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Abstract

Previous studies have interpreted Last Interglacial (LIG; ˜129–116 ka) sea-level estimates in multiple different ways to calibrate

projections of future Antarctic ice-sheet (AIS) mass loss and associated sea-level rise. This study systematically explores the

extent to which LIG constraints could inform future Antarctic contributions to sea-level rise. We develop a Gaussian process

emulator of an ice-sheet model to produce continuous probabilistic projections of Antarctic sea-level contributions over the

LIG and a future high-emissions scenario. We use a Bayesian approach conditioning emulator projections on a set of LIG

constraints to find associated likelihoods of model parameterizations. LIG estimates inform both the probability of past and

future ice-sheet instabilities and projections of future sea-level rise through 2150. Although best-available LIG estimates do not

meaningfully constrain Antarctic mass loss projections or physical processes through 2060, they become increasingly informative

over the next 130 years. Uncertainties of up to 50 cm remain in future projections even if LIG Antarctic mass loss is precisely

known (+/- 5 cm), indicating there is a limit to how informative the LIG could be for ice-sheet model future projections. The

efficacy of LIG constraints on Antarctic mass loss also depends on assumptions about the Greenland ice sheet and LIG sea-level

chronology. However, improved field measurements and understanding of LIG sea-levels still have potential to improve future

sea-level projections, highlighting the importance of continued observational efforts.
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Abstract18

Previous studies have interpreted Last Interglacial (LIG; ∼129–116 ka) sea-level estimates19

in multiple different ways to calibrate projections of future Antarctic ice-sheet (AIS) mass20

loss and associated sea-level rise. This study systematically explores the extent to which21

LIG constraints could inform future Antarctic contributions to sea-level rise. We develop22

a Gaussian process emulator of an ice-sheet model to produce continuous probabilistic23

projections of Antarctic sea-level contributions over the LIG and a future high-emissions24

scenario. We use a Bayesian approach conditioning emulator projections on a set of LIG25

constraints to find associated likelihoods of model parameterizations. LIG estimates in-26

form both the probability of past and future ice-sheet instabilities and projections of fu-27

ture sea-level rise through 2150. Although best-available LIG estimates do not mean-28

ingfully constrain Antarctic mass loss projections or physical processes until 2060, they29

become increasingly informative over the next 130 years. Uncertainties of up to 50 cm30

remain in future projections even if LIG Antarctic mass loss is precisely known (±5 cm),31

indicating there is a limit to how informative the LIG could be for ice-sheet model fu-32

ture projections. The efficacy of LIG constraints on Antarctic mass loss also depends on33

assumptions about the Greenland ice sheet and LIG sea-level chronology. However, im-34

proved field measurements and understanding of LIG sea levels still have potential to35

improve future sea-level projections, highlighting the importance of continued observa-36

tional efforts.37

1 Introduction38

Coastal communities are facing increasing threats from sea-level rise, creating a grow-39

ing need for comprehensive probabilistic projections (Kopp et al., 2014; Kopp, DeConto,40

et al., 2017; Horton et al., 2018) to inform coastal risks and adaptation practices (Buchanan41

et al., 2016, 2017; D. J. Rasmussen et al., 2018; Kopp et al., 2019). The single largest42

source of uncertainty in 21st century global-mean sea-level rise is the Antarctic ice sheet43

(AIS). Projected AIS mass loss depends on the ice-sheet physics considered, modeling44

and statistical methodologies, and observational constraints (e.g., Kopp, DeConto, et al.,45

2017).46

There is deep uncertainty in future AIS sea-level contributions, meaning that their47

full probability distribution is unknown and cannot be estimated or agreed upon by ex-48

perts (Lempert & Collins, 2007). The lack of expert agreement on AIS mass loss pro-49

jections is partially related to unresolved challenges in modeling ice-sheet processes (Fuller50

et al., 2017; Bakker, Wong, et al., 2017; Bakker, Louchard, & Keller, 2017; Bamber et51

al., 2019). There is growing consensus that the AIS is threatened by marine ice-sheet52

instability (MISI; Weertman, 1974; Schoof, 2007), which would lead to accelerated mass53

loss irreversible on millennial timescales (Golledge et al., 2015; Bulthuis et al., 2019) and54

skew probability distributions towards fat upper-tails in sea-level projections (Robel et55

al., 2019). There is some evidence that MISI is already underway in the Thwaites/Pine56

Island Glacier basins (Joughin et al., 2014; Favier et al., 2014), and western AIS ice dis-57

charge has accelerated in recent years (Gardner et al., 2018; Rignot et al., 2019). Even58

more uncertain is the role of marine ice-cliff instability (MICI), which has recently been59

proposed and incorporated as a primary loss mechanism in an ice-sheet model for sea-60

level rise projections (Bassis & Walker, 2012; Bassis & Jacobs, 2013; Pollard et al., 2015;61

DeConto & Pollard, 2016).62

MICI is not well understood and is difficult to parameterize. While it has not yet63

been observed in Antarctica, there is some modern evidence consistent with cliff insta-64

bility, such as the documented calving events of Greenland glaciers (DeConto & Pollard,65

2016; Parizek et al., 2019). Newly discovered iceberg-keel plough marks also provide ev-66

idence for MICI in Pine Island Bay in the early Holocene, ∼12 ka (Wise et al., 2017).67

However, a recent reanalysis of DeConto and Pollard (2016) showed that MICI is not well68
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constrained, and is unnecessary for ice-sheet model projections to be consistent with mod-69

ern and paleoclimate estimates of AIS mass loss (Edwards et al., 2019). Clerc et al. (2019)70

examined how ice cliffs deform following removal of their buttressing ice shelves. They71

found that ∼90 m-tall ice cliffs would have to be lost near-instantaneously after shelf col-72

lapse to trigger MICI—on longer timescales viscous relaxation dominates the response.73

Furthermore, Olsen and Nettles (2019) found seismic measurements of the aforementioned74

Greenland glaciers were not indicative of subaerial ice cliff failure expected with MICI.75

These findings cannot preclude MICI as a primary mass loss mechanism in Antarctica,76

but they demonstrate the paucity of observations to constrain this process.77

Whether or not major AIS discharge will occur through MISI and/or MICI is crit-78

ical for future impacts on human systems (Oppenheimer & Alley, 2016; Wong et al., 2017;79

Stammer et al., 2019). But correlations between observed trends and future large-scale80

mass losses are weak and insignificant (Kopp, DeConto, et al., 2017), signaling that mod-81

ern observations are inadequate for constraining potentially nonlinear AIS contributions82

to sea-level rise. Instead, the information gap must be filled with analogs from the pa-83

leo sea-level record. The Last Interglacial (LIG) period has previously been invoked to84

inform ice-sheet instabilities and model projections (DeConto & Pollard, 2016; Steig &85

Neff, 2018), but it may currently be an ineffective constraint (Edwards et al., 2019). In86

this study we investigate how improved estimates or different interpretations of LIG AIS87

mass loss may be combined with ice-sheet model ensembles to constrain probabilistic pro-88

jections of future sea-level rise. We specifically choose ice-sheet model simulations which89

consider the MICI process to complement recent studies using similar statistical and mod-90

eling methods (DeConto & Pollard, 2016; Edwards et al., 2019).91

The Last Interglacial (∼129 to 116 ka) was a period of higher orbital eccentricity,92

slightly warmer than present average global mean temperatures, and substantially warmer93

polar atmospheric temperatures (>3 K warmer than present) and high-latitude ocean94

temperatures (1 K warmer than present) (Capron et al., 2017, and references therein).95

Accompanying were estimated global mean sea levels (GMSL) about 6–9 m higher than96

present (Dutton, Carlson, et al., 2015), driven by a combination of mountain glacial melt,97

Greenland and Antarctic ice-sheet mass loss, and thermosteric effects. While the pro-98

portional mix of these contributions is uncertain, previous studies determined that some99

portions of the AIS retreated during the LIG (e.g., Scherer et al., 1998; Dutton, Carl-100

son, et al., 2015; Dutton, Webster, et al., 2015). The LIG has historically been consid-101

ered an analog for AIS contributions to sea-level rise in warm climates (Mercer, 1968;102

Hansen et al., 1981), but it may not be ideal for examining future climate change, as LIG103

and modern external forcing mechanisms are fundamentally different (Capron et al., 2019).104

Different interpretations and applications of paleo sea-level estimates have led to105

divergent conclusions about what instability processes could drive future sea-level rise106

(cf. DeConto and Pollard (2016) and Edwards et al. (2019)). The goal of this study is107

to develop a framework for analyzing the extent to which the LIG could inform ice-sheet108

model projections of future AIS mass loss and sea-level rise. We quantify ice-sheet model109

projections conditioned on multiple LIG estimate distributions, and assess how narrower110

LIG uncertainties could improve understanding of both ice-sheet instabilities and future111

sea levels. We also investigate how different assumptions about LIG sea-level evolution112

influences ice-sheet modeling of future sea-level changes. These analyses provide useful113

targets and research directions for the paleo sea-level observational and ice-sheet mod-114

eling communities.115

Ice-sheet models are computationally expensive to run at high resolutions neces-116

sary for sufficient accuracy. The number of simulations computationally tractable over117

a model’s parameter space is therefore limited, making it difficult to construct an ensem-118

ble large enough to perform comprehensive statistical analyses (which are necessary for119

robust probabilistic projections of sea-level rise and coastal risk, e.g. Kopp, DeConto,120

et al., 2017; D. J. Rasmussen et al., 2020). In this study we develop a statistical “em-121
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ulator” designed to mimic the behavior of the ice-sheet model (the “simulator”) to fill122

intermediate solutions that have not been simulated over the ice-sheet model parame-123

ter space (Kennedy & O’Hagan, 2001; C. E. Rasmussen & Williams, 2006; Bastos & O’Hagan,124

2009). Similar to Edwards et al. (2019), we emulate ice-sheet simulations of the LIG and125

the future under a high-emissions scenario. The emulator provides continuous estimates126

of AIS sea-level contributions over two model parameters directly related to ice-sheet in-127

stability processes. We perform Bayesian statistical analyses with the emulator output128

to determine how the LIG constrains future Antarctic sea-level contribution projections.129

Section 2 provides a detailed overview of the ice-sheet model ensembles, emulation130

methodology, the Bayesian approach, and LIG constraints. Our results in section 3 show131

how current and improved LIG estimates could constrain future Antarctic contributions132

to sea-level rise. We also demonstrate a specific framework application using paleo sea-133

level observations, and discuss our study’s implications for future research directions in134

the paleo sea-level community. Conclusions are presented in section 4.135

2 Models and Methods136

2.1 Ice-sheet Model Simulations137

We build ice-sheet model ensembles for the LIG and a future high-emissions sce-138

nario (Representative Concentration Pathway 8.5, RCP8.5; Riahi et al., 2011). We run139

simulations with the PSU Ice-sheet model, which has been used in several studies of ice-140

sheet contributions to past and future sea levels (Pollard & DeConto, 2009; DeConto &141

Pollard, 2016; Pollard et al., 2016, 2017; Kopp, DeConto, et al., 2017; Pollard et al., 2018;142

Edwards et al., 2019). The model (Pollard & DeConto, 2012) uses a hybrid combination143

of the vertically integrated shallow ice and shallow shelf approximations for ice flow (de-144

scribed in (Pollard & DeConto, 2012)). Ice flux at freely migrating grounding lines is pa-145

rameterized (Schoof, 2007; Pollard & DeConto, 2009, 2012), while accounting for the but-146

tressing effects of ice shelves. Hydrofracturing from surface melt and structural failure147

of tall ice cliffs is included (Pollard et al., 2015; DeConto & Pollard, 2016). The model148

simulates internal ice temperatures, with basal sliding and sediment deformation occur-149

ring only where the base is at or near the melt point, and no explicit basal hydrology.150

A Weertman-type basal sliding law over bedrock is used with the norm of the sliding ve-151

locity proportional to the squared norm of the basal shear stress, and spatially depen-152

dent coefficients (Pollard & DeConto, 2012). We run the model on a 10 km-resolution153

grid over the continental Antarctic.154

Model simulations are an improvement on those of DeConto and Pollard (2016) and155

reanalyzed in Edwards et al. (2019). Model runs use a sub-oceanic melt scheme newly156

calibrated following a large ensemble analysis of model performance during the last deglacia-157

tion (Pollard et al., 2016). This improvement, developed for DeConto et al. (2020), re-158

duces the need for a sub-surface ocean temperature bias correction on the West Antarc-159

tic margin by 50% (from 3 K to 1.5 K) relative to DeConto and Pollard (2016). Atmo-160

spheric climatologies in future simulations are also improved, as discussed below (cf. De-161

Conto et al., 2020).162

LIG equilibrium model simulations are forced by representative oceanic and atmo-163

spheric conditions from 130 ka constructed from a synthesis of paleoclimate reconstruc-164

tions and climate modeling (Capron et al., 2014). We run the simulations for 5,000 years165

to bring them approximately into equilibrium with this fixed climate forcing; we take166

the final simulation values (year 5000) as representing the peak AIS mass loss response167

during the LIG. Emulated peak LIG mass losses are later paired with paleo sea-level es-168

timates to assess whether the LIG could constrain future AIS contributions to sea-level169

rise (section 2.2–2.4).170
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Future transient model simulations span 1990–2150 and are reported relative to the171

year 2000. Following DeConto and Pollard (2016), atmospheric RCP8.5 forcing is time-172

interpolated and log-weighted from regional climate model Antarctic snapshots at vary-173

ing levels of effective CO2 (1×, 2×, 4×, and 8× preindustrial). Improving on DeConto174

and Pollard (2016), time-evolving sea-surface temperatures are synchronized in the re-175

gional atmospheric model simulations with subsurface temperatures used in the subsur-176

face melt rate calculations, leading to favorable comparisons with an independent NCAR177

CESM simulation (DeConto et al., 2020, their Extended Data Figure 1).178

LIG and future simulation ensembles are constructed by sampling a 2-dimensional179

parameter space on a regularly spaced 14×14 grid. The two parameters, CREVLIQ and180

CLIFVMAX (Supporting Information Table S1), are detailed in DeConto and Pollard181

(2016). Briefly, CREVLIQ is the proportional sensitivity of model hydrofracturing to sur-182

face liquid, i.e. from rain and meltwater ( m
(myr−1)2 ); it is substituted for “100” in equa-183

tion (B.6) of Pollard et al. (2015). As CREVLIQ increases, ice-sheet crevasses deepen184

more readily with surface liquid accumulation, which increases the chance of hydrofrac-185

turing and removal of buttressing ice shelves. CLIFVMAX is the maximum rate (km
yr )186

of horizontal cliff wastage once an ice cliff becomes mechanically unstable and collapses187

(i.e. under MICI); it is substituted for “300” in equation (A.4) of Pollard et al. (2015)188

(called “VCLIF” in DeConto & Pollard, 2016). Note that when CLIFVMAX=0 km
yr , ice189

cliffs cannot retreat even when they would theoretically fail; in this set of simulations190

MICI is effectively turned off.191

Ensembles vary CLIFVMAX and CREVLIQ over ranges of parameter values (0–192

13 km
yr and 0–195 m

(myr−1)2 , respectively) broader than those of DeConto and Pollard (2016)193

and Edwards et al. (2019): the CLIFVMAX maximum is 2.6 times larger than in those194

studies, and the CREVLIQ range 1.3 times larger (Supporting Information Table S1).195

We expand the parameter value range to explore a greater range of parametric uncer-196

tainty, with upper bounds guided by observations (discussed in detail in DeConto et al.,197

2020) rather than the arbitrarily assigned bounds of DeConto and Pollard (2016).198

Figure 1 shows ensemble timeseries of AIS mass loss in global mean sea-level equiv-199

alent from the LIG and RCP8.5 scenario; ensemble member timeseries are color-coded200

by CLIFVMAX values (timeseries color-coded by CREVLIQ are shown in Supporting201

Information Figure S1). Figure 1a includes an illustrative range of estimated LIG AIS202

sea-level contributions (3.1–6.1 m), which was assumed by DeConto et al. (2020) based203

on reconstructions described in Dutton, Carlson, et al. (2015). This LIG estimate is lower204

and slightly narrower than that assumed in DeConto and Pollard (2016) and Edwards205

et al. (2019); this and additional LIG constraints are explored below (section 2.4).206

The evolution of LIG simulations (Fig. 1a) suggests that there are distinct ice-sheet207

mass-loss events (e.g. the accelerated mass loss in some simulations ∼1,000 years into208

the simulation) in response to constant forcing, depending strongly on model parame-209

ter values. This nonlinear behavior results in a multi-modal distribution of the ensem-210

ble’s peak AIS mass loss (section 3). AIS discharge is sensitive to the value of CLIFV-211

MAX on the timescale of centuries, as seen in the first 1,000 years of the LIG ensemble212

and the entirety of the RCP8.5 simulation (Fig. 1b). The non-monotonic color progres-213

sion of timeseries in Fig. 1a suggests that CREVLIQ plays a more substantial role in ice-214

sheet mass loss under LIG forcing and/or on millennial timescales (Supporting Informa-215

tion Figures S1–S2).216

Future simulations of AIS mass loss under RCP8.5 forcing are very similar across217

the ensemble in the early 21st century; 158 of 196 simulations have loss rates within 1218

standard deviation of IMBIE2 observed rates over 1992–2017 (15–46 mm
yr ; IMBIE-Team,219

2018). In ∼2060 ice discharge dramatically accelerates among ensemble members with220

higher CLIFVMAX values, and simulations markedly diverge. Across the simulations221

ice loss continues to accelerate through 2100 and well into the 22nd century; 86% of the222

–5–



manuscript submitted to JGR-Earth Surface

(a) (b)

Figure 1. Timeseries of simulated AIS mass losses in sea-level equivalent (m) under (a) Last

Interglacial forcing and (b) RCP8.5 forcing over 2000–2150. Simulated timeseries are color-coded

by CLIFVMAX values over 0–13 km
yr

. Gray shading in (a) is an illustrative range of estimated

LIG AIS sea-level contributions, 3.1–6.1 m, derived in DeConto et al. (2020) and based on the

reconstructions of Dutton, Carlson, et al. (2015).

simulated peak loss rates occur after 2130. By 2150, the ensemble’s median rate of sea-223

level equivalent mass loss is 54 mm
yr , and the median AIS sea-level contribution is 2.3 m.224

Mean RCP8.5 ensemble AIS sea-level contributions are 42 cm in 2100 and 2.3 m in 2150.225

These values are lower than DeConto and Pollard (2016) large-ensemble projections (with-226

out bias corrections and with default model parameters, see their Extended Data Ta-227

ble 1) in both 2100 (77 cm) and 2150 (2.9 m). Differences are largely due to improved228

model synchronicity in atmospheric forcing, which slows the onset of surface meltwater229

production and ice-shelf hydrofracturing by ∼25 years compared to DeConto and Pol-230

lard (2016).231

The emulator is trained only on simulations from this single ice-sheet model and232

with changes only in the parameters discussed above. Other ice-sheet processes or pa-233

rameters that could lead to ice-sheet and ice-shelf stability or collapse have not been in-234

vestigated here. Whereas our methodology is developed with a generalizable emulation235

and calibration framework, quantitative results in section 3 apply only to this specific236

ice-sheet model. The LIG could inform additional or alternative physical processes (see237

section 4) not considered here, and the emulation and calibration framework could be238

extended to include assessments of LIG constraints on the Greenland ice sheet, calibra-239

tion of other ice-sheet models or ensembles (e.g. ISMIP6; Nowicki et al., 2016; Goelzer240

et al., 2018; Seroussi et al., 2020), calibration of different parameters or regions of pa-241

rameter space, or calibration with different paleo sea-level constraints (e.g. the Pliocene).242

2.2 Emulation243

We train the emulator separately on LIG and RCP8.5 ensembles (zLIG and zRCP,244

respectively) using Gaussian process (GP) regression (e.g. Santner et al., 2003; C. E. Ras-245

mussen & Williams, 2006; Dubourg, 2011). We model the total AIS contributions to GMSL,246

f(θ1, θ2, t), as the sum of two terms, each with a zero-mean GP prior distribution:247

f(θ1, θ2, t) = f1(θ1, θ2) + f2(θ1, θ2, t). (1)
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The first term, f1(θ1, θ2), represents a time-independent function on the param-248

eter space (θ1, θ2), and the second term, f2(θ1, θ2, t), represents the temporal evolution.249

We specify the prior distributions of each term as:250

f1(θ1, θ2)∼GP(0, α2
1K1(θ1, θ2, θ

′
1, θ
′
2; `1)), (2)

f2(θ1, θ2, t)∼GP(0, α2
2K2(θ1, θ2, θ

′
1, θ
′
2; `2) ·Kt(t, t

′; τ)), (3)

where θ1 and θ2 are values of CLIFVMAX and CREVLIQ normalized by their respec-251

tive maximum values in the simulator ensemble parameter space (Supporting Informa-252

tion Table S1), αi are standard deviations, `i are characteristic length scales in the nor-253

malized parameter space, τ is a characteristic time scale and Ki are specified covariance254

functions. Because the LIG training data are evaluated at a single time point, there is255

no temporal term and f2 is excluded from LIG GP construction. Ki are defined to be256

Matérn covariance functions with a specified smoothness (shape) parameter, ν, which257

governs how responsive the function and its realizations are to sharp changes in the train-258

ing data (C. E. Rasmussen & Williams, 2006). The choice of a Matérn covariance func-259

tion allows for non-parametric nonlinear behavior in time and parameter space. For the260

RCP8.5 scenario we set ν to 5
2 because transient sea-level contributions vary smoothly261

over the model parameter space and time; for the LIG scenario we set ν to 1
2 because262

peak LIG sea-level contributions vary more sharply over the model parameter space. The263

model form and covariance functions are chosen for a balance of simplicity, minimizing264

absolute errors and variance (i.e. model accuracy and precision), and maximizing the265

likelihood of the training data. Other covariance function and model forms were explored,266

but are not presented for brevity (Supporting Information Text S2).267

Optimal hyperparameters (αi, `i, and τ) of the GP models are found by maximiz-268

ing the likelihoods of the training simulations (Supporting Information Table S2 C. E. Ras-269

mussen & Williams, 2006). To ensure numerical stability we specify a “nugget” for the270

optimized GP representing the small-scale variability of the training data. Because the271

simulator is deterministic we set the nugget variance to 10−6 m2, to ensure that the mod-272

eled mean approximately matches the training ensemble data across the parameter space273

and time. We then condition (train) the optimized GP model on the simulator ensem-274

bles (f |z) to arrive at optimized posterior GP models for LIG and RCP8.5 which pre-275

dict continuous sea-level contributions at parameter values and times between discrete276

training simulations. We refer the optimized posterior GPs for the LIG (fLIG) and RCP8.5277

(fRCP) as “emulators”. We perform leave-one-out analyses to validate the emulators fol-278

lowing Bastos and O’Hagan (2009) and find they accurately mimic the behavior of the279

ice-sheet simulator ensembles over the LIG and RCP8.5 scenario (Supporting Informa-280

tion Text S1, Fig. S3–S4).281

Figure 2 shows the emulator mean functions (contours) for the LIG and RCP8.5282

in 2100 over the parameter space, and the corresponding training simulations (circles).283

There are natural similarities between the emulated sea levels during the LIG and those284

projected in 2100 under RCP8.5. Ice-cliff collapse and/or hydrofracturing are clearly rel-285

evant drivers of both paleo estimates and future projections by this ice-sheet model (see286

section 2.3): for relatively large values of CREVLIQ and CLIFVMAX, emulated AIS mass287

loss is likewise relatively high. Sea-level contributions are also substantially lower when288

either CREVLIQ or CLIFVMAX are near zero, indicating emulated sea levels with these289

parameter values are not appreciably influenced by either hydrofracturing from surface290

liquid or mechanically unstable ice-cliff retreat.291

There are also differences between LIG and RCP8.5 emulator mean functions (Fig.292

2, Supporting Information Figure S2). Future projected AIS mass loss is more sensitive293

to CLIFVMAX than CREVLIQ (cf. Fig. 1b), which becomes more pronounced through-294

out the early 22nd century (not shown). Under strong RCP8.5 forcing, MICI triggers quickly,295
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(a)  LIG AIS Peak Mass Loss in SLE (m) (b)  RCP8.5 (2100) AIS Mass Loss in SLE (m)

Figure 2. Simulated (filled circles) and mean emulated (contours) AIS mass losses in sea-

level equivalent across ice-sheet model parameter space (a) during the Last Interglacial, and (b)

projected under an RCP8.5 scenario in 2100.

and the modern ice-sheet readily loses mass at rates up to the CLIFVMAX bound. In296

contrast, LIG AIS sea-level contributions are more sensitive to both CREVLIQ and CLIFM-297

VAX in some regions of the parameter space, but are nearly constant in other regions298

(e.g. where CREVLIQ > 120 and 2 < CLIFVMAX < 7, Fig. 2a). Some LIG simulations299

(under weaker and prolonged forcing) have discrete mass loss events that are constrained300

by meltwater-driven hydrofracturing (bound by CREVLIQ, cf. Supporting Information301

Fig. S1), making the LIG simulations generally more sensitive to CREVLIQ than the302

RCP8.5 simulations. Under prolonged LIG fixed forcing, different AIS sectors can be com-303

pletely lost regardless of the specific parameter value in these regions of parameter space,304

resulting in very similar sea-level contributions. This clustering behavior is much less pro-305

nounced over the modern period of transient and increasing forcing except along fixed306

values of CLIFVMAX, as shown by its smoothly varying sea-level contributions (Fig. 1b307

and Fig. 2b). These differences across the parameter space have important implications308

for model calibration. In particular, they imply that even if the LIG contributions were309

known precisely, there may be a limit to their ability to constrain future projections. For310

example, the region of the parameter space with LIG contributions of ∼5.2 m (CREVLIQ311

> 120, 2 < CLIFVMAX < 7) corresponds to AIS sea-level contributions of ∼35–65 cm312

in 2100 under RCP8.5 forcing (Fig. 2b). This limitation is explored in detail in section313

3.314

Having developed emulators trained on the LIG and RCP8.5 scenario ensembles,315

we generate 10,000 realizations of emulator output (mean and variance, i.e. the full GP316

emulator) with a two-dimensional Latin-hypercube design over the parameter space. The317

time-dependent median and credibility intervals of the RCP8.5 emulated distribution are318

shown in Figure 3.319

2.3 Bayesian Updating320

We use a Bayesian updating approach to determine the influence of LIG constraints321

on future projections of Antarctic contributions to sea-level rise (e.g. Ashe et al., 2019);322

a glossary of relevant statistical terms is provided in Supporting Information Table S3.323

There are two steps in our approach. First, we update the probability distribution324

of model parameters (θ1, θ2) based on a specified LIG constraint distribution. Apply-325

ing Bayes’ theorem,326
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Figure 3. Emulator prior probability distribution of AIS mass loss in sea-level equivalent

(m) projected under RCP8.5 forcing over 2000–2150. Shown are the median (solid black line),

25th–75th (dark red shading), and 5th–95th percentiles (light red shading) of the distribution.

p(θ1, θ2 | fLIG) ∝ p(fLIG | θ1, θ2)p(θ1, θ2), (4)

where p(θ1, θ2 | fLIG) is the posterior probability of the parameters conditioned on a327

LIG constraint distribution, p(fLIG | θ1, θ2). This is implemented by sampling the LIG328

emulator with parameter values weighted by specified LIG constraints (section 2.4). p(θ1, θ2)329

is a uniform prior probability over the input parameter space (Supporting Information330

Table S1). When the LIG emulator is uniformly sampled with equal likelihood across331

each parameter set, the emulator is not informed by any LIG constraint, and the pos-332

terior distribution mimics the underlying training simulations. We refer to this distri-333

bution of AIS mass loss as “unconstrained.”334

Next, to constrain future projections, we use p(θ1, θ2 | fLIG) as the likelihood func-335

tion of the parameters in the RCP8.5 emulator. This is represented as:336

p(fRCP | fLIG) = p(fRCP | θ1, θ2)p(θ1, θ2 | fLIG), (5)

such that the probability distribution of the constrained RCP8.5 emulator, p(fRCP | fLIG),337

is equal to the RCP8.5 emulator sampled with a uniform prior, p(fRCP | θ1, θ2) (we re-338

fer to this as the “prior” distribution), times the likelihood of the parameter values up-339

dated with a specified LIG constraint.340

We demonstrate the utility of this approach in three ways. First, we explore how341

future projections are constrained when peak LIG AIS mass loss, x, is assumed to be pre-342

cisely known (e.g. to with a 10 cm uncertainty interval). In Eqn. 4 we define the LIG343

constraint with a uniform distribution, p(fLIG | θ1, θ2) = px, discretized with 10 cm-344

wide bins across the range of the underlying LIG simulations:345

px = U(x− 5 cm, x+ 5 cm],
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where x = {2.0 m, 2.1 m, ..., 6.9 m, 7.0 m}. The associated posteriors of RCP8.5 AIS con-346

tributions to sea-level rise, p(fRCP | fLIG), are a set of comprehensive time-dependent347

conditional probability distributions given as a function of LIG AIS mass loss. The con-348

ditional probability distributions may be integrated over a range of x values with any349

specified weightings, resulting in an associated constrained probability distribution of350

future AIS contributions to sea-level rise.351

Second, we examine particular posteriors of RCP8.5 AIS contributions to sea-level352

rise as a function of several specific LIG constraint distributions, drawn from or adapted353

from the literature. Third, we analyze how the ice-sheet model projections of future AIS354

mass loss would be influenced through hypothetical improvements in LIG constraint dis-355

tributions, either by 1) narrowing the range of uncertainty on LIG estimates, or by 2)356

learning that the LIG AIS sea-level contributions were relatively high (>6 m) or rela-357

tively low (<3.5 m). Each LIG constraint distribution is detailed in the following sec-358

tion.359

2.4 LIG Constraint Distributions360

We prescribe a set of LIG constraint distributions, p(fLIG | θ1, θ2), to determine361

the associated posterior probability distributions of future AIS contributions to sea-level362

rise (Eqn. 4–5). Differences between these example constraints illustrate how alterna-363

tive specifications and interpretations of LIG AIS mass loss can influence projections of364

future sea-level rise. Figure 4a shows the probability density of each constraint distri-365

bution, along with the unconstrained LIG emulator distribution (derived by uniformly366

sampling the model parameter space, as discussed above).367

DeConto et al. (2020) uniform distribution (D20-U): The uniform constraint of368

DeConto et al. (2020), U(3.1m, 6.1m), is narrower and lower than that of DeConto and369

Pollard (2016). The primary difference is that the timing of the LIG AIS mass loss peak370

is assumed to peak earlier, which affects the constraint derivation; we discuss the impli-371

cations of LIG sea-level chronology in detail in section 3.3. The D20-U constraint dis-372

tribution is derived assuming AIS mass loss peaked in the early-LIG, concurrent with373

global mean sea-level estimates of 6±1.5 m from Dutton, Webster, et al. (2015). Sub-374

tracting off a small Greenland ice-sheet contribution in the early-LIG (1 m, Goelzer et375

al., 2016; Dahl-Jensen et al., 2013; Helsen et al., 2013) and a thermosteric rise of 0.4 m376

(McKay et al., 2011), and neglecting early-LIG mountain glacier melt, the residual AIS377

contribution is estimated as 3.1–6.1 m. Complementing the pass/fail calibration of both378

DeConto and Pollard (2016) and DeConto et al. (2020), we impose an analogous uni-379

form distribution over 3.1–6.1 m, such that emulated LIG output falling within the con-380

straint is taken as equally likely; emulator output falling outside the constraint is ascribed381

a probability of zero.382

DeConto et al. (2020) normal distribution (D20-N): Whereas the uniform distri-383

bution assumes fixed limits on the LIG constraint but equal probabilities of LIG con-384

tributions between 3.1–6.1 m, it is practical to explore the implications of the central value385

of the estimated LIG distribution being more likely than the bounds. D20-N replaces386

D20-U with a Gaussian distribution—taking the central value as the mean and the bounds387

representing 2 standard deviations from the mean—to develop a constraint distribution388

following N (4.6m, (0.75m)2).389

Edwards et al. (2019) uniform distribution (E19-U): The uniform distribution used390

to constrain the LIG Antarctic contributions in the reanalyses of Edwards et al. (2019)391

is identical to the calibration of DeConto and Pollard (2016) given by U(3.5m, 7.4m). We392

include this constraint to specifically compare our Bayesian calibrated ensembles with393

the results of Edwards et al. (2019), which used a similar emulation method but employed394

history matching rather than Bayesian calibration of the original DeConto and Pollard395

(2016) ice-sheet model ensemble.396
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Kopp et al. (2009) time slice at 125 ka (K09-125ka): Kopp et al. (2009) compiled397

a probability distribution of AIS contributions to sea-level rise (extended by Kopp et al.,398

2013) by combining a comprehensive database of proxy observations of LIG sea levels,399

an age model, and GP regression. Posterior probability distributions of AIS LIG sea lev-400

els were estimated over time by conditioning on local sea-level and age measurements.401

To generate a simple constraint distribution consistent with the LIG ensemble, we take402

a time slice at 125 ka (5,000 years after the initial time period of forcing, 130 ka, section403

2.1). This is an overly simplified interpretation of the link between the ice-sheet emu-404

lator and the posterior LIG AIS mass loss distributions, because it assumes that emu-405

lated peak LIG contributions are representative of the synthesized observational record406

precisely at 125 ka.407

Kopp et al. (2009) maximum Antarctic contributions during the LIG (K09-Max-408

3kyrSmooth): To examine an alternative link between the ice-sheet model simulations409

and Kopp et al. (2009) constraints, we generate 2,500 samples from the posterior prob-410

ability distribution of mean global sea level conditioned upon sea-level observations and411

sampled ages from Kopp et al. (2009). This represents an estimate of the distribution412

of the global mean sea-level maximum from the model in Kopp et al. (2009). Each sam-413

ple is a realization of the evolution of AIS sea-level contributions during the LIG (be-414

tween 129–114 ka). Because these samples can be noisy in time, we smooth each sam-415

ple with a 3 kyr-window boxcar filter (other smoothing windows were explored, but here416

we focus on 3 kyr for brevity). The constraint distribution is then constructed from the417

peak (global maximum) Antarctic sea-level contribution of each smoothed sample (as-418

suming each is equally likely), so that it shares an interpretation with the ice-sheet em-419

ulator (section 2.1).420

We also explore two sets of hypothetical LIG constraints.421

High and low distributions (LIG AIS<3.5 m and LIG AIS>6 m): We prescribe422

a set of hypothetical relatively high and relatively low constraints, given by U(6.0m,+∞)423

and U(−∞, 3.5m), respectively. The resulting posteriors show how projections of future424

AIS mass loss could improve if there were a reliable upper or lower bound on LIG AIS425

mass loss estimates at the margins of the unconstrained LIG distribution.426

Sensitivity to reduced uncertainties in LIG estimates (Narrower D20-U): To as-427

certain how future projections of AIS mass loss could be affected by reduced uncertain-428

ties in LIG constraint distributions or improved LIG estimates, we gradually reduce the429

range of the D20-U constraint by 10%, 25%, 50%, 75%, and 90% and assess the result-430

ing posterior distributions; the central value (4.7 m) of each constraint is identical to that431

of D20-U. Physically-based observational constraints, following a similar narrowing method,432

are the focus of the discussion in section 3.3.433

For each LIG constraint distribution, we find the associated likelihoods of the model434

parameters and the posterior probability distributions of projected future AIS contri-435

butions to sea-level rise following Eqn. 4–5.436

An advantage of the Bayesian framework is that any specified constraint may be437

assessed. These constraints are not intended to be exhaustive, but rather illustrative of438

a range of current or potentially-improved LIG constraints and their usefulness for in-439

forming future projections.440

3 Results441

3.1 Conditional Probability Distributions442

Figure 4b shows the conditional posterior probability densities of RCP8.5 scenario443

AIS mass loss in 2100 (contoured on a log-scale), assuming the LIG peak AIS sea-level444
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contributions were known to within 10 cm. Along each column of the horizontal axis (x445

values) the densities sum to one, representing the probability distributions of future AIS446

mass loss, p(fRCP | fLIG), in 2100 as a function of the associated 10-cm-wide uniform447

LIG constraint distributions, px (section 2.4). Conditional posterior probability densi-448

ties in 2150 (Supporting Information Figure S6) have a similar structure. Figure 4b sum-449

marizes the efficacy of the Last Interglacial for informing this ice-sheet model’s projec-450

tions of future sea-level rise.451

The posterior marginal probability distributions of CLIFVMAX and CREVLIQ452

show the related dependencies of model parameter likelihoods as a function of LIG con-453

straints (Figure 5). The marginal probabilities, p(θ1 | θ2, fLIG) and p(θ2 | θ1, fLIG)454

are computed by finding the density of each model parameter as a function of the LIG455

constraint integrating over the other model parameter, and normalizing such that along456

each column of x densities sum to one. Comparison between Fig. 4b and Fig. 5 demon-457

strates how each LIG estimate informs projections of future AIS mass loss by constrain-458

ing ice-sheet model parameters.459

LIG contributions are relatively more informative on the extreme margins of the460

emulated probability distribution than in the interior (Fig. 4, cf. black curve of Fig. 4a).461

At relatively high and low ends of the unconstrained distribution, there are fewer com-462

binations of ice-sheet model parameter values that produce these sea levels than in the463

interior (Fig. 5), leading to narrower posteriors in future projections. At the high end464

of LIG AIS mass loss (>6 m), CLIFVMAX values always exceed 7.5 km
yr and CREVLIQ465

values are likewise relatively high (Fig. 5), suggesting MICI—driven by substantial meltwater-466

driven hydrofracturing and removal of buttressing ice shelves—is important for reach-467

ing high LIG losses in this model. Narrow posteriors at the low end of LIG AIS mass468

loss (<3.5 m) are associated emulator outputs which have little or no mass loss from MICI469

in this model, i.e. CLIFVMAX<1 km
yr (Fig. 5). We further explore specific future pro-470

jection posterior distributions associated with these relatively high and low LIG constraints471

in section 3.2.472

Conditional RCP8.5 posterior distributions in 2100 associated with intermediate473

values of LIG AIS mass loss are more broad than at the margins. Even if LIG AIS mass474

loss were known precisely to within 10 cm, if that value was between 4 and 5.5 m then475

there would remain a ∼50 cm range in 2100 projections. For instance, when the LIG con-476

tribution is 4.2 m, the associated posterior 95% credible interval in 2100 is 15–65 cm.477

This broad range in future projections after applying a precise LIG constraint results478

from the contrasting sensitivities of the LIG and RCP8.5 to parameter configurations479

(Supporting Information Figure S2). The unconstrained LIG AIS mass loss distribution480

is multi-modal (Fig. 4a) indicating that different sectors of the Antarctic ice sheet have481

been completely lost; total mass losses in these individual modes are then insensitive to482

small changes in parameter values, as seen in the regions of the parameter space which483

have nearly constant sea-level contributions (Fig. 2a). Comparing with Fig. 5a shows484

there is a wide range of CLIFVMAX values which result in LIG sea-level contributions485

between 4 and 6 m. But RCP8.5 future AIS mass losses are most sensitive to the CLIFV-486

MAX value when CREVLIQ>15 m
(m yr−1)2 (Fig. 2), and thus have exhibit broad pos-487

terior distributions when when LIG sea-level contributions are between 4 and 6 m. LIG488

contributions scale gradually with CREVLIQ values until CREVLIQ>105 m
(m yr−1)2 , and489

then LIG contributions are associated with broader ranges of CREVLIQ over 105–195490

m
(m yr−1)2 (Fig. 5b); future AIS mass loses are relatively insensitive to CREVLIQ in this491

region of model parameter space (Fig. 2).492

These varying responses to model parameter configurations most clearly affect RCP8.5493

projections when the median in 2100 drops from 63 to 32 cm as LIG contributions in-494

crease from 4.6 to 4.8 m (Fig. 4b. This non-intuitive result suggests that in some regions495

of the parameter space, the model-simulated equilibrium LIG AIS mass loss is influenced496

by a different physical process than transient RCP8.5 losses. By 2100, RCP8.5 air tem-497
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Unconstrained

Figure 4. (a) Last Interglacial emulated unconstrained (black curve) and specified constraint

(blue, yellow, orange, and red lines curves) probability distributions of Antarctic mass loss in sea-

level equivalent (m). (b) Conditional posterior probability densities of Antarctic mass loss in 2100

projected under RCP8.5 forcing (in sea-level equivalent), normalized and plotted as a function

of Last Interglacial AIS mass loss in sea-level equivalent (discretized with 10-cm-wide bins, see

text).

perature anomalies are ∼2 K warmer than the applied LIG forcing and are still increas-498

ing, leading to accelerating AIS mass loss through MICI that is strongly influenced by499

CLIFVMAX. In contrast, the applied LIG forcing is cooler and fixed, and the LIG ice-500

sheet equilibrates by losing mass more gradually over a 5,000 period. The slower equi-501
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Figure 5. Posterior marginal probability distributions of (a) CLIFVMAX and (b) CREVLIQ,

normalized and plotted as a function of Last Interglacial AIS mass loss in sea-level equivalent

(discretized with 10-cm-wide bins, see text).

librium response permits CREVLIQ to play a larger role in LIG AIS mass loss, direct-502

ing which sectors of ice eventually become unstable through shelf hydrofracturing over503

the prolonged period of anomalously warm temperatures (Figure 1).504

Conditional posterior distributions (Fig. 4) are a powerful and novel tool for illus-505

trating the links between ice-sheet model projections and paleo observational records.506

If, for instance, a field measurement showed that LIG AIS contributions were > 5 m, then507

the densities in Fig. 4 may be integrated across 5 m ≤ x ≤ +∞ to show that the range508

of projected RCP8.5 AIS mass loss in 2100 is ∼0.2–1.0 m, with a median of 65 cm. We509

discuss how conditional distributions may be used in the context of particular paleo sea-510

level observations in section 3.3.511

3.2 Future Projections Given Specific LIG Constraint Distributions512

Posterior probability distributions of AIS sea-level contributions in 2100 and 2150513

conditional on each LIG constraint distribution, following Eqn. (5), are shown in Fig-514

ure 6, along with the emulated prior RCP8.5 distribution and histograms of the train-515

ing simulations. Distributions are produced with kernel density estimation assuming a516

Silverman bandwidth (Silverman, 1986) reduced by 80% to prevent over-smoothing. Dis-517

tribution quantiles are presented in Table 1. For reference, the likelihoods of model pa-518

rameter sets—p(θ1, θ2 | fLIG)—associated with each LIG constraint distribution are519

shown in Supporting Information Figure S5.520

From 1990 to 2100, specific LIG constraints (section 2.4) do not very effectively nar-521

row uncertainties in future projections. Quantiles of the prior, D20-U, E19-U, and K09-522

125ka distributions in 2100 are all within 5 cm (Table 1). D20-N weights the distribu-523

tion towards the lower end of the projections, dropping the 95th percentile (relative to524

the prior) by 7 cm. The K09-Max-3kyrSmooth distribution re-weights the projection dis-525

tribution towards the upper tail (cf. Fig. 4a), raising the median and 75th percentiles526

by 8–10 cm.527

CREVLIQ/CLIFVMAX likelihood functions (Supporting Information Figure S5)528

show that there is no set of parameter values which are consistently unlikely across all529

LIG constraints. Thus, interpretations of which regions of model parameters space are530

viable (and hence, deductions about the related physical processes) will depend entirely531
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Figure 6. Projected probability distributions of Antarctic ice-sheet mass loss in sea-level

equivalent (m) in (a) 2100 and (b) 2150, under RCP8.5 forcing. Distributions are from 10,000

emulator samples and smoothed with kernel density estimation. Shown are the prior RCP8.5

distribution with no constraints (black curves), and distributions under specified Last Interglacial

constraints (blue, yellow, orange, and red curves, cf. Figure 4). The ice-sheet model training

ensemble is plotted as a histogram scaled for comparison.

on the specific LIG constraint applied. For instance, the E19-U constraint indicates that532

the least likely parameter sets are where CLIFVMAX values are small (Fig. S5d): about533

2.6% of the posterior density is associated with CLIFVMAX ≤ 0.5 km
yr , compared with534

3.8% if the probabilities were uniformly likely in this region. This result implies that MICI535

is not ruled out by this constraint, in contrast to the interpretation of Edwards et al. (2019),536

because under E19-U CLIFVMAX ≤ 0.5 km
yr is only a little more likely than not. As we537

drop to even lower values of CLIFVMAX (e.g. 0.1 km
yr ), the emulated outputs conditioned538

on E19-U becomes less and less likely (not shown). However, there remain parameter539

sets with non-zero likelihoods near CLIFVMAX=0, especially at higher CREVLIQ val-540

ues (Fig. S5d), such that a no-MICI solution also cannot be excluded. The main differ-541
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Table 1. Quantiles of projected Antarctic ice-sheet mass loss in sea-level equivalent (m) in

2100 and 2150; each emulated distribution other than the prior is constrained using a specified

Last Interglacial probability distribution (section 2.4).

2100
Quantiles Prior D20-U D20-N E19-U K09-125ka K09-Max-3kyrSmooth

5 0.07 0.07 0.07 0.07 0.07 0.09
25 0.20 0.20 0.23 0.23 0.21 0.31
50 0.42 0.40 0.40 0.44 0.43 0.52
75 0.64 0.61 0.58 0.65 0.64 0.72
95 0.85 0.83 0.78 0.85 0.85 0.88

2150
Quantiles Prior D20-U D20-N E19-U K09-125ka K09-Max-3kyrSmooth

5 0.44 0.44 0.51 0.52 0.46 0.63
25 1.21 1.17 1.23 1.30 1.24 1.63
50 2.31 2.21 2.18 2.39 2.32 2.81
75 3.54 3.38 3.22 3.58 3.53 3.88
95 4.65 4.56 4.38 4.66 4.64 4.79

ences between this study and Edwards et al. (2019) are the ensemble structure, as well542

as enhanced atmospheric climatologies and a reduced ocean bias correction in the train-543

ing simulations (section 2.1). Overall, none of the existing LIG constraints can exclude544

MICI as a primary loss mechanism (Fig. S5), which requires an estimated LIG AIS mass545

loss of less than ∼3.5 m.546

The unconstrained LIG emulated distribution nearly coincides with (or in some cases547

is narrower than) the existing LIG constraint distributions. Whereas this indicates that548

the ice-sheet model is able to faithfully reproduce peak LIG AIS mass losses, it also con-549

firms an existing challenge found by Edwards et al. (2019): current LIG estimates are550

not strong constraints on this ice-sheet model’s parameter likelihoods and future pro-551

jections.552

In light of this finding, we investigate how LIG constraints could inform future pro-553

jections of AIS mass loss and sea-level rise if they were improved, using the sensitivity554

test constraints outlined in section 2.4; the resulting posteriors are presented in Figure555

7. In particular, LIG constraints with gradually-reduced ranges have a limit to how ef-556

fective they can be for informing future projections of Antarctic contributions to sea-level557

rise (Supporting Information Figure S10).558

Narrowing the D20-U constraint by 50% results in a posterior distribution high-559

lighting an important property of LIG constraints: they become more effective over time560

(Fig. 7a). Until ∼2050 the prior and constrained distribution are nearly identical, then561

their distributions begin to diverge. AIS mass loss projected by this model becomes in-562

creasingly driven by cliff collapse (or the lack thereof) around 2060, and the LIG esti-563

mate begins effectively constraining both the most unstable parts of the distribution (which564

have the highest CLIFVMAX values, cf. Figure 1b) and the least. Figure 7a shows that565

because these solutions diverge over time, the LIG constraint becomes more informative566

on the absolute values of sea-level contributions over time. In 2100, the 95% credible in-567

terval of the posterior from the 50% narrower D20-U constraint is 14–68 cm, compared568

to the 7–85 cm interval of the prior (Table 1). In 2150 the constrained 95% credible in-569

terval is 0.71–4.07 m, compared with 0.44–4.65 m from the prior. Thus, even if observation-570
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(a) (b)

Probability Distributions of AIS Mass Loss in SLE (m), conditional on hypothetical improved LIG constraints

D20-U

Figure 7. Posterior probability distribution medians (solid lines) and 5th–95th percentiles

(shading) of AIS mass loss in sea-level equivalent (m) projected under RCP8.5 forcing over

2050–2150. (a) Posterior constrained assuming the D20-U constraint was 50% narrower (green

curve/shading) alongside the prior distribution reproduced from Fig. 3 (black curve/shading).

(b) Posteriors constrained assuming LIG AIS sea-level contributions were <3.5 m (blue

curve/shading) or >6 m (red curve/shading).

based LIG constraints are of little utility for reducing sea-level projection uncertainties571

in the near term, they become more meaningful as projections diverge.572

We also investigate how projected AIS mass loss could change if there were a known573

upper or lower bound on the LIG estimate. Figure 7b shows how hypothetical estimates574

of relatively low (<3.5 m) or relatively high (>6 m) LIG AIS mass loss could strongly575

influence future projections. If the LIG contributions were known to be <3.5 m, the me-576

dian and associated 95% credible interval of RCP8.5 projections in 2100 would be 7 cm577

and 4–15 cm, respectively. Likewise, if the LIG contributions were known to be >6 m,578

the associated median and 95% credible intervals of 2100 projections would be 81 cm and579

68–95 cm, respectively.580

A striking feature of the posterior distribution associated with LIG AIS mass loss581

<3.5 m constraint (blue curve/shading in Fig. 7b) is the positive skew emerging over time.582

Simulated ice sheets that become unstable on a reverse-sloping bed have a loss rate pro-583

portional to their grounding line thickness, and hence proportional to the amount of ice584

they have already lost: simulations which have lost more mass retreat faster than those585

which have lost less mass (Robel et al., 2019). This behavior positively skews the mass586

loss distribution (similarly shown by Nias et al., 2019).587

Notably, interpreting the total AIS mass loss distribution is complicated by differ-588

ent sectors losing mass at different times and rates. As sectors of the ice sheet lose all589

of their mass the positive skew disappears (Robel et al., 2019), as seen in the multiple590

modes of the unconstrained LIG emulated distribution (Fig. 4). The bimodal positively-591

skewed posterior distribution associated with the 90% narrowed D20-U constraint (Fig.592

S10) and the weakly skewed prior distribution of RCP8.5 mass loss in 2100 (skew of +0.18,593

Fig. 6) also depict this complex behavior.594

In contrast, the posterior distribution associated with LIG AIS <3.5 m well-illustrates595

how different sensitivities to instability can drive skew across an ensemble (Fig. 7b). In596

2080 the emulated samples associated with higher model parameter values become un-597

stable, and the skew increases from near zero to +1.8 by 2110; after this initial period598

of instability the skew remain strongly positive (> +1.3). This behavior also explains599

how different sensitivities to instability leads to posteriors diverging over time.600
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3.3 Relevance for Paleo Sea-Level Observations601

We have used conditional posterior probability distributions (Fig. 4b–5) to show602

how the LIG informs this model’s projections of AIS mass loss. Our results also show603

how ice-sheet model parameters are linked to estimates of LIG AIS sea-level contribu-604

tions. Concurrently, any improvements in understanding physical processes in the ice-605

sheet will also indicate which LIG contributions are most likely. A main benefit of our606

approach is that it may inform future research and observational efforts to understand607

LIG sea levels. Here we apply our emulation and Bayesian updating framework to par-608

ticular paleo sea-level observations, to investigate how assumptions about LIG ice-sheet609

chronology or improved LIG observations could influence future projections.610

Determining sea levels during the LIG and closing its peak sea-level budget are chal-611

lenging problems. Field observations have large uncertainties, related to measurement612

error or confounding processes such as glacial isostatic adjustment (GIA) or mantle dy-613

namic topography (DT) (Hibbert et al., 2016; Austermann et al., 2017; Dendy et al., 2017;614

Rohling et al., 2017; Capron et al., 2019). Still under debate is whether the LIG exhib-615

ited variability with multiple global sea-level peaks (Kopp, Dutton, & Carlson, 2017; Bar-616

low et al., 2018), indicating short-term fluctuations (e.g., Rohling et al., 2008), or dis-617

tinct out-of-phase mass losses between the Greenland and Antarctic ice sheets (Dutton,618

Carlson, et al., 2015). Lacking sufficient near-field evidence, the AIS is typically invoked619

as an uncertain residual contributor. Yet estimated Greenland ice-sheet mass losses dur-620

ing the LIG also have a wide range of interpretations and central estimates (Dutton, Carl-621

son, et al., 2015, their Figure 3), so it is difficult to disentangle the relative roles of Green-622

land and Antarctica.623

Our method is able to show how these uncertainties in proxy-based reconstructions624

of LIG sea levels reflect on uncertainties in future AIS contributions to sea-level rise. Here625

we calculate the 95% credible intervals of AIS sea-level contributions under RCP8.5 forc-626

ing in 2100, varying the LIG AIS uncertainty according to three different scenarios for627

GMSL. Scenarios are derived from a milestone study by Dutton, Webster, et al. (2015),628

who used sea-level proxies in the Seychelles to constrain polar ice sheet mass losses dur-629

ing the LIG. Scenarios are developed to illustrate how individual components of uncer-630

tainty in LIG estimates contribute to projection uncertainties; thus they are not directly631

related to any of the holistic projections in section 2.4 (though they are most closely re-632

lated to the proxy-driven estimates of the K09-Max-3kyrSmooth constraint). We note633

that this is a close-to-ideal case study, because Seychelles GIA and DT predictions have634

relatively small uncertainties. All uncertainties are 1σ and assumed to follow a normal635

distribution. The scenarios are:636

1. Relative sea level coinciding with the highest in situ coral measured by Dutton,637

Webster, et al. (2015) with high-accuracy surveying techniques. The coral assem-638

blage is interpreted as “likely intertidal” and its elevation is 8±0.2 m above mod-639

ern sea level.640

2. While scenario 1 is illustrative of very small uncertainties in LIG sea-level estimates,641

it is also incomplete because it does not account for departures from eustasy due642

to GIA and sea-level fingerprints. These were calculated by Dutton, Webster, et643

al. (2015) using model results from Dutton and Lambeck (2012) and Hay et al.644

(2014). Using these estimates, Dutton, Webster, et al. (2015) calculated LIG GMSL645

rise was 7.6±1.7 m.646

3. Austermann et al. (2017) showed that mantle DT and ocean subsidence effects must647

be accounted for (each with large uncertainties), before GMSL can be calculated648

from field data. Here we use their model results for the Seychelles to illustrate how649

accounting for DT and ocean subsidence influences paleo GMSL estimates and their650

uncertainties. Subtracting ocean subsidence (-1.4 m) and DT as modelled in Austermann651
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et al. (2017) (-0.8±1.8m) from scenario 2, we calculate LIG GMSL rise was 9.2±2.5652

m.653

For each scenario, we calculate LIG AIS sea-level contributions by subtracting the654

contributions of the Greenland Ice Sheet (GrIS), mountain glaciers and thermal expan-655

sion following the budgetary approach of Dutton, Carlson, et al. (2015). First, we as-656

sume that the GrIS and thermosteric contributions to LIG sea level are known (2 m and657

1 m, respectively), with no error. We compare with the assumption that, instead, GrIS658

contributed 2 m±1.5 m to LIG GMSL, as shown in Dutton, Carlson, et al. (2015, Fig-659

ure 3). We set the contributions from mountain glaciers and thermosteric expansion to660

1 m (Dutton, Carlson, et al., 2015), with arbitrary uncertainties of ±0.2 m.661

This exercise (Figure 8A–C) shows that, regardless of AIS mass loss during the LIG,662

any LIG constraint can only substantially reduce uncertainties in this ice-sheet model’s663

projected AIS sea-level contributions if the following two conditions are met: 1) sea-level664

data and departures from eustasy are known with ±1σ uncertainties of a few decime-665

ters and 2) GrIS and thermal expansion uncertainties are small (<1 m). Constraints on666

other models could be stronger or weaker, depending on the particular relationship be-667

tween their parameters and ice-sheet evolution. This could be considered discouraging668

for the communities working on these topics, i.e. the large intrinsic uncertainties that669

characterize GrIS and proxy-based ESL estimates may seem insurmountable. We instead670

note that this knowledge gap provides a unique opportunity to do innovative, timely and671

important research that feeds directly into the open research questions in the paleo sea-672

level and ice-sheet communities (Capron et al., 2019).673

Results further suggest that the storyline of LIG sea-level evolution has a strong674

influence on whether the LIG is able to constrain future sea-level changes. Greenland675

and Antarctic sea-level contributions are inextricably linked during the LIG: knowledge676

or evidence about one will inform the other, as shown by assuming LIG total GMSL es-677

timates of 7.5±0.5 m in Figure 8D. Resulting relatively high or low AIS estimates are678

similar to the hypothetical constraint posteriors in Fig. 7b. The links between the ice679

sheets imply that 1) efforts to improve estimates of GrIS can directly inform future AIS680

sea-level projections, and that 2) the timing of LIG GrIS loss compared with LIG AIS681

loss is pivotal (Kopp, Dutton, & Carlson, 2017). Storylines where GrIS and AIS mass682

losses peak simultaneously have a very different interpretation from those where ice-sheet683

losses peak several thousand years apart (Rohling et al., 2019) and imply different AIS684

projected contributions to future sea-level rise.685

The mismatch between transient future ice-sheet mass loss and peak LIG mass loss686

limits the effectiveness of the LIG as a constraint. Historically, studies of the LIG have687

focused primarily on gathering geological evidence of peak LIG GMSL, in part because688

these are less challenging measurements to make in the field. But comparing the mod-689

eled LIG and future timeseries in Fig. 1 shows the transient onset of LIG losses most690

closely mirrors future losses, with similar dependencies on model physics and parame-691

ters. Both improved transient (rather than equilibrium) ice-sheet model runs and qual-692

ity estimates of the LIG onset period are highly desirable for constraining AIS changes693

and future sea-level rise. Sampling biases and the requirement for precise chronologies694

have to this point thwarted these efforts. But as a coherent picture of LIG sea levels emerges,695

combining LIG constraints with probabilistic distributions from ice-sheet models—as this696

study has done—will improve the precision of future sea-level projections.697

4 Summary and Conclusions698

This study applied Bayesian methods to emulate and calibrate an ice-sheet model699

to evaluate the ability of LIG AIS mass loss to constrain sea-level rise projections un-700

der RCP8.5 forcing. Ice-sheet model training ensembles were developed considering the701
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Figure 8. (A–C) Range of 95% credible intervals of future AIS sea-level contributions in 2100

under RCP8.5 forcing (m) conditional on three scenarios of LIG AIS contributions with a cen-

tral estimate (blue curves) and Gaussian 1σ uncertainties (see text); combined total GrIS and

thermosteric mean contributions are taken to be 3 m. Black dashed curves show the total field

uncertainties excluding those from GrIS and thermosteric contributions; orange dashed curves in-

clude GrIS and thermosteric uncertainties. (D) Probability density functions of AIS contributions

in 2100 under RCP8.5 forcing, conditional on LIG global mean sea levels of 7.5±0.5 m, and mean

GrIS sea-level contributions varying over 0–4 m.
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marine ice-cliff instability (MICI) process, with ensembles spanning over a broader range702

of model parameter values than previously explored (DeConto & Pollard, 2016). A set703

of proposed specific LIG constraint distributions (several of which have been previously704

used to calibrate ice-sheet model projections) were also employed to explore their effec-705

tiveness for constraining future AIS mass loss. The emulator was combined with LIG706

paleo sea level field measurements to illustrate how improved LIG observational estimates707

could potentially narrow uncertainties in future Antarctic ice-sheet projections.708

Results explicitly show how estimates of LIG AIS mass loss could inform which pa-709

rameter values are most likely in this ice-sheet model, which in turn informs future pro-710

jections (2000–2150). However, LIG AIS sea-level contributions themselves are not well711

constrained (e.g., Düsterhus et al., 2016), and not all LIG estimates inform future pro-712

jections equally. For instance, if LIG contributions were known to be <4 m, then MICI713

is very unlikely to be a primary loss mechanism in the future Antarctic mass loss pro-714

jected by this ice-sheet model. Likewise, if LIG contributions were known to be >6 m,715

the ice-sheet model emulator projects that substantial future mass losses associated with716

MICI are likely. In either case, uncertainties in future projections from this model would717

narrow considerably, but some uncertainty would remain because peak LIG Antarctic718

mass losses have somewhat different sensitivities to ice-sheet model parameters than fu-719

ture changes do. LIG observations which inform the upper and lower limits of the un-720

constrained probability distribution would be valuable for improving future projections721

(in the context of this specific model and ensemble). Because ice-sheet model parame-722

ter likelihoods and LIG sea-level estimates are closely linked, evidence of constraints on723

one informs the other. For instance, if there are indications that MICI is not a viable724

loss mechanism, results here indicate that peak LIG Antarctic sea-level contributions were725

likely <4 m.726

Consistent with the findings of Edwards et al. (2019), posterior distributions cal-727

ibrated with a Bayesian approach show that currently best-available LIG constraints (which728

have previously used to calibrate ice-sheet model projections, e.g., DeConto & Pollard,729

2016; Edwards et al., 2019) are inadequate to restrict a wide range of model parameter730

values. Consequently, this study can neither confirm nor exclude MICI as a primary driver731

of AIS mass loss. However, because the ice-sheet model projections of future AIS mass732

loss diverge over time—especially after 2060 when MICI begins strongly accelerating mass733

loss—LIG constraints which are uninformative in the near term become more informa-734

tive on longer time scales (through 2150).735

Conditioning future AIS mass losses on peak LIG sea level exposes direct links be-736

tween paleo sea-level reconstructions and future sea-level rise. Improvements in field mea-737

surements, reductions in uncertainties from glacial isostatic adjustment or dynamic to-738

pography, and better chronologies of Antarctic and Greenland ice-sheet retreat during739

the LIG could all reduce uncertainties in future projections. These results provide strong740

motivation and support for continued collaborations between the paleo sea level and ice-741

sheet communities.742

Past studies of LIG sea level have focused primarily on peak global mean sea lev-743

els, as they are more readily and reliably measurable, and because it is difficult to es-744

tablish accurate and precise sea-level chronologies (Dutton, Carlson, et al., 2015). But745

peak LIG Antarctic ice-sheet mass losses are not necessarily representative of the tran-746

sient changes the Antarctic ice-sheet may experience in the coming decades and centuries.747

This mismatch between the future and the past limits the applicability of LIG constraints748

on future Antarctic mass loss. Even if LIG Antarctic contributions were known precisely749

(±5 cm), there would still be decimeter-scale uncertainties in projections of future Antarc-750

tic contributions to sea-level rise. An alternative approach could be to pursue additional751

field observations detailing or inferring Antarctic changes during the LIG onset, to pro-752

vide improved constraints on projections of future AIS contributions to sea-level rise. Im-753
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proved LIG chronologies and observations of LIG Greenland ice-sheet changes could also754

reduce future projection uncertainties.755

This study considered a single ice-sheet model and explored the MICI process. Other756

parameterized processes (such as the oceanic melt factor or the timescale of isostatic re-757

bound; e.g. Chang et al., 2016; Pollard et al., 2016) are well-suited for exploration with758

the methodological approach developed here. It should be noted that expanding on the759

number or range of parameters is limited by the computational efficiency of Gaussian760

process modeling, which scales with n samples as O(n3) (C. E. Rasmussen & Williams,761

2006). Alternative sampling techniques (such as such as a Latin Hypercube or Sobol se-762

quence) could be utilized to improve efficiency on our factorial scheme. Other considerations—763

such as the Last Interglacial forcing applied, future emissions scenarios, or underlying764

stochastic processes like basal sliding—also contribute to uncertainties which are beyond765

the scope of this work, but with simplifications or extensions could be explored with an766

an approach similar to this study.767

There is a maximum possible constraint that the LIG can provide to inform ice-768

sheet model sensitivities to climate warming and future sea-level rise (e.g., Capron et al.,769

2019, and references therein). Uncertainties in ice-sheet physics and observational ev-770

idence currently limit the capability of the LIG to meaningfully constrain sea-level rise771

projections over the coming century. Despite these limitations, this study has specifically772

illustrated how models, emulation, and Bayesian calibration may be combined to inter-773

pret and guide paleo sea-level observational constraints. A major ongoing research ob-774

jective is to continue strategically gathering field observations, in order to improve un-775

derstanding and estimates of LIG sea levels. Such improvements, along with continued776

integration with modeling and statistical methods, will increase confidence in the physics777

and projections of Antarctic contributions to sea-level rise over the coming centuries.778
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Introduction

This supporting information provides underlying details on the ice-sheet model ensem-

ble, emulator construction, validation, and sensitivity tests, as well as supplemental figures

of timeseries color-coded by CREVLIQ, comparisons between the Last Interglacial and

RCP8.5 ensembles across the model parameter space, conditional posterior distributions

in 2150, and ice-sheet model parameter likelihoods as a function of LIG constraint distri-

bution. We note that the ice-sheet model ensembles are constructed with a model version

updated since DeConto and Pollard (2016), but predating that of DeConto et al. (2020).

As such, the results herein are not representative of the most current results with the

latest physical model, but are illustrative of how ice-sheet models may be combined with

statistical/machine learning methods and paleoclimate evidence to (a) constrain projec-

tions of future Antarctic ice-sheet contributions to sea-level rise, and to (b) identify how

improved paleo sea level estimates could inform projections. A glossary of key study terms

is included at the end, for reference.
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Table S1. Ice-sheet model parameter values used to construct a 14× 14 grid composing 196

members for the Last Interglacial and RCP8.5 scenario ensembles.

CLIFVMAX (km
yr ) CREVLIQ ( m

(myr−1)2
)

0 0
1 15
2 30
3 45
4 60
5 75
6 90
7 105
8 120
9 135
10 150
11 165
12 180
13 195

Table S2. Optimized hyperparameters of the GP models (Eqn. 1–3) found by maximizing

the log-likelihoods, given the training ensembles.

Ensemble α2
1 (m2) `21 α2

2 (m2) `22 τ (yr)
LIG 17.048 45.698 — — —

RCP8.5 2731.8 2.7567 1.830 0.50121 95.52198

Text S1. Emulator Leave-one-out Analyses

To assess whether the Gaussian process (GP) model emulator accurately mimics the ice-sheet

simulator, we perform a leave-one-out (LOO) analysis following a modification of the methodol-

ogy of Bastos and O’Hagan (2009). We calculate the individual standardized prediction errors

as,

DI
j =

zj − E[f(θ1, θ2)j|z\j]√
V [f(θ1, θ2)j|z\j]

(S1)
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where z\j is the vector composed all of training ensemble members in z except zj at the jth

location in model parameter space (i.e. the value with a fixed [θ1,θ2] from Table S1, removed

for the LOO process), and E[ · ] and V [ · ] are the expectation (mean function) and variance,

respectively, of the optimized emulator conditioned on z\j. For RCP8.5, f and zRCP are a

function of time, and hence DI
j is also time-dependent. The LIG emulator, zLIG, and the LIG

standardized prediction errors have no time dependency. Errors are shown for the LIG in Figure

S3 and the RCP8.5 scenario (in 2000, 2050, 2100, and 2150) in Figure S4.

Standardized errors are expected to follow a standard Student-t distribution. Errors which

consistently exceed ±2 (the 95% credibility interval) indicate a conflict between the emulator

and simulator (Bastos and O’Hagan 2009). We find that the LIG and RCP8.5 emulators per-

forms well, with nearly all errors falling within the confidence interval. Emulator skill degrades

slightly over the time in the RCP8.5 scenario as the training data sea-levels disperse when insta-

bilities drive mass loss (section 3.2), creating less densely packed training information in time and

parameter space. 5/196, about 2.5%, of the errors exceed +2 in 2150. These poorly performing

emulator estimates are located near the exterior of parameter space, where θ1 and θ2 are high,

and there is less surrounding training information to constrain the emulator prediction (behavior

which is typical of trained Gaussian process models, Rasmussen and Williams 2006).

Across time and both training ensembles, standardized emulator errors are less than ±2 in over

99% of points tested. One concern might be whether these errors indicate emulator variances

are too large relative to the mean (i.e. whether the model is underconfident), driving low values

of DI
j . The RCP8.5 emulator very accurately predicts relatively small (near-zero) and broadly

similar changes in mass loss across the whole parameter space; this contributes to the model’s

excellent standardized agreement through 2050 (Fig. S4, top panels). As the distribution of
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ice-sheet mass begins to diverge around 2060 (Fig. 3) and emulator skill drops marginally (as

discussed above), the model evolves toward an error distribution more consistent with the ex-

pected standard Student-t distribution. Overall, the time-independent variance of the RCP8.5

emulator is always <0.0004 m2 across the model parameter space, such that the model standard

deviation is always <2 cm.

The LIG emulator variance is plotted in Figure S7; values span over 0–0.016 m2 across the

ice-sheet model parameter space. The associated GP model standard deviation is 11 cm on

average, ∼3% of the range of the LIG emulator output. The model may therefore be slightly

underconfident, which could affect our study results/conclusions in two ways. First, a model

with too high variance would result in less confidence in model parameters given a specific LIG

constraint (i.e. less polarized likelihoods, Fig. S5), so that the LIG is less informative for the

MICI process. Second, higher variance results in a broader emulated distribution than may be

warranted. However, one of the strengths of the Bayesian approach (section 2.3) is the ability

both include and quantify the uncertainty of the emulator (as in Fig. S7), so some variance in

the final model is justified. Ultimately, the final model described in the main text captures the

key behavior of the training data, and had the smallest variances of any model explored (cf. Text

S2).

Overall, performance is consistent with that of another recently published ice-sheet model

emulator (Edwards et al. 2019, their Extended Data Figure 6), which was trained on a different

version of the same ice-sheet model (e.g., Pollard and DeConto 2012). We conclude the emulator

is able to accurately predict simulator responses across the LIG and RCP8.5 scenarios with

appropriate uncertainties.
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Text S2. GP Model Selection and Sensitivity to Covariance Function

There are infinitely many possible model forms, specifications, optimization targets, etc. to

consider for an emulator (Rasmussen and Williams 2006). The “final model” (described in the

main text) represents the best model based on several metrics: model simplicity, likelihood

maximization, and minimizing of prediction errors (described above in Text S2) and model

uncertainty (i.e. posterior variance).

We assessed different covariance forms: squared-exponential functions (sometimes called the

radial basis function), nonstationary linear (sometimes called dot-product) functions, and Matérn

functions with shape parameters (ν) of 1
2
, 3

2
, and 5

2
. We also evaluated various combinations of

these functions, and experimented with specifying them along the individual axes of the training

data (θ1, θ2, and time). For instance, we considered the complex form,

K(θ1, θ2)∼Linear(θ1) ∗Matérnν= 5
2
(θ1) + Linear(θ2) ∗Matérnν= 5

2
(θ2) +Matérnν= 5

2
(θ1, θ2).

Trained models produced log-likelihoods similar to (or sometimes even higher than) the final

model. But when optimized, each of these models required a variance (fit uncertainty) larger

than the final model (Fig. S7) in order to match the training data (cf. Text S2). Under

such circumstances, the optimized model is underconfident, and a nugget of 10−6 m is a strong

requirement that is inconsistent with the optimized model variance. We present one such model

as an example below and discuss the implications.

To demonstrate the emulator sensitivity to the choice of covariance function, we specify an

alternative set of covariance functions, f ∗1 and f ∗2 , which replace f1 and f2 in Eqn. (1):

f ∗1 (θ1, θ2)∼GP(0, α2
1K1,θ1(θ1, θ

′
1; `1,θ1) ·K1,θ2(θ2, θ

′
2; `1,θ2)), (S2)

f ∗2 (θ1, θ2, t)∼GP(0, α2
2K2,θ1(θ1, θ

′
1; `2,θ1) ·K2,θ2(θ2, θ

′
2; `2,θ2) ·Kt(t, t

′; τ)), (S3)
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where there are four distinct covariance functions, Ki,θ, each with a unique and trainable length

scale specified along either CLIFVMAX (θ1) or CREVLIQ (θ2), `i,θ. Because the model form is

different, the hyperparameters which share an interpretation with Eqn. (1)—αi and τ—need not

have the same optimized values as those of the final model (Table S2). Following the procedure

described in sections 2.2–2.3, this alternative model is optimized and conditioned on the training

simulations, and its posterior distributions are found conditional on LIG constraints.

The unconstrained Last Interglacial distribution of this alternative model form is presented

in Figure S8 alongside the final model distribution (reproduced from Fig. 4a) and the LIG

training ensemble histogram. The alternative model distribution is broader than that of the final

model distribution, driven by a larger variance. The LIG alternative model’s average standard

deviation is 25 cm, more than twice that of the final model, which smooths out some of the

multi-modal features of the unconstrained LIG distribution. The training ensemble exhibits a

multi-modal distribution (more consistent with the final model), suggesting the alternative model

contributes less information about AIS mass loss from individual sectors than indicated by the

original ice-sheet model simulations.

Likewise, the alternative model of the RCP8.5 emulator has greater uncertainty, with a time-

constant standard deviation of ∼5 cm and a width of the 95% credibility interval between 2000

and 2060 of 20 cm (a period where the full range of simulated mass loss is 0–7.7 cm). Given these

increased uncertainties, emulated behavior such as the instability-driven skew in Fig. 7b (given

a relatively low LIG constraint) disappears, suggesting the alternative model is less physical.

The alternative model posterior distributions of RCP8.5 AIS mass loss as a function of LIG

constraints are shown in Figure S9. Comparing with Fig. 4b, posterior distributions have

substantially broader projections if the LIG was known precisely (to within 10 cm). This degrades
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the informative power of LIG constraints on the margins of the LIG distribution (i.e. high or

low values, Fig. 7b), because the baseline uncertainty more than doubles. Hence, the final model

more accurately captures the multi-modal behavior of the LIG training ensemble and is more

precise in its predictions.
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(a) (b)

Figure S1. As in Fig. 1, except timeseries are color-coded by their CREVLIQ values over
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Figure S2. Contours are identical to the mean emulated sea-level contributions from the

Antarctic ice sheet in Fig. 2, but with LIG and RCP8.5 contours overlapping for comparison.
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Figure S3. Histogram of standardized prediction errors (Eqn. S1) from leave-one out analyses

performed with the Last Interglacial emulator. Errors < ±2 (gray shaded region) indicate the

emulator is able to properly represent the ice-sheet model (cf. Bastos and O’Hagan, 2009).
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Figure S4. As in Fig. S3, but for the RCP8.5 emulator in 2000, 2050, 2100, and 2150.
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Figure S5. The posterior probabilities of CREVLIQ/CLIFVMAX latin-hypercube sampled

pairs across the range of the model ensemble parameter space (cf. Table S1), conditional on

specified constraints on Last Interglacial Antarctic Ice-sheet sea level contributions (cf. Figure

4a). The colorbar saturates at it upper extent.
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Figure S6. As in Fig. 4b, except for 2150.
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Figure S7. Last Interglacial emulator variance (m2) over the ice-sheet model parameter space.
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Unconstrained Distributions

Figure S8. Unconstrained Last Interglacial emulated distribution reproduced from Fig. 4a

(black curve), compared with the emulated distribution from an alternative model (red curve)

defined with the covariance functions given in Eqn. (S2–S3). The training ensemble is shown as

a histogram scaled for comparison.
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Figure S9. As in Fig. 4b, except normalized conditional posterior probability densities are

plotted as a function of Last Interglacial AIS mass loss emulated with an alternative model

defined with the covariance functions given in Eqn. (S2–S3).
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Figure S10. As in Fig. 6, except posteriors are constrained assuming the D20-U constraint was

10%, 25%, 50%, 75% or 90% narrower (blue, cyan, green, yellow and red curves, respectively).
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Table S3. Glossary—Definitions of relevant terms.

Term Meaning

Bayesian statistics (in contrast to frequentist or classical statistical inference)
is a theory based on the Bayesian interpretation of probability
where probability expresses a degree of belief in an event. Bayesian
methods compute a posterior probability of a model or parameter
through the use of a prior probability distribution of the model or
parameter times a likelihood function using Bayes’ theorem

Bayesian updating the process of using new information to improve on previous
estimates. One uses the posterior distribution of one model
as the likelihood of a new model. For example, the posterior
distribution on the ice-sheet model parameters, (θ1, θ2 | fLIG), is
used as the likelihood distribution in the future projection model

Conditional probability the distribution of a random quantity, given (assuming, or as a
function of) a particular value of another random quantity

Covariance function defines prior beliefs about the relationship between one or more
variables or parameters in a Gaussian process, as a measure of
how much they change together

Gaussian process (GP) a generalization of the multi-variate Gaussian distribution to
continuous parameter space, which is fully defined by its mean
function and covariance function; GP regression provides an
analytically-tractable solution when adopting the assumption
of normality for all distributions

Hyperparameter parameter of a GP model prior distribution

Likelihood the probability of observing the data as described by the fitted
model; also known as the sampling or data distribution; a
conditional distribution that is a function of unknown parameters
for observed data

Marginal distribution unconditional probability distribution of a random quantity,
found by integrating over all values of the conditional
distribution
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Table S3 (continued).

Term Meaning

Non-parametric not involving any assumptions as to the functional form

Posterior probability the probability distribution of an unknown quantity,
conditional on (or assuming/given) observed data; In this study
these are, 1) the future AIS sea-level contribution projections
over time conditioned on a specified Last Interglacial estimate
distribution, and 2) the distribution of the model parameters
(CREVLIQ and CLIFVMAX) given specific LIG constraints

Prior probability (of an uncertain quantity—e.g., parameter or model) uses a priori
beliefs about the quantity before some evidence or data is
taken into account; the prior is combined with the probability
distribution of new data to yield a posterior distribution.
The prior can be subjective or uninformative (such as a uniform
distribution) to minimize the impact on Bayesian statistics
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