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Abstract

Top-down estimates of CO2 fluxes are typically constrained by either surface-based or space-based CO2 observations. Both

of these measurement types have spatial and temporal gaps in observational coverage that can lead to biases in inferred

fluxes. Assimilating both surface-based and space-based measurements concurrently in a flux inversion framework improves

observational coverage and reduces sampling biases. This study examines the consistency of flux constraints provided by these

different observations and the potential to combine them by performing a series of six-year (2010–2015) CO2 flux inversions.

Flux inversions are performed assimilating surface-based measurements from the in situ and flask network, measurements

from the Total Carbon Column Observing Network (TCCON), and space-based measurements from the Greenhouse Gases

Observing Satellite (GOSAT), or all three datasets combined. Combining the datasets results in more precise flux estimates

for sub-continental regions relative to any of the datasets alone. Combining the datasets also improves the accuracy of the

posterior fluxes, based on reduced root-mean-square differences between posterior-flux-simulated CO2 and aircraft-based CO2

over midlatitude regions (0.35–0.50˜ppm) in comparison to GOSAT (0.39–0.57˜ppm), TCCON (0.52–0.63˜ppm), or in situ

and flask measurements (0.45–0.53˜ppm) alone. These results suggest that surface-based and GOSAT measurements give
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complementary constraints on CO2 fluxes in the northern extratropics and can be combined in flux inversions to improve

observational coverage. This stands in contrast with many earlier attempts to combine these datasets and suggests that

improvements in the NASA Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm have significantly improved

the consistency of space-based and surface-based flux constraints.
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Key Points:26

• Consistent flux constraints provided by surface in situ and flask, TCCON, and GOSAT27

measurements of atmospheric CO2.28

• Combining data sets improves agreement between modeled and measured aircraft-29

based CO2 measurements.30

• Improvements in NASA ACOS retrieval explain improved consistency of space-31

based and surface-based CO2.32
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Abstract33

Top-down estimates of CO2 fluxes are typically constrained by either surface-based or34

space-based CO2 observations. Both of these measurement types have spatial and tem-35

poral gaps in observational coverage that can lead to biases in inferred fluxes. Assim-36

ilating both surface-based and space-based measurements concurrently in a flux inver-37

sion framework improves observational coverage and reduces sampling biases. This study38

examines the consistency of flux constraints provided by these different observations and39

the potential to combine them by performing a series of six-year (2010–2015) CO2 flux40

inversions. Flux inversions are performed assimilating surface-based measurements from41

the in situ and flask network, measurements from the Total Carbon Column Observing42

Network (TCCON), and space-based measurements from the Greenhouse Gases Observ-43

ing Satellite (GOSAT), or all three datasets combined. Combining the datasets results44

in more precise flux estimates for sub-continental regions relative to any of the datasets45

alone. Combining the datasets also improves the accuracy of the posterior fluxes, based46

on reduced root-mean-square differences between posterior-flux-simulated CO2 and aircraft-47

based CO2 over midlatitude regions (0.35–0.50 ppm) in comparison to GOSAT (0.39–48

0.57 ppm), TCCON (0.52–0.63 ppm), or in situ and flask measurements (0.45–0.53 ppm)49

alone. These results suggest that surface-based and GOSAT measurements give comple-50

mentary constraints on CO2 fluxes in the northern extratropics and can be combined51

in flux inversions to improve observational coverage. This stands in contrast with many52

earlier attempts to combine these datasets and suggests that improvements in the NASA53

Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm have significantly54

improved the consistency of space-based and surface-based flux constraints.55

1 Introduction56

Observations of atmospheric CO2 provide a constraint on the net surface–atmosphere57

CO2 flux, and are critical for monitoring carbon flux changes. This has motivated ob-58

servational programs that measure atmospheric CO2, including a global network of surface-59

based in situ and flask monitoring sites, the Total Carbon Column Observing Network60

(TCCON) of ground-based spectrometers (Wunch et al., 2011) and several satellite mis-61

sions (Crisp et al., 2004; Yokota et al., 2009). These observations have provided many62

insights into the terrestrial carbon cycle (Keeling, 1960; Bolin & Keeling, 1963; Bacas-63

tow, 1976; Tans et al., 1989; Keeling et al., 1996; Bowman et al., 2017; J. Liu et al., 2017;64

Chatterjee et al., 2017). However, current measurement programs are unable to contin-65

uously monitor CO2 with global coverage, resulting in observational gaps. These spa-66

tial and temporal gaps in observations of atmospheric CO2 can introduce artifacts into67

NEE estimates, leading to difficulties in constraining carbon fluxes on regional scales (J. Liu68

et al., 2014; Byrne et al., 2017; Basu et al., 2018).69

Different observing systems have different gaps in the observational coverage. Space-70

based measurements retrieve atmospheric CO2 from measurements of reflected sunlight.71

This results in highly seasonal observational coverage in extratropical regions. Seasonal72

differences in observational coverage are further exasperated by challenging retrievals over73

snow (Nassar et al., 2014), and seasonal variations in cloud cover. In contrast, surface-74

based measurements of atmospheric CO2 typically have comparatively uniform tempo-75

ral coverage, but poor spatial coverage. Surface measurements sites most densely cover76

the northern extratropics (particularly North America and Europe) but have sparse cov-77

erage elsewhere (Byrne et al., 2017).78

In the northern extratropics, surface-based and space-based atmospheric CO2 mea-79

surements provide complementary observational coverage in space and time, respectively.80

Yet, few studies have attempted to combine surface-based and space-based atmospheric81

CO2 measurements to obtain top down constraints on fluxes across the northern lati-82

tudes. Chevallier et al. (2011) found consistency between the surface-air-sample-based83
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and the TCCON-based inversions, suggesting that flux inversions combining both data84

sources could be performed. Houweling et al. (2015) performed a series of CO2 flux in-85

versions assimilating measurements from the Greenhouse Gases Observing Satellite (GOSAT)86

and surface-based CO2 measurements. They found that comparisons between posterior87

CO2 fields and aircraft data did not show significant differences between inversions as-88

similating surface-based or space-based measurements, and that the largest differences89

were driven by the inversion set up. However, they also found that the two datasets gave90

large differences in the spatial distribution of the CO2 sink, with GOSAT flux inversions91

having increased uptake in the northern extratropics by ∼1 PgC. When both datasets92

were combined, they found that the posterior fluxes did not recover the observed merid-93

ional gradient in CO2 (which was also found for the GOSAT flux inversions), suggest-94

ing that the biases in retrieved GOSAT XCO2 could be adversely impacting the results.95

Another study, Wang et al. (2018), assimilated both GOSAT measurements and surface-96

based atmospheric CO2 measurements in a batch Bayesian synthesis inversion. They found97

that the differences in observational coverage of the ground-based and space-based datasets98

were complementary, resulting in smaller posterior uncertainty estimates when both datasets99

are assimilated than either dataset alone. Similarly, in a set of regional Observing Sys-100

tem Simulation Experiments (OSSEs), Fischer et al. (2017) showed reduced uncertainty101

in biosphere and fossil fuel emissions in California by combining space-based XCO2 and102

surface-based flask and in situ measurements.103

In this study, we further investigate combining ground-based and space-based mea-104

surements of atmospheric CO2 to provide estimates of NEE globaly, but we focus on north-105

ern extra-tropical regions were surface-based and aircraft-based measurements are most106

densly concentrated.. We perform a series of six-year flux inversions (2010–2015, inclu-107

sive) assimilating surface-based measurements from the in situ and flask measurement108

network, TCCON column-averaged dry-air CO2 mole fractions (XCO2
), GOSAT XCO2

109

measurements, and all three datasets combined. For each set of measurements, we per-110

form three flux inversions applying different prior NEE flux and error constraints. From111

the spread in posterior fluxes due to prior constraints, we quantify the precision to which112

these datasets constrain posterior fluxes. Spatial structures in the posterior fluxes are113

examined through comparisons between posterior-NEE-simulated XCO2
and Orbiting114

Carbon Observatory 2 (OCO-2) XCO2
measurements and the accuracy of posterior-NEE-115

simulated CO2 is examined through comparisons with aircraft-based CO2 measurements.116

The paper is outlined as follows. Section 2 describes the measurements used in this117

study and Sec. 3 describes the flux inversion set-up. The posterior CO2 fields obtained118

by the flux inversions are compared with OCO-2 and aircraft-based measurements in Sec. 4.1.119

We then examine the six-year-mean seasonal cycle and annual net fluxes (Sec. 4.2) and120

interannual variability (Sec. 4.3) obtained by the flux inversions. Finally, the implica-121

tions of the results are discussed in Sec. 5 and conclusions are given in Sec. 6.122

2 Data123

2.1 Surface-based in situ and flask measurements124

Surface-based measurements of boundary layer atmospheric CO2 can be performed125

using an in situ gas analyzer or by taking a flask sample, which is then returned to a lab126

and analyzed. A number of different groups from around the world collect surface CO2127

observations. We assimilate measurements from version 4.1 of the GLOBALVIEW plus128

package (Masarie et al., 2014; Cooperative Global Atmospheric Data Integration Project,129

2018) and the Japan-Russia Siberian Tall Tower Inland Observation Network (JR-STATION)130

of nine tower sites in Siberia (Sasakawa et al., 2010, 2013).131

The GLOBALVIEW v4.1 package incorporates data from many observing sites around132

the world and is specifically prepared for use in data assimilation studies. We include133
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measurements from the Integrated Carbon Observation System (ICOS RI, 2019) in our134

analysis. We assimilate GLOBALVIEW v4.1 measurements from surface in situ and flask135

sites, tower sites, and ship-based measurements. Data is only assimilated if the measure-136

ments are assimilated by NOAA’s CarbonTracker, version CT2017 (CT assim = 0). Mea-137

surements are assimilated at the intake height above the model surface over land, and138

at the intake height above sea level for ocean grid cells. For surface-based flask and in situ139

measurements, most of the measurement error applied for assimilation is due to repre-140

sentativeness errors (inability to model these measurements). We use the model-data-141

mismatch (mdm) as the measurement errors. This is the error value placed on each mea-142

surement in the assimilation system, and is meant to express the statistics of simulated-143

minus-observed CO2 residuals expected if CarbonTracker were using perfect surface fluxes.144

JR-STATION is a network of nine towers (http://www.cger.nies.go.jp/en/climate/pj1/tower/).145

On these towers, high inlet measurements are obtained over the 17–20th minutes of each146

hour and the low inlet data is obtained from 37–40th minutes of each hour, these 3-minute147

averages are the taken to be representative of the hourly means for each inlet. We fil-148

ter the measurements by removing all measurements where the vertical gradient in CO2149

exceeds 0.5 ppm (to remove measurements when the boundary layer is not well-mixed),150

and use the measured value at the highest intake for the measurement. For each site the151

errors (in ppm) are prescribed to be constant throughout a given month, the errors are152

the errors range from 3 ppm in winter to 7 ppm in summer, to account for both mea-153

surement and representativeness errors. These error estimates were chosen because they154

are comparable to the error estimates for tower sites in the GLOBALVIEW plus v4.1155

package.156

We remove outliers and poorly modeled measurements by filtering out measure-157

ments for which the difference between the prior-NEE-simulated measurements and ac-158

tual measurements exceeds three standard deviations of the measurement uncertainty159

(See Sec. 3 for details on the forward model simulations). We also remove measurements160

for which the difference between prior simulated CO2 and measurement exceeds 10 ppm,161

as these are assumed to be poorly simulated by the model. This filtering removes ∼8%162

of the measurements. For each site, the data is only assimilated between 11 a.m. and163

4 p.m. local time.164

2.2 Aircraft-based measurements165

Aircraft measurements are used for the evaluation of posterior atmospheric CO2166

fields. Aircraft data are obtained from the version 4.1 of the GLOBALVIEW plus dataset.167

Comparisons between measured and modeled atmospheric CO2 are performed over three168

distinct regions: East Asia, North America, and Alaska/Arctic (Fig. S1). Aircraft mea-169

surements over East Asia come exclusively from the Comprehensive Observation Net-170

work for Trace gases by Airliner (CONTRAIL) program (Machida et al., 2008, 2018).171

Aircraft data over Alaska/Arctic and North America originate from the NOAA Global172

Greenhouse Gas Reference Network’s aircraft program (Sweeney et al., 2015) and HI-173

APER Pole-to-Pole Observations (HIPPO) (Wofsy, 2011). The number of hourly-mean174

measurements per month between 3–8 km in altitude above sea level (asl) are shown in175

Fig. S2.176

2.3 TCCON measurements177

TCCON is a network of ground-based Fourier transform spectrometers that record178

solar absorption spectra in the near-infrared from which, among other gases, XCO2
is es-179

timated (Wunch et al., 2011). CO2 abundances are retrieved using a non-linear least squares180

approach from absorption lines in the near-infrared spectral region. The column-averaged181

dry-air mole fractions of CO2 (XCO2) is calculated by taking the ratio of the column abun-182

dance of CO2 to O2 (scaled by the mean O2 concentration), resulting in high precision183
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Table 1. TCCON sites used in this study.

Site Name Lat Lon Start Date Reference

Eureka 80.05 N 86.42 W 25 Jul 2010 Strong et al. (2017)
Orleans 47.97 N 2.11 E 29 Aug 2009 Warneke et al. (2017)

Park Falls 45.95 N 90.27 W 02 Jun 2004 Wennberg, Roehl, et al. (2017)
Rikubetsu 43.46 N 143.77 E 16 Nov 2013 Morino et al. (2017)
Lamont 36.60 N 97.49 W 06 Jul 2008 Wennberg, Wunch, et al. (2017)
Edwards 34.96 N 117.88 W 20 Jul 2013 Iraci et al. (2017)

Ascension Island 7.92 S 14.33 W 22 May 2012 Feist et al. (2017)
Darwin 12.46 S 130.93 E 28 Aug 2005 Griffith, Deutscher, et al. (2017)

Reunion Island 20.90 S 55.49 E 16 Sep 2011 De Mazière et al. (2017)
Wollongong 34.41 S 150.88 E 26 Jun 2008 Griffith, Velazco, et al. (2017)

(<0.25% in CO2) XCO2
measurements. The TCCON strives to achieve the best site-to-184

site precision and accuracy possible. Systematic biases that are consistent throughout185

the network are fully accounted for by scaling the TCCON retrieval results to the WMO186

scale via aircraft and AirCore profiles (Wunch et al., 2010). Moreover, the TCCON sets187

guidelines to ensure that the instrumentation at each site is as similar as possible, and188

that the retrieval software, including the spectroscopic line lists and line shapes, is iden-189

tical for each site. However, site-specific differences (e.g. instrumental line shape) can190

cause residual site-to-site biases (Wunch et al., 2010) which might introduce biases in191

flux inversions.192

For this study, TCCON data were obtained from the TCCON Data Archive, hosted193

by CaltechDATA [https://tccondata.org]. We include data from TCCON sites that have194

mean biases of less than 0.5 ppm relative to both the OCO-2 target-mode XCO2
and the195

posterior-simulated XCO2 from the surface-only flux inversions. The sites included in this196

study, which provide data during the years 2010–2015, are given in Table 1. Sites that197

are excluded from this study are excluded due to several factors that cause apparent bi-198

ases to be greater than 0.5 ppm. These factors include: proximity to large CO2 sources199

(e.g., cities), proximity to large topographic variability, and in a few cases, known TC-200

CON instrument biases for which a solution either has been applied, or will be applied201

in an upcoming TCCON data version. Note that the threshold of 0.5 ppm is somewhat202

arbitrary. This value was set because most sites outside of this threshold are in heav-203

ily observed regions (e.g., Europe), which are expected to be well constrained by other204

datasets (Byrne et al., 2017), or in the Southern Hemisphere and not expected to have205

a large impact on the performance of the flux inversions in the northern mid-latitudes.206

In this study, the TCCON data are filtered to remove measurements with solar zenith207

angles greater than 70 degrees. Measurements are then binned into hourly medians for208

each site. Only hours with five or more measurements are included. Measurements are209

only assimilated between 11am-3pm local time for the flux inversions, to minimize po-210

tential biases relating to errors in the prescribed diurnal cycle of NEE.211

2.4 Space-based measurements212

We assimilate XCO2
measured by the Thermal And Near-infrared Sensor for car-213

bon Observations Fourier Transform Spectrometer (TANSO-FTS) aboard GOSAT. GOSAT214

was launched in February 2009 in a sun-synchronous orbit, with a repeat cycle of 3 days215

that produces 44 separate ground track repeats (Yoshida et al., 2013). The footprint of216

the GOSAT measurements has a diameter of about 10 km. Since August 2010, TANSO-217

FTS has been measuring with a 3-point cross-track pattern with 263 km cross track sep-218

aration, resulting in a swath of 526 km. Measurements have an along-track separation219
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of 283 km (Crisp et al., 2012). We use version 7.3 of the NASA Atmospheric CO2 Ob-220

servations from Space (ACOS) GOSAT measurements in this analysis. A detailed de-221

cription of ACOS retrieval algorithm is available in O’Dell et al. (2012) and Crisp et al.222

(2012), with recent updates described in Eldering et al. (2017) and O’Dell et al. (2018).223

We assimilate all high gain (H-Gain) nadir measurements from the TANSO-FTS short-224

wave infrared (SWIR) band that pass the quality flag requirement.225

Measurements from OCO-2 are used for comparisons with the posterior CO2 fields.226

OCO-2, launched in July 2014, is a space-based spectrometer in a Sun-synchronous or-227

bit that measures reflected solar radiation to infer XCO2
with a footprint of about 3 km2.228

It has a repeat cycle of 16 days, resulting in 233 separate ground track repeats. OCO-229

2 has a swath of 10 km and collects eight adjacent, spatially resolved samples every 0.333 s,230

resulting in roughly 24 soundings per second. We downloaded version 9 of the ACOS OCO-231

2 lite files from the CO2 Virtual Science Data Environment (https://co2.jpl.nasa.gov/).232

Measurements are averaged into super-obs at 1◦× 1◦ resolution grids following J. Liu233

et al. (2017), with the additional requirement that there must be a minimum of eight234

OCO-2 observations within each 1◦×1◦ gridbox. We combine land nadir and land glint235

measurements for the analysis.236

3 Flux inversions237

Flux inversions are performed with the Greenhouse Gas Framework – Flux (GHGF-238

Flux) inversion system. GHGF-Flux is a flux inversion system developed under the NASA’s239

Carbon Monitoring System (CMS) project. The GHGF is capable of jointly assimilat-240

ing multi-platform observations of CH4, CO, CO2, and OCS. The GHGF inherits the241

chemistry transport model from the GEOS-Chem and the adjoint analysis methods from242

the GEOS-Chem-adjoint.243

Chemical transport is driven by the Modern-Era Retrospective Analysis for Re-244

search and Applications, Version 2 (MERRA-2) meteorology produced with version 5.12.4245

of the GEOS atmospheric data assimilation system (Gelaro et al., 2017). To perform tracer246

transport, these fields are regridded to 4◦× 5◦ horizontal resolution and archived with247

a temporal resolution of 6 h except for surface quantities and mixing depths, which have248

a temporal resolution of 3 h. Tracer transport is performed at 30 min time steps.249

For all inversions, we optimize 14 day scaling factors for daily net NEE and ocean250

fluxes, except for the final temporal grouping of each year, which is padded with 1–2 days251

so that the groupings cover the same day-of-year increments for each year. We use an252

assimilation window of approximately 18 months (October 7 to April 1 two years later)253

and keep posterior fluxes for one year (Jan 1 to Dec 31) then shift the inversion window254

forward one year. Using this method, we optimize NEE spanning 2010–2015. Initial con-255

ditions are generated by performing a two year inversion of surface in situ and flask mea-256

surements spanning 1 Jan 2008 to 31 Dec 2009. The stratosphere is then adjusted to match257

the zonal mean structure of Diallo et al. (2017) for October 2009 (adjusted by a few parts258

per million).259

Prior NEE fluxes and errors differ between inversions, and are generated from three260

different models: the Simple Biosphere model (SiB3), the Carnegie-Ames-Stanford Ap-261

proach model (CASA) and FLUXCOM. The motivation for using three different priors262

is that the posterior flux estimates may be sensitive to prior fluxes (Philip et al., 2019),263

thus using an ensemble of prior flux estimates provides an estimate of the precision to264

which the observations constrain fluxes. For all prior fluxes the annual total net flux has265

been adjusted to 4.6 PgC yr−1, to match the mean atmospheric CO2 growth rate. De-266

tails on the modeled NEE fluxes and prior errors are given in Appendix 7. The diurnal267

cycle in NEE is prescribed using the modeled diurnal cycle from SiB3 for the SiB3 flux268

inversions and the diurnal cycle from CASA for the CASA and FLUXCOM inversions.269
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Sensitivity tests found that the flux inversions were not sensitive to the prescribed di-270

urnal NEE cycle. The ECCO-Darwin-V1 model (Menemenlis et al., 2008; Dutkiewicz271

et al., 2009; Brix et al., 2015) estimates are used as the prior ocean CO2 exchange for272

all inversions, and prior errors were taken to be 100% of the flux. Fossil fuel, biofuel, and273

biomass burning CO2 emissions are prescribed using the Open-source Data Inventory274

for Anthropogenic CO2, version 2018 (Oda & Maksyutov, 2011; Oda et al., 2018) with275

downscaling to hourly emissions based on Nassar et al. (2013), CASA-GFED4-FUEL,276

and Global Fire Emission Database, version 4 (GFED4) (Randerson et al., 2018) inven-277

tories, respectively.278

Prior error covariance matrices are taken to be diagonal, such that there are no spa-279

tial or temporal covariances. The prior NEE errors are generated based on the NEE fluxes280

provided by the models. It is first taken to be 60% of the NEE flux. This is then increased281

by scaling up the errors at times and grid cells that have active vegetation but small net282

fluxes. For example, the uncertainty is scaled up during the spring (source to sink) and283

fall (sink to source) transition periods when the 14-day NEE flux is small but the sum-284

mer 14-day NEE fluxes are much larger. We also inflate the uncertainty for gridcells in285

which the flux is small for a given model but is much larger for the other models. The286

final errors range from 100% to 500% of the NEE flux. Additional details are provided287

in Appendix 7.288

A series of flux inversions are performed that assimilate different datasets. This al-289

lows us to quantify the influence of different observational datasets on the posterior fluxes.290

We perform flux inversions that assimilate only ground-based in situ and flask measure-291

ments (referred to as surface-only), only TCCON measurements (TCCON-only), only292

GOSAT data (referred to as GOSAT-only), and all datasets simultaneously (referred to293

as GOSAT+surface+TCCON). For each data assimilation set-up, we perform flux in-294

versions with each of the three prior NEE fluxes and errors. Therefore, we perform a to-295

tal of 12 flux inversions.296

4 Results297

4.1 Evaluation of posterior-NEE-simulated CO2298

Large spatial structures in the posterior-simulated-CO2 fields are compared with299

GOSAT and OCO-2 XCO2 , while the accuracy of the fluxes are evaluated against aircraft-300

based CO2 measurements. Rather than describing the data–model differences for all 12301

inversions, the posterior fluxes are grouped by the dataset assimilated and the mean pos-302

terior fluxes are evaluated. Tables giving the data–model mismatch between the indi-303

vidual flux inversions and aircraft measurements are provided as supplementary mate-304

rials (Tables SS1 and SS2).305

4.1.1 Comparison of posterior CO2 against space-based XCO2
306

Space-based XCO2
measurements have broad spatial coverage on the timescale of307

a month. This allows for comparisons between modeled and measured XCO2
data over308

large spatial scales. Here, the data–model mismatch between the posterior CO2 fields309

and space-based measurements from GOSAT and OCO-2 are examined. Figure 1 shows310

the zonal mean data–model mismatch as a function of latitude and time for the mean311

prior fluxes and mean posterior fluxes for the TCCON-only inversions, surface-only in-312

versions, GOSAT-only inversions, and GOSAT+surface+TCCON inversions. Note that313

there are gaps due to GOSAT’s observational coverage in the tropics and at high lati-314

tudes. The mean prior flux gives larger data–model standard deviations against GOSAT315

(0.59 ppm) and OCO-2 (0.67 ppm) than all of the flux inversions, implying that the flux316

inversions improve the variance of the data–model mismatch. The CO2 fields simulated317

with the prior fluxes tend to be biased low relative to GOSAT and OCO-2 during the318
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winter and spring and biased high during the summer and fall in the northern extrat-319

ropics, suggesting that the prior fluxes underestimate the magnitude of the seasonal cy-320

cle. Comparing the posterior CO2 fields against GOSAT, the surface-only and TCCON-321

only flux inversions give the largest mean data–model standard deviations, which is ex-322

pected as there were the only inversions that do not assimilate GOSAT data.323

Comparing to OCO-2, all of the flux inversions give similar differences. Mean dif-324

ferences range from -0.11 ppm to 0.07 ppm and standard deviations range over 0.41-0.48 ppm,325

suggesting that all of the flux inversions recover the global XCO2
fields with similar ac-326

curacy and precision. However, north of 40 ◦N, the GOSAT+surface+TCCON flux in-327

version shows better agreement with OCO-2 (RMS=0.30 ppm) than the other flux in-328

versions (RMS=0.36–0.41 ppm). Differences between posterior-simulated XCO2
and the329

OCO-2 measurements are largest in the northern subtropics, where the assimilated datasets330

have sparse observational coverage. Thus, it is unclear whether the differences in the sub-331

tropics are due to gaps in the observational coverage or biases in the OCO-2 retrievals.332

The spread in simulated XCO2
among the inversions gives a metric of the precision333

to which the flux inversion recovers atmospheric CO2. Figure 2 shows the range of sim-334

ulated GOSAT XCO2 for the prior and posterior fluxes due to the different prior NEE335

fluxes and errors applied in the inversions. The largest range is obtained for the prior336

fluxes (mean of 1.37 ppm). The range for the TCCON-only and surface-only fluxes are337

reduced by 42% (0.79 ppm) and 64% (0.50 ppm) relative to the prior, respectively. How-338

ever, for both flux inversions, most of the decrease in range occurs in the northern ex-339

tratropics, where surface-based in situ, flask, and TCCON measurements are most con-340

centrated. In contrast, the range increases in the tropics, where there is sparse obser-341

vational coverage. This suggests that the tropical posterior NEE fluxes for the TCCON-342

only and surface-only flux inversions are highly sensitive to the prior NEE and error con-343

straints. Globally, the range for GOSAT-only and GOSAT+surface+TCCON inversions344

are reduced by 72% and 78%, respectively, relative to the prior. The decrease relative345

to the prior is largest in the northern extratropics. Differences in range between the GOSAT-346

only and GOSAT+surface+TCCON inversions are generally quite small. The most no-347

table differences is that the GOSAT+surface+TCCON inversions have a smaller range348

in the northern extratropics during the fall. GOSAT measurements do not have high sen-349

sitivity to northern extratropical fluxes during this time of year (Byrne et al., 2017), thus350

it appears that the surface-based measurements provide the additional information nec-351

essary to better constrain fall NEE in the northern extratropics.352

4.1.2 Evaluation of posterior CO2 against aircraft-based measurements353

Aircraft-based measurements of atmospheric CO2 provide a constraint on atmo-354

spheric CO2 that is independent of the surface-based and space-based datasets assim-355

ilated. Therefore, aircraft-based CO2 measurements offer a dataset that modeled atmo-356

spheric CO2 can be evaluated against. Here, we evaluate the atmospheric CO2 fields sim-357

ulated using the prior and posterior fluxes against aircraft measurements over three re-358

gions with intensive sampling: East Asia, North America, and Alaska/Arctic. We only359

use aircraft data between 3–8 km in altitude above sea level. Differences between mea-360

sured and modeled CO2 are due to both model transport errors and surface flux errors.361

We have found that the differences are strongly influenced by model transport errors for362

individual measurements but that the impact of representativeness errors on data–model363

mismatches is reduced with temporal aggregation, thus we aggregate data–model mis-364

matches to monthly means.365

The GOSAT+surface+TCCON flux inversions generally show the best agreement366

with the aircraft-based CO2 measurements. Figure 3 shows the monthly-mean aircraft367

measurements and modeled CO2 for the three regions examined here. The GOSAT+surface+TCCON368

flux inversions give the smallest RMS difference against aircraft-based CO2 in East Asia369
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Figure 1. Zonal mean data–model mismatch for space-based XCO2 measurements as a func-

tion of latitude and time for the (a) prior fluxes, (b) TCCON-only inversions (c) surface-only

inversions, (d) GOSAT-only inversions, and (e) GOSAT+surface+TCCON inversions. For each

set of flux inversions, the three panels show (i) the zonal and monthly mean GOSAT XCO2 data–

model difference for 2010 through 2015. (ii) The mean GOSAT XCO2 data–model difference for

each month of the year. (iii) The zonal and monthly mean OCO-2 XCO2 data–model difference

for 2014 through 2015.
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Figure 2. Spread in zonal and monthly mean simulated GOSAT XCO2 for (a) prior

NEE, (b) TCCON-only, (c) surface-only posterior NEE, (d) GOSAT-only posterior NEE, (e)

GOSAT+surface+TCCON posterior NEE as a function of latitude and time. For each set of flux

inversions sets, the panels show (i) the zonal and monthly mean range for 2010 through 2015, and

(ii) The mean range for each month of the year.
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(c) Alaska/Arctic

(b) North America

(a) East Asia

Figure 3. Comparison of monthly mean measured and simulated aircraft-based CO2 for (a)

East Asia, (b) North America, and (c) Alaska/Arctic. For each region, the mismatch for (left to

right) prior, TCCON-only, surface-only, GOSAT-only, and GOSAT+surface+TCCON simulated

CO2 are shown. The top panel shows a scatter plot of the simulated aircraft-based CO2 against

the measured aircraft-based CO2, and the error bars indicate the spread in posterior NEE. The

lower panel shows the mean data–model mismatch for each month, with error bars showing the

range of monthly mean mismatched over the six-years and inversion set-ups. Colors correspond

to the month of year.

(0.35 ppm) and North America (0.50 ppm). The GOSAT-only flux inversions give the370

smallest RMS difference over the Alaska/Arctic region (0.79 ppm), although all of the371

flux inversions give larger RMS differences over this region relative to the midlatitude372

regions, suggesting that none of the flux inversions fully recover NEE at high latitudes.373

These aircraft measurements are also sensitive to fluxes over Siberia (Fig. S4), which is374

poorly observed by all datasets. Differences in the data–model mismatch between flux375

inversions are evident as a function of month-of-year. The GOSAT+surface+TCCON376

flux inversion tends to best capture month-to-month variability, while both flux inver-377

sions assimilating GOSAT measurements tend to have less seasonality in the data–model378

mismatch than the TCCON-only and surface-only flux inversions. This is most evident379

for East Asia and suggests that the GOSAT-only flux inversions better capture the month-380

to-month variability in fluxes (consistent with the results of Polavarapu et al. (2018) and381

Byrne et al. (2019)).382

Despite these differences, the data–model biases against the aircraft-based mea-383

surements are generally similar between flux inversions. For example, all of the flux in-384
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north Asia northern North America Europe east Asia temperate North America

Figure 4. Five regions examined in this study. From left to right, the highlighted regions are

referred to as northern North America, temperate North America, Europe, north Asia, and east

Asia.

versions give positive biases for East Asia (0.12–0.30 ppm) and North America (0.38–385

0.47 ppm) but negative biases for the Alaska/Arctic region (-0.07 to -0.03 ppm). The386

fact that the data–model biases are similar suggests that these biases are sensitive to trans-387

port errors. This was quantified by regridding the fluxes and performing the evaluation388

against aircraft measurements at 2◦×2.5◦ spatial resolution (Figure S3). We find that389

model-data biases for the flux inversions change by 0.01–0.03 ppm for East Asia, 0.07–390

0.10 ppm for North America, and 0.08–0.11 ppm for Alaska/Arctic. These differences391

are similar to the magnitude of data–model differences between flux inversions, suggest-392

ing that transport model errors limit the ability of evaluating CO2 flux estimates with393

aircraft-based measurements.394

4.2 Mean fluxes395

4.2.1 Seasonal Cycle396

In the northern extratropics, the seasonal cycle of NEE produces a large annual397

oscillation in atmospheric CO2, giving seasonal variations of ∼10 ppm in XCO2
. This pro-398

vides the largest signal of ecosystem carbon dynamics in atmospheric CO2 and is the NEE399

signal that is best captured in CO2 flux inversions. In this section, we examine the sea-400

sonal cycle of NEE recovered by the flux inversions in the northern extratropics grouped401

by the assimilated dataset. Figure 5 shows the seasonal cycle for the entire northern ex-402

tratropics and five sub-continental regions (the spatial extent of the sub-continental re-403

gions are shown in Fig. 4). We examine (1) the consistency in the seasonal cycle between404

the datasets and (2) the precision of the posterior fluxes due to prior assumptions.405

The posterior seasonal cycles of the flux inversions show consistent seasonal cycles406

for all assimilated datasets, relative to the prior fluxes. The GOSAT+surface+TCCON407

NEE fluxes most closely match the GOSAT-only NEE fluxes during the summer, as GOSAT408

has dense observational coverage. During the winter, the GOSAT+surface+TCCON NEE409

fluxes most closely match the surface-only fluxes, particularly over temperate North Amer-410

ica and Europe where the surface-based measurements are most densely concentrated.411

The spread for each set of flux inversions shows the range in posterior fluxes due412

to differences in the prior fluxes and errors applied. This provides a metric of the pre-413
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Figure 5. Prior and posterior NEE fluxes for (a) the entire northern extratropics (¿30◦ N),

(b) temperate North America, (c) northern North America, (d) Europe, (e) east Asia, and

(f) north Asia at 14 day temporal resolution. The shaded curves show the range of posterior

fluxes obtained by the GOSAT-only (purple), TCCON-only (grey), surface-only (yellow), and

GOSAT+surface+TCCON (dark green) flux inversions. Dashed lines show the seasonal cycles for

the three prior NEE fluxes used in inversions: SiB3 (green), CASA (blue), and FLUXCOM (red).

cision to which the assimilated observations can constrain NEE. The spread is generally414

largest for the surface-only flux inversions outside of the winter. This is particularly no-415

table over East Asia, where there is comparatively sparse observational coverage lead-416

ing to a large spread among surface-only flux inversions. The spread is smallest for the417

GOSAT+surface+TCCON flux inversion, as expected. The small spread for the GOSAT+surface+TCCON418

flux inversions shows that the observational constraints provided by combining GOSAT,419

TCCON, and surface in situ and flask CO2 measurements are sufficient to constrain the420

seasonal cycle of NEE on these sub-continental scales. These results suggest that the sea-421

sonal cycle is recovered by top-down flux inversions and suggests that analysis of the sea-422

sonal cycle of NEE, such as that presented by Byrne et al. (2018), could be extended to423

these regional scales.424

4.2.2 Annual net fluxes425

Here, we examine the annual net fluxes obtained for the flux inversions over the426

northern extratropics. Figure 6 shows the six-year mean annual net fluxes for each sub-427

continental region. Over the entire northern extratropics (>30◦ N), the flux inversions428

show high consistency relative to the spread in the prior. We obtain a mean annual net429

flux of −2.80 PgC yr−1 (range of −3.43 to −2.41 PgC yr−1) for the TCCON-only flux430

inversions, −2.76 PgC yr−1 (range of −3.20 to −2.49 PgC yr−1) for the surface-only flux431

inversions, −2.89 PgC yr−1 (range of −3.31 to −2.65 PgC yr−1) for the GOSAT-only432

flux inversions, and −3.02 PgC yr−1 (range of −3.21 to −2.89 PgC yr−1) for the GOSAT+surface+TCCON433

flux inversions. It is notable that the prior assumptions applied to the flux inversions in-434

troduce substantial differences into the posterior fluxes. The range in the northern ex-435

tratropical sink due to applying different prior NEE fluxes and errors is 0.32–1.03 PgC yr−1,436

depending on the assimilated dataset.437
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Figure 6. Six-year-mean annual net NEE fluxes for (a) all of the northern extratropics and

(b) the five regions examined in this study. Shaded grey regions show the range for the prior

and posterior fluxes, while the solid black line shows the mean. Individual inversions are shown

by the filled circles, with colors indicating prior NEE applied: green circles indicate SiB3, blue

circles indicate CASA, and red circles indicate FLUXCOM.

On regional scales, there is generally overlap in the range of net annual fluxes be-438

tween the TCCON-only, surface-only, GOSAT-only, and GOSAT+surface+TCCON flux439

inversions. This suggests that these observational datasets provide a consistent constraint440

on regional net annual NEE, within the considerable uncertainty introduced through prior441

assumptions. The exception is north Asia, where the surface-only inversions suggest a442

systematically larger sink than the GOSAT-only flux inversions. This region has poor443

observational coverage, which may explain the differences seen here.444

4.3 Interannual variability445

Interannual variability (IAV) in NEE provides a measure of the response of ecosys-446

tems to climate variability. Here, we examine the IAV recovered by the flux inversions,447

where IAV is calculated to be the anomaly from the six-year mean. Figure 7 shows the448

IAV in NEE for the entire northern extratropics and five extratropical regions at 14-day449

temporal resolution, after performing a 3-point (42-day) running mean to filter out high450

frequency variability. The posterior NEE IAV is not sensitive to the prior NEE constraints451

applied in the flux inversion, such that similar posterior NEE IAV is recovered for each452

set of prior fluxes when a given assimilated dataset. This is illustrated by the small range453

obtained for each set of colored curves. However, the posterior NEE IAV is sensitive to454

the assimilated dataset, such that we find disagreement in NEE IAV for the TCCON-455

only, surface-only, and GOSAT-only flux inversions.456

Differences in IAV between flux inversions can partially be explained by differences457

in the observational coverage of the datasets. As an example, let’s consider the differ-458

ences in IAV between the surface-only and GOSAT-only flux inversions in 2011 over tem-459

perate North America (Fig. 8). Figure 8a shows the monthly CO2 anomalies observed460

by GOSAT and the surface in situ and flask network over the summer of 2011. GOSAT461

XCO2 measurements are distributed uniformly across North America, while surface in situ462

and flask measurements are located south of Lake Superior. This observational cover-463

age is reflected in the posterior fluxes. The GOSAT-only posterior NEE anomalies (Fig. 8b)464

reflect the large scale structures in the XCO2
anomalies but miss smaller scale structures,465

such as the positive anomalies over south central North America. The surface-only pos-466

terior anomalies (Fig. 8c) capture large anomalies seen in CO2, such as the anomolous467

release of CO2 in south central North America, but miss much of the large scale struc-468

tures. Combining these two datasets in a single inversion, referred to as “GOSAT+surface”,469

captures both the large scale structures from the GOSAT-only and small-scale structures470

from the surface-only flux inversion (Fig. 8d). The posterior NEE anomalies from the471
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Figure 7. IAV in NEE for 2010–2015 at 14 day temporal resolution for (a) the entire north-

ern extratropics (¿30◦ N), (b) temperate North America, (c) northern North America, (d)

Europe, (e) east Asia, and (f) north Asia. The shaded curves show the range of posterior

fluxes obtained by the GOSAT-only (purple), TCCON-only (grey), surface-only (yellow), and

GOSAT+surface+TCCON (dark green) flux inversions. A 3-point (42 day) running mean is

performed to remove high frequency variability.
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GOSAT+surface flux inversion also correlate with anomalies in soil temperature (mean472

of MERRA-2 soil temperature over levels 1–3, Reichle et al. (2011, 2017)) (Fig. 8e) and473

soil moisture (ESA CCI Surface Soil Moisture Product, Y. Y. Liu et al. (2011, 2012); Wag-474

ner et al. (2012); Gruber et al. (2017); Dorigo et al. (2017)) (Fig. 8f) over this time pe-475

riod, suggesting that combining these datasets produces more realistic NEE IAV. Sim-476

ilar results were found over Eurasia during the summer of 2010 (Fig. S5).477

On an annual basis, we find mixed agreement between flux inversions in year-to-478

year variations. Figure 9 shows IAV in annual net NEE anomalies for the entire north-479

ern extratropics. In general, IAV in annual net fluxes are consistent for a given set of as-480

similated data, suggesting that the results are not sensitive to the prior fluxes and er-481

rors used. Note that the prior NEE fluxes did not contain IAV, which has previously been482

shown to have a substantial impact on posterior NEE IAV (Byrne et al., 2019). How-483

ever, posterior IAV is quite variable between different assimilated datasets. The cause484

of these differences between the flux inversions are likely partially due to differences in485

the observational coverage between datasets. It is possible that differences between datasets486

are also partially due to changes in the observational coverage over time, which has pre-487

viously been shown to have an impact on inferred fluxes (Rödenbeck et al., 2003; Gur-488

ney et al., 2008; Bruhwiler et al., 2011).489

5 Discussion490

5.1 Consistency in surface-based and spaced-based flux constraints491

The results generally show good agreement between the flux inversions assimilat-492

ing different datasets. The agreement between the surface-only and GOSAT-only flux493

inversions may seem surprising in the context of a number of previous studies that have494

shown substantial differences between surface-based and space-based flux estimates (Basu495

et al., 2013; Chevallier et al., 2014; Houweling et al., 2015). However, more recent stud-496

ies have shown improved agreement between surface-based and space-based flux inver-497

sions. Chevallier et al. (2019) found that flux inversions assimilating OCO-2 ACOS ver-498

sion 9 measurements gave similar net annual fluxes to those assimilating surface-based499

measurements, and that both compared well against aircraft measurements. Interest-500

ingly, Chevallier et al. (2019) also found that GOSAT OCO Full Physics (OCFP) v7.1501

XCO2 retrievals did not compare as well against aircraft measurements. Comparisons502

between the ACOS 7.3 and OCFP v7.1 (downloaded from the Copernicus Climate Change503

Service, https://climate.copernicus.eu/) show substantial differences in zonal mean XCO2
504

(Fig. S6). Furthermore, GOSAT ACOS 7.3 retrievals are found to give better agreement505

with posterior-simulated-CO2 from the surface-only flux inversion (Fig. S7). This sug-506

gests that the specific retrieval algorithm used has a large impact on the posterior fluxes,507

such that the improved agreement between surface-based and space-based measurements508

found in recent studies may be primarily due to improvements in the ACOS XCO2
re-509

trieval algorithm. Miller and Michalak (2019) have also argued that recent improvements510

in the ACOS algorithm have substantially increased the reliability of OCO-2 XCO2
mea-511

surements in flux inversions studies (for version 8 in particular). Substantial work has512

gone into refining the ACOS retrieval algorithm over the past decade (O’Dell et al., 2012;513

Crisp et al., 2012; Eldering et al., 2017; O’Dell et al., 2018; Kiel et al., 2019; Nelson &514

O’Dell, 2019). Thus, the improved agreement between surface-based and space-based CO2515

constraints is likely best explained by improvements in the ACOS retrieval algorithm.516

A consistent six-year mean northern extratropical sink is obtained by all observa-517

tional datasets. This result is in contrast to several previous studies that found substan-518

tial differences in the annual net NEE flux of CO2 in the northern extratropics between519

flux inversions assimilating surface-based and space-based measurements (Basu et al.,520

2013; Saeki et al., 2013; Chevallier et al., 2014; Reuter et al., 2014). The reason why we521

obtain a more consistent annual net flux between datasets than some earlier studies is522
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Figure 8. Monthly anomalies in (a) GOSAT XCO2 (ppm, 4◦ × 5◦ grid cells) and surface site

CO2 (ppm divided by four, circles), (b) GOSAT-only posterior NEE, (c) surface-only posterior

NEE, (d) GOSAT+surface posterior NEE, (e) MERRA-2 soil temperature, (f) ESA CCI soil

moisture, for (left-to-right) May, June, and July of 2011.
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Figure 9. Annual net IAV in NEE over 2010-2015 for the TCCON-only, surface-only,

GOSAT-only, and GOSAT+surface+TCCON flux inversions. Shaded grey regions show the

range for the fluxes, while the solid black line shows the mean. Individual inversions are shown

by the filled circles, with colors indicating prior NEE applied: green circles indicate SiB3, blue

circles indicate CASA, and red circles indicate FLUXCOM.

not immediately clear, but could be due to advancements in the retrieval algorithm (e.g.,523

ACOS 3.3 and earlier versions were used in Houweling et al. (2015)) or due to the fact524

that we look at a multi-year mean while earlier studies looked at shorter time periods525

(e.g., Houweling et al. (2015) only examined June 2009 to June 2010). In fact, we find526

that the surface-only inversion suggests weaker uptake in 2010 than average (by 0.40 to527

0.49 PgC yr−1), while the GOSAT flux inversion suggests near average uptake (see Sec. 4.3),528

suggesting that the difference in inferred fluxes between these two datasets may have been529

unusually large for 2010. However, it is important to note that differences in annual net530

fluxes do not imply biases in the measurements. There are aspects of the inversion set-531

ups that can lead to differences. For example, differences in the distribution of obser-532

vations can lead to significant differences in annual net fluxes (J. Liu et al., 2014; Byrne533

et al., 2017; Basu et al., 2018). Thus, one should not necessarily expect consistent an-534

nual net fluxes from observational datasets with spatial and temporal gaps in observa-535

tional coverage.536

5.2 Does combining datasets improve flux inversions?537

Is it possible to conclude that the GOSAT+surface+TCCON flux inversions im-538

prove flux estimates relative to the flux inversions that assimilate a single dataset? Of539

course, the answer to this question depends on how “improve” is defined. The GOSAT+surface+TCCON540

flux inversions generally show a small reduction in model-data differences against inde-541

pendent aircraft-based CO2 and OCO-2 XCO2 (north of 40◦N). This suggests that com-542

bining these datasets in a flux inversion framework produces NEE fluxes that better re-543

cover the true atmospheric CO2 fields than any dataset alone. However, confounding fac-544

tors in evaluating these fluxes remain a significant concern. Model transport errors ap-545

pear to be a main driver of data-model differences for aircraft-based CO2 measurements,546

and obscures the source of data–model differences. Evaluating optimized fluxes against547

OCO-2 is also problematic because these retrievals are known to have their own biases.548

The GOSAT+surface+TCCON flux inversions improve the precision of the pos-549

terior NEE fluxes relative to the flux inversions assimilating one dataset. This is found550

to be the case at seasonal, annual, and interannual scales. The GOSAT+surface+TCCON551

flux inversions closely resemble the GOSAT-only NEE fluxes during the summer and surface-552

only fluxes during the winter for five northern extratropical regions. This is expected given553

the spatiotemporal distribution of GOSAT and surface-based CO2 measurements and554

suggests that the GOSAT+surface+TCCON posterior NEE fluxes are better constrained555
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by the observations than the GOSAT-only or surface-only flux inversions. Therefore, the556

GOSAT+surface+TCCON flux inversions are less likely to be impacted by biases in the557

observational coverage, such that, from an observational coverage perspective, we can558

conclude that the GOSAT+surface+TCCON flux inversions are better constrained than559

the GOSAT-only or surface-only flux inversions.560

An important concern in combining CO2 datasets within a single flux inversion sys-561

tem is that there could be relative biases in the atmospheric CO2 constraints provided562

by the different datasets. Any inconsistency in flux constraints between datasets has the563

potential of introducing artifacts into the posterior fluxes. Biases in the observations could564

be present due to errors in the XCO2
retrieval algorithm, representativness errors (Agust́ı-565

Panareda et al., 2019) or model transport errors. Several previous studies have suggested566

that unrealistically large uptake over Europe (∼1.5 PgC yr−1) is recovered in posterior567

fluxes due to biases in the GOSAT retrieval algorithm (Basu et al., 2013; Chevallier et568

al., 2014), although the ACOS retrieval algorithm has undergone significant development569

since these studies (Eldering et al., 2017; O’Dell et al., 2018) resulting in reduced biases570

(Miller & Michalak, 2019). Similarly, a number of studies have pointed out systematic571

transport errors in GEOS-Chem (Yu et al., 2018; Schuh et al., 2019), as-well as biases572

in reanalysis winds (e.g., vertical mixing, Parazoo et al. (2012)). We do not find clear573

evidence for biases between the surface-based and GOSAT constraints, although, these574

biases may be challenging to identify. However, we do see the impact of model transport575

errors in comparisons between the posterior-simulated-CO2 and aircraft measurements.576

Ideally, this analysis should be performed with two different transport models so that577

transport related errors could be more easily identified.578

6 Conclusions579

This study presented a series of flux inversions assimilating surface-based flask and580

in situ CO2 measurements, TCCON XCO2
, GOSAT XCO2

, or all datasets combined. All581

of the flux inversions showed improved agreement with independent aircraft-based CO2582

measurements relative to prior flux estimates. The GOSAT+surface+TCCON flux in-583

version gave the smallest RMS differences against aircraft-based CO2 measurements over584

East Asia and North America, and OCO-2 XCO2
measurements (north of 40◦ N), sug-585

gesting that combining the datasets improves flux estimates. However, the data–model586

mismatches were strongly impacted by transport model, which makes robust evaluations587

of posterior surface fluxes challenging.588

We found that all observing systems generally give consistent posterior NEE fluxes589

relative to the spread in prior fluxes. This suggests that these datasets provide consis-590

tent information on NEE. The GOSAT+surface+TCCON posterior NEE most closely591

resembles the GOSAT-only posterior NEE during the summer and surface-only poste-592

rior NEE during the winter, consistent with the temporal variations in the observational593

constraints. This suggests that the GOSAT+surface+TCCON flux inversions benefit from594

the improved spatiotemporal distribution of measurements, providing posterior fluxes595

that are better informed by measurements throughout the year.596

The results of this study suggest that surface-based and space-based atmospheric597

CO2 constraints provide consistent constraints on NEE fluxes, and can be combined in598

a flux inversion framework. This result stands in contrast to earlier attempts to com-599

bine these datasets (Houweling et al., 2015), and suggests that the improved consistency600

between the datasets has been made possible by the considerable effort spent refining601

the ACOS retrieval algorithm (Eldering et al., 2017; O’Dell et al., 2018; Kiel et al., 2019;602

Chevallier et al., 2019; Miller & Michalak, 2019).603
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7 Appendix: Prior NEE fluxes and errors604

7.1 Simple biosphere model (SiB3)605

SiB3 was originally designed as a lower boundary for General Circulation Models606

with explicit treatment of biophysical processes. The ability to ingest satellite phenol-607

ogy was later introduced (P. Sellers et al., 1996; P. J. Sellers et al., 1996), and further608

refinements included a prognostic canopy air space (Vidale & Stöckli, 2005), more re-609

alistic soil and snow (I. Baker et al., 2003) and modifications to calculations of root wa-610

ter uptake and soil water stress (I. Baker et al., 2008). The current version is called SiB3.611

Simulations used in this analysis use phenology (Leaf Area Index, LAI; fraction of Pho-612

tosynthetically Active Radiation, fPAR) from the Moderate Resolution Imaging Spec-613

troradiometer (MODIS). MERRA reanalysis is used as model inputs, with precipitation614

scaled to Global Precipitation Climatology Project (GPCP: Adler et al. (2003)) follow-615

ing I. T. Baker et al. (2010).616

These fluxes are adjusted to obtain a global net drawdown equal to 4.6 PgC yr−1.617

To do this, the annual net flux at each grid cell and global total annual net drawdown618

are calculated. The annual net flux at each gridcell is then scaled so that the annual net619

flux is 4.6 PgC yr−1. The difference between the original and scaled annual net flux at620

each grid cell is then calculated. From this difference, an adjustment at each grid cell621

for each 14-day period is performed so that the annual net flux then equals the scaled622

annual net flux at each grid cell.623

The prior NEE errors are generated based on the NEE fluxes provided by the mod-624

els. It is first taken to be 60% of the NEE flux. This is then increased by scaling up the625

errors if the mean flux for a given gridcell is large but the flux is small at a given time.626

For example, the uncertainty is scaled up during the fall. We also inflate the uncertainty627

where the flux is small for SiB3 but large for CASA and FLUXCOM. The final errors628

range from 100% to 500% of the NEE flux.629

7.2 CASA630

The version of the model used here, CASA-GFED3, was modified from Potter et631

al. (1993) as described in Randerson et al. (1996) and van der Werf et al. (2006). It is632

driven by MERRA reanalysis and satellite-observed NDVI to track plant phenology. We633

use the same fluxes as are used for the CarbonTracker 2016 (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/)634

prior. CASA outputs monthly fluxes of Net Primary Productivity (NPP) and heterotropic635

respiration (RH). From these fluxes, GPP and ecosystem respiration (Re) are estimated636

to be GPP = 2NPP and Re = RH − NPP. Temporal downscaling and smoothing was637

performed from monthly CASA fluxes to 90-min fluxes using temperature and shortwave638

radiation from the ECMWF ERA-interim reanalysis (note this method differs from Olsen639

and Randerson (2004). GFED CMS is used for global fire emissions (http://nacp-files.nacarbon.org/nacp-640

kawa-01/). We use average model fluxes by averaging the fluxes for 2007–2012.641

These fluxes are adjusted to obtain a global net drawdown equal to 4.6 PgC yr−1.642

To do this, the annual net flux at each grid cell and global total annual net drawdown643

are calculated. The annual net flux at each gridcell is then scaled so that the annual net644

flux is 4.6 PgC yr−1. The difference between the original and scaled annual net flux at645

each grid cell is then calculated. From this difference, an adjustment at each grid cell646

for each 14-day period is performed so that the annual net flux then equals the scaled647

annual net flux at each grid cell.648

The prior NEE errors are generated based on the NEE fluxes provided by the mod-649

els. It is first taken to be 60% of the NEE flux. This is then increased by scaling up the650

errors if the mean flux for a given gridcell is large but the flux is small at a given time.651

For example, the uncertainty is scalled up during the fall. We also inflate the uncertainty652
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where the flux is small for CASA but large for SiB3 and FLUXCOM. The final errors653

range from 100% to 500% of the NEE flux.654

7.3 FLUXCOM655

FLUXCOM products are generated using upscaling approaches based on machine656

learning methods that integrate FLUXNET site level observations, satellite remote sens-657

ing, and meteorological data (Tramontana et al., 2016; Jung et al., 2017). Jung et al.658

(2017) generate Re products using several machine learning methods. For this study, we659

downloaded the products generated using random forests (RF), multivariate regression660

splines (MARS) and artificial neural networks (ANN) at daily resolution from the Data661

Portal of the Max Planck Institute for Biochemistry (https://www.bgc-jena.mpg.de). The662

mean seasonal cycle over 2008-2012 is calculated for each product.663

These fluxes are adjusted to obtain a global net drawdown equal to 4.6 PgC yr−1.664

For FLUXCOM, we only adjust fluxes south of 35◦ N because the northern extratrop-665

ical NEE fluxes have been heavily informed by FLUXNET sites. For grid cells south of666

35◦ N, the annual net flux at each grid cell and global total annual net drawdown are667

calculated. The annual net flux at each gridcell is then scaled so that the annual net flux668

is 4.6 PgC yr−1. The difference between the original and scaled annual net flux at each669

grid cell is then calculated. From this difference, an adjustment at each grid cell for each670

14-day period is performed so that the annual net flux then equals the scaled annual net671

flux at each grid cell.672

The prior NEE errors are generated based on the NEE fluxes provided by the mod-673

els. It is first taken to be 60% of the NEE flux. This is then increased by scaling up the674

errors if the mean flux for a given gridcell is large but the flux is small at a given time.675

For example, the uncertainty is scalled up during the fall. We also inflate the uncertainty676

where the flux is small for FLUXCOM but large for SiB3 and CASA. The final errors677

range from 100% to 500% of the NEE flux.678
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(a) (b) (c)

Figure S1. Locations of aircraft observations used in this study for (a) East Asia, (b) North

America, and (c) Alaska/Arctic.

Table S1. Mean and standard deviation (std) of data–model mismatch between each flux

inversion and aircraft-based CO2 observations over East Asia, North America, and Alaska/Arctic.

Posterior-simulated-CO2 was calculated at 4◦ × 5◦ spatial resolution.

Region East Asia North America Alaska/Arctic
data set prior NEE mean (ppm) std (ppm) mean (ppm) std (ppm) mean (ppm) std (ppm)

prior SiB3 -0.06 0.85 0.08 0.97 -0.84 1.61
CASA -0.01 0.76 0.26 0.56 -0.59 1.36

FLUXCOM 1.18 0.70 1.54 0.57 1.24 1.00
Mean NEE 0.37 0.57 0.63 0.54 -0.06 1.16

TCCON SiB3 0.16 0.46 0.33 0.43 -0.10 0.86
CASA 0.33 0.74 0.65 0.57 -0.02 1.30

FLUXCOM 0.42 0.45 0.42 0.45 -0.02 1.18
Mean NEE 0.30 0.42 0.43 0.47 -0.05 1.05

surface-only SiB3 0.01 0.44 0.34 0.35 -0.06 0.80
CASA 0.13 0.71 0.48 0.50 -0.14 1.22

FLUXCOM 0.22 0.60 0.46 0.33 -0.01 0.88
Mean NEE 0.12 0.43 0.43 0.31 -0.07 0.93

GOSAT-only SiB3 0.25 0.41 0.49 0.37 -0.06 0.76
CASA 0.14 0.36 0.43 0.36 -0.17 0.81

FLUXCOM 0.23 0.44 0.50 0.33 0.03 0.89
Mean NEE 0.21 0.33 0.47 0.32 -0.06 0.79

GOSAT SiB3 0.18 0.35 0.34 0.31 -0.7 0.75
+surface CASA 0.15 0.39 0.42 0.36 -0.03 0.89

+TCCON FLUXCOM 0.16 0.38 0.39 0.32 0.00 0.93
Mean NEE 0.16 0.31 0.38 0.32 -0.03 0.84
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Figure S2. Number of hourly-mean aircraft measurements between 3–8 km altitude above sea

level per month for (a) East Asia, (b) North America, and (c) Alaska/Arctic.
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Figure S3. Same as Fig. 3 but at 2◦×2.5◦ spatial resolution (except for TCCON). Comparison

of monthly mean measured and simulated aircraft-based CO2 for (a) East Asia, (b) North Amer-

ica, and (c) Alaska/Arctic. For each region, the mismatch for (left to right) prior, surface-only,

GOSAT-only, and GOSAT+surface+TCCON simulated CO2 are shown. The top panel shows a

scatter plot of the simulated aircraft-based CO2 against the measured aircraft-based CO2, and

the error bars indicate the spread in posterior NEE. The lower panel shows the mean data–model

mismatch for each month, with error bars showing the range of monthly mean mismatched over

the six-years and inversion set-ups. Colors correspond to the month of year.
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Figure S4. Adjoint sensitivity of aircraft-based CO2 measurements to surface fluxes for

measurements over (a) East Asia, (b) North America, and (c) Alaska/Arctic. Black boxes show

the location of aircraft-based CO2 measurements.
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June July August
(a) CO2 anomaly

(c) GOSAT-only NEE anomaly

(d) surface-only NEE anomaly

(e) Temperature anomaly

(f) Soil moisture anomaly
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(b) GOSAT+surface NEE anomaly

Figure S5. Same as Fig. 8 but for Eurasia during (left-to-right) May, June, July and August

of 2010. Monthly anomalies in (a) GOSAT XCO2 (ppm, 4◦ × 5◦ grid cells) and surface site CO2

(ppm divided by four, circles), (b) GOSAT-only posterior NEE, (c) surface-only posterior NEE,

(d) GOSAT+surface posterior NEE, (e) MERRA-2 soil temperature anomalies (K), and (f) ESA

CCI soil moisture.
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(a)

(b)

(c)

GOSAT OCFP v7.1 measurements

GOSAT ACOS 7.3 minus GOSAT OCFP v7.1

GOSAT ACOS 7.3 measurements

Figure S6. Detrended zonal-monthly mean high-gain nadir GOSAT XCO2 retrieved by (a)

ACOS 7.3 and (b) OCFP v7.1. (c) Difference in XCO2 between the two retrieval algorithms.

Figure S7. Data–model mismatch of the (a) ACOS 7.3 and (b) OCFP v7.1 GOSAT high-gain

nadir XCO2 measurements as a function of latitude and time for the surface-only flux inversion.
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Table S2. Mean and standard deviation (std) of data–model mismatch between each flux

inversion and aircraft-based CO2 observations over East Asia, North America, and Alaska/Arctic.

Posterior-simulated-CO2 was calculated at 2◦ × 2.5◦ spatial resolution.

Region East Asia North America Alaska/Arctic
data set prior NEE mean (ppm) std (ppm) mean (ppm) std (ppm) mean (ppm) std (ppm)

4prior SiB3 0.57 0.94 0.56 1.03 0.01 1.56
CASA -0.05 0.73 0.18 0.57 -0.54 1.20

FLUXCOM 1.16 0.75 1.39 0.62 1.19 0.90
Mean NEE 0.56 0.62 0.71 0.60 0.22 1.00

surface-only SiB3 0.01 0.44 0.26 0.40 0.03 0.73
CASA 0.11 0.69 0.38 0.57 -0.06 1.04

FLUXCOM 0.22 0.62 0.35 0.39 0.06 0.79
Mean NEE 0.11 0.45 0.33 0.38 0.01 0.79

GOSAT-only SiB3 0.25 0.38 0.42 0.38 0.03 0.65
CASA 0.18 0.39 0.37 0.39 -0.07 0.72

FLUXCOM 0.24 0.46 0.42 0.36 0.14 0.75
Mean NEE 0.22 0.35 0.40 0.35 0.03 0.68

GOSAT SiB3 0.20 0.37 0.28 0.33 0.06 0.66
+surface CASA 0.15 0.40 0.33 0.39 0.04 0.78

+TCCON FLUXCOM 0.22 0.38 0.36 0.32 0.15 0.78
Mean NEE 0.19 0.33 0.32 0.32 0.08 0.72
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