256

evant patterns of the deterministic QG system, we exclude all eigenmodes φDMD
i whose257

eigenvalues do not lie on the unit circle (within some tolerance to account for numeri-258

cal noise). The eigenvectors and eigenvalues are sorted with decreasing real part accord-259

ing to λDMD
0 = 1 > Re(λDMD

1 ) ≥ · · · ≥ Re(λDMD
r ). For each pair (λDMD

i , φDMD
i )260

we choose also its complex conjugate pair. To give a graphical illustration, the blue dot261

in Figure 2 corresponds to λDMD
0 , while the green and orange dots to λDMD

1 and λDMD
2 ,262

respectively, and their complex conjugates. The eigenmodes corresponding to the eigen-263

values marked in red in Figure 2 are neglected since they are away from the unit circle.264

-1 -0.5 0 0.5 1

Re( )

-1

-0.5

0

0.5

1

Im
(
)

Figure 2. Example of DMD eigenvalues spectrum with parameters m = 16, r = 7, δt =

0.1, ∆t = 3δt. The blue dot corresponds to λDMD
0 , while the green, orange and red ones to

λDMD
1 , λDMD

2 and λDMD
3 , respectively, and their complex conjugates.

To construct the spatial structure Σ(x, t) of the noise, we choose the first p = 2
dominant DMD patterns φDMD

1,2 obtained from the low-resolution simulation of the stochas-
tic 2-layer QG system (6). Since the eigenvalues and the eigenfunctions are now com-
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plex, each mode is considered together with its complex conjugate, hence Σ reads

Σ(x, t) =
1

2

2∑
i=1

((
Re
(
λDMD
i (t)

)
+ ıIm

(
λDMD
i (t)

)) (
Re
(
φDMD
i (x, t)

)
+ ıIm

(
φDMD
i (x, t)

))
+ c.c.

)
=

2∑
i=1

(
Re
(
λDMD
i (t)

)
Re
(
φDMD
i (x, t)

)
− Im

(
λDMD
i (t)

)
Im
(
φDMD
i (x, t)

))
, (10)

where ı2 = −1 and c.c. denotes the complex conjugate. Finally we normalize Λ = ΣΣT265

to be either Λ = λEOF1 +λEOF2 ≈ 0.36 or Λ =
∑5
i=1 λ

EOF
i ≈ 0.47. This is done to en-266

sure that the noise has equal intensity both with EOFs and DMDs, and therefore have267

a fairer comparison of the results. To numerically estimate the first two complex con-268

jugate DMD eigenpairs (λDMD
i , φDMD

i ) for i = 1, 2, we choose a small time interval δt =269

0.1 (recall that δt needs to be chosen sufficiently small to allow for a reliable estimation270

of the DMD matrix Kδt which encodes the dynamics). Furthermore we choose a time271

window of m∆t = 4.8 time units, which corresponds to roughly half an eddy turnover272

time for the parameters of our set-up (see Section 5.1 for details), and a separation of273

snapshots of ∆t = 3δt (implying m = 16). When numerically estimating singular value274

decompositions, only the first few singular vectors are reliable. An optimal truncation275

criterion was provided in Gavish and Donoho (2014) which, applied to our data, amounts276

to setting a low-rank approximation with r = 7 eigenmodes. We have tested that for277

the selected values of the parameters, DMD provides a good reconstruction of the dy-278

namics in a time window of length m∆t time units, as can be seen in Figure 3, where279

the actual dynamic is shown alongside the DMD reconstruction. Other sets of param-280

eters corresponding to different time windows spanning between 2 and 10 time units have281

been tested, but this particular choice was the only one among those tested which does282

not present two eigenvalues with null imaginary part and real part very close to 1. This283

second mean-mode cannot be excluded by our procedure since the module of its corre-284

sponding eigenvalue is still very close to 1, but by plotting and comparing it to the other285

modes it can be seen that it is numerically spurious and not dynamically meaningful.286

We tested also the case with m = 48, r = 7, ∆t ≡ δt = 0.1, i.e. we considered a time287

window of the same length and instead of sub-sampling - i.e. sampling consecutive snap-288

shots in the same dataset every ∆t > δt - we chose a small value of r, but the results289

show that sub-sampling is more efficient in filtering out the numerical noise.290
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Figure 3. Comparison between the DMD reconstruction (left), and the true dynamics of ψT

(right). Parameters of the DMD analysis were m = 16, r = 7, ∆t = 3δt, δt = 0.1.

Contrary to EOFs, which require a long off-line simulation to be determined, the291

DMD pairs φDMD
1,2 and λDMD

1,2 are computed on the fly after each m∆t time units, hence292
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in this case Σ is a function also of time. Since for the first m∆t time units the DMDs293

are not available yet, Σ is initialized using the first two EOFs. For simplicity we do not294

propagate the DMD modes by means of the Koopman operator, but keep them constant295

for m∆t time units. We have checked that our results do not change much when prop-296

agating the DMDs in time to evaluate Σ at each time step. In our setup the DMD modes297

do not move much away from the initial state in the selected m∆t time window, and this298

might be a reason why we obtained similar outcomes. For more complex models, a com-299

putationally cheaper alternative might be to recompute the DMD modes less often and300

to propagate the DMD modes for longer times.301

DMD patterns In Figure 4 we show real and imaginary parts of the first two DMD302

modes as computed with the aforementioned set of parameters. The mode representing303

the mean has been neglected and only one of the two modes corresponding to a complex304

conjugate pair of eigenvalues is displayed. Since the DMD analysis is repeated along the305

simulation, the resulting modes are not exactly the same for the entire run, but the ed-306

dies move in the zonal direction. Moreover the eddies in the first mode slowly shift to-307

wards higher latitudes because of the meridional jet movement (as detected by the third308

EOF eigenvector). Since DMD decomposes the dynamics according to its oscillatory be-309

havior, the jet cannot be represented by a DMD eigenmode for the reason that it is not310

a wave. Hence in the DMD decomposition of the dynamics, the jet can be noticed only311

indirectly via its effect on the other modes. This is particularly evident when looking at312

the first mode as computed at the beginning (Figures 4a-4d) and at the end (Figures 4b-313

4e) of a simulation, when the difference in the meridional coordinate of the eddies is at314

its maximum. In this specific case only the first mode is affected by the jet, while the315

eddies in the other modes retain the same meridional coordinate while revolving in the316

zonal direction. Hence, for sake of simplicity, we display the second mode only as at the317

onset of a simulation (Figures 4c-4f).318
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Figure 4. Real (top) and imaginary (bottom) parts of the first DMD mode at the beginning

(left) and at the end (middle) of the simulation for m = 16, r = 7, ∆t = 3δt, δt = 0.1. It can

be noticed that in the course of the simulation, the eddies move in the zonal direction and shift

towards high latitudes. This movement on the meridional axis is how DMD detects the jet. Real

and imaginary parts of the second DMD mode (right) are also displayed. Differently from the

eddies of the first mode, here they move only in zonal direction.

Real and imaginary parts of DMD mode number 1 resemble closely EOFs 1-2, al-319

though in the DMD mode the eddy patterns look smaller and less regular. Furthermore320

the eddies are centered in different meridional coordinates. This is likely due to the fact321

that EOFs capture directly the jet behavior, which is represented by EOF 3. EOFs 4-322

5 are the most comparable eigenvectors to the second DMD mode (Figure 4c-4f), but323

significant differences can be spotted for y ∈ [0.8, 1.8], where some eddy structure is324

present in the EOF vectors but is absent in the DMD mode. This could be an artifact325

due to the orthogonality constraint of the EOF algorithm.326

5 Results327

We now present numerical results comparing outputs of a high-resolution simula-328

tion of the deterministic forced and damped 2-layer QG model (3) with those of a de-329

terministic low-resolution simulation as well as with the energy-consistent stochastic parametriza-330

tion (6) run at a low-resolution. Particular emphasis is given on comparing the effect of331

the respective prescribed spatial noise structures, using either (9) or (10) for EOFs and332

DMDs, respectively.333
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5.1 Model setup334

As in most current ocean and climate models, we discretize equations (3)-(6) by335

means of finite differences in a grid-point based framework. The numerical discretiza-336

tion of the Jacobian operator in our QG model is based on the energy and enstrophy con-337

serving scheme by Arakawa (1966). This scheme ensures that energy and enstrophy are338

conserved for all truncations in the inviscid case. In particular, this scheme does not re-339

quire any numerical diffusion nor dissipation for numerical stability. For the time step-340

ping of the deterministic part we employ a 4th order explicit Runge-Kutta method, while341

we use the Euler-Maruyama scheme for the stochastic terms (Pavliotis & Stuart, 2008).342

The inversion of the Laplacian is achieved in spectral space using Fast Fourier Trans-343

forms.344

The simulations of the stochastic system (6) are run with a spatial resolution of345

128×128 grid points and a time step of dt = 10−3. All simulations start from the same346

initial condition, which we have assured to lie on the attractor by having employed a pre-347

ceding integration of the deterministic equations at resolution 128×128 for 8000 time348

units. For each setting of the stochastic system we run the analyses on an ensemble of349

10 independent simulations, and compare the outcomes with those of an equivalent de-350

terministic low resolution and with those of a deterministic high resolution simulation.351

The latter, which will be referred also as reference solution, has been obtained by run-352

ning the deterministic model (3) on a finer grid of 512× 512 grid points. For numeri-353

cal stability reasons, the reference solution is run with dt = 10−4, and its results are354

projected on the coarser 128 × 128 spatial grid, to allow for a direct comparison with355

the outcomes of the respective low-resolution simulations.356

5.2 Total energy357

Looking at the total energy graphs of the different realizations in the various se-358

tups with EOF (orange) and DMD (green) reported in Figure 5, it can be noticed that359

on average the energy is stable with both techniques, fluctuating by about 1-2% of its360

absolute value; which is about the same as in a inviscid setting (Gugole & Franzke, 2019).361

Although the EOF ensemble members show more variance, when only the first two EOFs362

are used, the system seems to be slightly dissipative in time. This is particularly evident363

when looking at the ensemble mean (blue line in Figure 5a). The inclusion of EOFs 3-364

4-5 reduces the dissipative effect, but realizations with a clear increasing trend can be365

present (Figure 5c). Furthermore, some ensemble members drift away from the high res-366

olution simulation. This also raises questions about long-term stability of the simula-367

tions, which we cannot currently resolve because of a too great computational expense368

of carrying out the simulations for much longer time periods.369

On the other hand, the spread of the DMD ensemble members has less variance370

but well encloses the energy graph of the reference solution. Individual runs are more371

energetically stable, stay close to the reference solution, and the system seems to be less372

dissipative compared with the EOF based simulations (Figures 5b-5d). This suggests that373

the usage of a dynamically adapted noise structure may help the numerical model to re-374

main on the manifold of constant energy and in a dynamically consistent flow regime.375

In any case deviations from the mean are less than 2%. Hence they might be considered376

as negligible.377
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Figure 5. Total energy graphs for stochastic simulations using EOFs (left) or DMDs (right).

The case Λ ≈ 0.36, corresponding to the first two EOFs, is displayed in the top row, while the

scenario Λ ≈ 0.47 (first five EOFs) is shown in the bottom row. The parameters for DMD have

been set as follows: p = 2, m = 16, r = 7, δt = 0.1, ∆t = 3δt. Each stochastic ensemble contains

10 realizations.

5.3 Eddy kinetic energy378

In order to compute the eddy kinetic energy (EKE), we first computed the hori-
zontal velocities for the barotropic and baroclinic modes from the respective streamfunc-
tions using

u = −∂ψ
∂y

, v =
∂ψ

∂x
,

where u is the zonal and v the meridional velocity. Then we considered a time window379

of k time units to compute the temporal mean velocities, i.e. ūB , v̄B and ūT , v̄T for barotropic380

and baroclinic modes respectively. Afterwards for each time unit we computed the de-381

viations from the mean, e.g. u′B(t) = uB(t) − ūB , and used these quantities to com-382

pute the EKE for each grid point for all t. As a last step we averaged in time and then383

also in the zonal direction, therefore the EKE is displayed simply as a function of the384

meridional direction y (Figures 6-7); or we averaged only in the zonal direction and looked385

at the time evolution of the EKE projected on the meridional coordinate (Figure 8).386

Since the system does not have any annual cycle or similar, we split the time se-387

ries in windows of 1000 time units, and consider each window individually. Such a length388

of the time intervals ensures one not to be looking just at transient dynamics while con-389

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

sidering small movements of the jet, due to its low frequency variability. Although the390

time-averaged EKE shows a bi-modal behavior in all windows, the meridional location391

of the peaks varies according to the jet movement. Hence we want to check how well the392

stochastic parameterization keeps track of the jet shift. The time-averaged EKE of the393

baroclinic mode for t ∈ [1000, 2000] and for t ∈ [3000, 4000] in the different stochas-394

tic setups with EOF (orange) and DMD (green) are reported in Figures 6 and 7, respec-395

tively. The EKE of the barotropic mode shows similar results as for the baroclinic mode,396

hence, it is not reported here. Figure 8 show the time evolution of the barotropic EKE397

for t ∈ [3000, 4000] in case of the low resolution deterministic run, one stochastic sim-398

ulation with EOFs 1-2-3-4-5 and Λ ≈ 0.47, one realization with DMDs and Λ ≈ 0.47,399

and for the reference solution. Similar conclusions hold also for the time evolution of the400

baroclinic PV.401
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Figure 6. Baroclinic EKE for t ∈ [1000, 2000] for stochastic simulations using EOFs (left) or

DMDs (right). The case Λ ≈ 0.36, corresponding to the first two EOFs, is displayed in the top

row, while the scenario Λ ≈ 0.47 (first five EOFs) is shown in the bottom row. The parameters

for DMD have been set as follows: p = 2, m = 16, r = 7, δt = 0.1, ∆t = 3δt. Each stochastic

ensemble contains 10 realizations.

Both for t ∈ [1000, 2000] and t ∈ [3000, 4000] it can be seen that the ensemble402

forced by EOFs 1-2 has overshoots, which are compensated in the mean (blue line in Fig-403

ures 6 and 7) by simulations with lower EKE. This is particularly evident at later times404

(Figure 7), where the uncertainties grow in time and the single members do not display405

a coherent behavior, i.e. different realizations have different meridional locations for the406
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bi-modal structure and rather different EKE amplitudes. The introduction of EOFs 3-407

4-5 reduces the overshoots, but has also lower undershoots and does not help the ensem-408

ble members to maintain a coherent behavior for longer times. It can be further noticed409

in Figure 7 that, both with EOFs 1-2 and with EOFs 1-2-3-4-5, the EKE of the stochas-410

tic realizations is shifted to too high meridional positions. On the other hand the DMD411

forced ensembles have less variance and do not always enclose the reference solution, but412

they remain close to it and they follow quite well the meridional movement of the jet.413

Furthermore in the DMD ensembles, the uncertainties grow much more slowly in time,414

allowing the single members to display a coherent behavior also at later stages of the sys-415

tem evolution.416
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Figure 7. Baroclinic EKE for t ∈ [3000, 4000] for stochastic simulations using EOFs (left) or

DMDs (right). The case Λ ≈ 0.36, corresponding to the first two EOFs, is displayed in the top

row, while the scenario Λ ≈ 0.47 (first five EOFs) is shown in the bottom row. The parameters

for DMD have been set as follows: p = 2, m = 16, r = 7, δt = 0.1, ∆t = 3δt. Each stochastic

ensemble contains 10 realizations.

By looking at the time evolution of the barotropic EKE for t ∈ [3000, 4000] (Fig-417

ure 8) we can notice that while the deterministic low resolution captures the main fea-418

tures, like the meridional shift of the positive EKE at y ≈ 1, other characteristics are419

in general underestimated, for instance the amplitude of the eddy kinetic energy at y ≈420

−3 or at y ≈ 2 for t ∈ [3000, 3200], see Figures 8a and Figure 8d. Some of these prop-421

erties are indeed recovered by the DMD forced simulation, see for example the enforced422

EKE at y ≈ 2 or at y ≈ −3 in Figure 8c, while the EOFs induced stochastic forcing423
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does not recover them, and creates spurious EKE, see for instance at y ≈ 3 for t ∈ [3400, 3600]424

in Figure 8b. Some spurious EKE at y ≈ 3 can be noticed also in the DMD-forced sim-425

ulation, but of smaller amplitude with respect to EOFs. Similar outcomes hold also in426

case of the baroclinic EKE, and are hence not reported here.427

These results suggest that the use of a dynamically adapted noise covariance ma-428

trix in stochastic parameterizations might be better suited to model phenomena, which429

do not reach statistical equilibrium, while keeping track of the large scale dynamics. More-430

over, considering the wide usage of DMD to detect dynamical features like instabilities431

and bifurcations (Bagheri, 2013; Budǐsić et al., 2012; Kutz et al., 2016), a dynamically432

adapted spatial correlation might more easily foster the system towards tipping points.433

(a) (b)

(c) (d)

Figure 8. Time evolution of the barotropic EKE projected on the y-axis for the following

cases: (a) deterministic low resolution simulation; (b) stochastic simulation with EOFs 1-2-3-4-5,

Λ ≈ 0.47; (c) DMD forced stochastic simulation p = 2, m = 16, r = 7, δt = 0.1 ∆t = 3δt,

Λ ≈ 0.47; (d) reference solution.

5.4 Flow dynamics434

In Figure 9 we show the time evolution of the projection over the zonal coordinate435

x of the barotropic potential vorticities for the time interval t ∈ [1950, 2000]. For a bet-436

ter comparison we removed the zonal mean and plot the resulting eddies. The projec-437

tion of the baroclinic PV displays similar results and is thus not discussed here. The same438

graph is shown for the low resolution deterministic simulation (Figure 9a), one realiza-439

tion with EOFs 1-2-3-4-5, Λ ≈ 0.47 (Figure 9b), one with DMD p = 2, m = 16, r =440
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7, δt = 0.1, ∆t = 3δt, Λ ≈ 0.47 (Figure 9c), and for the reference solution (Figure441

9d). Although the eddy phase speed is correctly represented also by the low resolution442

simulation, the zonal extension and/or intensity of the eddies is underestimated; see for443

example around t = 1965 time units for −3 < x < 0. Both stochastic simulations444

maintain the correct eddy phase speed and help increasing the extension of the eddies,445

but DMD retains a stronger and less noisy signal. This result confirms the ability of DMD446

to include the sub-grid scales phenomena without weakening the signal of the larger scales.447
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Figure 9. Time evolution in the interval t ∈ [1950, 2000] of the barotropic PVs anomalies

with respect to the zonal mean projected on the x-axis for the following cases: (a) deterministic

low resolution simulation; (b) stochastic simulation with EOFs 1-2-3-4-5, Λ ≈ 0.47; (c) DMD

forced stochastic simulation p = 2, m = 16, r = 7, δt = 0.1 ∆t = 3δt, Λ ≈ 0.47; (d) reference

solution.

6 Summary and discussion448

In this study we develop a novel way to derive dynamically based noise covariance449

matrices which are flow-dependent. In the framework of the forced and damped 2-layer450

QG model we consider an energy-consistent stochastic parameterization based on the451

projection operator approach (Frank & Gottwald, 2013). As shown in Gugole and Franzke452

(2019), the definition of the noise spatial structure is of fundamental importance for this453

parameterization to return physically meaningful results, hence we analyze here two dif-454

ferent procedures for its definition. In particular, we investigate a statistical and a dy-455

namical approach by using two different dimension reduction techniques: Empirical Or-456
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thogonal Functions and Dynamic Mode Decomposition. The former looks at the vari-457

ance field of the fluid, while the latter is strictly linked to the Koopman operator and458

hence to the generator of the dynamics. EOFs have been widely used in the literature,459

nevertheless there is in general no one-to-one correspondence between the EOF eigen-460

vectors and physical modes (von Storch & Zwiers, 2003). Moreover, being a statistical461

technique, it requires long time series in order to obtain reliable patterns. In contrast,462

DMD is able to work with tall and skinny matrices (Kutz et al., 2016), hence also with463

very short time series, and it has oscillatory modes. Therefore the choice of the length464

of the time series, m∆t, and the temporal shift between the two input matrices, δt, are465

crucial and serve as scale selection. In our model set-up we use half a eddy turn-over time466

as a physically based time interval to recompute the DMD. Since DMD decomposes the467

dynamics according to its local in time oscillatory behavior, its modes and the noise co-468

variance, have to be recomputed periodically. This is a new approach in stochastic pa-469

rameterizations allowing the noise covariance to be a function of time, while typically470

a fixed noise covariance is used during the whole realization.471

Total energy graphs reveal that the EOF ensembles are either more dissipative or472

might include realizations with a clear increasing trend. On the other hand DMD runs473

are individually more energetically consistent with the high-resolution control simula-474

tion, suggesting that a dynamically adapted noise structure might help the model to stay475

on the manifold of constant energy. This might suggest that this approach may have the476

potential to lead to more dynamically consistent simulations and long-term stability. By477

analyzing the eddy kinetic energy, it has been discovered that in case of EOFs the un-478

certainties grow faster, which induce the single ensemble members to display very dif-479

ferent amplitudes of the EKE. Furthermore the location of the bi-modal structure of the480

EKE ensemble mean is not well defined among the individual realizations, and it is in481

general moved towards too high meridional locations. The DMD forced ensembles in-482

stead are able to follow the meridional jet shift and well catch the meridional location483

of the double-peak also at later times. Moreover the uncertainties grow more slowly, al-484

lowing the individual members to display a coherent behavior during the entire simu-485

lation and to stay close to the reference solution. Finally, the field dynamics time evo-486

lution in the DMD ensembles retain a stronger and less noisy signal.487

As regards computational time, DMD is very cheap, can reliably deal with rather488

short time series and does not need extra computations beforehand, but can be run along-489

side the main code. These aspects allow the DMD algorithm to periodically reanalyze490

the dynamics and redefine the noise covariance accordingly. Hence it is a very good can-491

didate to parameterize scales undergoing phase transitions, or which do not reach sta-492

tistically stable profiles. This might also allow DMD to be used for scale-adaptive pa-493

rameterization schemes. Moreover, due to its close link to the Koopman operator, and494

to its ability to detect instabilities and bifurcations within dynamical systems (Bagheri,495

2013; Kutz et al., 2016), it might foster the system to reach tipping points or regime tran-496

sitions.497

Our results suggest that a dynamically adapted spatial structure should be con-498

sidered in future developments of stochastic parameterizations. This is further motivated499

by the physics. Not only are the large scales affected by the small scales, but also the500

small-scale processes are influenced by the large-scale motions. Hence physically correct501

parameterizations of the unresolved scales should allow the sub-grid processes to be in-502

fluenced by the resolved modes. Furthermore, the propagation of the DMD modes by503

means of the Koopman operator might be seen as a sort of memory term, which in turn504

has been shown to be important in parameterization schemes (Franzke et al., 2015; Gottwald505

et al., 2017; Hu & Franzke, 2017; Sakradzija, Seifert, & Heus, 2015). However, more de-506

tailed studies are required to establish what kind of relation, if any, exists between the507

propagation of the DMD modes and memory terms.508
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