Improved constraints on northern extratropical CO2 fluxes obtained by combining surface-based and space-based atmospheric CO2 measurements

Brendan Keith Aidan Byrne^{1,1}, Junjie Liu^{2,2}, Meemong Lee^{2,2}, Ian T. Baker^{3,3}, Kevin W. Bowman^{4,4}, Nicholas Michael Deutscher^{5,5}, dietrich feist⁶, David W.T Griffith^{5,5}, Laura T Iraci^{7,7}, Matthaus Kiel^{2,2}, John Kimball^{8,8}, Charles E. Miller^{2,2}, Isamu Morino^{9,9}, Nicholas Cody Parazoo^{2,2}, Christof Petri^{10,10}, Coleen Marie Roehl^{11,11}, Mahesh Sha^{12,12}, Kimberly Strong^{13,13}, Voltaire Almario Velazco^{5,5}, Paul O. Wennberg^{11,11}, Debra Wunch^{13,13}, and Dietrich G. Feist¹⁴

¹Jet Propulsion Lab
²Jet Propulsion Laboratory
³Colorado State University
⁴Jet Propulsion Lab (NASA)
⁵University of Wollongong
⁶Max Planck Institute for Biogeochemistry
⁷NASA Ames Research Center
⁸University of Montana
⁹National Institute for Environmental Studies
¹⁰University of Bremen
¹¹California Institute of Technology
¹²Royal Belgian Institute for Space Aeronomy
¹³University of Toronto
¹⁴Ludwig-Maximilians-Universität München

November 30, 2022

Abstract

Top-down estimates of CO2 fluxes are typically constrained by either surface-based or space-based CO2 observations. Both of these measurement types have spatial and temporal gaps in observational coverage that can lead to biases in inferred fluxes. Assimilating both surface-based and space-based measurements concurrently in a flux inversion framework improves observational coverage and reduces sampling biases. This study examines the consistency of flux constraints provided by these different observations and the potential to combine them by performing a series of six-year (2010–2015) CO2 flux inversions. Flux inversions are performed assimilating surface-based measurements from the in situ and flask network, measurements from the Total Carbon Column Observing Network (TCCON), and space-based measurements from the Greenhouse Gases Observing Satellite (GOSAT), or all three datasets combined. Combining the datasets results in more precise flux estimates for sub-continental regions relative to any of the datasets alone. Combining the datasets also improves the accuracy of the posterior fluxes, based on reduced root-mean-square differences between posterior-flux-simulated CO2 and aircraft-based CO2 over midlatitude regions (0.35–0.50[°]ppm) in comparison to GOSAT (0.39–0.57[°]ppm), TCCON (0.52–0.63[°]ppm), or in situ and flask measurements (0.45–0.53[°]ppm) alone. These results suggest that surface-based and GOSAT measurements give

complementary constraints on CO2 fluxes in the northern extratropics and can be combined in flux inversions to improve observational coverage. This stands in contrast with many earlier attempts to combine these datasets and suggests that improvements in the NASA Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm have significantly improved the consistency of space-based and surface-based flux constraints.

Improved constraints on northern extratropical CO_2 fluxes obtained by combining surface-based and space-based atmospheric CO_2 measurements

B. Byrne¹, J. Liu², M. Lee², I. Baker³, K. W. Bowman², N. M. Deutscher⁴, D. G. Feist⁵, D. W. T. Griffith⁴, L. T. Iraci⁶, M. Kiel², J. S. Kimball⁷, C. E. Miller², I. Morino⁸, N. C. Parazoo², C. Petri⁹, C. M. Roehl¹⁰, M. K. Sha¹¹, K. Strong¹², V. A. Velazco⁴, P. O. Wennberg^{10,13}, D. Wunch¹²

¹NASA Postdoctoral Program Fellow, Jet Propulsion Laboratory, California Institute of Technology, CA, USA

²Jet Propulsion Laboratory, California Institute of Technology, CA, USA ³Atmospheric Science Department, Colorado State University, Fort Collins, CO, USA ⁴Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia ⁵Max Planck Institute for Biogeochemistry, Jena, Germany ⁶Atmospheric Science Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA

⁷Numerical Terradynamic Simulation Group, W.A. Franke College of Forestry & Conservation, The

University of Montana, Missoula, MT 59812, USA

⁸Satellite Observation Center, Center for Global Environmental Research, National Institute for

Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan ⁹Institute of Environmental Physics, University of Bremen, Bremen, Germany ¹⁰Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA ¹¹Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

¹²Department of Physics, University of Toronto, Toronto, Ontario, Canada ¹³Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA

©2019. All rights reserved. California Institute of Technology, government spon-

sorship acknowledged. 25

2

3

5

6

7

8

9

15

16

17

22 23

24

26

32

Key Points:

27	•	Consistent flux constraints provided by surface in situ and flask, TCCON, and GOSAT
28		measurements of atmospheric CO_2 .
29	•	Combining data sets improves agreement between modeled and measured aircraft-
30		based CO_2 measurements.
31	•	Improvements in NASA ACOS retrieval explain improved consistency of space-

based and surface-based CO_2 .

Corresponding author: Brendan Byrne, brendan.k.byrne@jpl.nasa.gov

33 Abstract

Top-down estimates of CO₂ fluxes are typically constrained by either surface-based or 34 space-based CO_2 observations. Both of these measurement types have spatial and tem-35 poral gaps in observational coverage that can lead to biases in inferred fluxes. Assim-36 ilating both surface-based and space-based measurements concurrently in a flux inver-37 sion framework improves observational coverage and reduces sampling biases. This study 38 examines the consistency of flux constraints provided by these different observations and 39 the potential to combine them by performing a series of six-year (2010–2015) CO_2 flux 40 inversions. Flux inversions are performed assimilating surface-based measurements from 41 the in situ and flask network, measurements from the Total Carbon Column Observing 42 Network (TCCON), and space-based measurements from the Greenhouse Gases Observ-43 ing Satellite (GOSAT), or all three datasets combined. Combining the datasets results 44 in more precise flux estimates for sub-continental regions relative to any of the datasets 45 alone. Combining the datasets also improves the accuracy of the posterior fluxes, based 46 on reduced root-mean-square differences between posterior-flux-simulated CO₂ and aircraft-47 based CO_2 over midlatitude regions (0.35–0.50 ppm) in comparison to GOSAT (0.39– 48 (0.57 ppm), TCCON ((0.52-0.63 ppm), or in situ and flask measurements ((0.45-0.53 ppm)) 49 alone. These results suggest that surface-based and GOSAT measurements give comple-50 mentary constraints on CO_2 fluxes in the northern extratropics and can be combined 51 in flux inversions to improve observational coverage. This stands in contrast with many 52 earlier attempts to combine these datasets and suggests that improvements in the NASA 53 Atmospheric CO_2 Observations from Space (ACOS) retrieval algorithm have significantly 54 improved the consistency of space-based and surface-based flux constraints. 55

56 1 Introduction

Observations of atmospheric CO_2 provide a constraint on the net surface-atmosphere 57 CO_2 flux, and are critical for monitoring carbon flux changes. This has motivated ob-58 servational programs that measure atmospheric CO₂, including a global network of surface-59 based in situ and flask monitoring sites, the Total Carbon Column Observing Network 60 (TCCON) of ground-based spectrometers (Wunch et al., 2011) and several satellite mis-61 sions (Crisp et al., 2004; Yokota et al., 2009). These observations have provided many 62 insights into the terrestrial carbon cycle (Keeling, 1960; Bolin & Keeling, 1963; Bacas-63 tow, 1976; Tans et al., 1989; Keeling et al., 1996; Bowman et al., 2017; J. Liu et al., 2017; 64 Chatterjee et al., 2017). However, current measurement programs are unable to contin-65 uously monitor CO_2 with global coverage, resulting in observational gaps. These spa-66 tial and temporal gaps in observations of atmospheric CO_2 can introduce artifacts into 67 NEE estimates, leading to difficulties in constraining carbon fluxes on regional scales (J. Liu 68 et al., 2014; Byrne et al., 2017; Basu et al., 2018). 69

Different observing systems have different gaps in the observational coverage. Space-70 based measurements retrieve atmospheric CO₂ from measurements of reflected sunlight. 71 This results in highly seasonal observational coverage in extratropical regions. Seasonal 72 differences in observational coverage are further exasperated by challenging retrievals over 73 snow (Nassar et al., 2014), and seasonal variations in cloud cover. In contrast, surface-74 based measurements of atmospheric CO_2 typically have comparatively uniform tempo-75 ral coverage, but poor spatial coverage. Surface measurements sites most densely cover 76 the northern extratropics (particularly North America and Europe) but have sparse cov-77 erage elsewhere (Byrne et al., 2017). 78

In the northern extratropics, surface-based and space-based atmospheric CO₂ measurements provide complementary observational coverage in space and time, respectively. Yet, few studies have attempted to combine surface-based and space-based atmospheric CO₂ measurements to obtain top down constraints on fluxes across the northern latitudes. Chevallier et al. (2011) found consistency between the surface-air-sample-based

and the TCCON-based inversions, suggesting that flux inversions combining both data 84 sources could be performed. Houweling et al. (2015) performed a series of CO_2 flux in-85 versions assimilating measurements from the Greenhouse Gases Observing Satellite (GOSAT) 86 and surface-based CO_2 measurements. They found that comparisons between posterior 87 $\rm CO_2$ fields and aircraft data did not show significant differences between inversions as-88 similating surface-based or space-based measurements, and that the largest differences 89 were driven by the inversion set up. However, they also found that the two datasets gave 90 large differences in the spatial distribution of the CO_2 sink, with GOSAT flux inversions 91 having increased uptake in the northern extratropics by ~ 1 PgC. When both datasets 92 were combined, they found that the posterior fluxes did not recover the observed merid-93 ional gradient in CO_2 (which was also found for the GOSAT flux inversions), suggest-94 ing that the biases in retrieved GOSAT X_{CO_2} could be adversely impacting the results. 95 Another study, Wang et al. (2018), assimilated both GOSAT measurements and surface-96 based atmospheric CO_2 measurements in a batch Bayesian synthesis inversion. They found 97 that the differences in observational coverage of the ground-based and space-based datasets 98 were complementary, resulting in smaller posterior uncertainty estimates when both datasets 99 are assimilated than either dataset alone. Similarly, in a set of regional Observing Sys-100 tem Simulation Experiments (OSSEs), Fischer et al. (2017) showed reduced uncertainty 101 in biosphere and fossil fuel emissions in California by combining space-based X_{CO_2} and 102 surface-based flask and in situ measurements. 103

In this study, we further investigate combining ground-based and space-based mea-104 surements of atmospheric CO_2 to provide estimates of NEE globaly, but we focus on north-105 ern extra-tropical regions were surface-based and aircraft-based measurements are most 106 densly concentrated. We perform a series of six-year flux inversions (2010–2015, inclu-107 sive) assimilating surface-based measurements from the in situ and flask measurement 108 network, TCCON column-averaged dry-air CO_2 mole fractions (X_{CO_2}), GOSAT X_{CO_2} 109 measurements, and all three datasets combined. For each set of measurements, we per-110 form three flux inversions applying different prior NEE flux and error constraints. From 111 the spread in posterior fluxes due to prior constraints, we quantify the precision to which 112 these datasets constrain posterior fluxes. Spatial structures in the posterior fluxes are 113 examined through comparisons between posterior-NEE-simulated X_{CO_2} and Orbiting 114 Carbon Observatory 2 (OCO-2) X_{CO_2} measurements and the accuracy of posterior-NEE-115 simulated CO_2 is examined through comparisons with aircraft-based CO_2 measurements. 116

The paper is outlined as follows. Section 2 describes the measurements used in this study and Sec. 3 describes the flux inversion set-up. The posterior CO₂ fields obtained by the flux inversions are compared with OCO-2 and aircraft-based measurements in Sec. 4.1. We then examine the six-year-mean seasonal cycle and annual net fluxes (Sec. 4.2) and interannual variability (Sec. 4.3) obtained by the flux inversions. Finally, the implications of the results are discussed in Sec. 5 and conclusions are given in Sec. 6.

123 **2 Data**

124

2.1 Surface-based in situ and flask measurements

Surface-based measurements of boundary layer atmospheric CO₂ can be performed
using an in situ gas analyzer or by taking a flask sample, which is then returned to a lab
and analyzed. A number of different groups from around the world collect surface CO₂
observations. We assimilate measurements from version 4.1 of the GLOBALVIEW plus
package (Masarie et al., 2014; Cooperative Global Atmospheric Data Integration Project,
2018) and the Japan-Russia Siberian Tall Tower Inland Observation Network (JR-STATION)
of nine tower sites in Siberia (Sasakawa et al., 2010, 2013).

The GLOBALVIEW v4.1 package incorporates data from many observing sites around the world and is specifically prepared for use in data assimilation studies. We include

measurements from the Integrated Carbon Observation System (ICOS RI, 2019) in our 134 analysis. We assimilate GLOBALVIEW v4.1 measurements from surface in situ and flask 135 sites, tower sites, and ship-based measurements. Data is only assimilated if the measure-136 ments are assimilated by NOAA's CarbonTracker, version CT2017 (CT_assim = 0). Mea-137 surements are assimilated at the intake height above the model surface over land, and 138 at the intake height above sea level for ocean grid cells. For surface-based flask and in situ 139 measurements, most of the measurement error applied for assimilation is due to repre-140 sentativeness errors (inability to model these measurements). We use the model-data-141 mismatch (mdm) as the measurement errors. This is the error value placed on each mea-142 surement in the assimilation system, and is meant to express the statistics of simulated-143 minus-observed CO2 residuals expected if CarbonTracker were using perfect surface fluxes. 144

JR-STATION is a network of nine towers (http://www.cger.nies.go.jp/en/climate/pj1/tower/). 145 On these towers, high inlet measurements are obtained over the $17-20^{\text{th}}$ minutes of each 146 hour and the low inlet data is obtained from 37–40th minutes of each hour, these 3-minute 147 averages are the taken to be representative of the hourly means for each inlet. We fil-148 ter the measurements by removing all measurements where the vertical gradient in CO_2 149 exceeds 0.5 ppm (to remove measurements when the boundary layer is not well-mixed), 150 and use the measured value at the highest intake for the measurement. For each site the 151 errors (in ppm) are prescribed to be constant throughout a given month, the errors are 152 the errors range from 3 ppm in winter to 7 ppm in summer, to account for both mea-153 surement and representativeness errors. These error estimates were chosen because they 154 are comparable to the error estimates for tower sites in the GLOBALVIEW plus v4.1 155 package. 156

We remove outliers and poorly modeled measurements by filtering out measure-157 ments for which the difference between the prior-NEE-simulated measurements and ac-158 tual measurements exceeds three standard deviations of the measurement uncertainty 159 (See Sec. 3 for details on the forward model simulations). We also remove measurements 160 for which the difference between prior simulated CO_2 and measurement exceeds 10 ppm, 161 as these are assumed to be poorly simulated by the model. This filtering removes $\sim 8\%$ 162 of the measurements. For each site, the data is only assimilated between 11 a.m. and 163 4 p.m. local time. 164

165

2.2 Aircraft-based measurements

Aircraft measurements are used for the evaluation of posterior atmospheric CO_2 166 fields. Aircraft data are obtained from the version 4.1 of the GLOBALVIEW plus dataset. 167 Comparisons between measured and modeled atmospheric CO_2 are performed over three 168 distinct regions: East Asia, North America, and Alaska/Arctic (Fig. S1). Aircraft mea-169 surements over East Asia come exclusively from the Comprehensive Observation Net-170 work for Trace gases by Airliner (CONTRAIL) program (Machida et al., 2008, 2018). 171 Aircraft data over Alaska/Arctic and North America originate from the NOAA Global 172 Greenhouse Gas Reference Network's aircraft program (Sweeney et al., 2015) and HI-173 APER Pole-to-Pole Observations (HIPPO) (Wofsy, 2011). The number of hourly-mean 174 measurements per month between 3–8 km in altitude above sea level (asl) are shown in 175 Fig. S2. 176

177

2.3 TCCON measurements

TCCON is a network of ground-based Fourier transform spectrometers that record solar absorption spectra in the near-infrared from which, among other gases, X_{CO_2} is estimated (Wunch et al., 2011). CO₂ abundances are retrieved using a non-linear least squares approach from absorption lines in the near-infrared spectral region. The column-averaged dry-air mole fractions of CO₂ (X_{CO_2}) is calculated by taking the ratio of the column abundance of CO₂ to O₂ (scaled by the mean O₂ concentration), resulting in high precision

Site Name	Lat	Lon	Start Date	Reference
Eureka	80.05 N	$86.42 \mathrm{W}$	25 Jul 2010	Strong et al. (2017)
Orleans	47.97 N	$2.11 \ \mathrm{E}$	29 Aug 2009	Warneke et al. (2017)
Park Falls	$45.95 { m N}$	$90.27 \mathrm{~W}$	02 Jun 2004	Wennberg, Roehl, et al. (2017)
Rikubetsu	43.46 N	$143.77 \ \mathrm{E}$	16 Nov 2013	Morino et al. (2017)
Lamont	36.60 N	$97.49 \mathrm{~W}$	06 Jul 2008	Wennberg, Wunch, et al. (2017)
Edwards	$34.96 \ N$	$117.88 {\rm W}$	20 Jul 2013	Iraci et al. (2017)
Ascension Island	$7.92~\mathrm{S}$	$14.33 \mathrm{~W}$	22 May 2012	Feist et al. (2017)
Darwin	$12.46 { m S}$	$130.93 \mathrm{E}$	28 Aug 2005	Griffith, Deutscher, et al. (2017)
Reunion Island	$20.90~\mathrm{S}$	$55.49 \mathrm{~E}$	$16 { m Sep} 2011$	De Mazière et al. (2017)
Wollongong	$34.41 { m S}$	$150.88 {\rm ~E}$	26 Jun 2008	Griffith, Velazco, et al. (2017)

Table 1. TCCON sites used in this study.

(<0.25% in CO₂) X_{CO2} measurements. The TCCON strives to achieve the best site-to-184 site precision and accuracy possible. Systematic biases that are consistent throughout 185 the network are fully accounted for by scaling the TCCON retrieval results to the WMO 186 scale via aircraft and AirCore profiles (Wunch et al., 2010). Moreover, the TCCON sets 187 guidelines to ensure that the instrumentation at each site is as similar as possible, and 188 that the retrieval software, including the spectroscopic line lists and line shapes, is iden-189 tical for each site. However, site-specific differences (e.g. instrumental line shape) can 190 cause residual site-to-site biases (Wunch et al., 2010) which might introduce biases in 191 flux inversions. 192

For this study, TCCON data were obtained from the TCCON Data Archive, hosted 193 by CaltechDATA [https://tccondata.org]. We include data from TCCON sites that have 194 mean biases of less than 0.5 ppm relative to both the OCO-2 target-mode X_{CO_2} and the 195 posterior-simulated X_{CO_2} from the surface-only flux inversions. The sites included in this 196 study, which provide data during the years 2010–2015, are given in Table 1. Sites that 197 are excluded from this study are excluded due to several factors that cause apparent bi-198 ases to be greater than 0.5 ppm. These factors include: proximity to large CO_2 sources 199 (e.g., cities), proximity to large topographic variability, and in a few cases, known TC-200 CON instrument biases for which a solution either has been applied, or will be applied 201 in an upcoming TCCON data version. Note that the threshold of 0.5 ppm is somewhat 202 arbitrary. This value was set because most sites outside of this threshold are in heav-203 ily observed regions (e.g., Europe), which are expected to be well constrained by other 204 datasets (Byrne et al., 2017), or in the Southern Hemisphere and not expected to have 205 a large impact on the performance of the flux inversions in the northern mid-latitudes. 206

In this study, the TCCON data are filtered to remove measurements with solar zenith angles greater than 70 degrees. Measurements are then binned into hourly medians for each site. Only hours with five or more measurements are included. Measurements are only assimilated between 11am-3pm local time for the flux inversions, to minimize potential biases relating to errors in the prescribed diurnal cycle of NEE.

212

2.4 Space-based measurements

We assimilate X_{CO_2} measured by the Thermal And Near-infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) aboard GOSAT. GOSAT was launched in February 2009 in a sun-synchronous orbit, with a repeat cycle of 3 days that produces 44 separate ground track repeats (Yoshida et al., 2013). The footprint of the GOSAT measurements has a diameter of about 10 km. Since August 2010, TANSO-FTS has been measuring with a 3-point cross-track pattern with 263 km cross track separation, resulting in a swath of 526 km. Measurements have an along-track separation of 283 km (Crisp et al., 2012). We use version 7.3 of the NASA Atmospheric CO₂ Observations from Space (ACOS) GOSAT measurements in this analysis. A detailed decription of ACOS retrieval algorithm is available in O'Dell et al. (2012) and Crisp et al.
(2012), with recent updates described in Eldering et al. (2017) and O'Dell et al. (2018).
We assimilate all high gain (H-Gain) nadir measurements from the TANSO-FTS shortwave infrared (SWIR) band that pass the quality flag requirement.

Measurements from OCO-2 are used for comparisons with the posterior CO_2 fields. 226 OCO-2, launched in July 2014, is a space-based spectrometer in a Sun-synchronous or-227 bit that measures reflected solar radiation to infer X_{CO_2} with a footprint of about 3 km². 228 It has a repeat cycle of 16 days, resulting in 233 separate ground track repeats. OCO-229 2 has a swath of 10 km and collects eight adjacent, spatially resolved samples every 0.333 s, 230 resulting in roughly 24 soundings per second. We downloaded version 9 of the ACOS OCO-231 2 lite files from the CO₂ Virtual Science Data Environment (https://co2.jpl.nasa.gov/). 232 Measurements are averaged into super-obs at $1^{\circ} \times 1^{\circ}$ resolution grids following J. Liu 233 et al. (2017), with the additional requirement that there must be a minimum of eight 234 OCO-2 observations within each $1^{\circ} \times 1^{\circ}$ gridbox. We combine land nadir and land glint 235 measurements for the analysis. 236

²³⁷ **3** Flux inversions

Flux inversions are performed with the Greenhouse Gas Framework – Flux (GHGF-Flux) inversion system. GHGF-Flux is a flux inversion system developed under the NASA's Carbon Monitoring System (CMS) project. The GHGF is capable of jointly assimilating multi-platform observations of CH₄, CO, CO₂, and OCS. The GHGF inherits the chemistry transport model from the GEOS-Chem and the adjoint analysis methods from the GEOS-Chem-adjoint.

Chemical transport is driven by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) meteorology produced with version 5.12.4 of the GEOS atmospheric data assimilation system (Gelaro et al., 2017). To perform tracer transport, these fields are regridded to $4^{\circ} \times 5^{\circ}$ horizontal resolution and archived with a temporal resolution of 6 h except for surface quantities and mixing depths, which have a temporal resolution of 3 h. Tracer transport is performed at 30 min time steps.

For all inversions, we optimize 14 day scaling factors for daily net NEE and ocean 250 fluxes, except for the final temporal grouping of each year, which is padded with 1-2 days 251 so that the groupings cover the same day-of-year increments for each year. We use an 252 assimilation window of approximately 18 months (October 7 to April 1 two years later) 253 and keep posterior fluxes for one year (Jan 1 to Dec 31) then shift the inversion window 254 forward one year. Using this method, we optimize NEE spanning 2010–2015. Initial con-255 ditions are generated by performing a two year inversion of surface in situ and flask mea-256 surements spanning 1 Jan 2008 to 31 Dec 2009. The stratosphere is then adjusted to match 257 the zonal mean structure of Diallo et al. (2017) for October 2009 (adjusted by a few parts 258 per million). 259

Prior NEE fluxes and errors differ between inversions, and are generated from three 260 different models: the Simple Biosphere model (SiB3), the Carnegie-Ames-Stanford Ap-261 proach model (CASA) and FLUXCOM. The motivation for using three different priors 262 is that the posterior flux estimates may be sensitive to prior fluxes (Philip et al., 2019), 263 thus using an ensemble of prior flux estimates provides an estimate of the precision to 264 which the observations constrain fluxes. For all prior fluxes the annual total net flux has 265 been adjusted to 4.6 PgC yr⁻¹, to match the mean atmospheric CO_2 growth rate. De-266 tails on the modeled NEE fluxes and prior errors are given in Appendix 7. The diurnal 267 cycle in NEE is prescribed using the modeled diurnal cycle from SiB3 for the SiB3 flux 268 inversions and the diurnal cycle from CASA for the CASA and FLUXCOM inversions. 269

Sensitivity tests found that the flux inversions were not sensitive to the prescribed di-270 urnal NEE cycle. The ECCO-Darwin-V1 model (Menemenlis et al., 2008; Dutkiewicz 271 et al., 2009; Brix et al., 2015) estimates are used as the prior ocean CO_2 exchange for 272 all inversions, and prior errors were taken to be 100% of the flux. Fossil fuel, biofuel, and 273 biomass burning CO_2 emissions are prescribed using the Open-source Data Inventory 274 for Anthropogenic CO₂, version 2018 (Oda & Maksyutov, 2011; Oda et al., 2018) with 275 downscaling to hourly emissions based on Nassar et al. (2013), CASA-GFED4-FUEL, 276 and Global Fire Emission Database, version 4 (GFED4) (Randerson et al., 2018) inven-277 tories, respectively. 278

Prior error covariance matrices are taken to be diagonal, such that there are no spa-279 tial or temporal covariances. The prior NEE errors are generated based on the NEE fluxes 280 provided by the models. It is first taken to be 60% of the NEE flux. This is then increased 281 by scaling up the errors at times and grid cells that have active vegetation but small net 282 fluxes. For example, the uncertainty is scaled up during the spring (source to sink) and 283 fall (sink to source) transition periods when the 14-day NEE flux is small but the sum-284 mer 14-day NEE fluxes are much larger. We also inflate the uncertainty for gridcells in 285 which the flux is small for a given model but is much larger for the other models. The 286 final errors range from 100% to 500% of the NEE flux. Additional details are provided 287 in Appendix 7. 288

A series of flux inversions are performed that assimilate different datasets. This al-289 lows us to quantify the influence of different observational datasets on the posterior fluxes. 290 We perform flux inversions that assimilate only ground-based in situ and flask measure-291 ments (referred to as surface-only), only TCCON measurements (TCCON-only), only 292 GOSAT data (referred to as GOSAT-only), and all datasets simultaneously (referred to 293 as GOSAT+surface+TCCON). For each data assimilation set-up, we perform flux in-294 versions with each of the three prior NEE fluxes and errors. Therefore, we perform a to-295 tal of 12 flux inversions. 296

297 4 Results

4.1 Evaluation of posterior-NEE-simulated CO₂

Large spatial structures in the posterior-simulated- CO_2 fields are compared with GOSAT and OCO-2 X_{CO_2} , while the accuracy of the fluxes are evaluated against aircraftbased CO_2 measurements. Rather than describing the data-model differences for all 12 inversions, the posterior fluxes are grouped by the dataset assimilated and the mean posterior fluxes are evaluated. Tables giving the data-model mismatch between the individual flux inversions and aircraft measurements are provided as supplementary materials (Tables SS1 and SS2).

306

298

4.1.1 Comparison of posterior CO_2 against space-based X_{CO_2}

Space-based X_{CO_2} measurements have broad spatial coverage on the timescale of 307 a month. This allows for comparisons between modeled and measured X_{CO_2} data over 308 large spatial scales. Here, the data-model mismatch between the posterior CO_2 fields 309 and space-based measurements from GOSAT and OCO-2 are examined. Figure 1 shows 310 the zonal mean data-model mismatch as a function of latitude and time for the mean 311 prior fluxes and mean posterior fluxes for the TCCON-only inversions, surface-only in-312 versions, GOSAT-only inversions, and GOSAT+surface+TCCON inversions. Note that 313 there are gaps due to GOSAT's observational coverage in the tropics and at high lati-314 tudes. The mean prior flux gives larger data-model standard deviations against GOSAT 315 (0.59 ppm) and OCO-2 (0.67 ppm) than all of the flux inversions, implying that the flux 316 inversions improve the variance of the data-model mismatch. The CO₂ fields simulated 317 with the prior fluxes tend to be biased low relative to GOSAT and OCO-2 during the 318

winter and spring and biased high during the summer and fall in the northern extratropics, suggesting that the prior fluxes underestimate the magnitude of the seasonal cycle. Comparing the posterior CO_2 fields against GOSAT, the surface-only and TCCONonly flux inversions give the largest mean data-model standard deviations, which is expected as there were the only inversions that do not assimilate GOSAT data.

Comparing to OCO-2, all of the flux inversions give similar differences. Mean dif-324 ferences range from -0.11 ppm to 0.07 ppm and standard deviations range over 0.41-0.48 ppm, 325 suggesting that all of the flux inversions recover the global X_{CO_2} fields with similar ac-326 curacy and precision. However, north of 40 °N, the GOSAT+surface+TCCON flux in-327 version shows better agreement with OCO-2 (RMS=0.30 ppm) than the other flux in-328 versions (RMS=0.36-0.41 ppm). Differences between posterior-simulated X_{CO_2} and the 329 OCO-2 measurements are largest in the northern subtropics, where the assimilated datasets 330 have sparse observational coverage. Thus, it is unclear whether the differences in the sub-331 tropics are due to gaps in the observational coverage or biases in the OCO-2 retrievals. 332

The spread in simulated X_{CO_2} among the inversions gives a metric of the precision 333 to which the flux inversion recovers atmospheric CO₂. Figure 2 shows the range of sim-334 ulated GOSAT X_{CO_2} for the prior and posterior fluxes due to the different prior NEE 335 fluxes and errors applied in the inversions. The largest range is obtained for the prior 336 fluxes (mean of 1.37 ppm). The range for the TCCON-only and surface-only fluxes are 337 reduced by 42% (0.79 ppm) and 64% (0.50 ppm) relative to the prior, respectively. How-338 ever, for both flux inversions, most of the decrease in range occurs in the northern ex-339 tratropics, where surface-based in situ, flask, and TCCON measurements are most con-340 centrated. In contrast, the range increases in the tropics, where there is sparse obser-341 vational coverage. This suggests that the tropical posterior NEE fluxes for the TCCON-342 only and surface-only flux inversions are highly sensitive to the prior NEE and error con-343 straints. Globally, the range for GOSAT-only and GOSAT+surface+TCCON inversions 344 are reduced by 72% and 78%, respectively, relative to the prior. The decrease relative 345 to the prior is largest in the northern extratropics. Differences in range between the GOSAT-346 only and GOSAT+surface+TCCON inversions are generally quite small. The most no-347 table differences is that the GOSAT+surface+TCCON inversions have a smaller range 348 in the northern extratropics during the fall. GOSAT measurements do not have high sen-349 sitivity to northern extratropical fluxes during this time of year (Byrne et al., 2017), thus 350 it appears that the surface-based measurements provide the additional information nec-351 essary to better constrain fall NEE in the northern extratropics. 352

353

4.1.2 Evaluation of posterior CO_2 against aircraft-based measurements

Aircraft-based measurements of atmospheric CO_2 provide a constraint on atmo-354 spheric CO_2 that is independent of the surface-based and space-based datasets assim-355 ilated. Therefore, aircraft-based CO_2 measurements offer a dataset that modeled atmo-356 spheric CO_2 can be evaluated against. Here, we evaluate the atmospheric CO_2 fields sim-357 ulated using the prior and posterior fluxes against aircraft measurements over three re-358 gions with intensive sampling: East Asia, North America, and Alaska/Arctic. We only 359 use aircraft data between 3–8 km in altitude above sea level. Differences between mea-360 sured and modeled CO_2 are due to both model transport errors and surface flux errors. 361 We have found that the differences are strongly influenced by model transport errors for 362 individual measurements but that the impact of representativeness errors on data-model 363 mismatches is reduced with temporal aggregation, thus we aggregate data-model mis-364 matches to monthly means. 365

The GOSAT+surface+TCCON flux inversions generally show the best agreement with the aircraft-based CO₂ measurements. Figure 3 shows the monthly-mean aircraft measurements and modeled CO₂ for the three regions examined here. The GOSAT+surface+TCCON flux inversions give the smallest RMS difference against aircraft-based CO₂ in East Asia

Figure 1. Zonal mean data-model mismatch for space-based X_{CO_2} measurements as a function of latitude and time for the (a) prior fluxes, (b) TCCON-only inversions (c) surface-only inversions, (d) GOSAT-only inversions, and (e) GOSAT+surface+TCCON inversions. For each set of flux inversions, the three panels show (i) the zonal and monthly mean GOSAT X_{CO_2} data-model difference for 2010 through 2015. (ii) The mean GOSAT X_{CO_2} data-model difference for each month of the year. (iii) The zonal and monthly mean OCO-2 X_{CO_2} data-model difference for 2014 through 2015.

Figure 2. Spread in zonal and monthly mean simulated GOSAT X_{CO_2} for (a) prior NEE, (b) TCCON-only, (c) surface-only posterior NEE, (d) GOSAT-only posterior NEE, (e) GOSAT+surface+TCCON posterior NEE as a function of latitude and time. For each set of flux inversions sets, the panels show (i) the zonal and monthly mean range for 2010 through 2015, and (ii) The mean range for each month of the year.

Figure 3. Comparison of monthly mean measured and simulated aircraft-based CO_2 for (a) East Asia, (b) North America, and (c) Alaska/Arctic. For each region, the mismatch for (left to right) prior, TCCON-only, surface-only, GOSAT-only, and GOSAT+surface+TCCON simulated CO_2 are shown. The top panel shows a scatter plot of the simulated aircraft-based CO_2 against the measured aircraft-based CO_2 , and the error bars indicate the spread in posterior NEE. The lower panel shows the mean data-model mismatch for each month, with error bars showing the range of monthly mean mismatched over the six-years and inversion set-ups. Colors correspond to the month of year.

(0.35 ppm) and North America (0.50 ppm). The GOSAT-only flux inversions give the 370 smallest RMS difference over the Alaska/Arctic region (0.79 ppm), although all of the 371 flux inversions give larger RMS differences over this region relative to the midlatitude 372 regions, suggesting that none of the flux inversions fully recover NEE at high latitudes. 373 These aircraft measurements are also sensitive to fluxes over Siberia (Fig. S4), which is 374 poorly observed by all datasets. Differences in the data-model mismatch between flux 375 inversions are evident as a function of month-of-year. The GOSAT+surface+TCCON 376 flux inversion tends to best capture month-to-month variability, while both flux inver-377 sions assimilating GOSAT measurements tend to have less seasonality in the data-model 378 mismatch than the TCCON-only and surface-only flux inversions. This is most evident 379 for East Asia and suggests that the GOSAT-only flux inversions better capture the month-380 to-month variability in fluxes (consistent with the results of Polavarapu et al. (2018) and 381 Byrne et al. (2019)). 382

Despite these differences, the data-model biases against the aircraft-based measurements are generally similar between flux inversions. For example, all of the flux in-

Figure 4. Five regions examined in this study. From left to right, the highlighted regions are referred to as northern North America, temperate North America, Europe, north Asia, and east Asia.

versions give positive biases for East Asia (0.12-0.30 ppm) and North America (0.38-0.38)385 0.47 ppm) but negative biases for the Alaska/Arctic region (-0.07 to -0.03 ppm). The 386 fact that the data-model biases are similar suggests that these biases are sensitive to trans-387 port errors. This was quantified by regridding the fluxes and performing the evaluation 388 against aircraft measurements at $2^{\circ} \times 2.5^{\circ}$ spatial resolution (Figure S3). We find that 389 model-data biases for the flux inversions change by 0.01–0.03 ppm for East Asia, 0.07– 390 0.10 ppm for North America, and 0.08–0.11 ppm for Alaska/Arctic. These differences 391 are similar to the magnitude of data-model differences between flux inversions, suggest-392 ing that transport model errors limit the ability of evaluating CO_2 flux estimates with 393 aircraft-based measurements. 394

395 4.2 Mean fluxes

396

4.2.1 Seasonal Cycle

In the northern extratropics, the seasonal cycle of NEE produces a large annual 397 oscillation in atmospheric CO₂, giving seasonal variations of ~ 10 ppm in X_{CO₂}. This pro-398 vides the largest signal of ecosystem carbon dynamics in atmospheric CO_2 and is the NEE 399 signal that is best captured in CO_2 flux inversions. In this section, we examine the sea-400 sonal cycle of NEE recovered by the flux inversions in the northern extratropics grouped 401 by the assimilated dataset. Figure 5 shows the seasonal cycle for the entire northern ex-402 tratropics and five sub-continental regions (the spatial extent of the sub-continental re-403 gions are shown in Fig. 4). We examine (1) the consistency in the seasonal cycle between 404 the datasets and (2) the precision of the posterior fluxes due to prior assumptions. 405

The posterior seasonal cycles of the flux inversions show consistent seasonal cycles for all assimilated datasets, relative to the prior fluxes. The GOSAT+surface+TCCON NEE fluxes most closely match the GOSAT-only NEE fluxes during the summer, as GOSAT has dense observational coverage. During the winter, the GOSAT+surface+TCCON NEE fluxes most closely match the surface-only fluxes, particularly over temperate North America and Europe where the surface-based measurements are most densely concentrated.

The spread for each set of flux inversions shows the range in posterior fluxes due to differences in the prior fluxes and errors applied. This provides a metric of the pre-

Figure 5. Prior and posterior NEE fluxes for (a) the entire northern extratropics (¿30° N), (b) temperate North America, (c) northern North America, (d) Europe, (e) east Asia, and (f) north Asia at 14 day temporal resolution. The shaded curves show the range of posterior fluxes obtained by the GOSAT-only (purple), TCCON-only (grey), surface-only (yellow), and GOSAT+surface+TCCON (dark green) flux inversions. Dashed lines show the seasonal cycles for the three prior NEE fluxes used in inversions: SiB3 (green), CASA (blue), and FLUXCOM (red).

cision to which the assimilated observations can constrain NEE. The spread is generally 414 largest for the surface-only flux inversions outside of the winter. This is particularly no-415 table over East Asia, where there is comparatively sparse observational coverage lead-416 ing to a large spread among surface-only flux inversions. The spread is smallest for the 417 GOSAT+surface+TCCON flux inversion, as expected. The small spread for the GOSAT+surface+TCCON 418 flux inversions shows that the observational constraints provided by combining GOSAT, 419 TCCON, and surface in situ and flask CO_2 measurements are sufficient to constrain the 420 seasonal cycle of NEE on these sub-continental scales. These results suggest that the sea-421 sonal cycle is recovered by top-down flux inversions and suggests that analysis of the sea-422 sonal cycle of NEE, such as that presented by Byrne et al. (2018), could be extended to 423 these regional scales. 424

425

4.2.2 Annual net fluxes

Here, we examine the annual net fluxes obtained for the flux inversions over the 426 northern extratropics. Figure 6 shows the six-year mean annual net fluxes for each sub-427 continental region. Over the entire northern extratropics $(>30^{\circ} \text{ N})$, the flux inversions 428 show high consistency relative to the spread in the prior. We obtain a mean annual net 429 flux of $-2.80 \text{ PgC yr}^{-1}$ (range of -3.43 to $-2.41 \text{ PgC yr}^{-1}$) for the TCCON-only flux 430 inversions, $-2.76 \text{ PgC yr}^{-1}$ (range of $-3.20 \text{ to } -2.49 \text{ PgC yr}^{-1}$) for the surface-only flux 431 inversions, $-2.89 \text{ PgC yr}^{-1}$ (range of $-3.31 \text{ to } -2.65 \text{ PgC yr}^{-1}$) for the GOSAT-only 432 flux inversions, and $-3.02 \text{ PgC yr}^{-1}$ (range of $-3.21 \text{ to } -2.89 \text{ PgC yr}^{-1}$) for the GOSAT+surface+TCCON 433 flux inversions. It is notable that the prior assumptions applied to the flux inversions in-434 troduce substantial differences into the posterior fluxes. The range in the northern ex-435 tratropical sink due to applying different prior NEE fluxes and errors is 0.32-1.03 PgC yr⁻¹. 436 depending on the assimilated dataset. 437

Figure 6. Six-year-mean annual net NEE fluxes for (a) all of the northern extratropics and (b) the five regions examined in this study. Shaded grey regions show the range for the prior and posterior fluxes, while the solid black line shows the mean. Individual inversions are shown by the filled circles, with colors indicating prior NEE applied: green circles indicate SiB3, blue circles indicate CASA, and red circles indicate FLUXCOM.

On regional scales, there is generally overlap in the range of net annual fluxes be tween the TCCON-only, surface-only, GOSAT-only, and GOSAT+surface+TCCON flux
 inversions. This suggests that these observational datasets provide a consistent constraint
 on regional net annual NEE, within the considerable uncertainty introduced through prior
 assumptions. The exception is north Asia, where the surface-only inversions suggest a
 systematically larger sink than the GOSAT-only flux inversions. This region has poor
 observational coverage, which may explain the differences seen here.

445 4.3 Interannual variability

Interannual variability (IAV) in NEE provides a measure of the response of ecosys-446 tems to climate variability. Here, we examine the IAV recovered by the flux inversions, 447 where IAV is calculated to be the anomaly from the six-year mean. Figure 7 shows the 448 IAV in NEE for the entire northern extratropics and five extratropical regions at 14-day 449 temporal resolution, after performing a 3-point (42-day) running mean to filter out high 450 frequency variability. The posterior NEE IAV is not sensitive to the prior NEE constraints 451 applied in the flux inversion, such that similar posterior NEE IAV is recovered for each 452 set of prior fluxes when a given assimilated dataset. This is illustrated by the small range 453 obtained for each set of colored curves. However, the posterior NEE IAV is sensitive to 454 the assimilated dataset, such that we find disagreement in NEE IAV for the TCCON-455 only, surface-only, and GOSAT-only flux inversions. 456

Differences in IAV between flux inversions can partially be explained by differences 457 in the observational coverage of the datasets. As an example, let's consider the differ-458 ences in IAV between the surface-only and GOSAT-only flux inversions in 2011 over tem-459 perate North America (Fig. 8). Figure 8a shows the monthly CO_2 anomalies observed 460 by GOSAT and the surface in situ and flask network over the summer of 2011. GOSAT 461 X_{CO_2} measurements are distributed uniformly across North America, while surface in situ 462 and flask measurements are located south of Lake Superior. This observational cover-463 age is reflected in the posterior fluxes. The GOSAT-only posterior NEE anomalies (Fig. 8b) 464 reflect the large scale structures in the X_{CO_2} anomalies but miss smaller scale structures, 465 such as the positive anomalies over south central North America. The surface-only pos-466 terior anomalies (Fig. 8c) capture large anomalies seen in CO_2 , such as the anomalous 467 release of CO₂ in south central North America, but miss much of the large scale struc-468 tures. Combining these two datasets in a single inversion, referred to as "GOSAT+surface". 469 captures both the large scale structures from the GOSAT-only and small-scale structures 470 from the surface-only flux inversion (Fig. 8d). The posterior NEE anomalies from the 471

Figure 7. IAV in NEE for 2010–2015 at 14 day temporal resolution for (a) the entire northern extratropics ($i_{3}30^{\circ}$ N), (b) temperate North America, (c) northern North America, (d) Europe, (e) east Asia, and (f) north Asia. The shaded curves show the range of posterior fluxes obtained by the GOSAT-only (purple), TCCON-only (grey), surface-only (yellow), and GOSAT+surface+TCCON (dark green) flux inversions. A 3-point (42 day) running mean is performed to remove high frequency variability.

GOSAT+surface flux inversion also correlate with anomalies in soil temperature (mean
of MERRA-2 soil temperature over levels 1–3, Reichle et al. (2011, 2017)) (Fig. 8e) and
soil moisture (ESA CCI Surface Soil Moisture Product, Y. Y. Liu et al. (2011, 2012); Wagner et al. (2012); Gruber et al. (2017); Dorigo et al. (2017)) (Fig. 8f) over this time period, suggesting that combining these datasets produces more realistic NEE IAV. Similar results were found over Eurasia during the summer of 2010 (Fig. S5).

On an annual basis, we find mixed agreement between flux inversions in year-to-478 year variations. Figure 9 shows IAV in annual net NEE anomalies for the entire north-479 ern extratropics. In general, IAV in annual net fluxes are consistent for a given set of as-480 similated data, suggesting that the results are not sensitive to the prior fluxes and er-481 rors used. Note that the prior NEE fluxes did not contain IAV, which has previously been 482 shown to have a substantial impact on posterior NEE IAV (Byrne et al., 2019). How-483 ever, posterior IAV is quite variable between different assimilated datasets. The cause 484 of these differences between the flux inversions are likely partially due to differences in 485 the observational coverage between datasets. It is possible that differences between datasets 486 are also partially due to changes in the observational coverage over time, which has pre-487 viously been shown to have an impact on inferred fluxes (Rödenbeck et al., 2003; Gur-488 ney et al., 2008; Bruhwiler et al., 2011). 489

490 5 Discussion

491

5.1 Consistency in surface-based and spaced-based flux constraints

The results generally show good agreement between the flux inversions assimilat-492 ing different datasets. The agreement between the surface-only and GOSAT-only flux 493 inversions may seem surprising in the context of a number of previous studies that have 494 shown substantial differences between surface-based and space-based flux estimates (Basu 495 et al., 2013; Chevallier et al., 2014; Houweling et al., 2015). However, more recent stud-496 ies have shown improved agreement between surface-based and space-based flux inver-497 sions. Chevallier et al. (2019) found that flux inversions assimilating OCO-2 ACOS ver-498 sion 9 measurements gave similar net annual fluxes to those assimilating surface-based 499 measurements, and that both compared well against aircraft measurements. Interest-500 ingly, Chevallier et al. (2019) also found that GOSAT OCO Full Physics (OCFP) v7.1 501 XCO₂ retrievals did not compare as well against aircraft measurements. Comparisons 502 between the ACOS 7.3 and OCFP v7.1 (downloaded from the Copernicus Climate Change 503 Service, https://climate.copernicus.eu/) show substantial differences in zonal mean X_{CO2} 504 (Fig. S6). Furthermore, GOSAT ACOS 7.3 retrievals are found to give better agreement 505 with posterior-simulated- CO_2 from the surface-only flux inversion (Fig. S7). This sug-506 gests that the specific retrieval algorithm used has a large impact on the posterior fluxes, 507 such that the improved agreement between surface-based and space-based measurements 508 found in recent studies may be primarily due to improvements in the ACOS X_{CO_2} re-509 trieval algorithm. Miller and Michalak (2019) have also argued that recent improvements 510 in the ACOS algorithm have substantially increased the reliability of OCO-2 X_{CO_2} mea-511 surements in flux inversions studies (for version 8 in particular). Substantial work has 512 gone into refining the ACOS retrieval algorithm over the past decade (O'Dell et al., 2012; 513 Crisp et al., 2012; Eldering et al., 2017; O'Dell et al., 2018; Kiel et al., 2019; Nelson & 514 O'Dell, 2019). Thus, the improved agreement between surface-based and space-based CO_2 515 constraints is likely best explained by improvements in the ACOS retrieval algorithm. 516

A consistent six-year mean northern extratropical sink is obtained by all observational datasets. This result is in contrast to several previous studies that found substantial differences in the annual net NEE flux of CO_2 in the northern extratropics between flux inversions assimilating surface-based and space-based measurements (Basu et al., 2013; Saeki et al., 2013; Chevallier et al., 2014; Reuter et al., 2014). The reason why we obtain a more consistent annual net flux between datasets than some earlier studies is

Figure 8. Monthly anomalies in (a) GOSAT X_{CO_2} (ppm, 4° \times 5° grid cells) and surface site CO₂ (ppm divided by four, circles), (b) GOSAT-only posterior NEE, (c) surface-only posterior NEE, (d) GOSAT+surface posterior NEE, (e) MERRA-2 soil temperature, (f) ESA CCI soil moisture, for (left-to-right) May, June, and July of 2011.

Figure 9. Annual net IAV in NEE over 2010-2015 for the TCCON-only, surface-only, GOSAT-only, and GOSAT+surface+TCCON flux inversions. Shaded grey regions show the range for the fluxes, while the solid black line shows the mean. Individual inversions are shown by the filled circles, with colors indicating prior NEE applied: green circles indicate SiB3, blue circles indicate CASA, and red circles indicate FLUXCOM.

not immediately clear, but could be due to advancements in the retrieval algorithm (e.g., 523 ACOS 3.3 and earlier versions were used in Houweling et al. (2015)) or due to the fact 524 that we look at a multi-year mean while earlier studies looked at shorter time periods 525 (e.g., Houweling et al. (2015) only examined June 2009 to June 2010). In fact, we find 526 that the surface-only inversion suggests weaker uptake in 2010 than average (by 0.40 to 527 0.49 PgC yr^{-1}), while the GOSAT flux inversion suggests near average uptake (see Sec. 4.3), 528 suggesting that the difference in inferred fluxes between these two datasets may have been 529 unusually large for 2010. However, it is important to note that differences in annual net 530 fluxes do not imply biases in the measurements. There are aspects of the inversion set-531 ups that can lead to differences. For example, differences in the distribution of obser-532 vations can lead to significant differences in annual net fluxes (J. Liu et al., 2014; Byrne 533 et al., 2017; Basu et al., 2018). Thus, one should not necessarily expect consistent an-534 nual net fluxes from observational datasets with spatial and temporal gaps in observa-535 tional coverage. 536

537

5.2 Does combining datasets improve flux inversions?

Is it possible to conclude that the GOSAT+surface+TCCON flux inversions im-538 prove flux estimates relative to the flux inversions that assimilate a single dataset? Of 539 course, the answer to this question depends on how "improve" is defined. The GOSAT+surface+TCCON 540 flux inversions generally show a small reduction in model-data differences against inde-541 pendent aircraft-based CO_2 and $OCO-2 X_{CO_2}$ (north of 40°N). This suggests that com-542 bining these datasets in a flux inversion framework produces NEE fluxes that better re-543 cover the true atmospheric CO_2 fields than any dataset alone. However, confounding fac-544 tors in evaluating these fluxes remain a significant concern. Model transport errors ap-545 pear to be a main driver of data-model differences for aircraft-based CO_2 measurements, 546 and obscures the source of data-model differences. Evaluating optimized fluxes against 547 OCO-2 is also problematic because these retrievals are known to have their own biases. 548

The GOSAT+surface+TCCON flux inversions improve the precision of the posterior NEE fluxes relative to the flux inversions assimilating one dataset. This is found to be the case at seasonal, annual, and interannual scales. The GOSAT+surface+TCCON flux inversions closely resemble the GOSAT-only NEE fluxes during the summer and surfaceonly fluxes during the winter for five northern extratropical regions. This is expected given the spatiotemporal distribution of GOSAT and surface-based CO₂ measurements and suggests that the GOSAT+surface+TCCON posterior NEE fluxes are better constrained by the observations than the GOSAT-only or surface-only flux inversions. Therefore, the
 GOSAT+surface+TCCON flux inversions are less likely to be impacted by biases in the
 observational coverage, such that, from an observational coverage perspective, we can
 conclude that the GOSAT+surface+TCCON flux inversions are better constrained than
 the GOSAT-only or surface-only flux inversions.

An important concern in combining CO_2 datasets within a single flux inversion sys-561 tem is that there could be relative biases in the atmospheric CO_2 constraints provided 562 by the different datasets. Any inconsistency in flux constraints between datasets has the 563 potential of introducing artifacts into the posterior fluxes. Biases in the observations could 564 be present due to errors in the X_{CO_2} retrieval algorithm, representativness errors (Agustí-565 Panareda et al., 2019) or model transport errors. Several previous studies have suggested 566 that unrealistically large uptake over Europe ($\sim 1.5 \text{ PgC yr}^{-1}$) is recovered in posterior 567 fluxes due to biases in the GOSAT retrieval algorithm (Basu et al., 2013; Chevallier et 568 al., 2014), although the ACOS retrieval algorithm has undergone significant development 569 since these studies (Eldering et al., 2017; O'Dell et al., 2018) resulting in reduced biases 570 (Miller & Michalak, 2019). Similarly, a number of studies have pointed out systematic 571 transport errors in GEOS-Chem (Yu et al., 2018; Schuh et al., 2019), as-well as biases 572 in reanalysis winds (e.g., vertical mixing, Parazoo et al. (2012)). We do not find clear 573 evidence for biases between the surface-based and GOSAT constraints, although, these 574 biases may be challenging to identify. However, we do see the impact of model transport 575 errors in comparisons between the posterior-simulated- CO_2 and aircraft measurements. 576 Ideally, this analysis should be performed with two different transport models so that 577 transport related errors could be more easily identified. 578

579 6 Conclusions

This study presented a series of flux inversions assimilating surface-based flask and 580 in situ CO_2 measurements, TCCON X_{CO_2} , GOSAT X_{CO_2} , or all datasets combined. All 581 of the flux inversions showed improved agreement with independent aircraft-based CO_2 582 measurements relative to prior flux estimates. The GOSAT+surface+TCCON flux in-583 version gave the smallest RMS differences against aircraft-based CO₂ measurements over 584 East Asia and North America, and OCO-2 X_{CO2} measurements (north of 40° N), sug-585 gesting that combining the datasets improves flux estimates. However, the data-model 586 mismatches were strongly impacted by transport model, which makes robust evaluations 587 of posterior surface fluxes challenging. 588

We found that all observing systems generally give consistent posterior NEE fluxes 589 relative to the spread in prior fluxes. This suggests that these datasets provide consis-590 tent information on NEE. The GOSAT+surface+TCCON posterior NEE most closely 591 resembles the GOSAT-only posterior NEE during the summer and surface-only poste-592 rior NEE during the winter, consistent with the temporal variations in the observational 593 constraints. This suggests that the GOSAT+surface+TCCON flux inversions benefit from 594 the improved spatiotemporal distribution of measurements, providing posterior fluxes 595 that are better informed by measurements throughout the year. 596

The results of this study suggest that surface-based and space-based atmospheric CO₂ constraints provide consistent constraints on NEE fluxes, and can be combined in a flux inversion framework. This result stands in contrast to earlier attempts to combine these datasets (Houweling et al., 2015), and suggests that the improved consistency between the datasets has been made possible by the considerable effort spent refining the ACOS retrieval algorithm (Eldering et al., 2017; O'Dell et al., 2018; Kiel et al., 2019; Chevallier et al., 2019; Miller & Michalak, 2019).

⁶⁰⁴ 7 Appendix: Prior NEE fluxes and errors

7.1 Simple biosphere model (SiB3)

SiB3 was originally designed as a lower boundary for General Circulation Models 606 with explicit treatment of biophysical processes. The ability to ingest satellite phenol-607 ogy was later introduced (P. Sellers et al., 1996; P. J. Sellers et al., 1996), and further 608 refinements included a prognostic canopy air space (Vidale & Stöckli, 2005), more re-609 alistic soil and snow (I. Baker et al., 2003) and modifications to calculations of root wa-610 ter uptake and soil water stress (I. Baker et al., 2008). The current version is called SiB3. 611 Simulations used in this analysis use phenology (Leaf Area Index, LAI; fraction of Pho-612 tosynthetically Active Radiation, fPAR) from the Moderate Resolution Imaging Spec-613 troradiometer (MODIS). MERRA reanalysis is used as model inputs, with precipitation 614 scaled to Global Precipitation Climatology Project (GPCP: Adler et al. (2003)) follow-615 ing I. T. Baker et al. (2010). 616

These fluxes are adjusted to obtain a global net drawdown equal to 4.6 PgC yr⁻¹. To do this, the annual net flux at each grid cell and global total annual net drawdown are calculated. The annual net flux at each gridcell is then scaled so that the annual net flux is 4.6 PgC yr⁻¹. The difference between the original and scaled annual net flux at each grid cell is then calculated. From this difference, an adjustment at each grid cell for each 14-day period is performed so that the annual net flux then equals the scaled annual net flux at each grid cell.

The prior NEE errors are generated based on the NEE fluxes provided by the models. It is first taken to be 60% of the NEE flux. This is then increased by scaling up the errors if the mean flux for a given gridcell is large but the flux is small at a given time. For example, the uncertainty is scaled up during the fall. We also inflate the uncertainty where the flux is small for SiB3 but large for CASA and FLUXCOM. The final errors range from 100% to 500% of the NEE flux.

7.2 CASA

630

605

The version of the model used here, CASA-GFED3, was modified from Potter et 631 al. (1993) as described in Randerson et al. (1996) and van der Werf et al. (2006). It is 632 driven by MERRA reanalysis and satellite-observed NDVI to track plant phenology. We 633 use the same fluxes as are used for the CarbonTracker 2016 (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/ 634 prior. CASA outputs monthly fluxes of Net Primary Productivity (NPP) and heterotropic 635 respiration ($R_{\rm H}$). From these fluxes, GPP and ecosystem respiration ($R_{\rm e}$) are estimated 636 to be GPP = 2NPP and $R_e = R_H - NPP$. Temporal downscaling and smoothing was 637 performed from monthly CASA fluxes to 90-min fluxes using temperature and shortwave 638 radiation from the ECMWF ERA-interim reanalysis (note this method differs from Olsen 639 and Randerson (2004). GFED_CMS is used for global fire emissions (http://nacp-files.nacarbon.org/nacp-640 kawa-01/). We use average model fluxes by averaging the fluxes for 2007–2012. 641

These fluxes are adjusted to obtain a global net drawdown equal to 4.6 PgC yr⁻¹. To do this, the annual net flux at each grid cell and global total annual net drawdown are calculated. The annual net flux at each gridcell is then scaled so that the annual net flux is 4.6 PgC yr⁻¹. The difference between the original and scaled annual net flux at each grid cell is then calculated. From this difference, an adjustment at each grid cell for each 14-day period is performed so that the annual net flux then equals the scaled annual net flux at each grid cell.

The prior NEE errors are generated based on the NEE fluxes provided by the models. It is first taken to be 60% of the NEE flux. This is then increased by scaling up the errors if the mean flux for a given gridcell is large but the flux is small at a given time. For example, the uncertainty is scalled up during the fall. We also inflate the uncertainty where the flux is small for CASA but large for SiB3 and FLUXCOM. The final errors range from 100% to 500% of the NEE flux.

655 7.3 FLUXCOM

FLUXCOM products are generated using upscaling approaches based on machine 656 learning methods that integrate FLUXNET site level observations, satellite remote sens-657 ing, and meteorological data (Tramontana et al., 2016; Jung et al., 2017). Jung et al. 658 (2017) generate R_e products using several machine learning methods. For this study, we 659 downloaded the products generated using random forests (RF), multivariate regression 660 splines (MARS) and artificial neural networks (ANN) at daily resolution from the Data 661 Portal of the Max Planck Institute for Biochemistry (https://www.bgc-jena.mpg.de). The 662 mean seasonal cycle over 2008-2012 is calculated for each product. 663

These fluxes are adjusted to obtain a global net drawdown equal to 4.6 $PgC yr^{-1}$. 664 For FLUXCOM, we only adjust fluxes south of 35° N because the northern extratrop-665 ical NEE fluxes have been heavily informed by FLUXNET sites. For grid cells south of 666 35° N, the annual net flux at each grid cell and global total annual net drawdown are 667 calculated. The annual net flux at each gridcell is then scaled so that the annual net flux 668 is 4.6 $PgC yr^{-1}$. The difference between the original and scaled annual net flux at each 669 grid cell is then calculated. From this difference, an adjustment at each grid cell for each 670 14-day period is performed so that the annual net flux then equals the scaled annual net 671 flux at each grid cell. 672

The prior NEE errors are generated based on the NEE fluxes provided by the models. It is first taken to be 60% of the NEE flux. This is then increased by scaling up the errors if the mean flux for a given gridcell is large but the flux is small at a given time. For example, the uncertainty is scalled up during the fall. We also inflate the uncertainty where the flux is small for FLUXCOM but large for SiB3 and CASA. The final errors range from 100% to 500% of the NEE flux.

679 Acknowledgments

Brendan Byrne's research was supported by an appointment to the NASA Postdoctoral 680 Program at the Jet Propulsion Laboratory, administered by Universities Space Research 681 Association under contract with NASA. The research carried out at the Jet Propulsion 682 Laboratory, California Institute of Technology, was under a contract with the National 683 Aeronautics and Space Administration. Kevin Bowman's research was supported by the 684 NASA Carbon Monitoring System (CMS) project (NNH16ZDA001N-CMS). Resources 685 supporting this work were provided by the NASA High-End Computing (HEC) Program 686 through the NASA Advanced Supercomputing (NAS) Division at Ames Research Cen-687 ter. The JR-STATION dataset is available from the Global Environmental Database, 688 hosted by Center for Global Environmental Research (CGER), National Institute for En-689 vironmental Studies (NIES) 690

(http://db.cger.nies.go.jp/portal/geds/atmosphericAndOceanicMonitoring). TC-691 CON data were obtained from the TCCON Data Archive, hosted by CaltechDATA (http://tccondata.org). 692 FLUXCOM products were obtained from the Data Portal of the Max Planck Institute 693 for Biochemistry [https://www.bgc-jena.mpg.de]. MERRA-2 products were downloaded 694 from MDISC [https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/], managed by the NASA 695 Goddard Earth Sciences (GES) Data and Information Services Center (DISC). GOSAT OCFP v7.1 X_{CO₂} retrievals were downloaded from the Copernicus Climate Change Ser-697 vice website (https://cds.climate.copernicus.eu). Version 4.1 of the GLOBALVIEW plus 698 package was downloaded from http://www.esrl.noaa.gov/gmd/ccgg/obspack/. ESA CCI 699 soil moisture data was downloaded from https://www.esa-soilmoisture-cci.org/. Odiac 700 emissions dataset was provided by T. Oda of Colorado State University, Fort Collins CO, 701 USA/Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder 702

CO, USA. Odiac project is supported by Greenhouse Gas Observing SATellite (GOSAT)

project, National Institute for Environmental Studies (NIES), Japan. We thank S. Basu

⁷⁰⁵ for providing downscaled ODIAC emissions. We thank T. Machida, H. Matsueda, Y. Sawa,

and Y. Niwa for providing CONTRAIL measurements. The TCCON site at Réunion Is-

⁷⁰⁷ land is operated by the Royal Belgian Institute for Space Aeronomy with financial sup-

⁷⁰⁸ port in 2014, 2015, 2016, 2017, 2018 and 2019 under the EU project ICOS-Inwire and

- the ministerial decree for ICOS (FR/35/IC2) and local activities supported by LACy/UMR8105
- Université de La Réunion. The TCCON project for Rikubetsu site is supported in part
- ⁷¹¹ by the GOSAT series project. ©2019. All rights reserved.

712 **References**

728

729

730

- Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., ...
 others (2003). The version-2 Global Precipitation Climatology Project
 (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor.,
 4(6), 1147–1167.
 Agustí-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz Sabater,
- 718
 J., Barré, J., ... Wunch, D. (2019). Modelling CO₂ weather why hori

 719
 zontal resolution matters. Atmos. Chem. Phys., 19(11), 7347–7376. Re

 720
 trieved from https://www.atmos-chem-phys.net/19/7347/2019/

 721
 10.5194/acp-19-7347-2019
- Bacastow, R. (1976). Modulation of atmospheric carbon dioxide by the southern oscillation. *Nature*, 261(5556), 116–118. doi: 10.1038/261116a0
- Baker, I., Denning, A. S., Hanan, N., Prihodko, L., Uliasz, M., Vidale, P.-L., ...
 Bakwin, P. (2003). Simulated and observed fluxes of sensible and latent heat
 and CO₂ at the WLEF–TV tower using SiB2. 5. Glob. Change Biol., 9(9),
 1262–1277.
 - Baker, I., Prihodko, L., Denning, A., Goulden, M., Miller, S., & Da Rocha, H. (2008). Seasonal drought stress in the Amazon: Reconciling models and observations. J. Geophys. Res.-Biogeo., 113(G00B01). doi: 10.1029/2007JG000644
- Baker, I. T., Denning, A. S., & Stöckli, R. (2010). North American gross primary productivity: regional characterization and interannual variability. *Tellus B*, 62(5), 533-549. doi: 10.1111/j.1600-0889.2010.00492.x
- Basu, S., Baker, D. F., Chevallier, F., Patra, P. K., Liu, J., & Miller, J. B. (2018).
 The impact of transport model differences on co 2 surface flux estimates from oco-2 retrievals of column average co 2. Atmospheric Chemistry & Physics, 18(10).
- 738Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., ... oth-739ers(2013).Global CO₂ fluxes estimated from GOSAT retrievals of to-740tal column CO₂.Atmos. Chem. Phys., 13(17), 8695–8717.doi: 10.5194/741acp-13-8695-2013
- Bolin, B., & Keeling, C. (1963). Large-scale atmospheric mixing as deduced from the
 seasonal and meridional variations of carbon dioxide. J. Geophys. Res., 68(13),
 3899–3920. doi: 0.1029/JZ068i013p03899
- Bowman, K., Liu, J., Bloom, A., Parazoo, N., Lee, M., Jiang, Z., ... others (2017).
 Global and Brazilian carbon response to El Niño Modoki 2011–2010. Earth
 and Space Sci., 4(10), 637–660. doi: 10.1002/2016EA000204
- Brix, H., Menemenlis, D., Hill, C., Dutkiewicz, S., Jahn, O., Wang, D., ... Zhang,
 H. (2015). Using green's functions to initialize and adjust a global, eddying
 ocean biogeochemistry general circulation model. Ocean Modelling, 95, 1–14.
- Bruhwiler, L., Michalak, A., & Tans, P. (2011). Spatial and temporal resolution of
 carbon flux estimates for 1983–2002. *Biogeosciences*, 8(5), 1309–1331. doi: 10
 .5194/bg-8-1309-2011

<sup>Byrne, B., Jones, D. B. A., Strong, K., Polavarapu, S. M., Harper, A. B., Baker,
D. F., & Maksyutov, S. (2019). On what scales can gosat flux inversions</sup>

756	constrain anomalies in terrestrial ecosystems? Atmos. Chem. Phys., $19(20)$,
757	13017–13035. doi: $10.5194/acp-19-13017-2019$
758	Byrne, B., Jones, D. B. A., Strong, K., Zeng, ZC., Deng, F., & Liu, J. (2017). Sen-
759	sitivity of CO ₂ surface flux constraints to observational coverage. J. Geophys.
760	ResAtmos, $112(12)$, $6672-6694$. doi: $10.1002/2016$ JD026164
761	Byrne, B., Wunch, D., Jones, D., Strong, K., Deng, F., Baker, I., others (2018).
762	Evaluating GPP and respiration estimates over northern midlatitude ecosys-
763	tems using solar-induced fluorescence and atmospheric CO_2 measurements.
764	Journal of Geophysical Research: Biogeosciences, 123(9), 2976–2997.
765	Chatterjee, A., Gierach, M., Sutton, A., Feely, R., Crisp, D., Eldering, A.,
766	Schimel, D. (2017). Influence of El Niño on atmospheric CO_2 over the tropical
767	Pacific Ocean: Findings from NASA's OCO-2 mission. <i>Science</i> , 358(6360),
768	eaam5776. doi: 10.1126/science.aam5776
769	Chevallier F. Deutscher N.M. Conway T. Ciais P. Ciattaglia L. Dohe S.
770	others (2011) Global CO ₂ fluxes inferred from surface air-sample measure-
770	ments and from TCCON retrievals of the CO ₂ total column <i>Ceonhus Res</i>
771	Lett $38(2\Lambda)$
772	Chavalliar F. Palmar, P. I. Fang, I. Boosch, H. O'Doll, C. W. & Bousquat, P.
773	(2014) Toward robust and consistent regional CO ₂ flux estimates from in situ
774	and spaceborno monsurements of atmospheric CO_2 . Combus. Res. Lett. $1/(3)$
775	and spaceboline measurements of atmospheric OO_2 . <i>Geophys. Res. Lett.</i> , $41(5)$, 1065–1070 (2013CL058772) doi: 10.1002/2013CL058772
776	(2013GL030772) doi: $10.1002/2013GL030772$
777	(2010) Objective evoluation of surface, and satellite driven on at
778	A. (2019). Objective evaluation of surface- and satellite-driven c_2 at-
779	10 5104 / com 2010 212
780	10.5194/acp-2019-215
781	Cooperative Global Atmospheric Data Integration Project. (2018). Multi-laboratory
782	compilation of atmospheric carbon dioxide data for the period 1957-2017;
783	$obspack_CO_2_1_globalviewplus_v4.1_2018_10_29$; noaa earth system research
784	laboratory, global monitoring division. doi: 10.25925/20181026
785	Crisp, D., Atlas, R., Breon, FM., Brown, L., Burrows, J., Ciais, P., others
786	(2004). The orbiting carbon observatory (OCO) mission. Advances in Space
787	Research, 34(4), 700–709.
788	Crisp, D., Fisher, B. M., O'Dell, C., Frankenberg, C., Basilio, R., Bösch, H.,
789	Yung, Y. L. (2012). The ACOS CO_2 retrieval algorithm-Part II: Global
790	XCO_2 data characterization. Atmos. Meas. Tech., 5(4), 687–707. doi:
791	10.5194/amt-5-687-2012
792	De Mazière, M., Sha, M. K., Desmet, F., Hermans, C., Scolas, F., Kumps, N.,
793	Cammas, JP. (2017). Tccon data from réunion island (re), release
794	ggg2014.r1. CaltechDATA. Retrieved from https://data.caltech.edu/
795	records/322 doi: 10.14291/tccon.ggg2014.reunion01.r1
796	Diallo, M., Legras, B., Ray, E., Engel, A., & Añel, J. A. (2017). Global distribu-
797	tion of CO_2 in the upper troposphere and stratosphere. Atmos. Chem. Phys.,
798	17(6), 3861-3878. Retrieved from https://www.atmos-chem-phys.net/17/
799	3861/2017/ doi: 10.5194/acp-17-3861-2017
800	Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
801	others (2017). Esa cci soil moisture for improved earth system understanding:
802	State-of-the art and future directions. Remote Sens. Environ., 203, 185–215.
803	Dutkiewicz, S., Follows, M. J., & Bragg, J. G. (2009). Modeling the coupling of
804	ocean ecology and biogeochemistry. Global Biogeochem. Cy., 23(4).
805	Eldering, A., O'Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte
806	C., Yoshimizu, J. (2017). The orbiting carbon observatory-2: first
807	18 months of science data products. $Atmos. Meas. Tech., 10(2), 549-563$
808	doi: 10.5194/amt-10-549-2017
800	Feist D G Arnold S G John N & Geibel M C (2017) Tecon data
810	from ascension island (sh). release aaa2014.r0. CaltechDATA Re-

811	trieved from https://data.caltech.edu/records/210 doi: 10.14291/
812	tccon.ggg2014.ascension01.r0/1149285
813	Fischer, M. L., Parazoo, N., Brophy, K., Cui, X., Jeong, S., Liu, J., others
814	(2017). Simulating estimation of california fossil fuel and biosphere carbon
815	dioxide exchanges combining in situ tower and satellite column observations. J .
816	Geophys. ResAtmos., 122(6), 3653–3671.
817	Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
818	others (2017). The modern-era retrospective analysis for research and applica-
819	tions, version 2 (MERRA-2). J. Climate, 30(14), 5419–5454.
820	Griffith, D. W., Deutscher, N. M., Velazco, V. A., Wennberg, P. O., Yavin, Y.,
821	Keppel-Aleks, G., Bryant, G. W. (2017). Tccon data from darwin (au), re-
822	lease ggg2014.r0. CaltechDATA. Retrieved from https://data.caltech.edu/
823	records/269 doi: 10.14291/tccon.ggg2014.darwin01.r0/1149290
824	Griffith, D. W., Velazco, V. A., Deutscher, N. M., Paton-Walsh, C., Jones, N. B.,
825	Wilson, S. R., Riggenbach, M. O. (2017). Tecon data from wollongong
826	(au), release qqq2014.r0. CaltechDATA. Retrieved from https://data
827	.caltech.edu/records/291 doi: 10.14291/tccon.ggg2014.wollongong01.r0/
828	1149291
829	Gruber, A., Dorigo, W. A., Crow, W., & Wagner, W. (2017). Triple collocation-
830	based merging of satellite soil moisture retrievals. IEEE T. Geosci. Remote,
831	55(12), 6780-6792.
832	Gurney, K. R., Baker, D., Rayner, P., & Denning, S. (2008). Interannual varia-
833	tions in continental-scale net carbon exchange and sensitivity to observing
834	networks estimated from atmospheric CO_2 inversions for the period 1980 to
835	2005. Global Biogeochem. Cy., 22(3). Retrieved from http://dx.doi.org/
836	10.1029/2007GB003082 (GB3025) doi: 10.1029/2007GB003082
837	Houweling, S., Baker, D., Basu, S., Boesch, H., Butz, A., Chevallier, F., oth-
838	ers (2015). An intercomparison of inverse models for estimating sources and
839	sinks of CO_2 using GOSAT measurements. J. Geophys. ResAtmos., 120(10),
840	5253-5266.
841	ICOS RI. (2019). Icos atmospheric greenhouse gas mole fractions of CO_2 , CH_4 ,
842	CO , ¹⁴ CO_2 and meteorological observations september 2015 - april 2019 for 19
843	stations (49 vertical levels), final quality controlled level 2 data (version 1.0).
844	icos eric - carbon portal. doi: 10.18160/CE2R-CC91
845	Iraci, L. T., Podolske, J. R., Hillyard, P. W., Roehl, C., Wennberg, P. O., Blavier,
846	JF., Boyden, H. (2017). Tecon data from edwards (us), release
847	ggg2014.r1. CaltechDATA. Retrieved from https://data.caltech.edu/
848	records/270 doi: 10.14291/tccon.ggg2014.edwards01.r1/1255068
849	Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A.,
850	\dots others (2017). Compensatory water effects link yearly global land CO ₂ sink
851	changes to temperature. Nature, 541 (7638), 516–520.
852	Keeling, C. D. (1960). The concentration and isotopic abundances of carbon dioxide
853	in the atmosphere. $Tellus$, $12(2)$, $200-203$.
854	Keeling, C. D., Chin, J., & Whorf, T. (1996). Increased activity of northern vege-
855	tation inferred from atmospheric CO ₂ measurements. <i>Nature</i> , 382(6587), 146-
856	149.
857	Kiel, M., O'Dell, C. W., Fisher, B., Eldering, A., Nassar, R., MacDonald, C. G., &
858	Wennberg, P. O. (2019). How bias correction goes wrong: measurement of
859	xco2 affected by erroneous surface pressure estimates. Atmos. Meas. Tech
860	12(4).
861	Liu, J., Bowman, K. W., Lee, M., Henze, D. K., Bousserez, N., Brix, H., others
862	(2014). Carbon monitoring system flux estimation and attribution: impact
863	of ACOS-GOSAT XCO ₂ sampling on the inference of terrestrial biospheric
864	sources and sinks. Tellus B, $66(1)$, 22486. doi: 10.3402/tellusb.v66.22486
865	Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., El-

866 867 868 869 870	 dering, A. (2017). Contrasting carbon cycle responses of the tropical continents to the 2015–2016 el niño. Science, 358 (6360). doi: 10.1126/science.aam5690 Liu, Y. Y., Dorigo, W. A., Parinussa, R., de Jeu, R. A., Wagner, W., McCabe, M. F., Van Dijk, A. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ., 123, 280–297.
871 872 873	 Liu, Y. Y., Parinussa, R., Dorigo, W. A., De Jeu, R. A., Wagner, W., Van Dijk, A., Evans, J. (2011). Developing an improved soil moisture dataset by blend- ing passive and active microwave satellite-based retrievals. <i>Hydrol. Earth Syst.</i>
874	Sc., 15(2), 425-436.
875	Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N.,
876	Ogawa, T. (2008). Worldwide measurements of atmospheric co2 and other
877	trace gas species using commercial airlines. Journal of Atmospheric and $O_{1} = \frac{1}{2} \frac{1}$
878	$Uceanic \ lecnnology, \ 25(10), \ 1/44-1/54.$
879	Machida, I., Matsueda, H., Sawa, Y., & Niwa, Y. (2018). Atmospheric co ₂ mole
880	praction data of CONTRAIL-CME, Ver.2017.1.0, center for global envi-
881	20180208 001
882	Macaria K Potors W Jacobson A & Tans P (2014) Obspack: a framework
883	for the preparation delivery and attribution of atmospheric greenhouse gas
884	measurements Earth Sust Sci Data $6(2)$ 375–384
226	Menemenlis D. Campin, JM. Heimbach, P. Hill, C. Lee, T. Nøuven, A.
887	Zhang, H. (2008). Ecco2: High resolution global ocean and sea ice data syn-
888	thesis. Mercator Ocean Quarterly Newsletter, 31 (October), 13–21.
889	Miller, S. M., & Michalak, A. M. (2019). The impact of improved satellite retrievals
890	on estimates of biospheric carbon balance. Atmos. Chem. Phys. Discuss.,
891	2019, 1-15. Retrieved from https://www.atmos-chem-phys-discuss.net/
892	acp-2019-382/ doi: 10.5194/acp-2019-382
893	Morino, I., Yokozeki, N., Matsuzaki, T., & Horikawa, M. (2017). Tecon data
894	from rikubetsu (jp), release ggg2014.r2. CaltechDATA. Retrieved from
895	https://data.caltech.edu/records/957 doi: 10.14291/tccon.ggg2014
896	.rikubetsu01.r2
897	Nassar, R., Napier-Linton, L., Gurney, K. R., Andres, R. J., Oda, T., Vogel, F. R.,
898	& Deng, F. (2013). Improving the temporal and spatial distribution of co2
899	emissions from global fossil fuel emission data sets. J. Geophys. ResAtmos.,
900	110(2), 917-955.
901	tions of CO ₂ from a highly alliptical orbit for studios of the Arctic and horeal
902	carbon cycle I Geonbus Res $-4tmos$ 119(5) 2654–2673
903	Nelson B B $\& O$ Dell C W (2019) The impact of improved aerosal priors on
904	near-infrared measurements of carbon dioxide Atmos Meas Tech 12(3)
906	1495-1512. Retrieved from https://www.atmos-meas-tech.net/12/1495/
907	2019/ doi: 10.5194/amt-12-1495-2019
908	Oda, T., & Maksyutov, S. (2011). A very high-resolution $(1 \text{ km} \times 1 \text{ km})$ global fossil
909	fuel co 2 emission inventory derived using a point source database and satellite
910	observations of nighttime lights. Atmos. Chem. Phys., 11(2), 543–556.
911	Oda, T., Maksyutov, S., & Andres, R. J. (2018). The open-source data inven-
912	tory for anthropogenic co_2 , version 2016 (odiac2016): a global monthly fos-
913	sil fuel co_2 gridded emissions data product for tracer transport simulations
914	and surface flux inversions. Earth Syst. Sci. Data, $10(1)$, 87–107. Re-
915	trieved from https://www.earth-syst-sci-data.net/10/87/2018/ doi:
916	10.5194/essd-10-87-2018
917	O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R.,
918	Wunch, D. (2012). The ACOS CO_2 retrieval algorithm – part 1: Description
919	and validation against synthetic observations. Atmos. Meas. Tech., 5(1), 99–
920	121. Retrieved from http://www.atmos-meas-tech.net/5/99/2012/ doi:

021	10.5194/amt-5-99-2012
022	O'Dell C W Eldering A Wennberg P O Crisp D Gunson M B Fisher B
923	Velazco, V. A. (2018). Improved retrievals of carbon dioxide from orbiting
924	carbon observatory-2 with the version 8 acos algorithm. Atmos. Meas. Tech.
925	11(12), 6539-6576. Retrieved from https://www.atmos-meas-tech.net/11/
926	6539/2018/ doi: 10.5194/amt-11-6539-2018
927	Olsen, S. C., & Randerson, J. T. (2004). Differences between surface and column
928	atmospheric CO ₂ and implications for carbon cycle research. J. Geophys. Res
929	<i>Atmos.</i> , 109(D2). (D02301) doi: 10.1029/2003JD003968
930	Parazoo, N. C., Denning, A. S., Kawa, S. R., Pawson, S., & Lokupitiva, R. (2012).
931	CO_2 flux estimation errors associated with moist atmospheric processes. At-
932	mos. Chem. Phys., 12(14), 6405–6416. doi: 10.5194/acp-12-6405-2012
933	Philip, S., Johnson, M. S., Potter, C., Genovesse, V., Baker, D. F., Havnes, K. D.,
934	\dots Poulter, B. (2019). Prior biosphere model impact on global terrestrial CO ₂
935	fluxes estimated from oco-2 retrievals. Atmos. Chem. Phys. Discuss., 2019,
936	1–29. doi: 10.5194/acp-2018-1095
937	Polavarapu, S. M., Deng, F., Byrne, B., Jones, D. B. A., & Neish, M. (2018). A
938	comparison of posterior atmospheric CO_2 adjustments obtained from in situ
939	and gosat constrained flux inversions. Atmos. Chem. Phys., 18(16), 12011-
940	12044. doi: 10.5194/acp-18-12011-2018
941	Randerson, J. T., Thompson, M. V., Malmstrom, C. M., Field, C. B., & Fung, I. Y.
942	(1996). Substrate limitations for heterotrophs: Implications for models that es-
943	timate the seasonal cycle of atmospheric CO_2 . Global Biogeochem. Cy., $10(4)$,
944	585-602. doi: $10.1029/96$ GB01981
945	Randerson, J. T., Van Der Werf, G., Giglio, L., Collatz, G., & Kasibhatla, P. (2018).
946	Global fire emissions database, version 4.1 (gfedv4). ORNL DAAC. doi: 10
947	.3334/ORNLDAAC/1293
948	Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P., Koster, R. D.,
949	& De Lannoy, G. J. (2017). Assessment of MERRA-2 land surface hydrology
950	estimates. J. Climate, $30(8)$, $2937-2960$.
951	Reichle, R. H., Koster, R. D., De Lannoy, G. J., Forman, B. A., Liu, Q., Mahanama,
952	S. P., & Ioure, A. (2011). Assessment and enhancement of MERRA land $\frac{1}{2}$
953	surface hydrology estimates. J. Climate, 24 (24), 6322–6338.
954	Reuter, M., Buchwitz, M., Hilker, M., Heymann, J., Schneising, O., Pillai, D.,
955	others (2014). Satellite-inferred european carbon sink larger than expected. Atmass Cham Dhus $1/(24)$ 12720 12752
956	Almos. Chem. Phys., 14 (24), 15759–15755.
957	tory 1022 2001 informed from atmospheric data using a global inversion of
958	atmospheric transport Atmos Chem Phys. 2(6) 1010–1064
959	Sacki T. Maksuntov S. Saito M. Valsala V. Oda T. BLA
960	Inverse modeling of CO ₂ fluxes using goset data and multi-year ground-based
901	a_{a} observations Sola 9 45-50
062	Sasakawa M Machida T Tsuda N Arshinov M Davydov D Fofonov A &
964	Krasnov O (2013) Aircraft and tower measurements of CO_2 concentration
965	in the planetary boundary layer and the lower free troposphere over south-
966	ern taiga in West Siberia: Long-term records from 2002 to 2011. J. Geophys.
967	ResAtmos., 118(16), 9489–9498. doi: 10.1002/jgrd.50755
968	Sasakawa, M., Shimoyama, K., Machida, T., Tsuda, N., Suto, H., Arshinov, M.,
969	others (2010). Continuous measurements of methane from a tower network
970	over Siberia. Tellus B, 62(5), 403–416. doi: 10.1111/j.1600-0889.2010.00494.x
971	Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K., oth-
972	ers (2019). Quantifying the impact of atmospheric transport uncertainty on
973	co2 surface flux estimates. Global Biogeochem. $Cy.$, $33(4)$, 484 -500.
974	Sellers, P., Randall, D., Collatz, G., Berry, J., Field, C., Dazlich, D., Bounoua, L.
975	(1996). A revised land surface parameterization (SiB2) for atmospheric GCMs.

976	part I: Model formulation. J. Climate, $9(4)$, $676-705$.
977	Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich, D. A.,
978	& Randall, D. A. (1996). A revised land surface parameterization (SiB2)
979	for atmospheric GCMs. part II: The generation of global fields of terrestrial
980	biophysical parameters from satellite data. J. Climate, 9(4), 706–737.
981	Strong, K., Roche, S., Franklin, J. E., Mendonca, J., Lutsch, E., Weaver, D.,
982	Lindenmaier, R. (2017). Tccon data from eureka (ca), release ggg2014.r2. Cal-
983	techDATA. Retrieved from https://data.caltech.edu/records/970 doi:
984	10.14291/tccon.ggg2014.eureka01.r2
985	Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A.,
986	others (2015). Seasonal climatology of CO_2 across North America from air-
987	craft measurements in the NOAA/ESRL Global Greenhouse Gas Reference
988	Network. J. Geophys. ResAtmos., 120(10), 5155–5190.
989	Tans, P. P., Conway, T. J., & Nakazawa, T. (1989). Latitudinal distribution of the
990	sources and sinks of atmospheric carbon dioxide derived from surface observa-
991	tions and an atmospheric transport model. J. Geophys. ResAtmos., $94(D4)$,
992	5151–5172.
993	Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B.,
994	Papale, D. (2016). Predicting carbon dioxide and energy fluxes across
995	global FLUXNET sites with regression algorithms. $Biogeosciences, 13(14),$
996	4291-4313. doi: 10.5194/bg-13-4291-2016
997	van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S.,
998	& Arellano Jr, A. F. (2006). Interannual variability in global biomass burning
999	emissions from 1997 to 2004. Atmos. Chem. Phys., $6(11)$, $3423-3441$.
1000	Vidale, P., & Stöckli, R. (2005). Prognostic canopy air space solutions for land sur-
1001	face exchanges. Theor. Appl. Climatol., 80(2-4), 245–257.
1002	Wagner, W., Dorigo, W., de Jeu, R., Fernandez, D., Benveniste, J., Haas, E.,
1003	others (2012). Fusion of active and passive microwave observations to create
1004	an essential climate variable data record on soil moisture. ISPRS Annals of the
1005	Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS
1006	Annals), 7, 315–321.
1007	Wang, J. S., Kawa, S. R., Collatz, G. J., Sasakawa, M., Gatti, L. V., Machida, T.,
1008	Manyin, M. E. (2018). A global synthesis inversion analysis of recent vari-
1009	ability in co ₂ fluxes using gosat and in situ observations. Atmos. Chem. Phys.,
1010	18(15), 11097-11124. Retrieved from https://www.atmos-chem-phys.net/
1011	18/11097/2018/ doi: 10.5194/acp-18-11097-2018
1012	Warneke, T., Messerschmidt, J., Notholt, J., Weinzierl, C., Deutscher, N. M., Petri,
1013	C., & Grupe, P. (2017). Tecon data from orleans (fr), release ggg2014.r0. Cal-
1014	techDATA. Retrieved from https://data.caltech.edu/records/283 doi:
1015	10.14291/tccon.ggg2014.orleans01.r0/1149276
1016	wennberg, P. U., Koeni, U. M., Wunch, D., Toon, G. C., Blavier, JF., Washen-
1017	relater, R., Ayers, J. (2017). I ccon data from park falls (us), release
1018	ggg2014.rl. CaltecnDAIA. Retrieved from https://data.caltecn.edu/
1019	records/295 doi: 10.14291/tccon.ggg2014.parkialis01.r1
1020	Wennberg, P. O., Wunch, D., Roenl, C. M., Blavier, JF., Toon, G. C., & Allen,
1021	N. I. (2017). I ccon data from lamont (us), release ggg2014.r1. Caltech-
1022	DATA. Retrieved from https://data.caltech.edu/records/2/9 doi: 10.14901/tecon.ggg9014.lement01.ml/1255070
1023	$\frac{10.14291}{\text{ UCOII.ggg2014.lamont01.f1}} \frac{120000}{120000}$
1024	worsy, S. O. (2011). HIAPER pole-to-pole observations (HIPPO): fine-grained,
1025	giobal-scale measurements of climatically important atmospheric gases and $\frac{1}{2}$
1026	actustis. $I = I = 0.5$ A. $J = J = J = 0.5$ A. $J = J = 0.5$ A. $J = 2080$.
1027	wulleri, D., 1001, G. U., Diavier, Jr. L., Washenheider, K. A., Notholt, J., Con-
1028	nor, D. J., we inderg, r. O. (2011). The Total Carbon Column Ob- sorving Network $Philog T Pour Sec. A 260(1042) 2027 2112 Jain$
1029	Serving iverwork. <i>1 muos. 1. noy. soc. A</i> , <i>309</i> (1945), 2007–2112. (doi: 10.1008/rstp.2010.0240
1030	10.1030/1564.2010.0240

- Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer,
 M. L., ... Zondlo, M. A. (2010). Calibration of the total carbon column
 observing network using aircraft profile data. Atmos. Meas. Tech., 3(5), 1351–
 1362. doi: 10.5194/amt-3-1351-2010
- Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., & Maksyu tov, S. (2009). Global concentrations of co2 and ch4 retrieved from gosat:
 First preliminary results. Sola, 5, 160–163.
- Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., ... others
 (2013). Improvement of the retrieval algorithm for GOSAT SWIR XCO₂ and
 XCH₄ and their validation using TCCON data.
- 1041Yu, K., Keller, C. A., Jacob, D. J., Molod, A. M., Eastham, S. D., & Long, M. S.1042(2018).Errors and improvements in the use of archived meteorological1043data for chemical transport modeling: an analysis using GEOS-Chem v11-104401 driven by GEOS-5 meteorology.Geosci. Model Dev., 11(1), 305–319.1045doi:
- 1045 1

01 driven by GEOS-5 meteorology. *Geosci. Model* 10.5194/gmd-11-305-2018

Supporting Information for "Improved constraints on northern extratropical CO_2 fluxes obtained by combining surface-based and space-based atmospheric CO_2 measurements"

B. Byrne¹, J. Liu², M. Lee², I. Baker³, K. W. Bowman², N. M. Deutscher⁴,

D. G. Feist⁵, D. W. T. Griffith⁴, L. T. Iraci⁶, M. Kiel², J. S. Kimball⁷,

C. E. Miller², I. Morino⁸, N. C. Parazoo², C. Petri⁹, C. M. Roehl¹⁰,

M. K. Sha¹¹, K. Strong¹², V. A. Velazco⁴, P. O. Wennberg^{10,13}, D. Wunch¹²

¹NASA Postdoctoral Program Fellow, Jet Propulsion Laboratory, California Institute of Technology, CA, USA

²Jet Propulsion Laboratory, California Institute of Technology, CA, USA

³Atmospheric Science Department, Colorado State University, Fort Collins, CO, USA

⁴Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia

⁵Max Planck Institute for Biogeochemistry, Jena, Germany

 $^{6}\mathrm{Atmospheric}$ Science Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA

⁷Numerical Terradynamic Simulation Group, W.A. Franke College of Forestry & Conservation, The University of Montana,

Missoula, MT 59812, USA

⁸Satellite Observation Center, Center for Global Environmental Research, National Institute for Environmental Studies (NIES),

16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan

⁹Institute of Environmental Physics, University of Bremen, Bremen, Germany

¹⁰Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

¹¹Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

¹²Department of Physics, University of Toronto, Toronto, Ontario, Canada

¹³Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA

X - 2

©2019. All rights reserved. California Institute of Technology, government sponsorship acknowledged.

Contents of this file

- 1. Figures S1 to S7
- 2. Tables S1 to S2 $\,$

Corresponding author: B. Byrne, Jet Propulsion Laboratory M/S 233-200, 4800 Oak Grove Drive, Pasadena, CA 91109. (brendan.k.byrne@jpl.nasa.gov)

Figure S1. Locations of aircraft observations used in this study for (a) East Asia, (b) North America, and (c) Alaska/Arctic.

Table S1.Mean and standard deviation (std) of data-model mismatch between each fluxinversion and aircraft-based CO_2 observations over East Asia, North America, and Alaska/Arctic.

Region		East Asia		North America		Alaska/Arctic	
data set	prior NEE	mean (ppm)	std (ppm)	mean (ppm)	std (ppm)	mean (ppm)	std (ppm)
prior	SiB3	-0.06	0.85	0.08	0.97	-0.84	1.61
	CASA	-0.01	0.76	0.26	0.56	-0.59	1.36
	FLUXCOM	1.18	0.70	1.54	0.57	1.24	1.00
	Mean NEE	0.37	0.57	0.63	0.54	-0.06	1.16
TCCON	SiB3	0.16	0.46	0.33	0.43	-0.10	0.86
	CASA	0.33	0.74	0.65	0.57	-0.02	1.30
	FLUXCOM	0.42	0.45	0.42	0.45	-0.02	1.18
	Mean NEE	0.30	0.42	0.43	0.47	-0.05	1.05
surface-only	SiB3	0.01	0.44	0.34	0.35	-0.06	0.80
	CASA	0.13	0.71	0.48	0.50	-0.14	1.22
	FLUXCOM	0.22	0.60	0.46	0.33	-0.01	0.88
	Mean NEE	0.12	0.43	0.43	0.31	-0.07	0.93
GOSAT-only	SiB3	0.25	0.41	0.49	0.37	-0.06	0.76
	CASA	0.14	0.36	0.43	0.36	-0.17	0.81
	FLUXCOM	0.23	0.44	0.50	0.33	0.03	0.89
	Mean NEE	0.21	0.33	0.47	0.32	-0.06	0.79
GOSAT	SiB3	0.18	0.35	0.34	0.31	-0.7	0.75
+surface	CASA	0.15	0.39	0.42	0.36	-0.03	0.89
+TCCON	FLUXCOM	0.16	0.38	0.39	0.32	0.00	0.93
	Mean NEE	0.16	0.31	0.38	0.32	-0.03	0.84

Posterior-simulated-CO₂ was calculated at $4^{\circ} \times 5^{\circ}$ spatial resolution.

Figure S2. Number of hourly-mean aircraft measurements between 3–8 km altitude above sea level per month for (a) East Asia, (b) North America, and (c) Alaska/Arctic.

Figure S3. Same as Fig. 3 but at $2^{\circ} \times 2.5^{\circ}$ spatial resolution (except for TCCON). Comparison of monthly mean measured and simulated aircraft-based CO₂ for (a) East Asia, (b) North America, and (c) Alaska/Arctic. For each region, the mismatch for (left to right) prior, surface-only, GOSAT-only, and GOSAT+surface+TCCON simulated CO₂ are shown. The top panel shows a scatter plot of the simulated aircraft-based CO₂ against the measured aircraft-based CO₂, and the error bars indicate the spread in posterior NEE. The lower panel shows the mean data-model mismatch for each month, with $\operatorname{error}_{November 0,2}$ be grange af monthly mean mismatched over the six-years and inversion set-ups. Colors correspond to the month of year.

(a) Adjoint sensitivity of aircraft measurements over East Asia to surface fluxes

(b) Adjoint sensitivity of aircraft measurements over North America to surface fluxes

(c) Adjoint sensitivity of aircraft measurements over Alaska to surface fluxes

Figure S4. Adjoint sensitivity of aircraft-based CO_2 measurements to surface fluxes for measurements over (a) East Asia, (b) North America, and (c) Alaska/Arctic. Black boxes show the location of aircraft-based CO_2 measurements.

Figure S5. Same as Fig. 8 but for Eurasia during (left-to-right) May, June, July and August of 2010. Monthly anomalies in (a) GOSAT X_{CO_2} (ppm, 4° × 5° grid cells) and surface site CO₂ (ppm divided by four, circles), (b) GOSAT-only posterior NEE, (c) surface-only posterior NEE, (d) GOSAT+surface posterior NEE, (e) MERRA-2 soil temperature anomalies (K), and (f) ESA CCI soil moisture.

Figure S6. Detrended zonal-monthly mean high-gain nadir GOSAT X_{CO_2} retrieved by (a) ACOS 7.3 and (b) OCFP v7.1. (c) Difference in X_{CO_2} between the two retrieval algorithms.

Figure S7. Data-model mismatch of the (a) ACOS 7.3 and (b) OCFP v7.1 GOSAT high-gain nadir X_{CO_2} measurements as a function of latitude and time for the surface-only flux inversion.

Table S2.Mean and standard deviation (std) of data-model mismatch between each fluxinversion and aircraft-based CO_2 observations over East Asia, North America, and Alaska/Arctic.

Region		East Asia		North America		Alaska/Arctic	
data set	prior NEE	mean (ppm)	std (ppm)	mean (ppm)	std (ppm)	mean (ppm)	std (ppm)
4prior	SiB3	0.57	0.94	0.56	1.03	0.01	1.56
	CASA	-0.05	0.73	0.18	0.57	-0.54	1.20
	FLUXCOM	1.16	0.75	1.39	0.62	1.19	0.90
	Mean NEE	0.56	0.62	0.71	0.60	0.22	1.00
surface-only	SiB3	0.01	0.44	0.26	0.40	0.03	0.73
	CASA	0.11	0.69	0.38	0.57	-0.06	1.04
	FLUXCOM	0.22	0.62	0.35	0.39	0.06	0.79
	Mean NEE	0.11	0.45	0.33	0.38	0.01	0.79
GOSAT-only	SiB3	0.25	0.38	0.42	0.38	0.03	0.65
	CASA	0.18	0.39	0.37	0.39	-0.07	0.72
	FLUXCOM	0.24	0.46	0.42	0.36	0.14	0.75
	Mean NEE	0.22	0.35	0.40	0.35	0.03	0.68
GOSAT	SiB3	0.20	0.37	0.28	0.33	0.06	0.66
+surface	CASA	0.15	0.40	0.33	0.39	0.04	0.78
+TCCON	FLUXCOM	0.22	0.38	0.36	0.32	0.15	0.78
	Mean NEE	0.19	0.33	0.32	0.32	0.08	0.72

Posterior-simulated-CO₂ was calculated at $2^{\circ} \times 2.5^{\circ}$ spatial resolution.