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Abstract

The year 2019 marks the 60th anniversary of the concept of radial diffusion in magnetospheric research. This makes it one of

the oldest research topics in radiation belt science. While first introduced to account for the existence of the Earth’s outer belt,

radial diffusion is now applied to the radiation belts of all strongly magnetized planets. But for all its study and application,

radial diffusion remains an elusive process. As the theoretical picture evolved over time, so, too, did the definitions of various

related concepts, such as the notion of radial transport. Whether data is scarce or not, doubts in the efficacy of the process

remain due to the use of various unchecked assumptions. As a result, quantifying radial diffusion still represents a major

challenge to tackle in order to advance our understanding of and ability to model radiation belt dynamics. The core objective

of this review is to address the confusion that emerges from the coexistence of various definitions of radial diffusion, and to

highlight the complexity and subtleties of the problem. To contextualize, we provide a historical perspective on radial diffusion

research: why and how the concept of radial diffusion was introduced at Earth, how it evolved, and how it was transposed to

the radiation belts of the giant planets. Then, we discuss the necessary theoretical tools to unify the evolving image of radial

diffusion, describe radiation belt drift dynamics, and carry out contemporary radial diffusion research.
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𝜏   characteristic time for the variation of the fields 189 

𝜏   gyration period 190 

𝜏   bounce period 191 

𝜏   drift period 192 

𝑇, E, W kinetic energy of the guiding center  193 

𝑈  electrostatic potential 194 
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𝑉   𝑑𝐿∗ 𝑑𝑡⁄ : bounce-averaged Lagrangian velocity of the guiding center in 𝐿∗ 196 

  square brackets = expected value (average value) of the bracketed quantity 197 

〈 〉  angle brackets = average change per unit time of the bracketed quantity 198 
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1. MOTIVATION 202 

 203 

1.1.  What is radial diffusion, and why this review? 204 

 205 

Radial diffusion in a nutshell 206 

If trapped radiation belt particles were experiencing constant magnetic and electric fields, they 207 

would stay at a constant average equatorial distance from the planet. In reality, radiation belt 208 

particles are constantly moving radially, towards or away from the planet, due to electric and 209 

magnetic field fluctuations. The individual path of a particle is similar to that of a random walk, 210 

and the net movement of the radiation belt population can be described by a diffusion equation. 211 

Thus, radial diffusion itself is not an actual physical mechanism. It is instead a mathematical 212 

formalism that describes the average outcome of various physical processes during which time-213 

varying fields transfer energy to and from charged particles. Radial diffusion therefore plays not 214 

only a role in explaining the observed spatial distribution of radiation belt particles in space but 215 

also in explaining their acceleration to high energies. 216 

 217 

The concept of radial diffusion was introduced during the year following the discovery of the 218 

Earth’s radiation belts (Van Allen and Frank 1959) in order to explain their existence. It was then 219 

transposed to the radiation belts of other magnetized planets, partly even before in-situ 220 

measurements became available (Mead and Hess 1973; Van Allen et al. 1980a).  221 

 222 

Why a review on radial diffusion? 223 

Once viewed as the most important acceleration mechanism for the Earth’s radiation belts, radial 224 

diffusion remains an elusive process despite many years of research. Doubts upon the efficacy of 225 

the radial diffusion process remain. Various definitions exist. There is a variety of analytic 226 

expressions to quantify radial diffusion present in the literature. The role played by the different 227 

possible drivers of radial diffusion remains uncertain. For all these reasons, advancing radial 228 

diffusion research constitutes a major scientific challenge to tackle in order to guarantee further 229 

progress in our abilities to understand and to model radiation belt dynamics. 230 

 231 

In this review, we present the motives underlying the developments of different radial diffusion 232 

models. We describe the methods developed over the years to quantify radial diffusion. We also 233 

provide the necessary theoretical tools to better navigate radial diffusion research; the interested 234 

reader may want to refer to this special section (Section 5) when necessary. 235 

  236 

Outline of the review 237 

1. Section 1 is the “MOTIVATION” Section. In the remainder of this section, the importance 238 

of radial diffusion research is detailed. 239 

2. Section 2 is the “FOUNDATION” Section. It deals with early works on radial diffusion. 240 

After a brief introduction of adiabatic invariant theory, the section presents the variety of 241 

observations that led to the introduction of the concept of radial diffusion. The early 242 

theoretical picture of the radial diffusion process at Earth is discussed, together with the 243 
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seminal work of Fälthammar (1965). This includes a derivation of the radial diffusion 244 

equation (equation 2-30). Pioneering methods for quantifying radial diffusion coefficients are 245 

also presented. 246 

3. Section 3 is the “EXPANSION” Section. It deals with radial diffusion at the outer planets. 247 

While some of the concrete diffusion drivers may be different than at the Earth, the general 248 

physics is the same and can be studied well because the different configuration of outer 249 

planet radiation belts allows the formation and observation of diffusion signatures that are 250 

not obvious at Earth. 251 

4. Section 4 is the “EVOLUTION” Section. It deals with the latest developments in radial 252 

diffusion research at Earth. In particular, the new sets of formulas proposed by Fei et al. 253 

(2006) to describe similar drivers as in Section 2.3 are introduced and discussed. 254 

5. Section 5 is the “NAVIGATION” Section. It provides the necessary theoretical toolkit to 255 

address radial diffusion research. It introduces the third adiabatic invariant and discusses 256 

mechanisms leading to its violation (that is, physical processes at the heart of radial 257 

diffusion). This section also discusses when radial diffusion can be viewed as a pragmatic 258 

approximation and when it offers an acceptable description of planetary environments.   259 

6. Section 6 is the “CONCLUSION” Section. A summary of the key points of this review is 260 

provided, together with a discussion of some of the challenges associated with modern radial 261 

diffusion research. 262 

 263 

Scope of the review 264 

This review deals with the statistical description of cross drift shell motion for trapped radiation 265 

belt populations that conserve the first two adiabatic invariants (definitions of the concepts of 266 

adiabatic invariants and drift shell are provided in Section 2.1 and Section 5.1). While there exist 267 

some “anomalous” and “neoclassical” radial diffusion processes, they require violation of one or 268 

two of the first two adiabatic invariants, because they are driven by a combination of pitch angle 269 

scattering and shell splitting (e.g., Roederer and Schulz 1969; O’Brien 2014; Cunningham et al. 270 

2018). These processes are out of the scope of this review. 271 

 272 

1.2.  Why radial diffusion research? 273 

 274 

1.2.1.  Scientific challenge 275 

 276 

Radiation belt dynamics is governed by a variety of concurrent source and loss processes whose 277 

individual contributions are difficult to evaluate (e.g., Walt 1996). Radial diffusion acts both as a 278 

source and a loss mechanism as it redistributes trapped particles throughout a magnetosphere, 279 

depending on the overall radial distribution (see also Section 2.3.2). Thus, uncertainty in the 280 

amplitude of radial diffusion leads to uncertainty in the relative contribution of other processes to 281 

the observed particle distribution. 282 

 283 

Take, for example, the formation of the third narrow Earth radiation belt at ultra-relativistic 284 

energies in 2012, which led to scientific controversy. The creation of this third radiation belt was 285 
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first explained in terms of losses to the magnetopause by radial diffusion, combined with 286 

scattering into the Earth’s atmosphere by electromagnetic ion cyclotron waves (Shprits et al. 287 

2013). A competing explanation later claimed that losses to the magnetopause by radial diffusion 288 

were the only necessary mechanism to create the third radiation belt (Mann et al. 2016), and led 289 

to a series of rebuttals (Shprits et al. 2018; Mann et al. 2018). 290 

 291 

More importantly, radial diffusion toward the Earth from an external source was originally 292 

thought to be the dominant acceleration mechanism for the radiation belts. Subsequent 293 

observations of local peaks in the radial profiles of electron phase space density brought about a 294 

paradigm shift (see also Section 2.3.2). As a result, the most recent works now consider that 295 

internal local acceleration prevails in the Earth’s radiation belts (e.g., Thorne 2010). It was also 296 

suggested that local acceleration be applied to the giant planets (Woodfield et al. 2014, 2018). 297 

Yet, observational evidence demonstrated the importance of radial diffusion for accelerating 298 

particles at Jupiter and Saturn (Kollmann et al. 2018). Also at Earth, the debate continues (e.g., 299 

Su et al. 2015). Radial diffusion and local acceleration are in a “battle royale” (Jaynes et al. 300 

2018a) for the title of dominant acceleration mechanism. 301 

 302 

In order to reach a careful understanding about the physics of a magnetosphere, evaluation of all 303 

the different mechanisms at play is required, and this includes radial diffusion. Without 304 

considering all processes, it is impossible to resolve the different controversies surrounding 305 

radiation belt dynamics. 306 

 307 

1.2.2.  Space weather challenge 308 

 309 

Radial diffusion plays a central role in a complex set of physical processes that determines the 310 

structure, intensity and variability of the radiation environment through which satellites must 311 

operate. Inability to accurately specify and forecast energetic radiation belt particles hampers our 312 

ability to use technological systems in space. 313 

 314 

Indeed, the Earth’s radiation belts with their “killer” electrons at relativistic energies pose serious 315 

threats to spacecraft, such as internal charging hazards (e.g., Horne et al. 2013). Energetic ions 316 

cause displacement damage in semiconductor devices. All radiation poses total dose hazards 317 

over the lifetime of a spacecraft. Yet, as our society relies more and more on space systems (for 318 

crucial purposes such as communication, navigation, Earth observation, defense, timing signals, 319 

etc.), the number of satellites flying within or through the Earth’s radiation belts is constantly 320 

increasing. In addition, the increased use of electric propulsion means that spacecraft spend more 321 

time in the heart of the belts – they need a few months after launch to reach geostationary orbit, 322 

compared to a few days in the traditional case of chemical propulsion (e.g., Horne and Pitchford 323 

2015). 324 

 325 

Reliable and cost-effective spacecraft design requires good knowledge of the radiation 326 

environment (e.g., Xapsos et al. 2013). Radiation drives the requirements for spacecraft and 327 

scientific instruments orbiting Earth as well as the outer planets. In particular, the spacecraft 328 
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design community needs a specification of the mean and worst-case radiation environments in 329 

which the satellites will operate (O’Brien et al. 2013). These requirements can be determined by 330 

empirical models based on a compilation of data from prior missions (e.g., Sawyer and Vette 331 

1976; Vette 1991; O’Brien et al. 2018) and physics-based numerical simulations (e.g., Maget et 332 

al. 2007; Maget et al. 2008; Glauert et al. 2018; Horne et al. 2018). However, empirical models 333 

rely on samples with limited accuracy and limited coverage (in space, time, energy, etc.). A 334 

common way to alleviate this difficulty is to combine data analysis with physical models. One of 335 

the benefits of theoretical modeling is that it can reconstruct a complete picture of the space 336 

environment based on sparse experimental information. In addition, physics-based models can 337 

reproduce realistic dynamics for the radiation belts, including the effects of geomagnetic storms. 338 

This feature is particularly helpful for post-event analysis, when spacecraft that are not 339 

necessarily equipped with sensors to monitor their local environment report anomalies during the 340 

course of a mission (e.g., Green et al. 2017). 341 

 342 

Diffusion-driven models as a solution 343 

In order to minimize the computational resources required and the execution time of the codes, 344 

many physics-based models rely on the adiabatic theory of magnetically trapped particles 345 

(introduced Section 2.1) in order to reduce the number of variables to handle. Rather than 346 

focusing on the dynamics of individual particles, they solve a diffusion equation to describe the 347 

average variations of distribution functions – quantities that relate directly to particle flux 348 

measurements (e.g., Beutier and Boscher 1995; Subbotin and Shprits 2009; Su et al. 2010; Tu et 349 

al. 2013; Glauert et al. 2014). The same models, appropriately modified, have also been used to 350 

study the radiation belts of Jupiter (e.g., Santos-Costa and Bourdarie 2001; Woodfield et al. 351 

2014; Nénon et al. 2017, 2018) and Saturn (Santos-Costa et al. 2003; Lorenzato et al. 2012; 352 

Clark et al. 2014; Woodfield et al. 2018). Models that are simpler but still diffusion-driven have 353 

also been applied to Uranus and Neptune (Selesnick and Stone 1991, 1994; Richardson 1993). 354 

  355 

One of the objectives of radial diffusion research is to generate the radial diffusion coefficients 356 

that appear in the corresponding diffusion equation. These coefficients are core inputs required 357 

by the physics-based models to develop realistic radiation belt dynamics. Therefore, an accurate 358 

evaluation of these coefficients is paramount.  359 

 360 

The most commonly used radial diffusion coefficients for the Earth’s radiation belts are the ones 361 

proposed by Brautigam and Albert (2000) and by Ozeke et al. (2014). Because both formulations 362 

are simple functions of location and magnetic activity, their use is straightforward. (See also 363 

Sections 2.4.2 and 4.3 for information about the formulas by Brautigam and Albert (2000) and 364 

by Ozeke et al. (2014), respectively). For the giant planets, the diffusion coefficient is commonly 365 

parameterized as a power law in distance with exponents based either on the theory by Brice and 366 

McDonough (1973) or on fits to observations (Section 3.2). In all cases, doubts remain as to the 367 

validity of these parameterizations.  368 

 369 

In effect, different works have yielded different values for the radial diffusion coefficients, and 370 

still today, the scattering among all possible values spans several orders of magnitude (e.g., Walt 371 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

11 
 

1971a, Fig. 6; Tomassian et al. 1972, Fig. 7; Mogro-Campero 1976; Van Allen 1984, Tab. III; 372 

Roussos et al. 2007, Fig. 9; Huang 2010, Fig. 6). While physical arguments can help explain part 373 

of this radial diffusion coefficient variability (Section 2.4.2), determining the most suitable 374 

coefficients to use in diffusion-driven models remains a challenge. 375 

 376 

 377 

2. FOUNDATION: What are the origins of radial diffusion research? 378 

 379 

Before presenting experimental evidence of radiation belt radial diffusion at Earth and at the 380 

giant planets, we briefly introduce the adiabatic theory of magnetically trapped particles in the 381 

first part of this section. Additional information is provided in Section 5.1.1. 382 

 383 

2.1.  Brief introduction to the adiabatic theory of magnetically trapped particles 384 

 385 

Planetary radiation belts are formed of energetic charged particles with energies on the order of 386 

MeV. These particles are trapped in the planetary magnetic field, where they undergo three 387 

forms of quasi-periodic motion on three very distinct timescales: (1) a fast gyration about a field 388 

line, (2) a slower bounce motion along the field line, and (3) a slow drift motion around the 389 

planet (e.g., Schulz and Lanzerotti 1974; Walt 1994; Roederer and Zhang 2014; see also the 390 

illustration in Fig. 11a, Section 5.1). The magnitude of each of these three periodicities is 391 

characterized by an adiabatic coordinate (e.g. Northrop 1963; Roederer 1967). The fundamental 392 

temporal condition for conservation of an adiabatic coordinate is that the time variations of the 393 

fields are negligible on the timescale of the corresponding quasi-periodic motion.  394 

 395 

The first adiabatic coordinate M is associated with gyro-motion. It is equal to 396 

 397 

 𝑀
𝑝

2𝑚 𝐵
 (2-1) 

 398 

where 𝑚  is the particle rest mass, 𝐵 is the local magnetic field, 𝑝 𝑇 2𝑇𝑚 𝑐 /𝑐 is the 399 

relativistic momentum, 𝑇 is the kinetic energy, 𝑝 𝑝 𝑠𝑖𝑛 𝛼 and 𝑝∥ 𝑝 𝑐𝑜𝑠 𝛼 are the 400 

components of the momentum 𝒑 perpendicular and parallel to the magnetic field vector, 401 

respectively, and 𝛼 is the local pitch angle between the particle velocity and the local magnetic 402 

field. The first adiabatic coordinate M is sometimes called the magnetic moment, but it is only 403 

equal to the magnetic moment resulting from the gyro-motion in the non-relativistic case. 404 

 405 

The second adiabatic coordinate 𝐽 is associated with bounce motion. It is equal to 406 

 407 

 𝐽 𝑝∥𝑑𝑠 (2-2) 

 408 
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The integral goes over the full bounce motion along the magnetic field line, and 𝑑𝑠 is an element 409 

of arc of the field line.  410 

 411 

Because all particles bounce through the equatorial plane while only particles with small pitch 412 

angles between their velocity and the magnetic field reach high latitudes of the planet, radiation 413 

belt intensities are highest in roughly toroidal regions around a planet, otherwise known as the 414 

radiation belts.  415 

 416 

When the relativistic momentum 𝑝 is conserved, it is easier to calculate numerically other 417 

quantities that are equivalent to the adiabatic invariants M and J. These adiabatic constants are 418 

the magnetic field at the mirror point 𝐵 𝑝 2𝑚 𝑀⁄ , the geometric integral 𝐼  𝐽/ 2𝑝  419 

and/or the quantity 𝐾  𝐼 𝐵  (e.g., Roederer 1970, p.50).  420 

 421 

In the case of strong pitch angle scattering, under which neither 𝑀 nor 𝐽 are conserved, it can be 422 

useful to consider that the quantity Λ 𝑝 ∮ 𝑑𝑠/𝐵 is approximately conserved (Schulz 1998). 423 

Strong pitch angle scattering is common for electrons in high intensity regions at most 424 

magnetized planets (Mauk 2014). 425 

 426 

The third adiabatic coordinate is associated with drift motion. The drift velocity 𝑽𝑫 of a radiation 427 

belt particle (𝑞, 𝑀, 𝐽) is a function of both electric and magnetic fields. For instance, in the case 428 

of equatorial particles 𝛼 90° , the drift velocity of the guiding center (𝑞, 𝑀, 𝐽 0) is equal 429 

to 430 

 431 

 𝑽𝑫
𝑀𝜵𝐵 𝑩

𝛾𝑞𝐵
𝑬 𝑩

𝐵
 (2-3) 

 432 

In the Earth’s radiation belts, the electric drift velocity is typically very small in comparison with 433 

the magnetic drift velocity  434 

 435 

 
𝑬 𝑩

𝐵
≪

𝑀𝜵𝐵 𝑩
𝛾𝑞𝐵

 (2-4) 

 436 

Thus, the total guiding-center drift velocity is often approximated by the value of the magnetic 437 

drift velocity. This zeroth-order approximation is no longer valid in the radiation belts of the 438 

giant planets, because the corotation electric drift is larger at the giant planets (see also Section 439 

3.1.3). 440 

 441 

The third adiabatic invariant 𝐽  is inversely proportional to the parameter 𝐿∗, as will be discussed 442 

in Section 5.1.1. 𝐿∗ is often approximated by the coordinate 𝐿, which corresponds to the 443 

normalized radial distance of a dipole magnetic field line at the magnetic equator. The pitfalls of 444 

such approximation will be highlighted in Section 2.3 and Section 5.1. 445 

 446 
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If the magnetic and electric field around a planet were stationary, the particles would follow a 447 

deterministic motion. The guiding centers would maintain the same average radial distance to the 448 

planet, and they would evolve along unchanging closed surfaces called drift shells with constant 449 

energy (see also the illustration in Fig. 11 Section 5.1). Random fluctuations in the field on the 450 

timescale of the radiation belt particle drift period around the planet add a random velocity 451 

component, and their average effects can be described through radial diffusion.  452 

 453 

Adiabatic vs non-adiabatic 454 

In this review, we call “adiabatic” the conditions that conserve all three adiabatic invariants, 455 

while “non-adiabatic” refers to conditions that violate at least one of the three adiabatic 456 

invariants. Because the third adiabatic invariant is associated with the slowest of the three forms 457 

of quasi-periodic motion (the drift motion), it is most likely to be violated (much faster variations 458 

are required to violate the first or the second invariants). 459 

 460 

It is useful to notice that in order to conserve 𝑀, 𝑝  will have to change when the local magnetic 461 

field experienced by the particle is changed. It is important to understand that changes in 𝐵 are 462 

not equivalent to changes in 𝐿∗ or the third invariant. The magnetic field (at any point on the field 463 

line) can change along a drift shell and the drift shell can change shape over time, even while all 464 

invariants are conserved (see discussion in Section 5.1.2).  465 

For scientific analysis, it is often useful to study whether measurements are consistent with the 466 

conservation of invariants, which requires conversion between the native coordinates of the 467 

measurement, energy T and pitch angle α, to the more physically meaningful adiabatic 468 

coordinates (e.g. Roederer and Lejosne 2018). The calculation of invariants from T, α, and 469 

spacecraft location requires an assumed global electromagnetic field model but is otherwise 470 

straightforward through the explicit equations provided above and in Section 5.1.2. More 471 

difficult is the other direction, where we select adiabatic coordinates to calculate the equivalent 472 

T, α, and location. There is usually no explicit analytic expression for this, but the solution can be 473 

done numerically or through a lookup table. What is usually found is that particles with pitch 474 

angles mirroring close to the magnetic equator change their energy faster for the same B-change 475 

at the magnetic equator than particles bouncing to high latitudes, assuming that they conserve at 476 

least the first two invariants. The energy change is weaker for relativistic particles. There is also 477 

a change in pitch angle for non-equatorial particles when B is changing. α becomes more 478 

equatorial in higher B, but this effect is minor in comparison to near equatorially mirroring 479 

particles. Thus, it is primarily the difference in the energy change that will modify an initial pitch 480 

angle distribution at constant energy (as is the native measurement) when the magnetic field is 481 

changing.  482 

 483 

2.2.  First experimental evidence of radiation belt radial diffusion 484 

 485 

2.2.1.   Existence of the Earth’s outer belt 486 

 487 
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Radial diffusion was first introduced to account for the existence of the Earth’s outer radiation 488 

belt, and characteristic signatures of a process slow enough to conserve the first two adiabatic 489 

invariants (equations (2-1) and (2-2)) were found in energetic particle measurements. 490 

 491 

MeV neutrons resulting from the disintegration of atmospheric nuclei struck by GeV cosmic rays 492 

can decay in flight while still within the Earth’s (or any other planet’s) magnetic field, producing 493 

energetic electrons and protons. This mechanism, known as cosmic ray albedo neutron decay 494 

(CRAND), was first proposed to account for the existence of the Earth’s radiation belts (Singer 495 

1958; Vernov 1959; Kellogg 1959a). CRAND is still thought to be the major source of Saturn’s 496 

proton belts (Kollmann et al. 2017; Roussos et al. 2018; Cooper and Sturner 2018). Yet, it was 497 

soon realized that CRAND could not sustain the high intensity of Earth’s outer belt. Radial 498 

diffusion was introduced as another possible source process for the outer belt (Kellogg 1959b). 499 

 500 

A few years later, Explorer 14 measurements reported systematic inward motion of the inner side 501 

of the peak of equatorial electron intensities (𝐸  1.6 MeV) for several weeks of geomagnetic 502 

quiet time following the magnetic storm of December 17-18, 1962 (Fig. 1). These data provided 503 

the first experimental evidence of radial diffusion in the Earth’s outer belt (Frank et al. 1964; 504 

Frank 1965; Newkirk and Walt 1968a).  505 

 506 

 507 
 508 

Fig. 1 The apparent inward motion of energetic electrons (𝐸  1.6 MeV) measured by Explorer 509 

14 during a geomagnetically quiet time following the magnetic storm of December 17-18, 1962. 510 
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Newkirk and Walt (1968a) showed that this apparent radial motion was similar to that expected 511 

from diffusion by violation of the third adiabatic invariant (Frank et al. 1964). 512 

 513 

A model-observation comparison for the average proton fluxes of the outer belt further supported 514 

the idea that radial diffusion is a primary source process for the Earth’s outer belt (Fig. 2; 515 

Nakada et al. 1965; Nakada and Mead 1965). 516 

 517 

 518 
 519 

Fig. 2 Comparison of (left) the observed trapped proton integral fluxes with (right) the 520 

distribution expected for radial diffusion from an external proton source located at the outer 521 

boundary (Nakada and Mead 1965). 522 

 523 

2.2.2. Artificial radiation belt dynamics 524 

 525 

Studies of artificial belts produced by high altitude nuclear explosions during the Cold War 526 

yielded some of the earliest evaluations of the radial diffusion coefficients (Newkirk and Walt 527 

1968b; Farley 1969a, 1969b). 528 
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 529 

High altitude nuclear explosions carried out by the United States and the Soviet Union (1958-530 

1962) created artificial belts in the inner zone that persisted for years (e.g., Gombosi et al. 2017). 531 

Measurements of those energetic electron fluxes indicated that the initially localized peak 532 

progressively broadened in radial width (e.g., Brown 1966), providing evidence of radial 533 

diffusion in the inner belt (Fig. 3). The peak in electron intensity observed in Fig. 3 at L=1.77 is 534 

an artificial radiation belt that resulted from a high-altitude nuclear explosion on November 1, 535 

1962. The progressive radial broadening of the peak with time is a clear indication of radial 536 

diffusion in the Earth’s inner belt. 537 

 538 

 539 
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Fig. 3 Broadening of the narrow peak in the inner zone electron flux profile (> 1.9 MeV, 540 

omnidirectional flux) produced by the third U.S.S.R. nuclear test on November 1, 1962. The 541 

intensities displayed are relative. The date, time, and value of the magnetic field of each peak 542 

center are noted, together with the full width at half maximum (FWHM) of a Gaussian fitted to 543 

the peak. This figure was adapted to illustrate the cover of Schulz and Lanzerotti’s (1974) book 544 

entitled “Particle Diffusion in the Radiation Belts.” The data displays the simultaneous effects of 545 

radial diffusion and pitch-angle scattering (Brown 1966). 546 

 547 

2.2.3. Diffusion signatures from giant planet moons 548 

 549 

Microsignatures 550 

The most direct observations of radial diffusion can be made after the introduction of a distinct 551 

disturbance into the radial intensity profile of a magnetosphere. In the case of Earth, such 552 

features usually arise from intensity enhancements following geomagnetic storms (e.g., Fig. 1). 553 

They can also be caused by high-altitude nuclear explosions (e.g., Fig. 3). At the Giant Planets, 554 

intensity depletions are common. Different from the Earth, the giant planets in our solar system 555 

have moons orbiting close enough to the planet that some of them are embedded in the radiation 556 

belts. The moons absorb particles that encounter them during their drift around the planet 557 

(Thomsen and Van Allen 1980; Hood 1983). The moons then cause a “drift shadow” where the 558 

intensities are depleted. Such features are referred to as “microsignatures” (Van Allen et al. 559 

1980b; Roussos et al. 2007). With increasing azimuthal distance to the moon, the microsignature 560 

is observed to refill in the case of energetic electrons. This filling can be quantitatively described 561 

through radial diffusion (Fig. 4). Different to the evolution of intensity enhancements at Earth 562 

that evolve through at least a mix of radial, pitch angle and energy diffusion, at the giant planets 563 

there is little ambiguity in identifying the role played by radial diffusion in controlling the 564 

evolution of a microsignature: Local source or loss processes will affect both the microsignature 565 

and its environment. Pitch angle diffusion is thought to affect the microsignature and its 566 

environment the same way. (An exception might be when the pitch angle diffusion results from 567 

waves driven by the particle distribution that is modified in the microsignature. However, the 568 

role of pitch angle diffusion on the intensities in regions of microsignatures has not been 569 

extensively studied.) Convective transport processes acting coherently on the plasma (through 570 

interchange or large-scale non-radial electric fields) will displace the microsignature (Roussos et 571 

al. 2010), not refill it. Thus, any such process will not be included in a diffusion coefficient 572 

derived from microsignatures, even though, for example, interchange may be also describable 573 

through diffusion (Section 3.1.2), but on scales larger than the microsignature. This is why 574 

microsignature-derived coefficients are sometimes referred to as describing “microdiffusion.”  575 

Overall, the analysis of microsignature refilling is a relatively robust, though purely 576 

phenomenological method to describe radial diffusion, at least on small scales. 577 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

18 
 

 578 
 579 

Fig. 4 The 2 MeV electrons downstream of Saturn’s moon Mimas. Points: measurements. It can 580 

be seen that Mimas has depleted the electron intensities. Line: fit to the data assuming refilling 581 

by radial diffusion as a function of time and azimuthal distance to the moon (Van Allen 1980b). 582 

 583 

Macrosignatures 584 

If radial diffusion is slow and/or the moon absorption is very efficient, the microsignature does 585 

not refill after one particle drift around the planet. This will lead to a deeper microsignature over 586 

time, until a steady state is reached (Mogro-Campero 1976; Kollmann et al. 2013). Such a 587 

feature is called “macrosignature.” Macrosignatures are mostly found for ions (Fig. 5) because 588 

their net drift around Jupiter and Saturn is faster than that of electrons of similar kinetic energy 589 

so that ions have less time to refill the drift shadow before the next moon encounter (see also 590 

Sec. 3.1 in Roussos et al. 2016). Electrons over a wide energy range at Jupiter and Saturn drift 591 

relatively slowly near the relevant moons because, unlike in the Earth’s radiation belts, their 592 

magnetic drift is competing with the corotation drift that is directed in the opposite direction. 593 

Only at very high energies (>10MeV close to Saturn) do electrons drift fast enough to also show 594 

macrosignatures (Kollmann et al., 2011). Macrosignatures show clearly the presence of radial 595 

diffusion: The extent of depleted intensities is found to be much broader in L-shell than what can 596 
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be explained by the size and eccentricity of the moon, the gyroradius effect, and non-circular 597 

drift paths. The extended depletion arises from the fact that radial diffusion continuously acts to 598 

enhance the intensity in the macrosignature at the price of depleting the intensities outside of the 599 

macrosignature. 600 

 601 

 602 
 603 

Fig. 5 Intensity of (1) 15 MeV and (2) 250 MeV protons at Saturn. The broad intensity minima 604 

around L=2.3, 2.5, 3.1, and 3.9 are macrosignatures caused by the absorption by various moons 605 

of Saturn as well as its main rings. Jagged lines: measurement. Smooth lines: Fit to the data 606 

assuming steady state radial diffusion (Cooper 1983). 607 

 608 

 609 
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2.3.  Early theoretical work 610 

 611 

2.3.1.   Parker’s core mechanism for radial diffusion in the Earth’s outer belt 612 

 613 

It was Parker (1960) who first described a physical mechanism by which particles on the same 614 

drift shell could be transported to neighboring shells in the Earth’s outer belt, with a scenario as 615 

follows (Fig. 6).  616 

 617 

 618 
Fig. 6 (Top panel) Schematic drawing of a sudden compression of the magnetosphere, indicated 619 

by an increase of the magnetic field in the magnetosphere. (Bottom panel) Schematic drawing of 620 

the displacement and broadening of a ring of equatorial particles. The particles initially drift in a 621 

dipole field (blue circle at step 1), and their motions are suddenly modified by the induced 622 

electric fields during magnetic field compression (red arrows in step 2). The particles slowly 623 

return close to their initial location during the slow relaxation even though the ring of particles 624 

has ultimately broadened (light brown band in step 3). See text for details. 625 

 626 

The initially dipole magnetic field (1) is suddenly compressed (2), and then slowly returns to its 627 

initial configuration (3). 628 

(1) Guiding-centers of equatorially trapped energetic particles drift around the Earth, following 629 

paths of constant equatorial magnetic field intensity in stationary conditions (see also Section 630 

5.1). Consider a ring of particles in a dipole field, all drifting along a circle of constant radius 631 

Fig. 6-1. 632 

(2) When the field is suddenly compressed, the particles follow the field lines (Parker, 1960). 633 

Their motions depend on the longitude at the time of the compression. Because the 634 

compression is stronger on the dayside than on the nightside, particles are transported closer 635 
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to Earth on the dayside. Particle radial motions are represented by red arrows in Fig. 6-2. As 636 

a result, different portions of the initial ring of particles now populate different shells as the 637 

particles drift around the Earth – the different drift shells are represented in light red-brown 638 

area in Fig. 6-2. This mechanism is at the heart of the radial diffusion process: Particles are 639 

moved inward and outward in a way that is well defined when distinguishing local times (see 640 

for example equation (2-37) below). When considering a drift shell average and many such 641 

events, particle motion turns into a random, diffusive motion. 642 

(3) Then, as the field returns slowly to its initial configuration, no additional motion across drift 643 

shells occurs. Yet, because of the sudden compression, the initially narrow ring of particles 644 

has broadened around its initial position – the blue ring in Fig. 6-1 has become the light red-645 

brown area in Fig. 6-3. 646 

It is worth noting that cross drift shell motion is zero on average over all local times (see also 647 

Section 5.2.2), even though there is general inward radial motion during the compression (all the 648 

red arrows point inward, as seen in Fig. 6-2). Also, all invariants are conserved during the 649 

relaxation, even though the radial distance is changing. This apparent inconsistency comes from 650 

the fact that the parameter of interest for radial diffusion is the third adiabatic invariant, or the 651 

equivalent 𝐿∗ coordinate, not radial distance (see also Section 5.1). Even though the red arrows 652 

indicate 𝑑𝑟/𝑑𝑡  0, as shown in Fig. 6-2, some correspond to 𝑑𝐿∗/𝑑𝑡 0, while others 653 

correspond to 𝑑𝐿∗/𝑑𝑡 0, depending on magnetic local time, and it results in the average 654 

displacement in 𝐿∗ being zero. 655 

 656 

Key points:  657 

‐ Timescale: The timescales of this scenario are always longer than the population bounce 658 

period; hence the first two adiabatic invariants are conserved. Therefore, “suddenly” means 659 

“with a characteristic time that is extremely rapid compared to the population drift period.” It 660 

indicates that the third invariant alone can be violated (e.g., Northrop and Teller 1960). 661 

“Slowly” means “with a characteristic time that is extremely slow compared to the 662 

population drift period,” so that all three adiabatic invariants are conserved. (The typical 663 

timescales invoked in the Earth’s radiation belts are of the order of a few minutes for the 664 

sudden magnetic compression, and a few hours for the relaxation.) 665 

‐ Particle motion and frozen-field condition: During the violation of the third invariant, it is 666 

implicitly assumed that the plasma obeys the so-called “frozen-field condition,” where 667 

particles can be visualized as if following the field lines. When the field is suddenly 668 

compressed, an induced rotational electric field 𝑬𝒊𝒏𝒅 is set up according to Faraday’s law. 669 

Provided that there is no component of the electric field parallel to the magnetic field 670 

direction, and that the Earth’s surface is a perfect conductor, the local magnetic field line 671 

velocity coincides with the electric drift 𝑬𝒊𝒏𝒅 𝑩 /𝐵  (Birmingham and Jones 1968; 672 

Fälthammar and Mozer 2007). That “the particles follow the field lines” means that the drift 673 

velocity is 𝑬𝒊𝒏𝒅 𝑩 /𝐵  during that time. 674 

‐ Asymmetry: That particles populate different drift shells originates from the fact that the 675 

magnetic field compression depends on local time (it is stronger on the dayside than on the 676 

nightside). If the magnetic field compression were not dependent on local time, the 677 
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configuration would stay symmetric: all particles would be transported radially inward by the 678 

same amount, and they would stay on a common ring. Thus, no broadening of the ring of 679 

particles would occur. In other words, it is essential that the variations of the electromagnetic 680 

field depend on local time in order to drive radial diffusion.   681 

In summary, sudden field variations that depend on local time cause motion across drift shells. A 682 

more comprehensive description for this mechanism is provided in Section 5.2.1.  683 

 684 

Although an event such as the one described in this section only constitutes a small perturbation 685 

for the radiation belts, the cumulative effect of a large number of such events can be significant. 686 

In the presence of a continuum of events similar to the one presented in Fig. 6, the initially 687 

narrow ring of particles keeps broadening. A radial diffusion coefficient is a characterization of 688 

the average rate at which the broadening occurs. (See, for instance, Equation (2-44).) 689 

 690 

In summary, radial diffusion was introduced to describe the average rate at which a trapped 691 

population changes drift shells in the presence of a large number of small uncorrelated 692 

perturbations. This formalism is germane to the Fokker-Planck equation, which describes the 693 

evolution of a distribution function as a result of small random changes in the variables (e.g., 694 

Davis and Chang 1962). In the following, we review step by step the derivation of the Fokker-695 

Planck equation, together with its reformulation in terms of a diffusion equation. 696 

  697 

2.3.2. From the Fokker-Planck equation to the diffusion equation  698 

 699 

Radial diffusion equation in action variables 700 

If the electromagnetic fields were completely specified all the time, Liouville’s equation could be 701 

used to determine the exact effects of field perturbations on particle distributions by following 702 

particle trajectories through phase space (e.g., Dungey 1965). However, it is experimentally 703 

impossible to characterize the electromagnetic fields at every location and at every time. 704 

Instruments only provide local, instantaneous measurements that can be converted into global 705 

but only statistical information on the fields. Alternatively, one can use numerical models (such 706 

as magnetohydrodynamics – MHD – codes) to fully specify the electromagnetic fields and inject 707 

test particles to simulate the resulting radiation belt dynamics. Yet, test particle simulations are 708 

usually not the preferred approach (because, for instance, they are still computationally very 709 

expensive). Due to these limitations, the Fokker-Planck formalism, which aims to calculate the 710 

time evolution 𝜕𝑓/𝜕𝑡 of a distribution function 𝑓, is usually the preferred method. This approach 711 

reduces the number of variables to specify by relating average properties of the electromagnetic 712 

fields to average characteristics of the radiation belt dynamics.  713 

 714 

Let us consider 𝐽 , 𝜑 , , , the set of action-angle variables associated with a radiation belt 715 

population. 𝐽  is the third adiabatic coordinate, and 𝜑  is proportional to the drift period. The 716 

objective of this paragraph is to describe the evolution of the number of particles 𝑑𝒩 with a set 717 

of action variables comprised between 𝐽  and 𝐽 𝑑𝐽 , 𝐽  and 𝐽 𝑑𝐽 , and 𝐽  and 𝐽 𝑑𝐽 , from 718 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

23 
 

a time 𝑡 to a time 𝑡 𝛥𝑡 – where ∆𝑡 is a time interval that is long in comparison with the 719 

population drift period. To do so, we introduce the drift-averaged distribution 𝑓 so that 720 

𝑑𝒩 𝑡 𝑓 𝐽 , 𝐽 , 𝐽 , 𝑡 𝑑𝐽 𝑑𝐽 𝑑𝐽 (2-5) 

In this description, we neglect all phase dependencies 𝜑  – assuming phase mixing (e.g., 721 

Schulz and Lanzerotti 1974), and we consider that the first two adiabatic invariants of the 722 

radiation belt population remain constant.  723 

 724 

The evolution of the distribution function is described in terms of a Markov process in 𝐽  (e.g. 725 

Chandrasekhar 1943; Lichtenberg and Lieberman 1992; Walt 1994; Roederer and Zhang 2014): 726 

𝑓 𝐽 , 𝐽 , 𝐽 , 𝑡 𝛥𝑡 𝑓 𝐽 , 𝐽 , 𝐽 ∆𝐽 , 𝑡 𝛲 𝐽 , 𝐽 , 𝐽 ∆𝐽 ; ∆𝐽 , 𝛥𝑡 𝑑 ∆𝐽  (2-6) 

where 𝛲 𝐽 , 𝐽 , 𝐽 ∆𝐽 ; ∆𝐽 , 𝛥𝑡 𝑑 ∆𝐽  indicates the probability that an ensemble of phase points 727 

that have a set of action variables equal to 𝐽 , 𝐽 , 𝐽 ∆𝐽  experiences an increment equal to ∆𝐽  728 

after a time interval 𝛥𝑡. Thus, the transition probability 𝛲 represents the physical mechanisms 729 

responsible for the violation of the third adiabatic invariant. By definition of the transition 730 

probability: 731 

𝛲 𝐽 , 𝐽 , 𝐽 ; ∆𝐽 , 𝛥𝑡 𝑑 ∆𝐽 1 (2-7) 

It is assumed that the increment ∆𝐽  after 𝛥𝑡 is small (∆𝐽 / 𝐽 ≪  1); that is, it is assumed that the 732 

transition probability 𝛲 is large only for small ∆𝐽 . A Taylor expansion for the integrand 733 

equation (2-6) yields  734 

𝑓 𝐽 , 𝐽 , 𝐽 ∆𝐽 , 𝑡 𝛲 𝐽 , 𝐽 , 𝐽 ∆𝐽

𝑓 𝐽 , 𝐽 , 𝐽 , 𝑡 𝛲 𝐽 ∆𝐽
𝜕

𝜕𝐽
𝑓𝑃

∆𝐽
2

𝜕
𝜕𝐽

𝑓𝑃  
(2-8) 

We want to find an expression for 𝜕𝑓/𝜕𝑡 𝑓 𝐽 , 𝐽 , 𝐽 , 𝑡 𝛥𝑡 𝑓 𝐽 , 𝐽 , 𝐽 , 𝑡 /𝛥𝑡. Inserting 735 

the Taylor expansion (2-8) into equation (2-6) leads to 736 

𝜕𝑓
𝜕𝑡

𝜕
𝜕𝐽

𝐷 𝑓
1
2

𝜕
𝜕𝐽

𝐷 𝑓 (2-9) 

where 𝐷  is the average change in 𝐽  per unit time: 737 

𝐷
1

∆𝑡
∆𝐽 𝑃 𝐽 , 𝐽 , 𝐽 ; ∆𝐽 , ∆𝑡 𝑑 ∆𝐽 (2-10) 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

24 
 

And 𝐷  is the average square change in 𝐽  per unit time: 738 

𝐷
1

∆𝑡
∆𝐽 𝑃 𝐽 , 𝐽 , 𝐽 ; ∆𝐽 , ∆𝑡 𝑑 ∆𝐽 (2-11) 

Rewriting (2-9) in the case of a uniform distribution function (𝜕𝑓 𝜕𝑡⁄ 0 and 𝜕𝑓 𝜕𝐽⁄ 0) 739 

yields a relation between 𝐷  and 𝐷 : 740 

𝐷
1
2

𝜕𝐷
𝜕𝐽

(2-12) 

(e.g. Walt 1994; Roederer and Zhang 2014). The coefficients 𝐷  and 𝐷  were discussed in 741 

several works, including Herlofson (1960), Davis and Chang (1962), Tverskoy (1964) and 742 

Fälthammar (1966). A derivation of the equation (2-12) from Hamiltonian theory is detailed in 743 

the following paragraph in order to emphasize the underlying assumptions. With 𝐷 𝐷 2⁄ , 744 

the diffusion coefficient associated with the third invariant, it results that the evolution of the 745 

drift-averaged distribution function is described by: 746 

𝜕𝑓
𝜕𝑡

𝜕
𝜕𝐽

𝐷
𝜕𝑓
𝜕𝐽

(2-13) 

A change of variables provides the diffusion equation in terms of magnetic flux ∝ 𝐽 , or 747 

𝐿∗ ∝ 1 𝐽  coordinates (see, for instance, Roederer and Zhang 2014, and equations (2-28) and 748 

(2-30) below). 749 

 750 

Derivation of the relation between the advection (𝐷 ) and the diffusion (𝐷 ) coefficients 751 

To understand the result provided in equation (2-12), we follow the derivation presented by 752 

Lichtenberg and Lieberman (1992). This derivation highlights the importance of phase mixing, 753 

i.e., of assuming that the distribution is uniform in 𝜑  (Roederer 1970; Schulz and Lanzerotti 754 

1974). For a time interval ∆𝑡 that is small in comparison with the characteristic time for the 755 

variation in 𝐽 : 756 

∆𝐽 𝐽 𝑡 ∆𝑡 𝐽 𝑡
𝑑𝐽
𝑑𝑡

∆𝑡
𝑑 𝐽
𝑑𝑡

∆𝑡
2

(2-14) 

with 𝜑  the angle variable associated to drift motion, and 𝐻 the Hamiltonian: 757 

 758 

⎩
⎨

⎧
𝑑𝐽
𝑑𝑡

𝜕𝐻
𝜕𝜑

𝑑𝜑
𝑑𝑡

𝜕𝐻
𝜕𝐽

(2-15) 

 759 

Combining equations (2-14), and (2-15), it results that: 760 
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 761 

∆𝐽
𝜕𝐻
𝜕𝜑

∆𝑡
∆𝑡

2
𝜕

𝜕𝐽
𝜕𝐻
𝜕𝜑

𝜕
𝜕𝜑

𝜕𝐻
𝜕𝜑

𝜕𝐻
𝜕𝐽

𝜕𝐻
𝜕𝑡

 (2-16) 

 762 

The first term on the right side of equation (2-16) is zero on average over 𝜑 , provided that the 763 

distribution is uniform in 𝜑 . Indeed: 764 

 765 

𝜕𝐻
𝜕𝜑

1
𝛱 𝜑 𝑑𝜑

𝜕𝐻
𝜕𝜑

𝜑 𝛱 𝜑 𝑑𝜑  (2-17) 

 766 

where 𝛱 𝜑 𝑑𝜑  is the probability that particles are between 𝜑  and 𝜑 𝑑𝜑  with 767 

𝛱 𝜑 𝑑𝜑 1. When the distribution is uniform in 𝜑 , 𝛱 𝜑 𝑐𝑠𝑡., and we obtain that 768 

𝜕𝐻
𝜕𝜑

1
2𝜋

𝜕𝐻
𝜕𝜑

𝜑 𝑑𝜑  (2-18) 

because H is periodic in 𝜑 , it follows that 769 

𝜕𝐻
𝜕𝜑

1
2𝜋

𝐻 2𝜋 𝐻 0 0 (2-19) 

For similar reasons, the third and fourth terms in equation (2-16) are also zero when averaging 770 

over 𝜑 . Thus averaging (2-16) over 𝜑  and inserting it into (2-10) yields: 771 

𝐷 〈∆𝐽 〉
∆𝑡
2

𝜕
𝜕𝐽

𝜕𝐻
𝜕𝜑

(2-20)

where  denotes the average of the bracketed quantity and 〈 〉 denotes the average change per 772 

unit time ∆𝑡 of the bracketed quantity. 773 

To describe 𝐷  (2-11), we take the square of equation (2-16), and we only keep the terms up to 774 

the second order in ∆𝑡:  775 

 776 

∆𝐽
𝜕𝐻
𝜕𝜑

∆𝑡 (2-21) 

Thus, 777 
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𝐷 〈 ∆𝐽 〉 ∆𝑡
𝜕𝐻
𝜕𝜑

(2-22) 

As a result: 778 

〈∆𝐽 〉
1
2

𝜕
𝜕𝐽

〈 ∆𝐽 〉 (2-23) 

and we obtain the equation (2-12).  779 

General diffusion equation 780 

It should be noted that the diffusion concept is very general, and in principle, not limited to the 781 

third invariant. A more general expression is 782 

 783 

 
𝜕𝑓
𝜕𝑡

𝜕
𝜕𝐽

𝐷 ,
𝜕𝑓
𝜕𝐽

,

𝑆𝑜𝑢𝑟𝑐𝑒𝑠 𝐿𝑜𝑠𝑠𝑒𝑠 (2-24) 

 784 

where 𝐷 ,  are the diffusion coefficients and 𝐽  are the action variables. The violation of the first 785 

and second adiabatic invariants can be rewritten in terms of diffusion in kinetic energy 𝐷  and 786 

equatorial pitch angle 𝐷 , as well as cross terms 𝐷 , 𝐷  (e.g. Schulz and Lanzerotti, 1974). 787 

Diffusion in the first and second adiabatic invariants is mathematically equivalent, and is less 788 

intuitive, but it can allow for more stable or more accurate numeric solutions of equation (2-24) 789 

(Subbotin and Shprits 2012). 790 

 791 

The “Sources” and “Losses” terms account for changes in ∂𝑓/ ∂t that are not due to diffusion. 792 

These processes can be sorted into three categories:  793 

1) Processes that are independent of the distribution function 𝑓. An example is the CRAND 794 

source process that provides particles regardless of the already existing population (Selesnick et 795 

al. 2007). 796 

2) Processes that scale with the distribution function 𝑓. An example is charge exchange that 797 

effectively converts ions into neutrals that are not magnetically trapped anymore and are 798 

therefore lost from the considered region. The loss rate for this process is proportional to the 799 

distribution function (Kollmann et al. 2011).  800 

3) Processes that steadily change a variable of the distribution function 𝑓. An example is gradual 801 

energy loss due to synchrotron emission (Santos-Costa and Bourdarie 2001) or while passing 802 

through a plasma, planetary atmosphere, or ring (Nénon et al. 2018). 803 

 804 

No doubt solutions of the full 3-D diffusion equation are more realistic than solutions of the 1-D 805 

radial diffusion equation with parameterized loss (Subbotin et al. 2011). Yet, it is interesting to 806 

note that radial diffusion alone typically provide rather reasonable dynamics for the belts in the 807 

Earth’s magnetosphere (e.g. Li et al. 2001; Shprits et al. 2005). This result further highlights the 808 

key role played by radial diffusion in driving radiation belt dynamics (Shprits et al. 2008). 809 

 810 
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Radial diffusion equation 811 

Historically, the derivation of the diffusion equation has been done in a dipole field, by tracking 812 

the number of particles whose adiabatic invariants are comprised between 𝑀 and 𝑀 𝑑𝑀, 𝐽 and 813 

𝐽 𝑑𝐽, and 𝐿 and 𝐿 𝑑𝐿 at time 𝑡, introducing the distribution function 𝑓 𝑀, 𝐽, 𝐿, 𝑡  such that 814 

𝑑𝒩 𝑡 𝑓 𝑀, 𝐽, 𝐿, 𝑡 𝑑𝑀𝑑𝐽𝑑𝐿 (2-25) 

Let us point out that the definition of the 𝐿 coordinate in equations (2-25) and seq. can be a 815 

source of ambiguity. Strictly speaking, the 𝐿 coordinate of these equations refers to the third 816 

adiabatic invariant. Thus, it corresponds to the Roederer’s 𝐿∗ coordinate (1970). Yet, for 817 

radiation belt particles in a dipole field, 𝐿∗ merges with the normalized equatorial radial distance 818 

(thus 𝐿 𝐿∗ in this special case). 819 

 820 

A reformulation of the equation (2-9) is 821 

 822 

 
𝜕𝑓
𝜕𝑡

𝜕
𝜕𝐿

〈∆𝐿〉𝑓
1
2

𝜕
𝜕𝐿

〈 ∆𝐿 〉𝑓  (2-26)

 823 

where 〈∆𝐿〉 and 〈 ∆𝐿 〉 represent the average displacement in 𝐿 per unit time, and the mean 824 

square displacement in 𝐿 per unit time, respectively. These two coefficients are related in a 825 

dipole field (Dungey 1965; Fälthammar 1966): 826 

 827 

 〈∆𝐿〉
𝐿
2

𝜕
𝜕𝐿

〈 ∆𝐿 〉
𝐿

 (2-27)

 828 

This result is equivalent to the equation (2-12) – when assuming a dipole field, or appropriately 829 

substituting 𝐿 by 𝐿∗ in the most general case.    830 

Consequently, the equation (2-26) reduces to 831 

 832 

 
𝜕𝑓
𝜕𝑡

𝜕
𝜕𝐿

𝐷
𝐿

𝜕
𝜕𝐿

𝐿 𝑓  (2-28)

 833 

where  834 

 835 

 𝐷
〈 ∆𝐿 〉

2
∆𝐿
2 ∆𝑡

 (2-29)

 836 

The operator  indicates an average, and the bracket operator 〈 〉 indicates an average per 837 

time interval ∆𝑡. It is important to recognize that generally, 〈 ∆𝐿 〉 〈 ∆𝐿 〉 . Assuming 838 

otherwise leads to wrong derivations of diffusion coefficients. If the diffusion driver is known, it 839 

may be possible to express 𝐷  through the power spectrum of the underlying field fluctuations 840 

under certain assumptions (see, for example, equations (2-43) and (2-51) derived in this section). 841 
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 842 

When comparing diffusion coefficients, it is important to note that while 𝐷  has the unit of 843 

1/time, its meaning is similar to a (normalized) distance2 per time in a dipole field. This means 844 

that 𝐷  cannot be directly compared with pitch angle diffusion 𝐷  or energy diffusion 𝐷 /𝐸 , 845 

which have the same units but the dimensions of angle2 per time and normalized energy2 per 846 

time. Diffusion coefficients represent the potential of the respective diffusion to act. In the 847 

absence of gradients, however, there will be no net diffusive transport, regardless of the diffusion 848 

coefficient. Another way of comparing the importance of different diffusion modes is therefore 849 

to compare the respective ∂𝑓 / ∂t terms. 850 

 851 

Sometimes, the distribution function is associated with the third adiabatic invariant 𝐽 , rather 852 

than with the actual 𝐿 coordinate. The third invariant 𝐽  is proportional to the magnetic flux 𝛷 853 

encompassed by the population drift shell. In that case, with 𝐹 𝑀, 𝐽, 𝛷, 𝑡 , the new distribution 854 

function, given that 𝐹𝑑𝛷 𝑓 𝑑𝐿 and 𝑑𝛷 ∝ 𝑑𝐿/𝐿  in a dipole field, we obtain that  855 

 
𝜕𝐹
𝜕𝑡

𝐿
𝜕

𝜕𝐿
𝐷
𝐿

𝜕𝐹
𝜕𝐿

 (2-30)

The value and functional dependence of the radial diffusion coefficient characterize the overall 856 

influence of cross drift shell motion on radiation belt dynamics. 857 

 858 

When using diffusion theory to analyze data, it is instructive to express equation (2-30) as 859 

 860 

 
𝜕𝐹
𝜕𝑡

𝐿
𝜕 𝐷 /𝐿

𝜕𝐿
𝜕𝐹
𝜕𝐿

𝐷
𝜕 𝐹
𝜕𝐿

 (2-31) 

 861 

It can be seen that the diffusion rate scales with the first two derivatives of F. Measured data can 862 

be noisy, in which case the data needs to be fit to a smooth curve before determining these 863 

derivatives. While it is straightforward to fit noisy data with a function that describes F and 864 

𝜕𝐹/𝜕𝐿 well, there is usually ambiguity in determining 𝜕 𝐹/𝜕𝐿 , making it sometimes difficult 865 

in practice to determine the precise value of 𝜕𝐹/𝜕𝑡 from radial diffusion.  866 

 867 

In summary, the radial diffusion equation provides a description for the evolution of the 868 

distribution function that is valid on average over the drift phase. Working with a time resolution 869 

that is greater than the drift period is advantageous when it comes to describing radiation belts 870 

dynamics over long time scales (for instance, over many years), as this minimizes the 871 

computational resources required (e.g., Glauert et al. 2018, see also Section 1.2.2). On the other 872 

hand, the radial diffusion equation assumes that fluctuations in action variables are small 873 

(∆𝐽 / 𝐽 ≪  1). It also relies on the assumption that the transition probability, 𝛲, as well as the 874 

distribution function, 𝑓, only depend on 𝐽  and are independent of the phase 𝜑 .  875 

 876 

When the radial diffusion equation (2-30) applies, the distribution function evolves so as to 877 

smooth its radial gradient (𝜕𝐹/𝜕𝐿 0 ⟹  𝜕𝐹/𝜕𝑡 0 . The distribution function 𝐹 at the peaks 878 

decreases, and 𝐹 in the valleys increases. That is why the formation of a local peak in the radial 879 
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profile of a population phase space density is usually viewed as the result of local processes (for 880 

instance: a local acceleration breaking either one or two of the first two adiabatic invariants, or a 881 

local loss). 882 

 883 

Solving the radial diffusion equation in a simple analytic case 884 

The most basic approach to study energetic particle measurements is to compare it to the 885 

assumptions that (1) no other processes occur besides radial diffusion, (2) radial diffusion scales 886 

with 𝐷 𝐷 𝐿 , and (3) a steady state with ∂F/ ∂t 0 is reached. Then, equation (2-30) is 887 

solved by 888 

 889 

 𝐹 𝐴𝐿 𝐵 
𝐹 𝐴 ln 𝐿 𝐵 

For 𝑛 3 
For 𝑛 3 

(2-32) 

 890 

Phase space density profiles usually fall toward a magnetized planet (e.g., Paonessa 1985; Cheng 891 

et al. 1987, 1992; Schulz 1991; Kollmann et al. 2011). While this feature is indicative of 892 

additional sources or losses, it is important to point out that equation (2-32) illustrates that a 893 

falling profile alone does not mean that there are increasingly strong losses distributed along a 894 

path toward the planet. 895 

The solution (2-32) requires two boundary conditions to determine its parameters A and B. 896 

These boundary conditions are able to implicitly impose non-diffusive processes that act outside 897 

of the considered region. A boundary condition with a straightforward physical interpretation is 898 

one that forces F to zero at a location of strong losses, like the planetary atmosphere. This 899 

boundary condition alone is able to explain generally falling phase space density profiles without 900 

the presence of distributed losses (like from an extended atmosphere or planetary ring) across the 901 

considered region.  902 

The second boundary condition is often chosen at the outer boundary of the considered range. It 903 

represents an external reservoir of particles that diffuse into the considered region, but there is no 904 

direct relation to a physically meaningful source rate. 905 

A signature for the onset of losses within the considered region, or any other process not 906 

described well by radial diffusion, is if the slope of a phase space density profile changes 907 

abruptly, which interestingly, is also found at all magnetized planets with radiation belts. 908 

 909 

More realistic numerical solutions to the diffusion equation 910 

Equation (2-32) is a solution to the diffusion equation in its simplest form and usually does not 911 

represent actual conditions in space realistically. Non-radial diffusion, as well as various sources 912 

and losses, need to be included (2-24). After compiling such a generalized diffusion equation, 913 

there is usually no longer an analytic solution for it (except for still very simple cases like in 914 

Thomsen et al. 1977), and the equation needs to be solved numerically. One detail that makes 915 

such a numerical calculation challenging is that different processes are assumed to conserve 916 

different variables that are used to parameterize the distribution function F: radial diffusion is 917 

assumed to conserve M and J, and energy diffusion and gradual energy loss are assumed to 918 

conserve 𝛼  and L and are usually expressed as a function of E, not the associated invariants. 919 

Similarly, pitch angle diffusion is usually defined in a way to conserve E and L. In such cases, it 920 
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is common to use two different grids to describe F. One is regularly spaced in M, J, and L, and it 921 

is used to describe radial diffusion. The results are then interpolated on a regularly spaced grid in 922 

E, 𝛼 , and L to compute the other diffusion modes (Varotsou et al. 2008; Subbotin and Shprits 923 

2009).  924 

 925 

2.3.3.  Fälthammar’s analytic expressions for radial diffusion through magnetic and electric 926 

potential disturbances 927 

 928 

The objective of the very first theoretical works on radial diffusion in the Earth’s radiation belts 929 

was to study the cumulative effect of many sudden impulses (“si”) or storm sudden 930 

commencements (“ssc”) with a time evolution similar to the one presented Section 2.3.1 (that is, 931 

a sudden variation with a very short rise time, followed by a slow return to the initial 932 

configuration) (e.g. Parker 1960, Davis and Chang 1962). Fälthammar (1965, 1968) made fewer 933 

assumptions on the time variations of the fields. He described radial diffusion analytically, in a 934 

more general – yet still simplified – way. Because these works have been central to radial 935 

diffusion research, they are the object of this section. 936 

 937 

In Fälthammar’s works, two different drivers for radial diffusion are discussed separately: (1) 938 

magnetic disturbances and (2) electric potential disturbances. In both cases, the assumption is 939 

that the background field is a magnetic dipole field. Idealized electric and magnetic field 940 

fluctuations are introduced to describe small drift motion perturbations. In the following, as well 941 

as in Section 4.2.1, we will calculate the diffusion coefficients resulting from magnetic and 942 

electric disturbances using two different approaches that we then compare in Section 4.2.2. It 943 

will be shown how the statistical properties of these field fluctuations determine the radial 944 

diffusion coefficient. 945 

 946 

Radial diffusion through magnetic disturbances 947 

Magnetic field distortions in the Earth’s outer magnetosphere are due to currents flowing on the 948 

magnetopause, on the neutral sheet, and within the magnetosphere (Schulz and Lanzerotti 1974). 949 

The Mead magnetic field model accounts for the permanent compression of the magnetosphere 950 

by the solar wind (Mead, 1964). In Fälthammar’s works, the magnetic field considered is a 951 

simplified Mead geomagnetic field model, with a disturbance field 𝒃 superimposed to the 952 

background dipole field. This disturbance consists of a symmetric part (𝑆) – which is 953 

independent of magnetic local time –, and an asymmetric part (𝐴) – which depends on local time. 954 

In spherical coordinates 𝑟, 𝜃, 𝜑 , with 𝑟 the geocentric distance, 𝜃 the colatitude measured from 955 

the pole, and φ the azimuthal angle measured from the midnight meridian and counted positive 956 

eastward, the field perturbation vector expressed in the spherical base 𝒆𝒓, 𝒆𝜽, 𝒆𝝋  is: 957 

 958 

 
𝒃

𝑆 𝑡 cos 𝜃 𝐴 𝑡 𝑟 sin 2𝜃 cos 𝜑
𝑆 𝑡 sin 𝜃 𝐴 𝑡 𝑟 cos 2𝜃 cos 𝜑

𝐴 𝑡 𝑟 cos 𝜃 sin 𝜑
 

 

(2-33)
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This vector describes magnetic field distortions. This field model is curl-free by design, which is 959 

a limit to its use (currents within the magnetosphere are omitted). 960 

In the equatorial plane, it is: 961 

 962 

 𝒃 𝑟, 𝜃
𝜋
2

, 𝜑 𝑆 𝑡 𝐴 𝑡 𝑟 cos 𝜑 𝒆𝜽 (2-34)

 963 

(e.g., Fälthammar 1965, 1968). Assuming frozen-in flux conditions, the induced electric field  964 

𝑬𝒊𝒏𝒅 associated with the magnetic disturbance 𝒃 is  965 

 966 

 𝑬𝒊𝒏𝒅

⎝

⎜
⎜
⎜
⎛

𝑟
7

𝑑𝐴
𝑑𝑡

𝑡 sin 𝜃 sin 𝜑

2𝑟
7

𝑑𝐴
𝑑𝑡

𝑡 cos 𝜃 sin 𝜑

𝑟
2

𝑑𝑆
𝑑𝑡

𝑡 sin 𝜃
2𝑟
21

𝑑𝐴
𝑑𝑡

𝑡 3 7 sin 𝜃 cos 𝜑⎠

⎟
⎟
⎟
⎞

 (2-35) 

 967 

With these expressions, it is straightforward to derive the radial component of the drift velocity 968 

of equatorial particles, to first-order approximation in |b B⁄ |: 969 

 970 

 
𝑑𝑟
𝑑𝑡

𝐸 ,

𝐵
𝑀

𝑞𝛾𝐵 𝑟
𝜕𝑏
𝜕𝜑

 (2-36) 

 971 

where 𝑟  is the initial unperturbed value of the particle radial location, 𝐵 𝐵 𝑅 /𝑟  is the 972 

amplitude of the magnetic dipole field at the equatorial radial distance 𝑟 , 𝑀 is the relativistic 973 

magnetic moment, and γ is the Lorentz factor. In this model, the electric and magnetic 974 

perturbations are small in the sense that their contribution to the drift motion is much smaller 975 

than the contribution of the magnetic gradient. 976 

For an equatorial particle trapped in the Earth’s dipole field, the angular drift velocity is the 977 

angular magnetic drift velocity, and it is equal to 𝛺 3𝑀/ 𝛾𝑞𝑟 . With the drift phase 𝜑 978 

reformulated in terms of angular drift velocity 𝜑 𝑡 𝛺𝑡 𝜑 , the radial displacement for 979 

an equatorial particle initially located at 𝑟  with a phase 𝜑  is: 980 

 981 

 
𝑟 𝑡 𝑟

5
7

𝑟 𝛺
𝐵

𝐴 𝜉 sin 𝛺𝜉 𝜑 𝑑𝜉
𝑟

2𝐵
𝑆 𝑡 𝑆 0

8
21

𝑟
𝐵

𝐴 𝑡 cos 𝛺𝑡 𝜑 𝐴 0 cos 𝜑  

(2-37)

 982 

where 𝜉 is another parameter describing time. 983 

This expression is only valid in its current form if there are no other contributions to the drift 984 

velocity, particularly no significant contribution from corotation drift, as it is important at the fast 985 
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rotating gas giant magnetospheres where it can cancel out the magnetic drifts (Roussos et al. 986 

2018b). 987 

 988 

With the exception of the integral term in (2-37) that we define here as 989 

 990 

 𝑋 𝑡
5
7

𝑟 𝛺
𝐵

𝐴 𝜉 sin 𝛺𝜉 𝜑 𝑑𝜉 (2-38)

 991 

all the other terms on the right-hand side of equation (2-37) are bounded, and these terms are of 992 

the order of 𝑏/𝐵 ≪ 1. Thus, only 𝑋 𝑡  can potentially lead to large cumulative effects. 993 

Therefore, it is important to take a closer look at this integral. 994 

‐ If the signal 𝐴 has frequencies close to the angular drift velocity 𝛺, the amplitude of the 995 

integral 𝑋 can increase with time, and the radial displacement can become significant. 996 

‐ The integral 𝑋 𝑡  only depends on the signal 𝐴, i.e., it only depends on the asymmetric 997 

perturbations of the magnetic field. This result is understandable given that symmetric 998 

variations of the fields cannot broaden drift shells (see also Sections 2.3.1 and 5.2.1), thus 999 

they cannot contribute to radial diffusion. 1000 

‐ The integral 𝑋 𝑡  consists of the partial integration of two nearly equal contributions: (1) the 1001 

induced electric field (first term in equation (2-36)) contributes 8/21 of the 5/7 factor in the 1002 

radial displacement (i.e. about 55%), and (2) the magnetic disturbance (second term in 1003 

equation (2-36)) contributes 1/3 of the 5/7 factor in the radial displacement (i.e. about 45%). 1004 

Thus, one cannot arbitrarily omit the induced electric fields when evaluating radial diffusion 1005 

caused by magnetic disturbances. 1006 

In theory, equation (2-37) can be used to determine 𝑟 𝑡  for each particle, which can then be 1007 

used to construct the full particle distribution function without the need for involving a diffusion 1008 

formalism and accepting its approximations. In practice, such an approach is not possible 1009 

(outside of a numerical model that traces particles) because the real field perturbations are not 1010 

well known. So Fälthammar assumed that 𝐴 𝑡  are realizations of a stationary stochastic process. 1011 

In other words, 𝐴 fluctuates randomly, and its statistical properties are time-independent. In 1012 

particular, because the background field is the dipole field, the mean of 𝐴 is zero.  1013 

In that context, after a time, 𝑡, that is much longer than the autocorrelation time of the signal, 𝐴, 1014 

and much longer than the particle drift period, 2𝜋/𝛺, the expected value of the square 1015 

displacement 𝑟 𝑡 𝑟  grows linearly with time, t. Thus, over a long period of time, t, the 1016 

expected value of the square displacement per unit time will be constant and will be identical for 1017 

all initial drift phases, 𝜑 :  1018 

 1019 

 〈 𝑟 𝑡 𝑟 〉
𝑑
𝑑𝑡

𝑟 𝑡 𝑟 𝑐𝑠𝑡. (2-39)

 1020 
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where the symbol  denotes the expectation value and the symbol 〈 〉 denotes the average 1021 

change per unit time. It is this constant rate of change value that determines the radial diffusion 1022 

coefficient 𝐷 .  1023 

 1024 

 𝐷
1
2

〈
𝑟 𝑡 𝑟

𝑅
〉 (2-40)

 1025 

This step is crucial as it turns individual particle motions, 𝑟 𝑡 , that in principle are deterministic 1026 

(but in reality not well known) into a stochastic parameter that drives the time evolution of the 1027 

distribution of particles (a quantity that can be measured). 1028 

With the idealized models chosen, the radial diffusion coefficient for this case is: 1029 

 1030 

 𝐷 , ,
1
2

5
7

𝑟 𝛺
𝑅 𝐵

𝐴 𝑡 𝐴 𝑡 𝜉 cos 𝛺𝜉 𝑑𝜉 (2-41)

 1031 

where the subscript, 𝑚, indicates that radial diffusion is driven by magnetic disturbances, and the 1032 

subscript, eq, refers to equatorial particles. Because 𝐴 is a stationary signal, 𝐴 𝑡 𝐴 𝑡 𝜉  is 1033 

independent of time, 𝑡. It only depends on the lag, 𝜉. For 𝜉 greater than the autocorrelation time 1034 

of 𝐴, 𝐴 𝑡 𝐴 𝑡 𝜉  is zero, and the integration over 𝜉 can be extended to infinity. 1035 

 1036 

By introducing 𝑃 𝛺 , the power spectrum of the asymmetric field perturbation, 𝐴, evaluated at 1037 

the angular drift velocity, 𝛺: 1038 

 1039 

 𝑃 𝛺 4 𝐴 𝑡 𝐴 𝑡 𝜉 cos 𝛺𝜉 𝑑𝜉 (2-42)

 1040 

we obtain that:  1041 

 1042 

 𝐷 , ,
1
8

5
7

𝑅 𝐿
𝐵

𝛺 𝑃 𝛺  (2-43)

 1043 

In terms of magnetic drift frequency 𝜈 𝛺/2𝜋 , the diffusion coefficient is also 1044 

 1045 

 𝐷 , ,
𝜋
2

5
7

𝑅 𝐿
𝐵

𝜈 𝑃 𝜈  (2-44)

 1046 

In the case of randomly occurring events with a very short rise time and a very long recovery 1047 

time, the power spectrum of the signal, 𝐴, is proportional to 𝜈 . In that case, the ν terms cancel 1048 

so that the radial diffusion coefficient is proportional to 𝐿  (𝐷 , , ∝ 𝐿 ), and it is 1049 

independent of energy. 1050 
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More generally, if the power spectrum of the signal, 𝐴, is proportional to 𝜈 , the variations of 1051 

the radial diffusion coefficient with normalized equatorial radial distance, 𝐿, first adiabatic 1052 

invariant, M, or kinetic energy, T, are the following: 1053 

 1054 

 𝐷 , , ∝ 𝐿 𝑀 ∝ 𝐿 𝑇  (2-45)

 1055 

The expression to the right is only true for non-relativistic equatorial particles and the assumed 1056 

dipole field. In other words, the so often assumed 𝐿  variation of 𝐷 , ,  results from: (1) a 1057 

specific model for the magnetic field disturbance, where the asymmetric perturbations of the 1058 

field are proportional to 𝐿, and (2) a specific regime for the time variations of the fields, with a 1059 

random succession of events with a very short rise time and a very long recovery time. 1060 

 1061 

For a given kinetic energy, the radial diffusion coefficient 𝐷 ,  for off-equatorial particles is 1062 

proportional to the diffusion coefficient in the equatorial case 𝐷 , ,  (Fälthammar 1968; Schulz 1063 

and Lanzerotti 1974) 1064 

 1065 

 𝐷 , 𝛤 𝛼 𝐷 , ,  (2-46)

 1066 

where 𝛤 𝛼  is a multiplying factor that depends strongly on the pitch angle at magnetic 1067 

equator, α . 𝛤 𝛼  is obviously equal to 1 in the equatorial case (α 90°), and it is close to 1068 

0.1 for the most field-aligned particles. A representation of this pitch-angle multiplying factor is 1069 

provided Fig. 7. 1070 
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 1071 

Fig. 7 Pitch-angle factor 𝛤 𝛼  for the radial diffusion coefficient driven by magnetic 1072 

fluctuations, as a function of the equatorial pitch angle 𝛼  and the mirror latitude 𝜆 . For a 1073 

given energy, the diffusion coefficient decreases up to a factor of 10, as the equatorial pitch angle 1074 

decreases (Walt 1994). 1075 

 1076 

In comparison, the angular drift velocity does not vary much with equatorial pitch angle (less 1077 

than a 50% difference between the angular drift velocities of equatorial and field-aligned 1078 

particles for a given energy – e.g, Schulz 1991). Therefore, the pitch angle dependence of D ,  1079 

is described by Γ α . It shows that equatorial particles diffuse more efficiently than off-1080 

equatorial particles in the case of magnetic disturbances. 1081 

 1082 

Radial diffusion through electric potential disturbances 1083 

Similar calculations can be applied to the case of electric potential disturbances (𝜵 𝑬 𝟎) in 1084 

the absence of magnetic field perturbations. The background magnetic field is a dipole. We 1085 

specify only the component of the electric field fluctuation that leads to radial motion: the 1086 

azimuthal component. It is described by a partial Fourier sum around r : 1087 

 1088 

 𝐸 𝑟 , 𝜑, 𝑡 𝐸 𝑡 cos 𝑛𝜑 𝛾  (2-47)

 1089 

where the phases 𝛾  do not vary with time t. Equation (2-47) can be used to represent a time-1090 

dependent dawn-to-dusk electric field, for example. 1091 

 1092 

If there are no other electric fields besides 𝐸 , or if there is a purely radial corotational electric 1093 

field (Section 3), the radial component of the drift velocity of equatorial particles is: 1094 

 1095 

 
𝑑𝑟
𝑑𝑡

𝐸
𝐵

 (2-48)

 1096 

The quantities 𝐸 𝑡  are assumed to be individually and jointly stationary and ergodic, so that 1097 

𝐸 𝑡 𝐸 𝑡 𝜏  , 𝐸 𝑡 𝜏 𝐸 𝑡 𝐸 𝑡 𝐸 𝑡 𝜏  and these quantities are 1098 

independent of t, both when 𝑚  𝑛 and 𝑚  𝑛.  1099 

The fluctuating part of the electric field is:  1100 

 1101 

 𝐸 𝑡 𝐸 𝑡 𝐸  (2-49)

 1102 

From these fluctuations, the diffusion coefficient is: 1103 

 1104 
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 𝐷 ,
1
2

1
𝑅 𝐵

𝐸 𝑡 𝐸 𝑡 𝜉 cos 𝑛𝛺𝜉 𝑑𝜉 (2-50)

 1105 

where the subscript 𝑒 in 𝐷 ,  stands for electric potential disturbances, and 𝛺 stands for the 1106 

angular drift velocity. The equation (2-50) accounts for radial diffusion driven by electric field 1107 

fluctuations. With 𝑃 𝑛𝜈 , the power spectrum of the nth harmonic of the electric field 1108 

fluctuations evaluated at the nth harmonic of the drift frequency ν, the diffusion coefficient is  1109 

 1110 

 𝐷 ,
𝐿

8𝑅 𝐵
𝑃 𝑛𝜈  (2-51)

 1111 

This expression is valid for all equatorial pitch angles. 1112 

 1113 

The radial diffusion coefficient driven by electric field fluctuations varies with 𝐿 , provided that 1114 

∑ 𝑃 𝑛𝜈  is independent of 𝐿. The drift frequency 𝜈 does not vary much with equatorial pitch 1115 

angle. Therefore, unless 𝑃 𝑛𝜈  varies strongly with frequency, radial diffusion driven by 1116 

electric field fluctuations is nearly independent of equatorial pitch angle for particles of a given 1117 

kinetic energy. 1118 

 1119 

Radial diffusion as an aggregate 1120 

In Fälthammar’s work, electric potential disturbances and magnetic disturbances are discussed 1121 

separately because they are thought to originate from different sources. In practice, when both 1122 

diffusion mechanisms are concurrent, it is assumed that they are uncorrelated. Therefore, it is 1123 

usually assumed that the total radial diffusion coefficient 𝐷  can be written as the sum of the 1124 

two different diffusion coefficients: 1125 

 1126 

 𝐷 𝐷 , 𝐷 ,  (2-52)

 1127 

This representation requires an artificial division of the electric field perturbation into two parts: 1128 

an induced component, which is accounted for in 𝐷 , , and an electric potential component, 1129 

whose statistical properties define 𝐷 , . This can pose a limit to the implementation of these 1130 

formulas. Indeed, an electric field measurement is always the sum of induced and electrostatic 1131 

components, and their individual contributions can be difficult to evaluate. 1132 

 1133 

2.4.  Methods to quantify radial diffusion 1134 

 1135 

2.4.1.  Solving the Fokker-Planck equation to quantify radial diffusion 1136 

 1137 

Early works relied on particle flux measurements to solve the Fokker-Planck equation, assuming 1138 

that radial distribution of the radiation belts was determined exclusively by radial diffusion and 1139 
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loss processes. The radial diffusion coefficient was adjusted so that the modelled distribution 1140 

would fit observations. 1141 

 1142 

Assuming a time-stationary distribution, the objective was to fit the average radial distribution of 1143 

the trapped particles. This technique was first applied by Nakada and Mead (1965) in the case of 1144 

trapped protons in the outer belt (Fig. 2). In the presence of time-varying radial structures in the 1145 

belts, the objective was to reproduce the observed time evolution of the radial distribution. This 1146 

was done to investigate the inward motion of electrons with E  1.6 MeV during a 1147 

geomagnetically quiet time interval of ten days following the magnetic storm of December 17-1148 

18, 1962 (Newkirk and Walt 1968a, Fig. 1). This technique was also applied in the years 1149 

following the Starfish injection in the inner belt to account for the fact that the observed decay 1150 

rate was 20 times smaller than the decay rate deduced from atmospheric scattering theory 1151 

(Newkirk and Walt 1968b; Farley 1969a, 1969b). In all cases, the resulting radial diffusion 1152 

coefficients were no more than tentative estimates. Early determinations of the radial diffusion 1153 

coefficient would generally discuss the ambiguity of the approach.  1154 

 1155 

Indeed, the soundness of the method relies on the validity of a multitude of criteria and 1156 

assumptions. In practice, the validity of these criteria and assumptions remains uncertain. Below 1157 

are a few examples of the intrinsic difficulties in determining radial diffusion coefficients 1158 

directly from particle flux measurements. 1159 

‐ Conditions must be such that the Fokker-Planck equation is likely to apply. In particular, the 1160 

assumption that field disturbances cause small drift motion perturbations must be valid 1161 

(Section 2.3.2). Therefore, large injection events must be excluded from the analysis. 1162 

‐ There must be strong radial gradients in the particle population distribution so that the radial 1163 

diffusion coefficient can be determined.  1164 

‐ It is usually necessary to assume that the radial diffusion coefficient is time-independent 1165 

during the time interval considered. 1166 

‐ The radial diffusion coefficient must be the only unknown. Uncertainty in the importance of 1167 

other processes leads to uncertainty in the value of the radial diffusion coefficient.  1168 

‐ Solving the Fokker-Planck equation requires setting boundary conditions or arbitrary 1169 

constants of integration (see, for instance, equation (2-32)). 1170 

‐ The drift-averaged distribution function, 𝑓, must be determined accurately. This can be a 1171 

major difficulty when particle measurements are scarce, or when the magnetic field geometry 1172 

is uncertain, such as in the outer belt (e.g. Green and Kivelson 2004). 1173 

Even though methods were designed to circumvent some of these difficulties (Lanzerotti et al. 1174 

1970), limitations remained (Walt and Newkirk 1971; Lanzerotti et al. 1971).  1175 

 1176 

Additional information on early methods for determining radial diffusion coefficients from 1177 

particle data is provided in Walt’s review of radial diffusion (1971b). Technical details are 1178 

discussed thoroughly in Schulz and Lanzerotti’s book, in particular Chapter 5 (1974). 1179 

 1180 
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2.4.2.  Analyzing magnetic and electric field disturbances to quantify radial diffusion in the 1181 

Earth’s radiation belts 1182 

 1183 

Magnetic field disturbances  1184 

Early quantifications of radial diffusion driven by magnetic field fluctuations were based on a 1185 

restrictive version of the simplified Mead geomagnetic field introduced in Section 2.3.3 1186 

(equation (2-33)). In this model, 𝑆 𝑡  and 𝐴 𝑡  are not independent parameters. Instead, they are 1187 

both constrained to be directly related to the geocentric stand-off distance to the subsolar point 1188 

on the magnetopause 𝒷 𝑡 : 1189 

 1190 

 𝑆 𝐵
𝑅
𝒷

 (2-53) 

 1191 

with 𝐵 0.25 𝐺, and 1192 

 1193 

 𝐴 𝐵
𝑅
𝒷

 (2-54)

 1194 

with 𝐵 0.21 𝐺. For typical solar wind conditions, 𝒷~10 R  (e.g., Mead 1964; Nakada and 1195 

Mead 1965; Schulz and Eviatar 1969). The asymmetric part of the fluctuation is proportional to 1196 

the symmetric part of the fluctuation (∆𝐴 4𝐵 ∆𝑆 3𝐵 𝒷⁄ ), and so are the power spectra: 1197 

 1198 

 𝑃
16
9

𝐵
𝐵

1
𝒷

𝑃  (2-55)

 1199 

where 𝑃  is the power spectrum of the asymmetric field perturbation and 𝑃  is the power 1200 

spectrum of the symmetric part of the fluctuation. In that context, the radial diffusion coefficient 1201 

equation (2-43) is also  1202 

 1203 

 𝐷 , , 2𝛺
5𝐵

21𝐵 𝐵
𝐿

𝑅
𝒷

𝑃 𝛺  (2-56)

 1204 

(e.g. Lanzerotti and Morgan 1973). It is worth noticing that 4𝐵 3𝐵 𝒷⁄ ~0.1𝑅 . In other words, 1205 

a fluctuation of the stand-off distance of the magnetopause ∆𝒷 is more noticeable in the 1206 

symmetric fluctuation of the magnetic field ∆S than in the asymmetric fluctuation of the 1207 

magnetic field ∆A. This indicates that the symmetric part of the fluctuation is more readily 1208 

measured. Consequently, the equation (2-56) is preferred to equation (2-43) when it comes to 1209 

quantifying radial diffusion driven by magnetic disturbances. 1210 

 1211 

The power spectrum of the symmetric part of the fluctuation 𝑃  can be estimated using satellite 1212 

measurements. This was done, for instance, by Lanzerotti et al. (1978), who analyzed magnetic 1213 

field variations measured by the ATS 6 satellite at geostationary orbit during the month of 1214 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

39 
 

August 1974. Noticing a dependence of magnetic power with the Kp index, they provided radial 1215 

diffusion coefficients at L = 6.6 as a function of geomagnetic activity.  1216 

 1217 

At orbits other than the geostationary orbit, spacecraft cross different L shells in a short time. 1218 

This complicates the power spectrum analysis. Thus, efforts have been made to derive the 1219 

symmetric fluctuation power spectrum, 𝑃 , from ground observations. For instance, Nakada and 1220 

Mead (1965), and later Lanzerotti and Morgan (1973), considered that the disturbance in the 1221 

horizontal (𝐻) component of the magnetic field measured on the ground is about 50% larger than 1222 

the symmetric fluctuation at the magnetic equator. Therefore, they assumed that the symmetric 1223 

fluctuation power spectrum 𝑃  is proportional to the power spectrum of the horizontal 1224 

component of the magnetic field fluctuations measured on the ground. Nakada and Mead (1965) 1225 

analyzed ground-based measurements of the frequency and amplitude of both sudden impulses 1226 

and sudden commencements to quantify radial diffusion. Lanzerotti and Morgan (1973) analyzed 1227 

power spectra of geomagnetic field fluctuations measured by conjugate stations near L=4, for 1228 

approximately 6 days in December 1971, and 12 days in January 1972. Once again, their analysis 1229 

revealed a strong dependence of magnetic power with geomagnetic activity. 1230 

 1231 

Brautigam and Albert’s formulation of radial diffusion driven by magnetic disturbances 1232 

From the discrete values determined at L = 4 by Lanzerotti and Morgan (1973), and at L = 6.6 by 1233 

Lanzerotti et al. (1978), Brautigam and Albert (2000) determined a parameterization of the radial 1234 

diffusion coefficient as a function of 𝐿 and 𝐾𝑝 index – an index chosen to quantify geomagnetic 1235 

activity. A 𝐿  dependence of the radial diffusion coefficient was assumed, even though the 1236 

experimental data points at L=4 and L = 6.6 did not display such dependence. A least squares 1237 

fitting technique was implemented to determine 𝐷 𝐾𝑝  𝐷 , , 𝐿 . It resulted that 1238 

 1239 

 𝐷 , ,
& 𝐿, 𝐾𝑝 10 . . 𝐿 𝑑𝑎𝑦  (2-57)

 1240 

where “B&A” stands for Brautigam and Albert’s empirical law for radial diffusion. 1241 

Discrepancies between the modelled values and the experimental values are within a factor of 6. 1242 

Despite this apparent lack of representativeness, modern radiation belt simulations that use 1243 

Brautigam and Albert’s empirical law for radial diffusion equation (2-57) yield plausible results 1244 

when solving the Fokker-Planck equation (e.g. Kim et al. 2011). That is why this empirical law 1245 

became a well-accepted reference quantification for radial diffusion in the Earth’s radiation belts.  1246 

 1247 

Electric potential disturbances 1248 

Estimates of radial diffusion driven by electric potential disturbances (equation (2-51) Section 1249 

2.3.3) suffered from a lack of in-situ measurements. Early works by Cornwall (1968) and 1250 

Birmingham (1969) quantified radial diffusion driven by electric potential disturbances by 1251 

postulating functional forms for the autocorrelation function. They considered that the most 1252 

important mode for electric field fluctuations was the fundamental mode of a uniform dawn-to-1253 

dusk electric field (n=1 equation (2-47) Section 2.3.3), and they provided estimates for the 1254 
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average amplitude of the fluctuations (a few tenths of mV/m) and for the correlation time (an 1255 

hour).  1256 

Hours of DC electric field fluctuations measured by an array of balloons, located near 𝐿  6 at 1257 

approximately 30 km altitude, were analyzed and mapped to the magnetic equator to provide an 1258 

estimate of the radial diffusion coefficient at that location (Holzworth and Mozer 1979). Electric 1259 

field measurements obtained by balloons indicated that the magnetospheric electric field power 1260 

spectrum depends on geomagnetic activity (Kp index), but not L nor local time (Mozer 1971). 1261 

Direct evaluation of electric field power spectral densities was first provided by the Combined 1262 

Release and Radiation Effects Satellite (Brautigam et al. 2005). Yet, unrealistic outputs were 1263 

obtained when the coefficient for radial diffusion driven by electric potential disturbances was 1264 

included in modern radiation belt simulations (e.g. Kim et al. 2011). Therefore, it became 1265 

common practice to omit this process and to consider that radial diffusion is mainly driven by 1266 

magnetic disturbances, as described by Brautigam and Albert (2000). In other words, it is now 1267 

common practice to assume that 𝐷 𝐷 ,
& , when modeling the Earth’s radiation belt 1268 

dynamics. 1269 

 1270 

There are many published compilations of the radial diffusion coefficients determined during 1271 

that era (see, for instance, Fig. 20 in the article by West et al., 1981). They show a clear 1272 

scattering among all possible values at any given L shell. Consistency among the various 1273 

theoretical and experimental radial diffusion coefficient estimates suggests that the underlying 1274 

theory is valid. 1275 

 1276 

 1277 

3. EXPANSION: Radial diffusion beyond Earth 1278 

 1279 

3.1.  Radial diffusion drivers most relevant for the giant planets 1280 

 1281 

The mathematical formalism of radial diffusion (equation (2-30)) is a universal concept that can 1282 

arise at any magnetized planet, not just Earth. Because planets and their magnetospheres differ, 1283 

the drivers of radial diffusion can be different, and we discuss several mechanisms below 1284 

(namely, the ionospheric winds, the interchange process, and the corotation cancellation). Our 1285 

focus will be on Jupiter and Saturn, because these are the best studied giant magnetized planets.  1286 

 1287 

3.1.1.  Ionospheric fields and thermospheric winds  1288 

 1289 

A difference between Earth and the giant planets is that corotation plays a much larger role 1290 

because the giant planets have larger magnetospheres coupled to ionospheres rotating with the 1291 

planets at faster speeds. Jupiter is the most extreme case: It enforces azimuthal plasma speeds of 1292 

at least half the rigid corotation up to distances as great as 50 planetary radii (which is outside its 1293 

intense radiation belts) and yields speeds up to 500 km/s (Waldrop et al. 2015) (therefore 1294 

comparable to nominal solar wind speeds). Different to Earth, a theoretical plasmapause of 1295 
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Jupiter and Saturn would be beyond the dayside magnetopause, meaning that the entire 1296 

magnetosphere is rotation-dominated (Mauk et al. 2009). The magnetospheric plasma 1297 

approximately corotates with the ionospheric plasma because it is roughly frozen-in (Hill 1979). 1298 

The ionosphere is forced to corotation due to friction with the dense atmosphere and therefore 1299 

the planet itself. Thus, ionospheric plasmas roughly corotate with Jupiter and Saturn (Cowley et 1300 

al., 2003, 2004), which is very different from the two cell convection pattern of the Earth’s high 1301 

latitude ionosphere (Cowley 1982). 1302 

 1303 

Corotation yields a radial electric field that results in electric drifts (𝑬 𝑩/𝐵 ) of charged 1304 

particles. Corotation, as well as any other electric field, does not yield diffusion as long as the 1305 

fields are constant (see, for instance, equation (2-50), Section 2.3.3). However, if the ionospheric 1306 

electric field changes for whatever reason over time, this affects the particle drifts in a way that 1307 

can be described with radial diffusion. Mechanisms to explain how the ionospheric electric field 1308 

can change are time variable winds or turbulence directly in the ionosphere (Brice and 1309 

McDonough 1973), or reconnection affecting the polar caps (Coroniti 1974). 1310 

 1311 

Theory 1312 

Several authors have studied the effect of varying ionospheric fields in a magnetic dipole field 1313 

under different assumptions (Jacques and Davis 1972; Brice and McDonough 1973; Coroniti 1314 

1974). All of them yield radial diffusion coefficients with a L-shell dependence that ranges from 1315 

𝐿 𝐿 1  to 𝐿 , which is weak compared to what was discussed in Section 2.3.  1316 

Here we follow Jacques and Davis (1972) to present an illustration of the concept in a time-1317 

stationary dipole field. 1318 

 1319 

Let us assume that the footpoint of a dipole field line in the ionosphere is shifted over N steps 1320 

due to an arbitrary process. Each step takes the time, 𝑡 , and changes the location by ∆𝜃 in co-1321 

latitude. In a dipole field, with 𝜃, the magnetic colatitude of the field line footpoint, we have 1322 

 1323 

 𝐿 1/𝑠𝑖𝑛 𝜃 (3-1)

 1324 

This is because the ionosphere is at radial distance, 𝑟 1𝑅 , with the planetary radius, 𝑅 , and 1325 

because L is normalized to the planet radius, 𝑅 , and therefore dimensionless. Differentiating 1326 

equation (3-1), it follows that 1327 

 1328 

 ∆𝐿/∆𝜃 2𝐿 𝐿 1 /  (3-2)

 1329 

As ∆𝜃 describes a stochastic process that can move 𝜃 in any direction, we can then calculate the 1330 

radial diffusion coefficient according to equation (2-29). 1331 

 1332 

 𝐷
2𝐿 𝐿 1 ∆𝜃

𝑁𝑡
 (3-3)
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 1333 

It can be seen that radial diffusion under these assumptions scales with 𝐿 𝐿 1  and the 1334 

properties of the fluctuation ∆𝜃  that are not known and therefore usually pragmatically 1335 

assumed to be independent of 𝐿. 1336 

 1337 

Coroniti (1974) calculates radial diffusion in a different way, by considering fluctuating dawn-1338 

dusk electric fields following dayside reconnection. The result is 𝐷 ∝ 𝐿 , and scales therefore 1339 

similarly as in equation (3-3). The absolute value of 𝐷  can, in principle, be calculated from the 1340 

reconnection period and duration, but these values are difficult to measure. 1341 

 1342 

Brice and McDonough (1973) calculate a radial diffusion coefficient from electric potential 1343 

fluctuations that arise from turbulence in the ionosphere. They find 𝐷 ∝ 𝐿  for corotating 1344 

particles with small magnetic drifts, 𝐷 ∝ 𝐿 .  for non-relativistic particles with large magnetic 1345 

drifts, and 𝐷 ∝ 𝐿  for relativistic particles with large magnetic drifts. Again, there are no 1346 

absolute values available from theory as the electric potential changes cannot be directly 1347 

measured. 1348 

 1349 

Experimental evidence 1350 

The mechanism suggested by Brice and McDonough (1973) is time-dependent winds in the 1351 

ionosphere. Wind patterns can be affected by changes in solar extreme ultraviolet (EUV) 1352 

heating. Signatures of changes in the radial diffusion coefficient have been observed following 1353 

enhanced (Tsuchiya et al. 2011) or variable (Kollmann et al. 2017) EUV irradiance at Jupiter and 1354 

Saturn. These observations indicate that radial diffusion may indeed be somehow related to 1355 

ionospheric winds. Note that this does not mean that all intensity changes need to result from 1356 

changes in the intensity of radial diffusion and/or EUV, as there are other reasons for that (de 1357 

Pater et al., 1995; Roussos et al., 2018b). 1358 

 1359 

A more literal test of the theory above is to calculate radial diffusion coefficients and compare 1360 

their 𝐿-dependence with theory. Small exponents, between 2 and 4, are able to reproduce 1361 

measurements of MeV electrons and protons at Jupiter (Birmingham et al. 1974; Mogro-1362 

Campero 1976; de Pater et al. 1994; Nénon et al. 2017; 2018) and MeV electrons at Saturn 1363 

(Lorenzato et al. 2012), consistent with radial diffusion resulting from ionospheric winds, as 1364 

discussed above. keV electrons (Roussos et al. 2007) and MeV protons (Kollmann et al. 2017) at 1365 

Saturn do behave differently and show exponents in the range of 6 to 10, which is more 1366 

consistent with the mechanisms discussed in Section 2 that had been initially developed for 1367 

Earth but should be applicable to some degree at all magnetized planets. The differences in 1368 

exponents suggest that the diffusion coefficient may have additional dependencies on energy, 𝐿-1369 

shell, particle mass, or time, and that the ionospheric wind mechanism described above is only 1370 

dominating in a limited range of these parameters. Han et al. (2018), for example, found 1371 

evidence that diffusion from ionospheric winds needs to be combined with diffusion from dawn-1372 

dusk magnetospheric electric field perturbations driven by the solar wind (equation (2-51)) in 1373 

order to explain the long-term dependence of Jupiter’s electron belts. 1374 

 1375 
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There is no consistent picture on the actual parameter range yet. When considering model-data 1376 

comparisons, it is important to keep in mind that several other processes besides radial diffusion 1377 

(diffusion in other modes, interaction with neutral material, etc.) have to be incorporated in the 1378 

models. Not all parameters are well known, and only a few studies made an effort to test how 1379 

sensitive their result is on the diffusion exponent.  1380 

 1381 

3.1.2. Interchange 1382 

 1383 

Another difference of Jupiter and Saturn from Earth is that these gas giants are orbited by moons 1384 

that release material that is ionized and fills the magnetosphere. The mass of this plasma cannot 1385 

accumulate forever but needs to be shed from the system. This can be done through interchange.  1386 

 1387 

The interchange process 1388 

Interchange is the plasma equivalent of the Rayleigh Taylor instability: a dense liquid on top of a 1389 

lighter liquid is not a stable configuration, and both liquids will eventually interchange positions. 1390 

In the case of a fast rotating magnetosphere, as that of the giant planets, the driving force is the 1391 

sum of gravity and centrifugal force. Parcels of plasma interchange their location if 1392 

 1393 

 
𝜕𝜂
𝜕𝐿

0 (3-4)

 1394 

where 𝜂 is the flux tube content (number of particles on a magnetic flux tube) per magnetic flux 1395 

(Southwood and Kivelson 1987; Ma et al., 2019).  1396 

 1397 

 𝜂 𝑛
𝑑𝑠
𝐵

𝑁𝐿
2𝜋𝐵 𝑅

 (3-5)

 1398 

𝑛 is the particle number density, 𝐵 the space-dependent magnetic field, and 𝑑𝑠 an infinitesimal 1399 

length along the field line. The expression to the right is the flux shell content per magnetic flux 1400 

within 𝐿 to 𝐿 ∆𝐿 (Siscoe et al. 1981a, b), and the equality is true for a dipole field (Sittler et al., 1401 

2008). 𝑁 is the number of particles on a flux shell with “unit” extent ∆𝐿 1, 𝐵  is the magnetic 1402 

field on the equatorial planetary surface, and 𝑅  is the planetary radius. Flux tube, flux shell 1403 

content, and this content normalized by magnetic flux are not always carefully distinguished. 1404 

 1405 

For a weak centrifugal force with large pressure gradients in the magnetosphere, interchange can 1406 

also occur for 1407 

 1408 

 
𝜕 𝑝𝑉

𝜕𝐿
0 (3-6)

 1409 

where 𝑝 is the thermal plasma pressure, 𝑉 the flux shell volume, and 𝛾 the specific heat ratio 1410 

(Southwood and Kivelson 1987). Such interchange may be one of the drivers (Pontius and Wolf 1411 

1990; Sergeev et al. 1996) of bursty bulk flows at the Earth (Baumjohann et al. 1990). 1412 
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 1413 

Note that interchange only occurs in certain regions in 𝐿, and only up to certain energies. It is 1414 

only observed outward of the moons Io and Enceladus (Dumont et al. 2014; Azari et al. 2018), 1415 

which is expected based on 𝜕𝜂/𝜕𝐿 (Sittler et al. 2008; Bagenal et al. 2016). It is only observed 1416 

up to energies of hundreds of keV, which is expected because high-energy particles have fast 1417 

magnetic drifts out of the corotating and inwardly moving flux tube (Paranicas et al. 2016). 1418 

 1419 

The interchange process is radially asymmetric (Hill et al. 2005; Chen et al. 2010): Inward 1420 

transport occurs relatively quickly through narrow channels or small bubbles. Outward transport 1421 

is slow and occurs over wide longitude ranges. Most studies on interchange are on its inward 1422 

component as it leaves obvious “injection” signatures in plasma, radiation, energetic neutrals, 1423 

fields, and wave measurements (Mitchell et al. 2015). The net outflow, alternatively, is less 1424 

studied (Waldrop et al. 2015) and is even below detection limit in the regions where Saturn’s 1425 

interchange injections are observed (Wilson et al. 2013).  1426 

 1427 

It has been suggested to describe interchanges as a diffusive process. Indeed, the inward 1428 

transport resulting from interchange is roughly consistent with phenomenological diffusion 1429 

coefficients at Jupiter (Krupp et al. 2005, their equation 7). Below, we first summarize the 1430 

justification of describing interchange through diffusion, and then discuss the issues of this 1431 

approach. 1432 

 1433 

Diffusion from interchange 1434 

According to equation (2-29), the diffusion coefficient scales with ∆𝐿  – the expected value 1435 

of ∆𝐿  – and 𝛥𝑡 – a characteristic time for the interchange process. We will not be able here to 1436 

constrain ∆𝐿  from theory, but we will calculate the timescale 𝛥𝑡, which will then immediately 1437 

scale a diffusion coefficient that is used to describe the net effect of interchange. 1438 

 1439 

Let us assume that a plasma parcel of size ∆𝐿 interchanges with another parcel, and in the 1440 

process moves by ∆𝐿. Recent studies show that injections transport particles inward over 1441 

∆𝐿/𝐿 0.2 (Krupp et al. 2005; Paranicas et al. 2016), while the outward portion is difficult to 1442 

observe (Chen et al. 2010). A small ∆𝐿/𝐿 is required because the derivation of the diffusion 1443 

formalism uses a Taylor expansion that is only a good approximation for ∆𝐿 𝐿⁄ ≪ 1 (see also 1444 

equation (2-14)). 1445 

 1446 

During the interchange process, the net centrifugal energy, U, is released over the time, ∆𝑡, of the 1447 

interchange process. The energy released is dissipated in the ionosphere due to the currents that 1448 

are set between the magnetosphere and the ionosphere during interchange. It can be calculated as 1449 

(Summers and Siscoe 1985) 1450 

 1451 

 
𝑈
∆𝑡

2 𝐽 𝐸 𝑑𝐴 (3-7)

 1452 
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where 𝐽 𝐸 ∑ is the radial current density that scales with the height-integrated Pedersen 1453 

conductivity ∑. 𝐸 𝐵 𝑣 is the radial electric field that scales with the polar magnetic field 1454 

𝐵 2𝐵   and the interchange bulk flow speed 𝑣 2𝜋𝑟/∆𝑡. 𝑑𝐴 2𝜋𝑟 𝑑𝑟 is an infinitesimal 1455 

area that is integrated over the injection flux tube of radius 𝜌. The factor 2 equation (3-7) is 1456 

included to take account of both hemispheres. Inserting everything in equation (3-7) yields 1457 

(Summers and Siscoe 1985) 1458 

 1459 

 
1

∆𝑡
𝑈

2𝐵 𝜋𝜌 4𝜋∑
 (3-8)

 1460 

We identify 2𝐵 𝜋𝜌  in (3-8) as the magnetic flux, 𝛷, in the equatorial interchange cell that equal 1461 

to flux, 2𝐵 𝑅 ∆𝜃 , on the planetary surface. This can be related to the step size in L if we 1462 

approximate equation (3-2) with 𝛥𝜃~ 𝛥𝐿/ 2𝐿 /  (Siscoe and Summers 1981). 1463 

 1464 

Let us now determine 𝑈 in order to provide an absolute value of the radial diffusion coefficient. 1465 

The centrifugal energy of a shell with ∆𝐿 per enclosed magnetic flux in the initial configuration 1466 

shall be 𝐸 𝑀 𝛺 𝑅 /2 𝑀 𝛺 𝑅 /2, and the equivalent quantity of the final configuration 1467 

𝐸 𝑀 𝛺 𝑅 /2 𝑀 𝛺 𝑅 /2, where 𝑀 𝑚𝜂 is the mass of particles on a flux shell with 1468 

extent ∆𝐿 1 per magnetic flux, with 𝑚 being the single particle mass. 𝛺 is the angular rotation 1469 

frequency of the planet. The released energy per magnetic flux 𝑈∗ 𝑈/Φ is (Siscoe et al. 1470 

1981b) 1471 

 1472 

 𝑈∗ 𝐸 𝐸
𝛺 𝑚
2𝜋𝐵

𝑑 𝑁𝐿
𝑑𝐿

𝛥𝐿 𝐿  (3-9)

 1473 

To calculate the second equality, we used 𝑅 𝑅 𝑅 𝛥𝑅 𝑅 ~2𝑅  𝛥𝑅 to approximate 1474 

the difference in distance and 𝑅 ~𝐿𝑅 . We also expressed the difference in masses through 1475 

𝑀 𝑀 𝑑𝑀 𝑑𝐿⁄ 𝛥𝐿. 1476 

 1477 

Combining equations (2-29), (3-8), (3-9) yields (Summers and Siscoe 1985) 1478 

 1479 

 𝐷 , ∑
∆𝐿 𝐷       for 0 (3-10a)

 𝐷 , 0                                                              for 0 (3-10b)

 1480 

The second equality in equation (3-10a) is a definition for the proportionality constant 𝐷 . We 1481 

distinguish between (3-10a) and (3-10b), because interchange only occurs for 𝑑 𝑁𝐿 /𝑑𝐿  0. 1482 

 1483 

Interchange acts on the bulk plasma. A diffusion equation for interchange therefore does not use 1484 

the phase space density at fixed 1st and 2nd adiabatic invariants but uses instead 𝜂 or NL2. Like 1485 

the phase space density,  𝜂 is a conserved quantity during transport. This is because 𝑛 does not 1486 
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change (in the absence of sources or losses removing particles) and because interchange 1487 

conserves magnetic flux. 1488 

In equation (2-30), the diffusion coefficient is independent of the particle distribution, meaning 1489 

that the efficiency of the physical drivers of radial diffusion is independent of particle 1490 

distribution. The drivers provide each single particle with the same chance of moving inward or 1491 

outward. Yet if there are more particles at one 𝐽  than at another (i.e., if the distribution function 1492 

radial gradient is nonzero), it will look as if the particles were behaving so as to smooth the 1493 

radial gradient of the distribution function. Therefore, 𝜕𝑓/𝜕𝑡 depends on 𝑓, even though DLL 1494 

does not usually depend on it. Interchange-driven diffusion is different. Its diffusion equation is 1495 

nonlinear in the sense that the diffusion coefficient itself depends on the particle distribution 1496 

(equation (3-10)), so that the efficiency of the physical drivers of radial diffusion is already a 1497 

function of particle distribution. 1498 

 1499 

 
𝜕 𝑁𝐿

𝜕𝑡
𝐿

𝜕
𝜕𝐿

𝐷
𝐿

𝑑 𝑁𝐿
𝑑𝐿

 (3-11)

 1500 

Equations (2-30) and (3-11) yield a different overall behavior: Equation (2-30) smoothes out any 1501 

𝐿-gradient in the distribution function F, and Equation (3-11) only smoothes out 𝑑 𝑁𝐿 /𝑑𝐿 1502 

 0 𝐿-gradients. 1503 

 1504 

For a steady state with 𝜕 𝑁𝐿 / 𝜕𝑡 0, no additional sources or losses, and assuming 𝐷 ∝ 𝐿 , 1505 

equation (3-11) is solved by a power law 1506 

 1507 

 
𝑁𝐿

𝐴

𝐿
𝐵 

 
(3-12)

 1508 

which is, coincidentally, formally the same as the equivalent solution of the diffusion equation 1509 

(2-30) given in equation (2-32). This similarity between the solutions disappears when sources or 1510 

losses are added to equation (3-11). 1511 

 1512 

Challenges 1513 

There has been a discussion if and to what extent the diffusion formalism is applicable to 1514 

interchange (Hill 1983; Southwood and Kivelson 1989; Pontius and Hill 1989), for example 1515 

because interchange may be better described through a systematic convection flow pattern 1516 

instead of random motions. 1517 

 1518 

NL2 used in equation (3-11) is a quantity that describes the bulk plasma, summing over all 1519 

energies and species. This is why equation (3-11) is used to model plasma distributions (Sittler et 1520 

al. 2008; Jurac and Richardson 2005). Radiation belt studies are interested in the high energy 1521 

population that does not contribute significantly to 𝑁𝐿 . In case of interchange, generalizing (3-1522 

11) to distinguish invariants is not that straightforward. Higher energy particles can be included 1523 
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in the above formalism as a second population with flux shell content 𝑁∗𝐿  (Siscoe et al. 1981b). 1524 

This population contributes to the interchange energy, U, not through its mass and centrifugal 1525 

energy Uc.. Instead, the radiation component UR to the interchange energy U contributes through 1526 

the change in internal energy density u due to adiabatic heating and the change in flux tube 1527 

volume V when interchanging parcels 1 and 2 between the initial state (index i) and final state 1528 

(index f). 1529 

 1530 

 𝑈 𝑢 𝑉 𝑢 𝑉 𝑢 𝑉 𝑢 𝑉  (3-13)
 1531 

The L-dependence of this expression can be evaluated through 𝑉 ∝ 𝐿  for a dipole field, 𝑢1532 

3𝑝/2 when treating the energetic particles as an ideal gas, and 𝑝𝑉 𝑐𝑠𝑡. for adiabatic 1533 

compression of that gas (Gold 1959). Repeating the same derivation for the diffusion coefficient 1534 

as above but now combining U=Uc+UR leads to a diffusion coefficient of the form (Summers 1535 

and Siscoe 1985) 1536 

 1537 

 𝐷 , 𝐷
𝑑 𝑁𝐿

𝑑𝐿
𝐷

𝑑 𝑁∗𝐿
𝑑𝐿

 (3-14)

 1538 

This new diffusion coefficient couples NL2 and N*L2, each of which needs to described by two 1539 

separate diffusion equations sharing the same 𝐷 ,  that need to be solved self-consistently. 1540 

 1541 

Even 𝑁∗𝐿  is not sufficient for radiation belt studies that are interested in the phase space density 1542 

at specific values of the 1st and 2nd adiabatic invariants or their equivalent quantities. There is no 1543 

readily available diffusion coefficient for these cases. The diffusion coefficients in equations (3-1544 

10) and (3-14) do not account for the energy dependence of the interchange. The latter occurs 1545 

because the actual transport does not involve the whole flux shell but occurs in narrow flux 1546 

tubes. High-energy particles quickly leave the flux tube due to their magnetic drift (different to 1547 

the low-energy, corotating plasma), meaning that increasingly energetic particles will have 1548 

smaller ∆𝐿  and are not efficiently transported through interchange (Paranicas et al. 2016). 1549 

Such particles with fast magnetic drifts will relatively frequently pass through interchange flow 1550 

channels. The magnetic field in these channels is enhanced compared to the background 1551 

magnetospheric field within the plasma sheet and depleted above it (Lai et al. 2016). As the 1552 

magnetic gradients are steep, they may change 𝐿∗ of the passing particles, depending on the 1553 

bounce phase. 1554 

 1555 

In summary: it is under debate whether interchange can be described with the diffusion 1556 

formalism in the first place. In either case, there is no sufficient theoretical basis to describe 1557 

energy or invariant resolved distribution functions, as it is needed for many practical 1558 

applications. It remains an open question how to implement interchange injections into 1559 

magnetosphere models that use radial diffusion. 1560 

 1561 
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3.1.3.  Corotation cancellation  1562 

 1563 

Another difference between Earth, Jupiter and Saturn is that the orientation of the magnetic field 1564 

relative to the direction of the planetary rotation is opposite. While this at first appears to be an 1565 

unimportant detail, it may, in fact, be a game changer for the transport of radiation belt electrons. 1566 

 1567 

Theory 1568 

The total drift of a charged particle around a planet is the sum of a magnetic drift, due to the 1569 

gradient and the curvature of the magnetic field, plus an electric drift, due mainly to the 1570 

corotation electric field that arises when the planet is conducting and rotating (see, for instance, 1571 

equation (2-3) in the equatorial case). The corotation electric drift only depends on the planetary 1572 

rotation period and distance to the planet and is the same for all particle species. The direction 1573 

and value of the magnetic drifts depend on the orientation of the planetary’s magnetic field and 1574 

the particle energy and charge. It is, therefore, possible that corotation and magnetic drifts cancel 1575 

each other out so that particles become stationary in their azimuthal location if they have the 1576 

right energy. This energy condition is sometimes referred to with the generic term “resonance.” 1577 

If the electrons are close to this resonance, where these drifts cancel out, they follow banana 1578 

orbits that are not centered around the planet but orbit around a point away from the planet 1579 

(Cooper et al. 1998). 1580 

In the case of Earth, corotation cancellation occurs for keV protons and therefore does not play a 1581 

role at radiation belt energies (e.g. Korth et al. 1999). Jupiter and Saturn both have their magnetic 1582 

dipole moments oriented opposite to how it is at Earth. This means that corotation cancellation 1583 

occurs for electrons, not protons. The corotation cancellation energy is 𝐿-shell dependent and is 1584 

 10 MeV at Saturn and  200 MeV at Jupiter (Roussos et al. 2018). 1585 

 1586 

Local time stationary electrons are sensitive to any local time fixed electric field component 1587 

beyond the steady, radial corotation field. Perturbations in the total electric field will change the 1588 

𝐿-shell of the electrons, depending on their initial azimuthal location (Selesnick et al. 2016; 1589 

Roussos et al. 2018). The change in L-shell is significant for corotation-resonant electrons and 1590 

vanishes away from the corotation cancellation energy (Fig. 8). When the electric field stops 1591 

changing, the changes in 𝐿-shell also stop. This behavior is equivalent to the scenario described 1592 

in Fig. 6, following a compression of the magnetosphere. It can therefore be described through 1593 

radial diffusion using a generalized version of equation (2-50) that accounts for the corotation 1594 

drift (Han et al. 2018), instead of only using the magnetic gradient drift that is sufficient at Earth. 1595 

 1596 
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 1597 
 1598 

Fig. 8 Guiding center traces of electrons starting at different local times under the action of a 1599 

time-dependent electric field (lower panel). It can be seen that resonant electrons with energies 1600 

where corotation and magnetic drifts cancel out strongly change their 𝐿-shell (upper panel), 1601 

while electrons of other energies (example shown in the middle panel) are less affected. The 1602 

change in location as a response to field changes is similar to what was sketched in Fig. 6. Figure 1603 

adapted from (Roussos et al. 2018). 1604 

 1605 

 1606 

Experimental evidence 1607 

Saturn’s electron radiation belt is highly dynamic. It shows abrupt enhancements following 1608 

corotating interaction regions, coronal mass ejections, and tail reconnection (Roussos et al. 2014, 1609 

2018). These enhancements decay over several weeks (Roussos et al. 2018). This behavior can 1610 

be qualitatively reproduced by tracing particles under changes in the electric field (see Fig. 8) 1611 

that are consistent with field changes that have been observed (Andriopoulou et al. 2014). So far 1612 

there has been no attempt made to reproduce this through a diffusion coefficient calculated 1613 

through equation (2-50). 1614 

Also, Jupiter’s electron belt shows dynamics on the timescale of days (de Pater et al. 1995; 1615 

Tsuchiya et al. 2011). There has been a case study discussing in-situ observations where the 1616 
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enhancement was only near energies where corotation cancelled out (Roussos et al. 2018), 1617 

supporting a highly energy-dependent radial transport resulting from corotation cancellation. 1618 

Electron spectra at both Jupiter and Saturn show intensity cutoffs at energies in the MeV range 1619 

that depend on magnetospheric location in a similar way as corotation cancellation does, 1620 

supporting the theory (Kollmann et al. 2018; Sun et al. 2019). 1621 

 1622 

3.2.   Phenomenological radial diffusion coefficients 1623 

 1624 

Methods 1625 

Radial diffusion coefficients at the giant planets can be determined phenomenologically from 1626 

fitting measured moon absorption signatures under the assumption that the absorption occurs 1627 

solely due to collisions with the insulating body of a moon, which is then refilled by radial 1628 

diffusion (Van Allen et al. 1980b, Section 2.2.3). These assumptions are valid for Saturn’s inner 1629 

moons like Tethys and Mimas (Roussos et al. 2007), and some of Jupiter’s moons like Amalthea 1630 

(Fillius et al. 1974) or Callisto. It might still be approximately valid for moons with ionospheres 1631 

like Enceladus or Europa (Mogro-Campero 1976). It obviously breaks down at Ganymede, 1632 

which has an internal magnetic field, and Io, where absorption at the moon body is insufficient 1633 

and additional losses like pitch angle diffusion are needed (Nénon et al. 2017). The signatures 1634 

that these latter moons leave in the particle measurements may still be used to constrain radial 1635 

diffusion, but this requires us to first properly describe the particle loss/deflection that occurs in 1636 

their direct vicinity. 1637 

 1638 

If theoretical radial diffusion profiles are fit to measured radial phase space density curves, the 1639 

moon macrosignatures must be deep, as is the case for Saturn’s proton belts (Kollmann et al. 1640 

2013; Fig. 5 Section 2.2.3), in order to robustly estimate the radial diffusion coefficient. There 1641 

have been attempts to fit more subtle moon signatures (Hood 1983). However, fitting extended 1642 

regions where supposedly only radial diffusion is acting is challenging. The solution to a radial 1643 

diffusion equation (2-28) without further sources or losses requires two boundary conditions 1644 

(Section 2.3.2; Thomsen et al. 1977). In the absence of a strong moon absorption, there is no 1645 

physically preferred location from which to choose the boundary conditions. One may select 1646 

them in a region where one expects radial diffusion to happen and then calculate the solution for 1647 

a larger L range. Comparison between this solution and the measurements may reveal regions 1648 

where non-diffusive processes, like moon losses, occur, that can then be further analyzed, for 1649 

example to determine the diffusion coefficient. However, the diffusion solution is very sensitive 1650 

to the boundary conditions: A small change in the phase space density at one location used as a 1651 

boundary condition can cause strong changes at another location, as calculated from the radial 1652 

diffusion equation. Robust solutions therefore require phase space density gradients that are 1653 

steeper than the variability in the solutions due to the different boundary conditions. 1654 

 1655 

Besides in-situ particle measurements, one can also use remote observations of synchrotron 1656 

emission to determine diffusion coefficients. This technique is most feasible for the high electron 1657 

intensities close to Jupiter (Hegedus et al. 2020). These measurements can be compared or fit to 1658 

a physical model that includes radial diffusion (Nénon et al. 2017). 1659 
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 1660 

When fittingmeasured phase space density profiles or synchrotron emission with diffusion 1661 

models, it is important that transport in the fit region is indeed occurring dominantly through 1662 

radial diffusion, and that all other source and loss processes, like energy loss in dense plasma, 1663 

rings, and neutral tori, are properly accounted for. Large parts of the magnetospheres of Jupiter 1664 

and Saturn show signatures of radial transport through injection events (Clark et al. 2016; Azari 1665 

et al. 2018) and it is still questionable to model injection transport with diffusion (Section 3.1.2).  1666 

 1667 

Results 1668 

Diffusion coefficients are usually fit well with power laws 𝐷 ∝ 𝐿 . At Jupiter, there is evidence 1669 

for 2 𝑛 4, and at Saturn for 6 𝑛 10 (Section 3.1.1).  1670 

Absolute values for diffusion coefficients can be found, for example, in Mogro-Campero (1976); 1671 

Van Allen (1984); de Pater and Goertz (1994); Roussos et al. (2007); Tsuchiya et al. (2011); 1672 

Kollmann et al. (2013); Nénon et al. (2017, 2018); Han et al. (2018). Values for ions and 1673 

electrons do not seem to differ significantly. There is a scatter in the calculated values by an 1674 

order of magnitude or more, even when comparing results using the same method. This suggests 1675 

that diffusion is time-dependent. It has not been studied whether this apparent time dependence 1676 

can be organized through another quantity, like the magnetic activity index 𝐾𝑝 at Earth for 1677 

instance (e.g., Lanzerotti and Morgan 1973; Lejosne et al. 2013; Ali et al. 2016). 1678 

 1679 

 1680 

4.   EVOLUTION: Why and how did radial diffusion research evolve in the Earth’s 1681 

radiation belts?  1682 

 1683 

4.1.  Motivation 1684 

 1685 

4.1.1.  Improved spatial and temporal resolutions for radiation belt observations  1686 

 1687 

In the 1990s, the spatial and temporal resolutions of radiation belt observations improved 1688 

significantly. Complex structures and rapid dynamics were revealed thanks to a growing network 1689 

of satellites and ground stations providing multipoint measurements (with data from the Polar 1690 

spacecraft, the Global Positioning System GPS satellites, the Solar Anomalous and 1691 

Magnetospheric Particle Explorer SAMPEX, the Combined Release and Radiation Effects 1692 

Satellite CRRES, the Geostationary Operational Environmental Satellite System GOES, the 1693 

Wind spacecraft close to the L1 Lagrange point, the Canadian array of ground instruments 1694 

CANOPUS, etc.). These new sets of observations led to a reassessment of the traditional 1695 

description of the Earth’s radiation belts provided by the Fokker-Planck equation. 1696 

 1697 

In particular, it was noticed that relativistic electron fluxes near geostationary orbit could 1698 

increase significantly (by a couple orders of magnitude), much faster than expected (on a 1699 

timescale ranging from a couple of hours to a couple of days). Given the strategic importance of 1700 
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geostationary orbit, understanding the dynamics of these “killer” electrons became a priority 1701 

(e.g., Baker 1994). A good correlation between ultra-low frequency (ULF) wave power and 1702 

enhanced relativistic electron fluxes was found near geostationary orbit (Rostoker 1998, Mathie 1703 

and Mann 2000). Thus, mechanisms involving ULF waves were proposed to explain large and 1704 

rapid enhancements of outer belt relativistic electron fluxes during geomagnetic storms. While 1705 

some of the proposed processes required pitch angle scattering (e.g., Liu et al. 1999; Summers 1706 

and Ma 2000), the ULF wave drift resonance theory proposed an explanation consistent with the 1707 

conservation of the first two adiabatic invariants. 1708 

 1709 

4.1.2.  Drift resonance to account for outer belt relativistic electron flux enhancements 1710 

 1711 

The ULF wave drift resonance theory provides a mechanism by which electrons can be 1712 

continuously accelerated and transported towards the Earth by the work of a time-varying 1713 

electric field. The process was first proposed by Hudson et al. (1999). It was then developed by 1714 

Elkington et al. (1999, 2003).  1715 

 1716 

In this model, equatorial electrons are drifting in an asymmetric time-stationary magnetic field, 1717 

similar to the magnetic field model introduced in Section 2.3.3 (Fig. 9, Left). Because the 1718 

magnetic field depends on local time, the time-stationary drift contour of an electron population 1719 

is not circular, as it would be in a dipole. The electrons drift away from the Earth from midnight 1720 

to noon, and they drift towards the Earth from noon to midnight. Thus, the radial electric field 1721 

oscillation of a toroidal ULF wave (E  Fig. 9, Left) works on the particles (𝑞𝑬 ∙ 𝑽𝑫 0 . This 1722 

leads to a variation of the particle kinetic energy. Indeed, the energy equation is: 1723 

 1724 

 
𝑑𝑊
𝑑𝑡

𝑀
𝜕𝐵
𝜕𝑡

𝑞𝑬 ∙ 𝑽𝑫 (4-1)

 1725 

where 𝑊 is the notation for the kinetic energy of the equatorial electron guiding center chosen by 1726 

Elkington et al. (1999, 2003), 𝑀 is the first invariant, 𝑬 is the electric field, and 𝑽𝑫 is the drift 1727 

velocity. 1728 

In the studies, the effect of the associated magnetic field oscillations is neglected. Thus,  1729 

 1730 

 
𝑑𝑊
𝑑𝑡

𝑞𝑬 ∙ 𝑽𝑫 (4-2)

 1731 

If the electric field variations are such that 𝑞𝑬 ∙ 𝑽𝑫 is always positive, the electrons interacting 1732 

with the ULF wave will experience a net energy gain. The magnitude of this energy gain 1733 

depends on the power delivered along the drift trajectory. Thus, it is a function of the angle 1734 

between the radial electric field, 𝑬, and the drift velocity, 𝑽𝑫.  In the presence of a radial electric 1735 

field of constant amplitude, the angle between the electric fields 𝑬 and the drift velocity 𝑽𝑫 1736 

depends on the radial component of the magnetic drift velocity ( 𝑀𝜵𝐵 𝑩/𝛾𝑞𝐵 ). Thus, it 1737 

depends on the magnetic field distortion (𝜕𝐵 𝜕𝜑⁄ ). The more asymmetric the magnetic field is, 1738 

the more distorted the drift shell is, and thus, the more power is delivered. Similarly, the 1739 
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azimuthal electric field oscillation of a poloidal mode ULF wave also works on the particles. 1740 

Thus, a resonant interaction between an electron and a poloidal mode wave can exist under 1741 

certain special conditions (Elkington et al. 2003; Perry et al. 2005, 2006).  1742 

 1743 

 1744 
 1745 

Fig. 9 (Left) Drift contour of an equatorial electron trapped in an asymmetric time-stationary 1746 

magnetic field and orientation of the radial electric field oscillation of a toroidal ULF wave. The 1747 

solid arrows show the orientation of the electric field at t = 0 for an electron starting at dusk, and 1748 

the dashed arrows indicate the electric field direction half a drift period later. (Right) (a) 1749 

Numerical evaluation of a quantity proportional to the work of the electric field 𝐄 ∙ 𝐕𝐃 dt and 1750 

(b) evolution of the particle kinetic energy (W) as a function of time. The electric field is always 1751 

pointing outward when the electron is drifting radially inward, and it is inward when the electron 1752 

is drifting outward. Thus, q𝐄 ∙ 𝐕𝐃 is always positive, and the electron is continuously gaining 1753 

energy as it drifts around Earth. Left: (Hudson et al. 1999). Right: (Elkington et al 1999). 1754 

 1755 

In all cases, the drift resonance mechanism characterizes the action of a monochromatic 1756 

oscillation in one single global mode. It is important to remember that the drift resonance theory 1757 

was proposed to suggest a process by which radiation belt particles would rapidly gain 1758 

significant energy, while conserving their first two adiabatic invariants. Drift resonance requires 1759 

a monochromatic oscillation in a single mode. This mechanism differs from the core mechanism 1760 

for radial diffusion. 1761 

 1762 

The connection between drift resonance and radial diffusion comes from the theoretical 1763 

considerations that (re-)emerged at the time of the analysis of drift resonance: namely that the 1764 

most asymmetric background field would lead to the most efficient energization mechanism. 1765 

Indeed, from the analysis of drift resonance processes, Elkington et al. (2003) suggested that the 1766 

asymmetric nature of the background magnetic field could lead to a form of enhanced radial 1767 

diffusion in the presence of multiple ULF frequencies (i.e., in the presence of a broadband ULF 1768 

wave). It is this suggestion that motivated the derivation of a new set of analytic expressions for 1769 

radial diffusion: the analytic expressions by Fei et al (2006). 1770 
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 1771 

It is interesting to note that Schulz and Eviatar (1969) had already analyzed radial diffusion 1772 

driven by magnetic disturbances in the case of a slightly asymmetric background magnetic field. 1773 

They found that in the case of a slightly asymmetric background field, the value of the radial 1774 

diffusion coefficient is proportional to the power spectrum of the field fluctuations at all 1775 

harmonics of the drift frequency, although the first harmonic remains the main contributor. In a 1776 

background dipole field, only the first harmonic of the power spectrum of the magnetic 1777 

fluctuations contributes to radial diffusion. Thus, experimental works following Schulz and 1778 

Eviatar’s study assumed a background magnetic dipole field. As shown in the following, Fei et 1779 

al.’s (2006) study had similar consequences: subsequent works relying on Fei et al.’s formulas 1780 

also assumed a background magnetic field. 1781 

 1782 

4.2.  New analytic expressions for radial diffusion 1783 

 1784 

4.2.1.  Fei et al.’s analytic expressions for radial diffusion 1785 

  1786 

New expressions for the radial diffusion coefficients were proposed by Elkington et al. (2003), 1787 

and further developed by Fei et al. (2006) to include the effect of an asymmetric background 1788 

magnetic field. Because of the popularity of these formulas, the assumptions underlying the 1789 

various resulting expressions for radial diffusion are highlighted in the following paragraph.  1790 

However, the magnetic and electric contributions to diffusion in Fei formalism are not self-1791 

consistent, leading to problems discussed in Section 4.2.2. 1792 

 1793 

Time-stationary asymmetric magnetic field model 1794 

The background magnetic field model considered is the superposition of a dipole field and a 1795 

time-stationary asymmetric disturbance. In the equatorial plane, the magnitude of the magnetic 1796 

field 𝐵  at a location 𝑟, 𝜑  is: 1797 

  1798 

 𝐵
𝐵 𝑅

𝑟
∆𝐵 cos 𝜑 (4-3) 

 1799 

where ∆𝐵 is a small perturbation: ∆𝐵 𝑟 /𝐵 𝑅  ≪  1.  1800 

The unperturbed drift contour for equatorial radiation belt particles at Earth is characterized by 1801 

B cst. (see also Section 5.1.1). With the magnetic field model chosen for equation (4-3), the 1802 

equation of the drift contour is:  1803 

 1804 

 𝑟 𝜑 𝑟 1
∆𝐵

3𝐵 𝑅
𝑟 cos 𝜑  (4-4)

 1805 

where r  is the average radius of the drift contour. 1806 

 1807 

𝐿∗as the normalized average radius of the time-stationary drift contour 1808 
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Because the magnetic field is assumed to be time-stationary, the third adiabatic coordinate 𝐿∗ is 1809 

regarded as a spatial coordinate (see also Section 5.1.1 for more info about 𝐿∗). For a radiation 1810 

belt population of equatorial particles with an average radius of the drift contour equal to 𝑟 , it is 1811 

considered that 𝐿∗ becomes the normalized average radius of the contour: 1812 

 1813 

 𝐿∗ 𝑟 𝑅⁄  (4-5)

 1814 

Differentiating the equation (4-4), the authors obtained that: 1815 

 1816 

 
𝑑𝐿∗ 
𝑑𝑟

1
𝑅

1
4
3

∆𝐵
𝐵

𝐿∗ cos 𝜑  (4-6)

 1817 

Thus, with Fei et al.’s model, a displacement of an equatorial particle away from the initial drift 1818 

contour leads to a time variation of the 𝐿∗ parameter: 1819 

 1820 

 
𝑑𝐿∗

𝑑𝑡
𝑑𝐿∗

𝑑𝑟
𝑑𝑟
𝑑𝑡

 (4-7) 

 1821 

where 𝑑𝑟 𝑑𝑡⁄  corresponds to the radial motion away from the drift contour driven by field 1822 

fluctuations. In Fei et al.’s model, two different drivers for radial diffusion are discussed 1823 

separately: (1) the magnetic field disturbances and (2) the electric field disturbances. 1824 

 1825 

Magnetic disturbances 1826 

The magnetic field fluctuations are in the direction of the background magnetic field 1827 

(compressional perturbations). They are described by a Fourier sum around 𝑟 : 1828 

 1829 

 𝛿𝐵 𝑟, 𝜑, 𝑡 𝛿𝐵 𝑡 cos 𝑛𝜑  (4-8)

 1830 

The radial drift motion driven by the magnetic field disturbances is equal to 1831 

 1832 

 
𝑑𝑟
𝑑𝑡

𝑀
𝑞𝛾𝐵 𝑟

𝜕 𝛿𝐵
𝜕𝜑

 (4-9)

 1833 

where 𝐵 𝐵 𝑅 /𝑟  is the amplitude of the magnetic dipole field at the equatorial radial 1834 

distance 𝑟 . Combining equations (4-6), (4-7), (4-8) and (4-9), it results that 1835 

 1836 
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𝑑𝐿∗ 
𝑑𝑡

𝑟, 𝜑, 𝑡
𝑀𝐿∗

𝑞𝛾𝐵 𝑅
𝑛𝛿𝐵 𝑡 sin 𝑛𝜑

2
3

𝑀𝐿∗

𝑞𝛾𝐵 𝑅
∆𝐵
𝐵

𝑛 𝛿𝐵 𝑡 sin 𝑛 1 𝜑

2
3

𝑀𝐿∗

𝑞𝛾𝐵 𝑅
∆𝐵
𝐵

𝑛 𝛿𝐵 𝑡 sin 𝑛 1 𝜑  

 

(4-10)

 1837 

The resulting diffusion coefficient is obtained with an approach similar to the one proposed by 1838 

Fälthammar (1965) (see also Section 2.3.3). The equation (4-10) is integrated between a time, 1839 

𝑡 0, and a time, 𝑡, to obtain the variation of 𝐿∗. Then, the variation of 𝐿∗ is squared. 1840 

 1841 

 𝐿∗ 𝑡 𝐿∗ 0 𝑎 𝑏 𝑐  
 

(4-11)

 1842 

where  a, b and c are the integrals of the 3 terms on the right-hand side of the equation (4-10).  1843 

It is then considered that the different integrals are uncorrelated, so that: 1844 

 1845 

 〈 𝐿∗ 𝑡 𝐿∗ 0 〉
𝑑
𝑑𝑡

𝐿∗ 𝑡 𝐿∗ 0
𝑑
𝑑𝑡

𝑎
𝑑
𝑑𝑡

𝑏
𝑑
𝑑𝑡

𝑐  

 
(4-12)

 1846 

where the symbol 〈 〉 denotes the expected rate of change of the bracketed quantity, the symbol 1847 

 denotes the expectation value, and d dt⁄  denotes the rate of change. 1848 

As a result, Fei et al. (2006) obtained a diffusion coefficient driven by compressional magnetic 1849 

disturbances equal to: 1850 

 1851 

 

𝐷 , ,
𝑀

8𝑞 𝛾 𝐵 𝑅
𝐿∗ 𝑛 𝑃 𝑛𝛺

2
9

𝑀
𝑞 𝛾 𝐵 𝑅

∆𝐵
𝐵

𝐿∗ 𝑛 𝑃 𝑛 1 𝛺

2
9

𝑀
𝑞 𝛾 𝐵 𝑅

∆𝐵
𝐵

𝐿∗ 𝑛 𝑃 𝑛 1 𝛺  

 

(4-13)

where Ω is the angular drift velocity of the population considered, and 𝑃  is the power spectrum 1852 

of the nth harmonic of the magnetic field fluctuation δB: 1853 

 𝑃 𝜔 4 𝛿𝐵 𝑡 𝛿𝐵 𝑡 𝜉 𝑐𝑜𝑠 𝜔𝜉 𝑑𝜉 (4-14) 

 1854 
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The subscript 𝑏 in 𝐷 , ,  indicates that the coefficient quantifies radial diffusion driven by 1855 

magnetic disturbances according to Fei et al.’s model.  1856 

The first term on the right-hand side of equation (4-13) does not depend on the asymmetry of the 1857 

background magnetic field ∆𝐵. It characterizes radial diffusion in the case of a background 1858 

dipole field, to which small, local, time-dependent, magnetic disturbances are superimposed 1859 

(equation (4-8)). The second and third terms on the right-hand side of equation (4-13) 1860 

characterize radial diffusion enabled by the asymmetry of the background field. Because they are 1861 

proportional to ∆B B⁄ , they are small in comparison to the first term (Fei et al. 2006). 1862 

 1863 

Electric disturbances 1864 

The electric field disturbance is assumed to be in the azimuthal direction. It is described by a 1865 

Fourier sum around r : 1866 

 1867 

 𝛿𝐸 𝑟, 𝜑, 𝑡 𝛿𝐸 𝑡 cos 𝑛𝜑  (4-15)

 1868 

The motion driven by electric field fluctuations is: 1869 

 1870 

 
𝑑𝑟
𝑑𝑡

𝛿𝐸
𝐵

 (4-16)

 1871 

And it results that  1872 

 1873 

 

𝑑𝐿∗ 
𝑑𝑡

𝑟, 𝜑, 𝑡
1

𝐵
𝛿𝐸 𝑡 cos 𝑛𝜑  

 
2
3

∆𝐵
𝐵

𝛿𝐸 𝑡 cos 𝑛 1 𝜑  

 
2
3

∆𝐵
𝐵

𝛿𝐸 𝑡 cos 𝑛 1 𝜑  

 

(4-17)

 1874 

Following an approach similar to the one presented in the case of magnetic disturbances, the 1875 

authors obtained that: 1876 

 1877 

 

𝐷 , .
𝐿∗

8𝐵 𝑅
𝑃 𝑛𝛺  

2
9𝐵 𝑅

∆𝐵
𝐵

𝐿∗ 𝑛 𝑃 𝑛 1 𝛺  

(4-18)
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2
9𝐵 𝑅

∆𝐵
𝐵

𝐿∗ 𝑛 𝑃 𝑛 1 𝛺  

 1878 

where 𝑃  is the power spectrum of the nth harmonic of the electric field fluctuation 𝛿𝐸 . The 1879 

subscript ϵ in 𝐷 , .  indicates that the coefficient quantifies radial diffusion driven by azimuthal 1880 

electric disturbances according to Fei et al.’s model. The first term on the right-hand side of 1881 

equation (4-18) does not depend on the asymmetry of the magnetic field ∆𝐵. The second and 1882 

third terms on the right-hand side of equation (4-18) characterize radial diffusion enabled by the 1883 

asymmetry of the field. Because they are proportional to ∆𝐵 𝐵⁄ , they are small in 1884 

comparison with the first term. 1885 

 1886 

Radial diffusion as an aggregate 1887 

When both electric and magnetic diffusion mechanisms are concurrent, it is assumed that their 1888 

actions are uncorrelated. Therefore, Fei et al. (2006) assumed that the radial diffusion coefficient 1889 

𝐷  can be written as the sum of the two diffusion coefficients: 1890 

 1891 

 𝐷 , 𝐷 , , 𝐷 , ,  (4-19)

 1892 

The subscript 𝑒𝑞 indicates that the coefficients have been computed in the case of equatorial 1893 

particles. No theoretical description was proposed for non-equatorial particles. 1894 

 1895 

4.2.2.  A comparison between Fei et al.’s expressions and Fälthammar’s formulas  1896 

 1897 

Despite apparent similarities, none of the electric and magnetic diffusion coefficients derived by 1898 

Fei et al. (2006) (Section 4.2.1) are identical to the electric and magnetic diffusion coefficients 1899 

derived by Fälthammar (1965) (Section 2.3.3) (Fig. 10). By discussing the action of the 1900 

magnetic field perturbations and the action of the induced electric fields separately, the 1901 

underlying assumption of Fei et al.’s approach is that electric and magnetic perturbations are 1902 

uncorrelated. The validity of this assumption is often wrongly attributed to Brizard and Chan 1903 

(2001). Yet, it is inconsistent with Faraday’s law (𝜵 𝑬 𝜕𝑩 𝜕𝑡⁄ ).  1904 

 1905 

Fei et al.’s formulas for radial diffusion are incorrect. They provide an underestimation of the 1906 

total radial diffusion coefficient by a factor of 2 in the case of magnetic disturbances described 1907 

by the simplified Mead model introduced Section 2.3.3 (equation (2-33), in the absence of 1908 

electrostatic potential fields – and forcing 𝑆 𝑡   0 (Lejosne 2019). Given the uncertainties in 1909 

measuring actual field fluctuations, this factor of 2 may not seem extremely important in its own 1910 

right. Yet, it is enough to demonstrate the difference between the two coexisting formalisms. 1911 

 1912 

Although Fei et al.’s formalism is inadequate from a theoretical standpoint, it is very convenient 1913 

from a practical standpoint. It is indeed difficult to differentiate the induced and electrostatic 1914 

components of an electric field measurement. This poses a serious problem when it comes to 1915 
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applying Fälthammar’s formalism to quantify radial diffusion. The same problem is 1916 

circumvented when applying Fei et al.’s erroneous formalism.  1917 

 1918 

 1919 

Fig. 10 Separating the field perturbations according to the nature of the source: different models 1920 

of D  counted and combined different types of electromagnetic fluctuations (Lejosne 2019). 1921 

 1922 

In all cases, the Fokker-Planck equation (equation (2-28) Section 2.3.2) calls for only one global 1923 

radial diffusion coefficient to characterize the statistical properties of cross drift shell motion. It 1924 

is represented in the center of Fig. 9. The cross drift shell motion is generated by all 1925 

perturbations, regardless of their nature. Thus, the validity of the approach, which consists of 1926 

dividing the radial diffusion coefficient into a sum of distinct contributions, is worth questioning.  1927 

The artificial separation between electric potential disturbances and magnetic disturbances in 1928 

Fälthammar’s study was justified by the fact that these disturbances originate from different 1929 

sources. In practice, the correlation between electric potential disturbances and magnetic 1930 

disturbances is unknown. A potential correlation between these fluctuations would result in a 1931 

global radial diffusion coefficient distinct from the sum of the different contributions. 1932 

 1933 

4.3.  Modern methods to quantify radial diffusion 1934 

 1935 

Many modern studies rely on Fei et al.’s analytic expressions to quantify radial diffusion. 1936 

Magnetohydrodynamics (MHD) simulations, ground-based data, and/or satellite measurements 1937 

are analyzed to determine the power spectrum of the compressional component of the magnetic 1938 

field, and the power spectrum of the azimuthal component of the electric field. These power 1939 

spectra are then used to compute a magnetic diffusion coefficient and an electric diffusion 1940 

coefficient, following equations (4-13) and (4-18), respectively. It is usually considered that the 1941 
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background magnetic field is a dipole field (∆B 0). Thus, only the first terms of the equations  1942 

(4-13) and (4-18) are computed (e.g., Tu et al. 2012; Ozeke et al. 2012, 2014; Ali et al. 2015, 1943 

2016; Liu et al. 2016; Li et al. 2017; Jaynes et al. 2018b). The resulting electric diffusion 1944 

coefficients 𝐷 , ,  are usually one or two orders of magnitude greater than the magnetic 1945 

diffusion coefficients 𝐷 , , , even though this result has been the object of discussion (e.g., 1946 

Olifer et al. 2019). 1947 

Ozeke et al. (2014) analyzed many years of ground- and space-based measurements to derive 1948 

new analytic expressions for the radial diffusion coefficients. The power spectrum of the 1949 

azimuthal component of the electric field was derived from ground measurements of the D 1950 

component (geomagnetic east-west) of the magnetic field, following a mapping method 1951 

developed by Ozeke et al. (2009). The power spectrum of the magnetic field compressional 1952 

component was derived from in situ measurements by the Active Magnetospheric Particle Tracer 1953 

Explorers (AMPTE), GOES and the Time History of Events and Macroscale Interactions during 1954 

Substorms (THEMIS) spacecraft. In-situ field measurements were used because, according to 1955 

Ozeke et al. (2012), it is difficult to estimate compressional fields using ground data. Mapping 1956 

approaches such as the one assumed by Lanzerotti and Morgan (1973) – discussed in Section 1957 

2.4.2 – yield “results which are not a good representation of the in-situ data.” Yet, the final radial 1958 

diffusion parameterization obtained by Ozeke et al. (2014) is similar to Brautigam and Albert’s 1959 

formulation for radial diffusion driven by magnetic disturbances 𝐷 , ,
&  (see also Section 1960 

2.4.2). In fact, the difference between radiation belt simulations with either of the two 1961 

parameterizations for radial diffusion has been found to be negligible (Drozdov et al. 2017). The 1962 

parameterization for radial diffusion according to Ozeke et al. (2014) is: 1963 

 1964 

 
𝐷 , , 𝐿, 𝐾𝑝 6.62 10 𝐿 10 . . . .

𝐷 , , 𝐿, 𝐾𝑝 2.16 10 𝐿 10 . .
 (4-20)

 1965 

Where the unit is day-1 and “OZ” stands for Ozeke et al.’s empirical law for radial diffusion. 1966 

 1967 

 1968 

5.   NAVIGATION: What are radial diffusion key concepts? 1969 

 1970 

The objective of this section is to provide the essential toolkit to navigate radial diffusion 1971 

research. It includes three principles: 1972 

(1)  The appropriate coordinate to study radial diffusion is 𝐿∗; 1973 

(2) Radial diffusion requires violation of 𝐿∗; 1974 

(3)  Radial diffusion is a formalism that trades accuracy for expediency. 1975 

 1976 

In the following, we detail each of these different aspects, and we highlight the caveats and the 1977 

challenges associated with each of them. 1978 

 1979 
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5.1. 𝐿∗ is the appropriate coordinate to study radial diffusion 1980 

 1981 

The terminology of “radial” diffusion is confusing, because it seems to imply that the variable of 1982 

reference is the equatorial radial distance. However, this is inaccurate. The variable of reference 1983 

is 𝐿∗. “Radial” is a misnomer that is used to date for historical reasons: there was a decade’s 1984 

worth of major works (e.g., Kellogg 1959b; Fälthammar 1965) before the adiabatic coordinate 𝐿∗ 1985 

was even introduced (Roederer 1970). 𝐿∗ accounts for adjustments in particle drift motions that 1986 

result from the difference between the real magnetic field and a magnetic dipole field under 1987 

stationary conditions. In contrast, early works on radial diffusion were carried out assuming a 1988 

background magnetic dipole field! The Fokker-Planck diffusion equation, whose inputs includes 1989 

the radial diffusion coefficient, is set in adiabatic reference space. Thus, the appropriate 1990 

coordinate to study radial diffusion is not radial distance, it is the third adiabatic invariant - or 1991 

equivalently 𝐿∗. 1992 

In this section, we introduce the 𝐿∗ coordinate, describe the characteristic features resulting from 1993 

the distinction between 𝐿∗ and normalized equatorial radial distance, and discuss the associated 1994 

challenges. 1995 

 1996 

5.1.1.  Adiabatic theory of magnetically trapped particles and definition of the 𝐿∗ coordinate 1997 

 1998 

The analysis of radiation belt dynamics requires mapping measured particle fluxes into a three-1999 

dimensional adiabatic reference space (e.g. Roederer and Lejosne 2018, and references therein). 2000 

The three adiabatic coordinates of this reference space 𝑀, 𝐽, 𝐿∗  characterize the magnitudes of 2001 

the three distinct pseudo-periodic motions of the trapped radiation belt population: (1) gyration 2002 

perpendicular to the magnetic field direction (𝑀), (2) bounce along equipotential magnetic field 2003 

lines between mirror points (𝐽) and (3) drift around the Earth (𝐿∗).  𝑀 and 𝐽 are defined in 2004 

Section 2.1. 2005 

 2006 

Under stationary conditions, radiation belt particles are represented by guiding centers bouncing 2007 

and drifting along closed surfaces called drift shells. The intersection of a drift shell with the 2008 

minimum-B surface defines a closed curve called a drift contour (𝛤). These notions are 2009 

illustrated in Fig. 11.  2010 

 2011 

 2012 
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 2013 

Fig. 11 An illustration of the path of a radiation belt particle trapped in the Earth’s stationary 2014 

magnetic field, with different levels of accuracy: a) Exact path of a radiation belt particle trapped 2015 

in the Earth’s magnetic field; b) Guiding center approximation: the guiding center bounces and 2016 

drifts along its drift shell; c) Bounce-averaged description of the guiding center drift path: the 2017 

intersection of the drift shell with the minimum-B surface is called the drift contour (𝛤). The 3D 2018 

diffusion-driven radiation belt models (equation (2-24) Section 2.3.2) are even more compact: 2019 

they provide a description of the radiation belt dynamics that is averaged over the drift phase. 2020 

 2021 

An adiabatic coordinate can vary if the forces acting on a particle vary on a timescale shorter 2022 

than the corresponding period. 2023 

 2024 

Definition of 𝐿∗: 2025 

The adiabatic invariants are calculated by an integral over the periodic motion. The third 2026 

adiabatic invariant is  2027 

 2028 

 𝐽 𝒑 𝑞𝑨 ∙ 𝒅𝒍 (5-1)  

 2029 

where p is the particle’s momentum, A is the local magnetic vector potential, and 𝒅𝒍 is the path 2030 

length. The integral goes over the entire drift around the planet. If the particles do not surround 2031 

the planet, 𝐽  cannot be computed, and 𝐿∗ is not defined.  2032 

Because the contribution from the particle’s momentum, 𝒑, is negligible, the third adiabatic 2033 

invariant is proportional to the magnetic flux, 𝛷, encompassed by the drift contour, 𝛤: 2034 

 2035 

 𝛷 𝑨 ∙ 𝒅𝒍 (5-2) 

 2036 

where 𝑨 is the local magnetic vector potential and 𝒅𝒍 is the path length along the drift contour, 2037 

𝛤. Because the notion of magnetic flux is not very intuitive, Roederer (1970) introduced the 2038 

adiabatic coordinate 𝐿∗, defined by the equation: 2039 

 2040 

 𝐿∗ 2𝜋𝐵 𝑅
|𝛷|

 (5-3)

 2041 

where 𝐵 30,000 𝑛𝑇 is the magnitude of the equatorial magnetic field at one Earth radius 2042 

𝑅 6,372 𝑘𝑚. Note that other values have also been used throughout the years since the value 2043 

of the Earth’s dipole moment slowly varies with time. 2044 

Thus, 𝐿∗ is a normalized quantity related to the magnetic flux encompassed by the drift contour 2045 

of a given particle. Therefore, to determine 𝐿∗, it is necessary to determine the drift contour 𝛤. 2046 

  2047 

Characterization of the drift contour 𝛤 in the general case: 2048 
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In a steady state, the total energy of the guiding center 𝜀 is constant along the drift contour 𝛤 2049 

(e.g. Schulz and Lanzerotti 1974). In other words, for all bounce-averaged guiding center 2050 

locations, 𝒓, which are elements of 𝛤:   2051 

 2052 

 𝜀 𝒓 𝑇 𝒓 𝑞𝑈 𝒓 𝑐𝑠𝑡. (5-4)
 2053 

where U is the electrostatic potential (measured either at the mirror point or equivalently at the 2054 

magnetic equator – U is constant along equipotential magnetic field lines), and 𝑇 is the guiding 2055 

center kinetic energy: 2056 

 2057 

 𝑇 𝐸 1
2𝑀𝐵

𝐸
𝐸  (5-5)

 2058 

where 𝐸 𝑚 𝑐  is the rest mass energy (511 keV for an electron, 938 MeV for a proton), 𝑀 is 2059 

the relativistic magnetic moment, and 𝐵  is the mirror point magnetic field intensity. Therefore, 2060 

the definition of the drift contour depends on (1) the characteristics of the population considered 2061 

(energy, charge, mass, pitch angle), and (2) the characteristics of the fields (magnetic and electric 2062 

field geometry). 2063 

 2064 

Characterization of the drift contour 𝛤 for energetic particles: 2065 

For Earth’s radiation belt populations, it is commonly assumed that the kinetic energy is so high 2066 

that the effect of electrostatic potentials on trapped particle drift motion can be omitted (𝑇2067 

100 𝑘𝑒𝑉 ≫  |𝑞𝑈|, thus 𝜀 𝑇).  As a result, the drift shell and the corresponding drift contour 2068 

are characterized by the relation: 2069 

 2070 

 𝐵 𝒓 𝑐𝑠𝑡. (5-6) 
 2071 

Therefore, the tracing of a drift contour related to a radiation belt population does not depend on 2072 

the population charge, mass, or energy. It only depends on the magnetic field geometry and the 2073 

population equatorial pitch angle. 2074 

 2075 

It is important to keep in mind that this approximation can break down, even at Earth (e.g., 2076 

Selesnick et al. 2016). At Saturn, the magnetic field close to the planet is very symmetric, and 2077 

yet a non-radial electric field component forces energetic and plasma particles to deviate from 2078 

𝐵 𝒓 𝑐𝑠𝑡. contours (Andriopoulou et al. 2012; Thomsen et al. 2012).  2079 

 2080 

Characterization of the drift contour, 𝛤, for energetic particles in a dipole field: 2081 

In the special case of radiation belt particles trapped in a magnetic dipole field, the drift contour 2082 

𝛤 is a circle ( 𝑟  𝑐𝑠𝑡. 𝑟  ), and the magnetic flux encompassed by the drift contour, 𝛤, is 2083 

equal to |𝛷| 2𝜋𝐵 𝑅 𝑟⁄ . Thus, for radiation belt particles in a dipole field, 𝐿∗ merges with the 2084 

normalized equatorial radial distance (𝐿∗ 𝑟 𝑅⁄ ). That is why the 𝐿∗ coordinate is often 2085 

associated with the equatorial radial distance of a particle’s drift shell.  2086 
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 2087 

Physical meaning of L*: 2088 

The association between the 𝐿∗ coordinate and the normalized equatorial radial distance of a 2089 

particle’s drift shell is not possible in magnetic topologies other than the magnetic dipole field. 2090 

However, since 𝐿∗ is an adiabatic invariant, 𝐿∗ remains constant when all non-dipolar 2091 

contributions to the magnetic field are turned off adiabatically (that is, with a characteristic time 2092 

that is extremely slow compared to the population drift period).  2093 

The coordinate 𝐿∗ corresponds to the normalized radius of the circular guiding contour on which 2094 

particles are found after non-dipolar contributions to the magnetic field and all electric field 2095 

components have been turned off adiabatically.  2096 

An illustration of this concept is provided in Fig. 12. 2097 

 2098 

 2099 
Fig. 12 Representation of the physical meaning of the 𝐿∗ coordinate. (Left) A population with 2100 

adiabatic invariants 𝑀, 𝐽, 𝐿∗  is trapped in a distorted magnetic field. The initial drift contour 𝛤  2101 

is represented in blue. When the magnetic field is adiabatically transformed into a dipole field, 2102 

the population conserves all three invariants. (Right) In the resulting dipole field, the drift 2103 

contour for the population with the same adiabatic invariants 𝑀, 𝐽, 𝐿∗  is a circle of radius 𝑅 𝐿∗ 2104 

The final drift contour 𝛤  is represented in red.  2105 

 2106 

5.1.2.  Misconceptions about 𝐿∗ 2107 

 2108 

L* is not a spatial coordinate, it is the electromagnetic coordinate of a geomagnetically trapped 2109 

particle: 2110 

Azimuthal asymmetries in the electric and/or magnetic fields lead to drift shell distortions that 2111 

are pitch-angle-dependent. Particles with different pitch angles that are observed on a common 2112 

field line at a given local time have different 𝐿∗ coordinates, and they populate different drift 2113 
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shells. This effect is called shell splitting (e.g., Stone 1963; Roederer and Schulz 1971; Roederer 2114 

1972; Schulz 1972; Roederer et al. 1973; Selesnick et al. 2016). Therefore, the point at which a 2115 

field line crosses the equatorial plane does not uniquely define the drift contour. 2116 

 2117 

“Energization by radial transport” is not equivalent to “violation of the third adiabatic 2118 

invariant”: 2119 

Too often, the 𝐿∗ coordinate is hastily introduced as “roughly the normalized equatorial distance 2120 

of particle drift shells.” A side effect of the routine association between 𝐿∗ and normalized 2121 

equatorial radial distance is the incorrect belief that energization by radial transport requires 2122 

violation of the third adiabatic invariant.  2123 

In fact, it is possible to vary particles’ energy while conserving all three adiabatic invariants. In 2124 

Fig. 12, for instance, the distorted magnetic field (left) is slowly transformed into a dipole field 2125 

(right). The conservation of the third invariant means that the magnetic flux encompassed by the 2126 

initial drift contour, 𝛤  (left), is equal to magnetic flux encompassed by the final drift contour, 𝛤  2127 

(right). Because the area within the initial drift contour, 𝛤 , is larger than the area within the final 2128 

drift contour, 𝛤 , we deduce that the initial amplitude of the magnetic field at the mirror point 2129 

along 𝛤  is smaller than the final amplitude of the dipole magnetic field at the mirror point along 2130 

𝛤 . Therefore, because of the conservation of the first adiabatic invariant (see equation (2-1)), the 2131 

kinetic energy of the population considered is higher in the dipole configuration (right) than in 2132 

the initially distorted configuration (left). In other words, there is an energy gain that 2133 

accompanies the magnetic dipolarization represented in Fig. 12.  2134 

 2135 

If the dipole field (right) slowly returns to its initially distorted configuration (left), the 2136 

population considered will lose exactly the same amount of kinetic energy as it had gained 2137 

during the dipolarization. The kinetic energy of the population considered will return to its initial 2138 

value. Therefore, adiabatic energization is a reversible process. Even so, fully adiabatic changes 2139 

in particle fluxes are known to play an important role in the storm time dynamics of the Earth’s 2140 

radiation belts (e.g., Dessler and Karplus 1961; Kim and Chan 1997). 2141 

 2142 

It is worth emphasizing the key role played by induced electric fields during adiabatic 2143 

energization. It is indeed the induced electric fields that make the connection between changing 2144 

magnetic fields and particles’ acceleration. During changes in the magnetic field configuration, 2145 

the energy transfer results from two betatron effects acting simultaneously: a gyro-betatron, in 2146 

which the curl of the induced electric field acts around the circle of gyration, and a drift betatron, 2147 

in which the curl of the induced electric field acts around the drift circle. If the magnetic field 2148 

changes slowly enough, the gyro-betatron acceleration ensures conservation of the first adiabatic 2149 

invariant while the drift betatron acceleration ensures conservation of the third adiabatic 2150 

invariant (e.g. Fillius and McIlwain 1967; Roederer 1970).  2151 

 2152 

Finally, let us discuss another possible misconception related to the violation of the third 2153 

adiabatic invariant: the idea that radial diffusion only results in energy gain (i.e., radiation belt 2154 

acceleration). The violation of the third adiabatic invariant corresponds to an irreversible energy 2155 
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variation whose sign depends on the trapped population drift phase (e.g., Figure 6, Section 2156 

2.3.3). Within the diffusive regime, multiple violations of the third adiabatic invariant correspond 2157 

to random walks in 𝐿∗. In other words, at each time step, there is equal likelihood that 𝐿∗ 2158 

increases (irreversible energy loss) or 𝐿∗ decreases (irreversible energy gain) for an individual 2159 

particle of a given radiation belt population (𝑞, 𝑀, 𝐽, 𝐿∗). That there is equal chance that 𝐿∗ 2160 

increases or decreases is directly related to the assumption of phase mixing, i.e., to the 2161 

assumption that the phase space density is dependent of the drift phase 𝜑  (e.g., equations (2-17) 2162 

– (2-19)). On the other hand, the phase space density of a trapped population 𝑞, 𝑀, 𝐽  usually 2163 

varies with 𝐿∗. Because the 𝐿∗-gradient is typically positive in phase space, there are usually 2164 

more particles moving inward than outward along 𝐿∗, i.e., radial diffusion usually results in a net 2165 

irreversible energy gain. Yet, when the gradient in 𝐿∗ is negative, radial diffusion results in a net 2166 

irreversible energy loss because there are more particles moving outward than inward along 𝐿∗. 2167 

 2168 

5.1.3.  Challenges inherent to the 𝐿∗ coordinate 2169 

 2170 

The 𝐿∗ coordinate depends on the topologies of the electric and magnetic fields, and on the 2171 

characteristics of the population considered (charge, mass, energy, pitch angle) (equation (5-4)). 2172 

This definition becomes somewhat simpler for Earth’s radiation belt populations (equation (5-2173 

6)). Even so, 𝐿∗ is a cumbersome parameter to handle: 2174 

‐ It requires knowledge of the global electromagnetic field geometry at a given instance – 2175 

information that no measurement can provide. Thus, the quantification of 𝐿∗ is always 2176 

somewhat uncertain. 2177 

‐ The standard method for determining 𝐿∗ requires a computationally expensive drift contour 2178 

tracing (see, for instance, the numerical recipe provided by Roederer and Zhang (2014)). 2179 

Therefore, some approximation of the 𝐿∗ parameter is often preferred in practice.  2180 

Thus, any work on radial diffusion requires setting a magnetic field model, and setting a method 2181 

to quantify the 𝐿∗ coordinate. It is understood that both parameterizations should be as accurate 2182 

as possible. 2183 

In addition, it is important to keep in mind that 𝐿∗ is a parameter for stably trapped populations. 2184 

This poses a limit to radial diffusion studies. Indeed, the drift contour needs to be a closed curve 2185 

for 𝐿∗ to be determined. Thus, populations located on open field lines and quasi-trapped 2186 

populations cannot be parametrized with 𝐿∗. For instance, particles located in the nightside of the 2187 

geostationary orbit can be in the drift loss cone during active times, drifting towards regions of 2188 

open field lines in the dayside where they are lost (“magnetopause shadowing”). In addition, 2189 

there exist regions of space close to the dayside magnetopause of the Earth where each field line 2190 

has two minima. This particular geometry leads to drift orbit bifurcations (also known as 2191 

Shabansky orbits), and it precludes the definition of 𝐿∗ (e.g. Öztürk and Wolf 2007). Therefore, 2192 

if the population considered is not stably trapped, it is, strictly speaking, impossible to attribute a 2193 

𝐿∗ coordinate, never mind computing a radial diffusion coefficient! 2194 

  2195 
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5.2.  Violation of the third adiabatic invariant  2196 

 2197 

Radial diffusion is a statistical characterization of the violation of the third adiabatic invariant 2198 

across a particle population. Thus, this concept involves variations of the magnetic flux 2199 

encompassed by the drift contour of a trapped population. In the following, we discuss the 2200 

ingredients required for the violation of the third adiabatic invariant, in the most general way. 2201 

 2202 

5.2.1.  Relation between magnetic field variations and violation of 𝐿∗ 2203 

 2204 

The violation of 𝐿∗ requires field fluctuations that depend on local time 2205 

The broadening of an initially thin drift shell is indicative of the violation of the 𝐿∗ coordinate for 2206 

the population considered. In the following, we expand on the mechanism proposed by Parker 2207 

(1960), introduced in Section 2.3.1. We show that the condition for an initially thin drift shell to 2208 

broaden is the presence of asymmetric field fluctuations, i.e., field fluctuations that depend on 2209 

local time, with a characteristic time comprised between the bounce and the drift periods of the 2210 

population considered. The case of equatorial particles trapped in a time-varying magnetic field 2211 

is discussed for the sake of simplicity. Generalization is straightforward (via an appropriate 2212 

redefinition of the drift contour – equation (5-4)). 2213 

 2214 

Let us track the drift motions of two radiation belt equatorial guiding centers with the same three 2215 

adiabatic invariants 𝑀, 𝐽 0, 𝐿∗ , located at 𝒓𝟏 and 𝒓𝟐 along the same drift contour 𝛤 (Fig. 13). 2216 

By definition of a drift contour, the equatorial magnetic field intensity is the same at 𝒓𝟏 and 𝒓𝟐 at 2217 

time 𝑡: 𝐵 𝒓𝟏, 𝑡 𝐵 𝒓𝟐, 𝑡 𝐵 .  2218 

As the magnetic field starts varying (with a characteristic time that is long enough so as to 2219 

conserve the first two invariants, but short in comparison with the drift period of the trapped 2220 

population), the drift velocity departs from its value under stationary conditions, and the guiding 2221 

centers move away from their initial drift contour, 𝛤 (the motions are represented by the red and 2222 

blue arrows in Fig. 13, right panel). 2223 

At time, 𝑡 𝑑𝑡, the guiding center initially located at 𝒓𝟏 is now at 𝒓𝟏 𝒅𝒓𝟏, and the guiding 2224 

center initially located at 𝒓𝟐 is now at 𝒓𝟐 𝒅𝒓𝟐. In order for the two guiding centers to share the 2225 

same guiding contour at 𝑡 𝑑𝑡, and thus remain on the same drift shell at 𝑡 𝑑𝑡, the new 2226 

locations should be such that 𝐵 𝒓𝟏 𝒅𝒓𝟏, 𝑡 𝑑𝑡 𝐵 𝒓𝟐 𝒅𝒓𝟐, 𝑡 𝑑𝑡 . 2227 

With a first order approximation in dt, one obtains that 𝐵 𝒓𝟏 𝒅𝒓𝟏, 𝑡 𝑑𝑡  𝐵 𝒓𝟏, 𝑡2228 

𝑑𝐵 𝒓𝟏, 𝑡 /𝑑𝑡 𝑑𝑡, and 𝐵 𝒓𝟐 𝒅𝒓𝟐, 𝑡 𝑑𝑡  𝐵 𝒓𝟐, 𝑡 𝑑𝐵 𝒓𝟐, 𝑡 /𝑑𝑡 𝑑𝑡. Since 𝐵 𝒓𝟏, 𝑡2229 

𝐵 𝒓𝟐, 𝑡 𝐵 , it results that 𝐵 𝒓𝟏 𝒅𝒓𝟏, 𝑡 𝑑𝑡 𝐵 𝒓𝟐 𝒅𝒓𝟐, 𝑡 𝑑𝑡 𝑐𝑠𝑡. ⇔2230 

𝑑𝐵 𝒓𝟏, 𝑡 /𝑑𝑡 𝑑𝐵 𝒓𝟐, 𝑡 /𝑑𝑡. In other words, if the magnetic field varies in a similar way all 2231 

along the initial drift shell (𝑑𝐵 𝒓, 𝑡 /𝑑𝑡 𝑐𝑠𝑡. along 𝛤 ), the guiding centers will stay on a 2232 

common shell. On the other hand, if the magnetic field variations depend on local time, the 2233 

initially thin drift shell will broaden.  2234 

 2235 
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 2236 
 2237 

Fig. 13 Schematic drawing of the broadening of the drift shell. (Left) Initially, the guiding 2238 

centers located at 𝒓𝟏 and 𝒓𝟐 have the same adiabatic invariants. They share the same drift 2239 

contour, 𝛤 . The magnetic field varies during 𝑑𝑡, a time interval that is long enough so as to 2240 

conserve the first two invariants, but small enough so that the third invariant can be violated. At 2241 

𝑡 𝑑𝑡, the guiding centers have new locations (𝒓𝟏 𝒅𝒓𝟏 and  𝒓𝟐 𝒅𝒓𝟐, respectively). These 2242 

new locations determine new drift contours (𝐵 𝒓𝟏 𝒅𝒓𝟏 𝑐𝑠𝑡., in red in the right panel, and 2243 

𝐵 𝒓𝟐 𝒅𝒓𝟐 𝑐𝑠𝑡., in blue in the right panel). For the drift contours to merge, it is necessary 2244 

that 𝐵 𝒓𝟏 𝒅𝒓𝟏  𝐵 𝒓𝟐 𝒅𝒓𝟐 . That is, the variation of the magnetic field should be the 2245 

same at 𝒓𝟏 and 𝒓𝟐.  2246 

 2247 

In Parker’s scenario (Section 2.3.1), the compression of the magnetic field is stronger on the 2248 

dayside than on the nightside, which commonly happens as a result of enhanced solar wind 2249 

pressure. Particles are transported closer to Earth on the dayside than on the nightside, and 2250 

different portions of the initial ring of particles populate different shells as the particles drift 2251 

around the Earth. 2252 

More generally, we find that the condition for a thin drift shell of equatorial radiation belt 2253 

particles to broaden is that the time variations of the equatorial magnetic field depend on local 2254 

time. This concept is at the heart of the formulation of the instantaneous rate of change of 𝐿∗. 2255 

 2256 

Analytical expressions for the instantaneous rate of change of 𝐿∗ (𝑑𝐿∗ 𝑑𝑡⁄ : 2257 

The following results have been demonstrated in real space (𝐫) by Lejosne et al. (2012) and 2258 

Lejosne (2013). Equivalent formulas had already been demonstrated by Northrop (1963) in the 2259 

α, β, ε  coordinate system, where α and β are coordinates related to the magnetic field topology 2260 

(Euler potentials), and ε identifies with the total energy of particles in the static case. The 2261 
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underlying theoretical framework and formula derivations are gathered in the Appendix. In the 2262 

following, the quantities considered are averages over the bounce period of the population 2263 

considered – because it is assumed that the first two adiabatic invariants are conserved.  2264 

In the most general case, the instantaneous rate of change of 𝐿∗ is: 2265 

𝑑𝐿∗

𝑑𝑡
𝒓𝒐, 𝑡

𝐿∗

2𝜋𝐵 𝑅
𝐵 𝒓, 𝑡

|𝛻 𝜀 𝒓, 𝑡 |
𝑑𝜀
𝑑𝑡

𝒓, 𝑡
𝑑𝜀
𝑑𝑡

𝒓𝒐, 𝑡 𝑑𝑙
𝒓∈

 (5-7) 

where 𝒓𝒐 is the guiding center location along the drift contour 𝛤 𝑟  at time t, 𝐵  is the equatorial 2266 

magnetic field intensity, 𝜀 is the total (kinetic+potential) energy of the guiding center, and 𝛻 𝜀 is 2267 

the gradient of 𝜀 determined with constant mirror point magnetic field intensity. The drift 2268 

contour, 𝛤, is comprised of all equatorial radial distances around the planet that a particle with 2269 

fixed adiabatic invariants can have. The integral goes over the full drift contour. 𝑑𝑙 is an 2270 

infinitesimal displacement along 𝛤. Equation (5-7) is equivalent to (5-9), as shown in the 2271 

Appendix. 2272 

 2273 

Reformulations in terms of deviation from the drift-average: 2274 

Let us introduce the drift-average spatial operator , such that 2275 

 2276 

𝑓 𝑡
1

𝜏
𝑓 𝒓, 𝑡

|𝑽𝑫 𝒓, 𝑡 |
𝑑𝑙

𝒓∈

1
𝜏

𝑓 𝒓 𝜏 , 𝑡 𝑑𝜏 (5-8) 

 2277 

where the integral is over the drift contour, 𝑽𝑫 is the bounce-averaged drift velocity, 𝜏  indicates 2278 

the drift period of the population considered, and Γ is the associated drift contour at time, 𝑡. 2279 

𝑓 𝑡  determines the spatial average of an arbitrary quantity, 𝑓, at time, 𝑡, along the drift 2280 

contour 𝛤. Each drift contour element is weighted by the time spent drifting through that location 2281 

if the electromagnetic conditions were time-stationary.  2282 

 2283 

With that operator, the equation (5-7) is also: 2284 

𝑑𝐿∗

𝑑𝑡
𝒓𝒐, 𝑡

𝐿∗

𝑞𝛺𝐵 𝑅
𝑑𝜀
𝑑𝑡

𝑡
𝑑𝜀
𝑑𝑡

𝒓𝒐, 𝑡 (5-9)

where 𝛺 2𝜋 𝜏⁄  is the population angular drift velocity. This is the same formula as the one 2285 

derived by Northrop (1963), reviewed by Cary and Brizard (2009), and derived here in the 2286 

Appendix as equation (A-43). 2287 

 2288 

5.2.2.  Requirements for 𝐿∗ violations 2289 

 2290 

L* can only be violated if the time variations of the field depend on local time: 2291 
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If the time variations of the fields are the same all along the drift contour (𝑑𝜀 𝑑𝑡⁄ 𝒓𝒐, 𝑡2292 

𝑑𝜀 𝑑𝑡⁄ 𝑡  for all guiding center locations 𝒓𝒐 along the drift contour) then it follows, in a 2293 

symmetric field: 2294 

𝑑𝐿∗

𝑑𝑡
𝒓𝒐, 𝑡 0 (5-10)

This is consistent with the result obtained in section 5.2.1. 2295 

 2296 

𝑑𝐿∗ 𝑑𝑡⁄  is zero on drift-average along the drift contour: 2297 

The instantaneous rate of change of L∗ for a guiding center located at 𝒓𝒐, 𝑡  along the drift 2298 

contour is proportional to 𝑑𝜀 𝑑𝑡⁄ 𝑡 𝑑𝜀 𝑑𝑡⁄ 𝒓𝒐, 𝑡 . Thus, the drift average of the 2299 

variations of 𝐿∗ along 𝛤 𝑟  is zero: 2300 

𝑑𝐿∗

𝑑𝑡
𝑡 0 (5-11) 

This result is consistent with the fact that there is no net transport of the third adiabatic invariant 2301 

if all guiding centers are homogenously distributed along the drift contour (i.e., it is zero under 2302 

the assumption of phase mixing). 2303 

 2304 

There is a competition between the drift period and the characteristic time for the variation of 2305 

the fields:  2306 

The general expression of 𝑑𝐿∗ 𝑑𝑡⁄  (equation (5-9)) highlights the competition between the 2307 

characteristic time for the variation of the field, 𝜏 , and the drift period, 𝜏 , of the population 2308 

considered. Since the instantaneous rate of change of L∗ is proportional to 𝜏 /𝜏  (equation (5-2309 

9)), 𝐿∗ remains approximately constant if the characteristic time for the variation of the field is 2310 

very long in comparison with the drift period : 𝜏 /𝜏  ≪ 1 ⇒ 𝑑𝐿∗ 𝑑𝑡⁄  ≪ 1 . This is in 2311 

agreement with the fact that 𝐿∗ is an adiabatic invariant associated with drift motion. 2312 

 2313 

5.2.3.  Challenges 2314 

 2315 

In the most general case, the quantification of 𝑑𝐿∗ 𝑑𝑡⁄  requires:  2316 

‐ to define the drift contour of the population considered at a given instance, 2317 

‐ to evaluate the electric and magnetic fields, together with their total time derivatives – i.e., to 2318 

evaluate the total changes as seen by the particles (𝑑 𝑑𝑡⁄ 𝜕 𝜕𝑡⁄ 𝑽𝑫 ∙ 𝜵 , over the entire 2319 

drift shell, at a given instance. 2320 

Since no measurement can provide such information, there is ineluctable uncertainty when 2321 

quantifying 𝑑𝐿∗ 𝑑𝑡⁄ . Thus, it is important to approach any work on radial diffusion by 2322 

determining the fields chosen, together with the approximation chosen to evaluate 𝑑𝐿∗ 𝑑𝑡⁄ . 2323 
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In addition, it is important to keep in mind that the proposed framework relies on the frozen field 2324 

condition (See also Section 2.3.1; Appendix). This requires no electric field component parallel 2325 

to the magnetic field direction and a perfectly conducting Earth’s surface. In practice, both 2326 

assumptions should be examined in the region of interest. 2327 

 2328 

5.3.  Radial diffusion is a formalism 2329 

 2330 

The radial diffusion formalism and the associated Fokker-Planck equation are commonly 2331 

assumed to apply de facto. Yet, this is incorrect (see also Section 2.3.2). The concept of radial 2332 

diffusion has been introduced to tackle the degree of randomness in cross drift shell motion. It 2333 

provides a simple average description for the dynamics of a given population. In addition to the 2334 

derivation of the diffusion equation introduced and discussed Section 2.3.2, we review in the 2335 

following the computation of a radial diffusion coefficient. That way, we highlight the set of 2336 

assumptions underlying the radial diffusion formalism. 2337 

 2338 

5.3.1.  Derivation of a radial diffusion coefficient 2339 

 2340 

Let us derive a general formulation for the radial diffusion coefficient, starting from the 2341 

expression of the instantaneous rate of change of 𝐿∗at a location, 𝒓, and a time, 𝑡: 2342 

𝑉 𝑞, 𝑀, 𝐽; 𝒓, 𝑡
𝑑𝐿∗

𝑑𝑡
𝑞, 𝑀, 𝐽; 𝒓, 𝑡 (5-12) 

with 𝑑𝐿∗ 𝑑𝑡⁄  described in the general equation (5-9). 𝑉  is called the the Lagrangian velocity in 2343 

𝐿∗ of a radiation belt particle with characteristics 𝑞, 𝑀, 𝐽 . 2344 

 2345 

Integration over a time interval 𝑡 2346 

After a time, 𝑡, the variation in the L∗ of a particle 𝑞, 𝑀, 𝐽  is equal to  2347 

∆𝐿∗ 𝐿∗ 𝒓 𝑡 , 𝑡 𝐿∗ 𝒓 0 , 0 𝑉 𝒓 𝑢 , 𝑢 𝑑𝑢 (5-13) 

 2348 

Computation of the expectation value for the mean square displacement 2349 

The expectation value of the square of the displacement is equal to  2350 

∆𝐿∗ 𝑉 𝒓 𝑢 , 𝑢 𝑉 𝒓 𝑣 , 𝑣 𝑑𝑢𝑑𝑣 (5-14) 

where  denotes the expectation value. Therefore, it is necessary to compute the 2351 

autocorrelation function of the Lagrangian velocity, 𝑉 , a function of both time and space, in 2352 

order to derive the radial diffusion coefficient.  2353 
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 2354 

Separation of the spatial and temporal dependence for the velocity 𝑉  2355 

How does one describe the Lagrangian velocity 𝑉 𝒓 𝑡 , 𝑡 ? The traditional assumption is that 2356 

the spatial and temporal functions are independent (𝑉 𝒓, 𝑡 𝜆 𝑡 𝛾 𝒓 ). In addition, because 2357 

the particles are drifting in close shells around Earth, it is considered that the spatial function is a 2358 

periodic function in local time, with a periodicity defined by the particle drift period. Because the 2359 

radial diffusion formalism assumes small variations for the coordinate of interest, the radial 2360 

dependence of the spatial function is often omitted 𝛾 𝒓 𝛾 𝜑 𝛾 𝛺𝑡 𝜑 . As a result, 2361 

the velocity, 𝑉 , is rewritten in terms of a product:  2362 

𝑉 𝒓 𝑡 , 𝑡 𝜆 𝑡 𝑐𝑜𝑠 𝛺𝑡 𝜑 (5-15) 

where 𝜆 describes the temporal variations of the Lagrangian velocity, and 𝑐𝑜𝑠 𝛺𝑡 𝜑  2363 

represents the particle location at time, t (𝛺 and 𝜑  are respectively the angular drift velocity and 2364 

the initial drift phase of the particle considered). This formulation could be further elaborated by 2365 

rewriting 𝑉 𝒓 𝑡 , 𝑡  as a Fourier sum ∑ 𝜆 𝑢 𝑐𝑜𝑠 𝑛𝜑 𝜑 , . For the sake of simplicity, we 2366 

only consider the first harmonic n=1 in the following. The generalization is straightforward. 2367 

  2368 

Drift phase averaging 2369 

We compute the expectation value of 𝑉 𝒓 𝑢 , 𝑢 𝑉 𝒓 𝑣 , 𝑣  by averaging over multiple 2370 

scenarios, and including all possible initial drift phases.  2371 

As a result: 2372 

𝑉 𝒓 𝑢 , 𝑢 𝑉 𝒓 𝑣 , 𝑣
1
2

𝜆 𝑢 𝜆 𝑣 𝑐𝑜𝑠 𝛺 𝑢 𝑣 (5-16)

Stationary signals 2373 

It is then assumed that the signal, 𝜆, is stationary in the wide sense (e.g., Taylor 1922). The mean 2374 

and the autocovariance of 𝜆 do not vary with time. Thus, the autocorrelation 𝜆 𝑢 𝜆 𝑣  only 2375 

depends on the lag between 𝑢 and 𝑣. The integral (5-14) becomes: 2376 

∆𝐿∗ 𝑡 𝜆 𝑇 𝜆 𝑇 𝜏 𝑐𝑜𝑠 𝛺𝜏 𝑑𝜏 (5-17)

where 𝜆 𝑇 𝜆 𝑇 𝜏  does not depend on 𝑇. Once the time, 𝜏, becomes longer than the 2377 

autocorrelation time of the signal, 𝜆, the expectation value of 𝜆 𝑇 𝜆 𝑇 𝜏  becomes zero. 2378 

Thus, the integral reaches a finite value once 𝑡 is large enough. 2379 

In that context, the mean square of the displacement will grow linearly with time, and the rate of 2380 

change of ∆𝐿∗  will be constant: 2381 
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𝑑
𝑑𝑡

∆𝐿∗ 𝜆 𝑇 𝜆 𝑇 𝜏 𝑐𝑜𝑠 𝛺𝜏 𝑑𝜏 (5-18) 

It is the magnitude of the rate of change of ∆𝐿∗  that determines the radial diffusion 2382 

coefficient (see also section 2.3): 2383 

𝐷
1
2

𝑑
𝑑𝑡

∆𝐿∗ (5-19) 

 2384 

We identify part of equation (5-17) as being the power spectrum, 𝑃 , of the fluctuations, 𝜆, at the 2385 

angular drift velocity, 𝛺: 2386 

𝑃 𝛺 4 𝜆 𝑡 𝜆 𝑡 𝜏 𝑐𝑜𝑠 𝛺𝜏 𝑑𝜏 (5-20) 

Note that we assume 𝜆 𝑡  to be in a way that 𝑃  is independent on time. With this, it results that: 2387 

𝐷
𝑃 𝛺

8
(5-21) 

For instance, if the autocorrelation of the signal, 𝜆, is described by an exponential function: 2388 

𝜆 𝑇 𝜆 𝑇 𝜏 𝜆 𝑒 / (5-22) 

where 𝜆  is the mean square velocity, and the exponential time constant, 𝜏 , represents the 2389 

characteristic time over which the signal, λ, is correlated with its previous values, it results that  2390 

𝐷 𝛺
𝜆
2

𝜏
1 𝛺 𝜏

(5-23) 

Thus, if 𝜏 ≪  1/𝛺, i.e., if the autocorrelation time is very small in comparison with the 2391 

population drift period, 𝐷 𝛺 𝜆 𝜏 /2. The diffusion coefficient becomes independent of 2392 

energy. It increases when the mean square velocity increases (i.e., when the field fluctuations 2393 

increase), and when the autocorrelation time increases (i.e., when the particles are pushed in the 2394 

same direction for a longer time). On the other hand, if 𝜏 ≫  1/𝛺, 𝐷 𝛺 𝜆 / 2𝛺 𝜏 , the 2395 

diffusion coefficient decreases with increasing energy. Thus, the variations of the diffusion 2396 

coefficient with particles’ energy can provide information on the autocorrelation time of the 2397 

signal 𝜆, and vice versa.  2398 

 2399 
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5.3.2.  Applicability of the concept of diffusion 2400 

 2401 

Applicability of the concept of radial diffusion: 2402 

Radial diffusion can be used pragmatically in order to describe planetary environments. It is 2403 

important to keep in mind that the concept of radial diffusion is a formalism that trades accuracy 2404 

and complexity for expediency and simplicity. Expediency is of practical use when trying to 2405 

forecast or “now-cast” space weather. The diffusion coefficient is free from the mathematical 2406 

standpoint. It can, in principle, be tailored to fit observations, therefore allowing good control 2407 

over the model solutions, which is not the case for more sophisticated methods like particle 2408 

tracing. The simplicity of diffusion can be needed in data-starved scenarios, where no multi-2409 

point observations and/or observations of similar locations at different times are available that 2410 

would be needed to constrain more sophisticated approaches. While the limitation on data has 2411 

reduced at Earth in the recent decades, it is still true for the outer planets. Simplicity and 2412 

expediency make diffusion a useful data analysis tool because it allows us to change the 2413 

parameters of the model and quickly see the outcome of the numerical experiment. 2414 

 2415 

To what extent the diffusion formalism is a realistic description of the actual physics is a separate 2416 

question. Radial diffusion is germane to the Fokker-Planck equation, which provides an average 2417 

description of the particle dynamics, based on average properties of the field. The modeled 2418 

distribution function is a drift-averaged function, and information on the drift phase is lost. 2419 

Several important assumptions were made in the derivation of the Fokker-Planck equation. For 2420 

example, it was assumed that there were many very small fluctuations in L∗, and that the 2421 

distribution function was always uniform in longitude. Radial diffusion is the result of many 2422 

small uncorrelated perturbations of the particles’ drift motion. Since none of these assumptions 2423 

hold true during active times in a magnetosphere, the radial diffusion formalism cannot apply to 2424 

major events. In particular, it cannot describe the massive injections characteristic of a substorm. 2425 

Thus, in addition to the difficulty in proposing and calculating radial diffusion coefficients, 2426 

solving the proposed Fokker-Planck equation does not prove that radial diffusion occurs. 2427 

 2428 

Radial diffusion can be more or less adequate, depending on the region considered. For electrons 2429 

in Earth’s outer radiation belt, radial diffusion agrees poorly with the results obtained by tracking 2430 

test particles when applied to event analysis (Riley and Wolf 1992; Ukhorskiy et al. 2008, 2009). 2431 

This can be tested by describing radial motion of trapped equatorial particles in a time-dependent 2432 

electric field model (1) by tracking test particles, and (2) by solving the radial diffusion equation, 2433 

with the appropriate radial diffusion coefficient calculated from the assumed electric field 2434 

characteristics. This shows that: 2435 

‐ The agreement between the simulation results and the diffusion theory predictions is 2436 

mediocre when the comparison is performed for one event. Particle tracking results show 2437 

much more structure in the particle distribution as a function of time and location. The results 2438 

differ depending on the details of the wave (like its phase), even if the statistical wave 2439 

parameters (like the average size of its structures) are the same. 2440 
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‐ The diffusion formalism describes the average outcome of different wave fields that differ in 2441 

their details but share the same statistical parameters. It is also able to bracket the extreme 2442 

values covered by the particle tracking results (Ukhorskiy et al. 2009). 2443 

‐ The diffusion formalism does much better in the case of a series of sequential small storms 2444 

(Riley and Wolf 1992).  2445 

This behavior is similar to a finite 1D random walk process, in which the distribution function 2446 

approaches the Gaussian distribution only after a sufficiently large number of steps. Having said 2447 

that, it is important to keep in mind that particle tracing techniques also rely on a lot of 2448 

simplifying assumptions (in particular when it comes to modeling the spatial and temporal 2449 

characteristics of the field variations). As a result, the practical limitations to the concept of 2450 

radial diffusion remain unclear.  2451 

 2452 

There are cases where radial diffusion appears to be a very adequate description of both the 2453 

physics and the measurements. An example is the inner ion belts of magnetized planets such as 2454 

Earth’s inner proton belt and Saturn’s proton belts between the main rings and the orbit of the 2455 

moon Tethys. These belts vary only slowly on the timescale of years (Qin et al. 2015) and are 2456 

smoothly distributed in space, both of which have been described very well with models that are 2457 

based on radial diffusion (Selesnick et al. 2013; Kollmann et al. 2017). Particularly, Saturn’s 2458 

proton belts appear like a prototype for radial diffusion, because neither internal injections nor 2459 

strong solar events (Roussos et al. 2008) appear to strongly affect their population. 2460 

 2461 

A brief discussion on the general concept of diffusion in planetary radiation belts 2462 

Diffusion is not just limited to the radial mode, it can also occur in energy and pitch angle (or 2463 

equivalent coordinates) when the first and second invariants are violated (Shprits et al. 2008b). It 2464 

might be useful to highlight similarities and differences between models describing the statistical 2465 

evolution of the distribution function when the first two adiabatic invariants are violated with 2466 

that of radial diffusion. The commonly used formalism to describe statistically the temporal 2467 

evolution of particle species experiencing violation of the first two adiabatic invariants in 2468 

planetary radiation belts is quasi-linear theory (Sagdeev and Galeev 1969; Kennel and Engelman 2469 

1966). Just like radial diffusion, quasi-linear theory characterizes the evolution of the distribution 2470 

function in its respective phase-space, in terms of a Fokker-Planck equation. Likewise, a number 2471 

of crucial assumptions are also necessary. For instance, for such a formalism to hold, the 2472 

distribution function must experience very little change on time scales associated with the 2473 

motion of the first and/or second adiabatic invariant. In other words, similarly to radial diffusion, 2474 

the change in the action-angle variables must be very small, i.e., ∆J/J ≪ 1, where J stands for 2475 

one of the first two adiabatic invariants. 2476 

Moreover, requirement of time-stationarity of the turbulent fluctuations responsible for the 2477 

violation of the adiabatic invariants and small autocorrelation times are required to reduce the 2478 

coupled Vlasov-Maxwell system in terms of a Fokker-Planck diffusion equation. In the presence 2479 

of long autocorrelation times, or put differently, if particles can sample the electric and magnetic 2480 

field fluctuations, phase-space structures and other nonlinear structures could form in the 2481 

distribution function and affect the transport (i.e., diffusion and advection coefficients). 2482 
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In situ observations of large-amplitude fluctuations and nonlinear phase-space structures in the 2483 

Earth’s radiation belts (Cattell et al. 2008, Cully et al. 2008, Mozer et al. 2014) indicate that 2484 

some caution might be required when applying quasi-linear formalisms to quantify the 2485 

energization and losses of charged particles in the Earth’s radiation belts. Confirmed by multiple 2486 

independent experiments in the last ten years and across a wide range of geomagnetic conditions, 2487 

the existence of nonlinear and/or large-amplitude fluctuations put into question the fundamental 2488 

assumptions underlying quasi-linear formalisms. 2489 

 2490 

 2491 

6.  CONCLUSION: 60 years of radial diffusion research, at Earth and beyond 2492 

 2493 

6.1.  Summary: Observations and theory 2494 

 2495 

The concept of radial diffusion was introduced in the year following the discovery of the Earth’s 2496 

radiation belts to explain the existence of the belts. Experimental evidence was found indicating 2497 

that magnetically trapped particles of external origin were transported in the outer zone of the 2498 

Earth’s radiation belts by processes consistent with the conservation of the first two adiabatic 2499 

invariants. In the same years, high-altitude nuclear explosions evidenced the existence of a radial 2500 

diffusion mechanism in the inner belt. 2501 

 2502 

Early theoretical descriptions of cross drift shell motion in a background dipole field showed that 2503 

electric and/or magnetic field fluctuations could drive radial diffusion, provided that the 2504 

fluctuations depend on local time and occur on a timescale comprised between the bounce and 2505 

the drift period of the population considered. Assuming that the field fluctuations are stationary, 2506 

and that the spatial and temporal variations of the field are decoupled, the radial diffusion 2507 

coefficient is proportional to the power spectrum of the field fluctuations at harmonics of the 2508 

population drift frequency. Early estimates of the radial diffusion coefficients based on particle 2509 

and/or field measurements showed consistency, suggesting the validity of the underlying 2510 

theoretical picture. 2511 

 2512 

There is a variety of physical drivers for the field fluctuations. Electric field fluctuations can be 2513 

induced by magnetic field disturbances (due to variations in currents flowing inside or outside of 2514 

the planetary magnetosphere). They can be driven from above (by variations in the coupling 2515 

between the solar wind and the planetary magnetosphere), or from below (by variations in the 2516 

coupling between the thermosphere and the ionosphere, which usually map directly into the 2517 

magnetosphere). Ultimately, it is the sum of all these different field fluctuations that drives 2518 

radiation belt particle cross drift shell motion. 2519 

 2520 

As the temporal and spatial accuracy for radiation belt observations improved at Earth in the 90s, 2521 

the data revealed complex structure and rapid dynamics which challenged the traditional picture 2522 

of radiation belt dynamics provided by the Fokker-Planck equation. In particular, it was realized 2523 
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that relativistic electron fluxes could increase significantly on time scales that were shorter than 2524 

expected. It was proposed that the rapid outer belt relativistic electron flux enhancements could 2525 

be due to a drift resonant interaction with a monochromatic ULF oscillation in a distorted 2526 

magnetic field. From these considerations re-emerged the idea that the asymmetry of the 2527 

background magnetic field could drive a form of enhanced radial diffusion in the presence of 2528 

multiple ULF frequencies. As a result, new theoretical expressions were developed in order to 2529 

characterize radial diffusion in an asymmetric background field. These new formulas diverge 2530 

from the traditional ones, even in the absence of asymmetry. This discrepancy indicates that the 2531 

new theoretical expressions are unlikely to be fully effective in forwarding our understanding of 2532 

radial diffusion. In addition, even current radial diffusion coefficient estimates rely on the 2533 

assumption of a background magnetic dipole field, which poses a limit to their accuracy. 2534 

 2535 

6.2.  Summary: Physics of radial diffusion 2536 

 2537 

Given the importance of advancing radial diffusion research for further progress in our ability to 2538 

understand and model radiation belt dynamics, it is necessary to clarify and to reassess the sets of 2539 

assumptions underlying the theoretical picture of radial diffusion. 2540 

 2541 

The first possible source of confusion associated with radial diffusion is the variable of interest. 2542 

It is important to keep in mind that the appropriate coordinate to discuss radial diffusion is L∗. 2543 

This adiabatic coordinate allows the separation between adiabatic and non-adiabatic energization 2544 

effects in a realistic magnetic field. In the early days of radiation belt science, it was assumed 2545 

that the background magnetic field was a dipole, thus, cross drift shell motion merged with radial 2546 

motion in the magnetic equatorial plane. We now know that planetary magnetic fields depart 2547 

from a dipole field, and that the discrepancy can sometimes be drastic, even at Earth. In the 2548 

currently commonly accepted formulas for radial diffusion, the coordinate of reference is the 2549 

normalized equatorial radial distance. This inescapably leads to flawed estimates. 2550 

 2551 

Secondly, radial diffusion requires violation of the third adiabatic invariant. In other words, it 2552 

requires a variation of the magnetic flux encompassed by the drift contour of a trapped 2553 

population. The conditions for the third adiabatic invariant to vary (and for the first two adiabatic 2554 

invariants to remain constant) are well known - even though they have been the object of little 2555 

attention so far. Violation of the third adiabatic invariant requires field fluctuations that depend 2556 

on local time, on timescales comprised between the bounce and the drift period of the population 2557 

considered. Drift resonance is not required. 2558 

 2559 

Thirdly, it is important to keep in mind that the concept of radial diffusion is a formalism that 2560 

trades accuracy for expediency. It is germane to the Fokker-Planck equation, which provides an 2561 

average description of the particle dynamics, based on average properties of the field. The 2562 

modeled distribution function is a drift-averaged function, and information on the drift phase is 2563 

lost. Radial diffusion is the result of many small uncorrelated perturbations of the particles’ drift 2564 

motion. Therefore, the radial diffusion formalism cannot describe injections. It agrees poorly 2565 

with the results obtained by tracking test particles when applied to event analysis. It agrees well 2566 
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with observations of slowly changing particle populations, like the inner ion belts of Earth and 2567 

Jupiter. In summary, the use of the radial diffusion formalism and the associated Fokker-Planck 2568 

equation requires caution.  2569 

 2570 

6.3.  Some challenges for the future, near and far 2571 

 2572 

Particles transported through L∗shells via radial diffusion gain or lose kinetic energy from the 2573 

fields. Thus radial diffusion is often contrasted to local acceleration processes (that is, processes 2574 

that accelerate particles without necessarily transporting them), when it comes to assessing the 2575 

most important acceleration mechanism for the Earth’s radiation belts. However, radial diffusion 2576 

is not the only way to accelerate particles on the macroscale. Slow variations of the magnetic 2577 

field and the associated gyro-betatron and drift betatron effects lead to adiabatic and reversible 2578 

acceleration. Injections, as they follow substorms or interchange, can, in parts, lead to transport 2579 

consistent with the conservation of the first two adiabatic invariants, and energization similar to 2580 

diffusion. Thus, a careful analysis requires differentiating between adiabatic and non-adiabatic 2581 

effects, which always depends on the accuracy of the models chosen for the fields. 2582 

 2583 

On the other hand, it may be worth keeping in mind that predictions provided by the radial 2584 

diffusion formalism provide mediocre agreement with test particle simulations when doing event 2585 

analysis. Thus, a temporary discrepancy between event observations and numerical simulations 2586 

relying on the Fokker-Planck equation does not necessarily mean that additional processes are 2587 

occurring. It may only highlight the limits of radial diffusion formalism.  2588 

 2589 

It is interesting to note that the theoretical picture of violation of the third adiabatic invariant 2590 

relies on the assumption that the plasma obeys the “frozen-field condition.” Yet, there are times 2591 

and regions where this is not necessarily true. What happens to the trapped population drift 2592 

motion in that context is unknown. 2593 

 2594 

It is common practice to break down the global radial diffusion coefficient into a sum of different 2595 

components. This approach is based on the assumption that the different sources of cross drift 2596 

shell motion are uncorrelated. In practice, the correlation is unknown. A potential correlation 2597 

between the different field fluctuations would result in a global radial diffusion coefficient 2598 

distinct from the sum of the different contributions. 2599 

 2600 

In addition, the theoretical models for the radial diffusion coefficients rely on idealized field 2601 

fluctuations in which the spatial and temporal variations of the fields are decoupled. The extent 2602 

to which this assumption is valid is unknown. 2603 

 2604 

In that context, multi-spacecraft data analysis and numerical modeling in the Earth’s outer belt 2605 

such the global hybrid-Vlasov simulation Vlasiator (e.g., Palmroth et al. 2018) could provide 2606 

useful information because they can provide global information on the variations of the field, in 2607 

particular: on the characteristic times for the variations of the field, on the spatial and temporal 2608 

coupling, on the correlation between the field components, etc. 2609 
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 2610 

Let us conclude by mentioning that there is also a need to improve the spatial and temporal 2611 

accuracy of the radiation belt simulations, by introducing local time as a 4th dimension in the 2612 

codes, and by developing event-specific models (e.g., Shprits et al. 2015). In that case, it is 2613 

pivotal to realize the limitations of the Fokker-Planck equation, which originate by design. 2614 

Finding a compromise between accuracy and expediency requires a statistical reformulation of 2615 

the radiation belt dynamics able to model localized (non-diffusive) radial transport, drift phase 2616 

bunching, and drift echoes. Such features are specific to trapped population drift motion. Yet, 2617 

they cannot be reproduced by the current numerical simulations that consist of solving a 3D 2618 

Fokker-Planck equation.  2619 
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APPENDIX: Derivation for the instantaneous rate of change of the third adiabatic invariant 2620 

 2621 

In this section, we present two different ways to derive the analytic formulation of 𝑑𝐿∗ 𝑑𝑡⁄  that 2622 

was used in Section 5.2. Both proofs provide complementary physical insights on the process at 2623 

play. The results are then reformulated in more compact ways. 2624 

 2625 

A.1.  Theoretical Framework and Working Hypotheses 2626 

 2627 

In the following proofs, it is assumed that: 2628 

‐ the frozen-in condition applies; 2629 

‐ all three adiabatic invariants of the population are well-defined and meaningful (no open drift 2630 

shells, and the Lamor radius is small compared to field gradients, etc.); 2631 

‐ the first two adiabatic invariants are conserved;  2632 

‐ the characteristic time for the variation of the field, 𝜏 , is very long in comparison with the 2633 

bounce period of the population considered 𝜏 , and very short in comparison with the drift 2634 

period 𝜏 : 2635 

 𝜏 ≪ 𝜏 ≪ 𝜏 ≪ 𝜏  (A-1) 
 2636 

where 𝜏 , 𝜏 , 𝜏  are respectively the gyration, bounce, and drift periods of the particle 2637 

considered, and 𝜏  is the characteristic time for the variation of the field. 2638 

 2639 

We use an infinitesimal time step, 𝑑𝑡, adapted to this ordering: 2640 

 2641 

 𝜏 ≪ 𝜏 ≪ 𝑑𝑡 𝜏 ≪ 𝜏  (A-2) 
 2642 

so that we can track the bounce-averaged drift motions of the particle guiding centers.  2643 

 2644 

In a time-varying field, the guiding center drift velocity 𝑽𝑫 is:  2645 

 2646 

 𝑽𝑫
𝑩

𝑞𝐵
𝑞𝑬

𝑚
2𝐵

𝑣 2𝑣∥ 𝜵 𝐵 𝑚
𝑑𝑽𝑫

𝑑𝑡
 (A-3) 

 2647 

where 𝑚 is the mass of the particle, q is the electric charge, and 𝑣  and 𝑣∥ correspond to the 2648 

particle velocities perpendicular and parallel to the magnetic field direction (e.g., Roederer 2649 

1970). 2650 

The order of magnitude of the inertia term (last term in the brackets of the equation (A-3)) is 2651 

very small: 2652 

 2653 

 
𝑚𝑩
𝑞𝐵

𝑑𝑽𝑫
𝑑𝑡

|𝑽𝑫|
𝑚
𝑞𝐵

∙

𝑑𝑉
𝑑𝑡

|𝑉 |
𝜏
𝜏

≪ 1 (A-4) 
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 2654 

Thus, the inertia term is omitted and the drift velocity is equal to its bounce-averaged expression 2655 

at the magnetic equator for every time step: 2656 

 2657 

 𝑽𝑫
2𝑝𝜵𝒐𝐼 𝒆𝒐

𝑞𝜏 𝐵
𝑬𝒐 𝒆𝒐

𝐵
 (A-5) 

 2658 

where p is the particle momentum, 𝒆𝒐 𝑩𝒐/𝐵 , 𝑩𝒐 is the magnetic field at the magnetic equator 2659 

(minimum B surface), 𝑬𝒐 is the equatorial electric field (with both induced and electrostatic 2660 

components), 𝐼 1 𝐵 𝑠 /𝐵 𝑑𝑠 is the integral function of 𝐵  between the mirror points 2661 

𝑠  and 𝑠 , and 𝜵𝒐𝐼 is the equatorial gradient of the quantity, 𝐼, determined at constant magnetic 2662 

field intensity, 𝐵 , at the mirror points (e.g., Roederer 1970). 2663 

 2664 

Finally, all variations will be expressed as first-order approximations in 𝑑𝑡, and the total rate of 2665 

change of the third invariant during dt will be merged with its instantaneous rate of change: 2666 

 2667 

 𝑑𝐿∗ 𝑑𝐿∗

𝑑𝑡
𝑑𝑡 (A-6) 

 2668 

The objective is to compute the rate of change of the magnetic flux encompassed by the drift 2669 

contour of an equatorial particle in a time-varying magnetic field, in the absence of electrostatic 2670 

fields. 2671 

 2672 

A.2.  Proof #1 2673 

 2674 

Let us track the drift motion of an equatorial particle trapped in a magnetic field. At time, 𝑡, the 2675 

three adiabatic invariants are 𝑀, 𝐽 0, 𝐿∗ , and the particle’s guiding center is located at 𝒓𝒐 2676 

along its drift contour 𝛤 𝑟 . The magnetic field changes during an infinitesimal time step, 𝑑𝑡. 2677 

Due to the magnetic field variation and the resulting induced electric fields, the drift velocity is 2678 

altered, and the guiding center moves away from its initial drift contour. At 𝑡 𝑑𝑡, the guiding 2679 

center is located at 𝒓𝒐 𝒅𝒓𝒐. The equatorial magnetic field intensity along the new drift contour 2680 

𝛤 𝑟 𝑑𝑟  is a constant equal to 𝐵 𝒓𝒐 𝒅𝒓𝒐, 𝑡 𝑑𝑡 . 2681 

 2682 

The objective of this demonstration is to quantify the difference, 𝑑𝛷 𝒓𝒐, 𝑡 , between the 2683 

magnetic flux, 𝛷 𝒓𝒐 𝒅𝒓𝒐, 𝑡 𝑑𝑡 , encompassed by the drift contour, 𝛤 𝑟 𝑑𝑟 , at time, 𝑡2684 

𝑑𝑡, and the magnetic flux, 𝛷 𝒓𝒐, 𝑡 , encompassed by the drift contour, 𝛤 𝑟 , at time, 𝑡. 2685 

 2686 

 

𝑑𝛷 𝒓𝒐, 𝑡 𝛷 𝒓𝒐 𝒅𝒓𝒐, 𝑡 𝑑𝑡 𝛷 𝒓𝒐, 𝑡

𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺 𝑩 𝒓, 𝑡 ∙ 𝒅𝑺 
(A-7) 

 2687 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

82 
 

where 𝑆 𝑟 𝑑𝑟  indicates the area encompassed by 𝛤 𝑟 𝑑𝑟  at time, 𝑡 𝑑𝑡, and 𝑆 𝑟  2688 

indicates the area encompassed by 𝛤 𝑟  at time, 𝑡. They are represented in Fig. 14.  2689 

 2690 

 2691 
Fig. 14 Representation of the drift contours, 𝛤 𝑟 , at time, 𝑡 (dark purple line), and, 𝛤 𝑟2692 

𝑑𝑟 , at time, 𝑡 𝑑𝑡 (dark red line), and the associated integrating surface areas, 𝑆 𝑟 , at time, 𝑡 2693 

(purple area), and, 𝑆 𝑟 𝑑𝑟 , at time, 𝑡 𝑑𝑡 (red area). 2694 

 2695 

By adding and subtracting the quantity ∬ 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺 to the equation (A-7), the 2696 

variation of the magnetic flux associated with the guiding center initially located at 𝐫𝐨 2697 

can be interpreted as the sum of a spatial contribution and a temporal contribution: 2698 

 

𝑑𝛷 𝒓𝒐, 𝑡 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺

𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺 𝑩 𝒓, 𝑡 ∙ 𝒅𝑺  

(A-8) 

 2699 

The spatial contribution is: 2700 

 𝑑𝛷 𝒓𝒐, 𝑡 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺 (A-9) 

 2701 

It corresponds to the magnetic flux at time, 𝑡 𝑑𝑡, through the strip, 𝐴 𝑟 , between 𝛤 𝑟  and 2702 

𝛤 𝑟 𝑑𝑟 . The strip is represented in green in Fig. 15. 2703 

 2704 
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 2705 
Fig. 15 Definition of the integrating surfaces: the strip 𝐴 𝑟  is in green, and the initial 2706 

integrating surface area, 𝑆 𝑟 , is in blue. The width of the strip, 𝐴 𝑟 , starting from a location, 2707 

r, along 𝛤 𝑟  is 𝑑ℎ 𝒓 , 𝒓 . 2708 

 2709 

The temporal contribution is: 2710 

 𝑑𝛷 𝒓𝒐, 𝑡 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺 𝑩 𝒓, 𝑡 ∙ 𝒅𝑺 (A-10) 

This contribution corresponds to the variation of the magnetic field through the initial integrating 2711 

surface area 𝑆 𝑟 . It results that: 2712 

 𝑑𝛷 𝒓𝒐, 𝑡 𝑑𝛷 𝒓𝒐, 𝑡 𝑑𝛷 𝒓𝒐, 𝑡  (A-11) 

Let us quantify each component individually. 2713 

 2714 

For the spatial component: 2715 

 

𝑑𝛷 𝒓𝒐, 𝑡 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺

𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝒉 𝒓𝒐, 𝒓 𝒅𝒍  

(A-12) 

 2716 

For all points along 𝛤 𝑟 , the width of the strip, 𝑑ℎ 𝒓𝒐, 𝒓 , is such that  2717 
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 𝐵 𝒓, 𝑡 𝑑𝑡 |𝛻𝐵 𝒓, 𝑡 𝑑𝑡 |𝑑ℎ 𝒓𝒐, 𝒓 𝐵 𝒓𝒐 𝒅𝒓𝒐, 𝑡 𝑑𝑡  (A-13) 

In addition, for all points along 𝛤 𝑟 , 𝐵 𝒓, 𝑡 𝐵 𝒓𝒐, 𝑡 . 2718 

Thus, we have: 2719 

 𝐵 𝒓, 𝑡 𝑑𝑡 𝐵 𝒓𝒐, 𝑡
𝜕𝐵
𝜕𝑡

𝒓, 𝑡 𝑑𝑡 (A-14) 

As a result, for all points 𝒓 along 𝛤 𝑟  2720 

 𝑑ℎ 𝒓𝒐, 𝒓
𝑑𝑡

|𝛻𝐵 𝒓, 𝑡 𝑑𝑡 |
𝜕𝐵
𝜕𝑡

𝒓, 𝑡
𝑑𝐵
𝑑𝑡

𝒓𝒐, 𝑡  (A-15) 

Consequently, the spatial component is, to the first order in 𝑑𝑡: 2721 

 𝑑𝛷 𝒓𝒐, 𝑡 𝑑𝑡
𝐵 𝒓, 𝑡

|𝛻𝐵 𝒓, 𝑡 |
∙

𝜕𝐵
𝜕𝑡

𝒓, 𝑡
𝑑𝐵
𝑑𝑡

𝒓𝒐, 𝑡 𝑑𝑙 (A-16) 

 2722 

For the temporal contribution, one can write that: 2723 

 

𝑑𝛷 𝒓𝒐, 𝑡 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺 𝑩 𝒓, 𝑡 ∙ 𝒅𝑺

𝑑𝑡
𝜕𝑩 𝒓, 𝑡

𝜕𝑡
∙ 𝒅𝑺 

(A-17) 

 2724 

Thus, using the integral form of the Maxwell-Faraday equation: 2725 

 𝑑𝛷 𝒓𝒐, 𝑡 𝑑𝑡 𝑬𝒊𝒏𝒅 𝒓, 𝑡 ∙ 𝑑𝒍 (A-18) 

 2726 

In addition, the projection of the electric field vector, 𝑬𝒊𝒏𝒅, onto the local direction of the initial 2727 

guiding drift contour is related to the drift velocity, 𝑽𝑫 𝑀𝜵𝐵 𝑩/𝛾𝑞𝐵  𝑬𝒊𝒏𝒅 𝑩/𝐵 , 2728 

by the relation: 2729 

 𝑬𝒊𝒏𝒅 𝒓, 𝑡 ∙ 𝑑𝒍
𝐵 𝒓, 𝑡

|𝛻𝐵 𝒓, 𝑡 |
𝑽𝑫 𝒓, 𝑡 ∙ 𝜵𝐵 𝒓, 𝑡 𝑑𝑙 (A-19) 
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 2730 

Thus: 2731 

 𝑑𝛷 𝒓𝒐, 𝑡 𝑑𝑡
𝐵 𝒓, 𝑡

|𝛻𝐵 𝒓, 𝑡 |
𝑽𝑫 ∙ 𝜵𝐵 𝒓, 𝑡 𝑑𝑙 (A-20) 

Finally, let us note that for all points along 𝛤 𝑟  2732 

 
𝑑𝐵
𝑑𝑡

𝒓, 𝑡
𝜕𝐵
𝜕𝑡

𝒓, 𝑡 𝑽𝑫 𝒓, 𝑡 ∙ 𝜵𝐵 𝒓, 𝑡  (A-21) 

As a result, the sum of the spatial and temporal contributions to the variation of the magnetic flux 2733 

is 2734 

 

𝑑𝛷 𝒓𝒐, 𝑡 𝑑𝛷 𝒓𝒐, 𝑡 𝑑𝛷 𝒓𝒐, 𝑡

𝑑𝑡
𝐵 𝒓, 𝑡

|𝛻𝐵 𝒓, 𝑡 |
𝑑𝐵
𝑑𝑡

𝒓, 𝑡
𝑑𝐵
𝑑𝑡

𝒓𝒐, 𝑡 𝑑𝑙 
(A-22) 

Thus: 2735 

 
𝑑𝛷
𝑑𝑡

𝒓𝒐, 𝑡
𝐵 𝒓, 𝑡

|𝛻𝐵 𝒓, 𝑡 |
𝑑𝐵
𝑑𝑡

𝒓, 𝑡
𝑑𝐵
𝑑𝑡

𝒓𝒐, 𝑡 𝑑𝑙 (A-23) 

with  2736 

 

𝑑𝐿∗

𝐿∗

𝑑𝛷
2𝜋𝐵 𝑅

 

 
(A-24) 

we obtain 2737 

𝑑𝐿∗

𝑑𝑡
𝒓𝒐, 𝑡

𝐿∗

2𝜋𝐵 𝑅
𝐵 𝒓, 𝑡

|𝛻𝐵 𝒓, 𝑡 |
𝑑𝐵
𝑑𝑡

𝒓, 𝑡
𝑑𝐵
𝑑𝑡

𝒓𝒐, 𝑡 𝑑𝑙 (A-25) 

 2738 

A.3.  Proof #2 2739 

 2740 

The second proof consists of tracking the drift motions over all guiding center locations along 2741 

the same drift contour, 𝛤 𝑟 . All guiding centers have initially the same three adiabatic 2742 

invariants (M, J=0, L*), but they have different drift phases at the time of the perturbation. 2743 

This second proof relies on the fact that the magnetic flux, through a closed curve moving at 2744 

𝑬𝒊𝒏𝒅 𝑩 /𝐵  is conserved, which is what we will demonstrate as a first step. 2745 

 2746 
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A.3.1. Conservation of the magnetic flux through a closed curve moving at 𝑬𝒊𝒏𝒅 𝑩 /𝐵  2747 

 2748 

Let us consider at time, 𝑡 𝑑𝑡, the closed curve, 𝛤, formed by all the new guiding center 2749 

locations (see also Fig. 16).  2750 

 2751 

Fig. 16 Definition of the closed curve, 𝛤, formed by all the new guiding center locations. 2752 

Because the equatorial magnetic field intensity along 𝛤 is not necessarily constant, 𝛤 is not 2753 

necessarily a drift contour. Yet, because 𝑬𝒊𝒏𝒅 𝑩 /𝐵  is flux-preserving, the flux encompassed 2754 

by 𝛤 is equal to the initial magnetic flux of the population considered. 2755 

 2756 

Because the equatorial magnetic field intensity along 𝛤 is not necessarily constant, 𝛤 is not 2757 

necessarily a drift contour. Yet, it is interesting to note that the magnetic flux, 𝛷, encompassed 2758 

by 𝛤 is equal to the initial magnetic flux through 𝛤 𝑟 . Indeed: 2759 

𝛷 𝑡 𝑑𝑡 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝑑𝑺 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝑽𝑫 𝒓, 𝑡 𝑑𝑡 𝑑𝒍  (A-26) 

Because 2760 

𝐁 𝒓, 𝑡 𝑑𝑡 ∙ 𝑽𝑫 𝒓, 𝑡 𝑑𝒍 𝑩 𝒓, 𝑡 𝑑𝑡 𝑽𝑫 𝒓, 𝑡 ∙ 𝑑𝒍 𝑬𝒊𝒏𝒅 𝒓, 𝑡 ∙ 𝑑𝒍 (A-27) 

it results that 2761 
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𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝑽𝑫 𝒓, 𝑡 𝑑𝑡 𝑑𝒍 𝑑𝑡 𝑬𝒊𝒏𝒅 𝒓, 𝑡 ∙ 𝑑𝒍 (A-28) 

 2762 

Using the integral form of the Maxwell-Faraday equation: 2763 

 2764 

𝑑𝑡 𝑬𝒊𝒏𝒅 𝒓, 𝑡 ∙ 𝑑𝒍 𝑑𝑡
𝜕𝑩 𝒓, 𝑡

𝜕𝑡
∙ 𝒅𝑺

𝑩 𝒓, 𝑡 ∙ 𝒅𝑺 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺 

(A-29) 

Thus, 2765 

𝛷 𝑡 𝑑𝑡 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝑑𝑺

𝑩 𝒓, 𝑡 ∙ 𝒅𝑺 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝒅𝑺  

(A-30) 

 2766 

We conclude that for all guiding center locations, 𝒓𝒐, initially along 𝛤 𝑟 : 2767 

𝛷 𝒓𝒐, 𝑡 𝛷 𝑡 𝑑𝑡 (A-31) 

In other words, the drift contour distorts to conserve the magnetic flux. This is due to the fact that 2768 

𝑬𝒊𝒏𝒅 𝑩 /𝐵  is flux-preserving (Newcomb 1958). 2769 

 2770 

A.3.2. Reformulation for the variation of the magnetic flux 2771 

 2772 

We reformulate the variation of the magnetic flux (equation (A-7)), using the fact that the 2773 

magnetic flux encompassed by the closed curve 𝛤 at 𝑡 𝑑𝑡 is equal to the initial flux (equation 2774 

(A-31)) (see also Fig. 17) 2775 

 
𝑑𝛷 𝒓𝒐, 𝑡 𝛷 𝒓𝒐 𝒅𝒓𝒐, 𝑡 𝑑𝑡 𝛷 𝒓𝒐, 𝑡

𝛷 𝒓𝒐 𝒅𝒓𝒐, 𝑡 𝑑𝑡 𝛷 𝑡 𝑑𝑡  
(A-32) 
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 2776 
Fig. 17 Representation of the variation of the magnetic flux as the difference between the 2777 

magnetic flux encompassed by the drift contour, 𝛤 𝑟 𝑑𝑟 , at t+dt and the magnetic flux 2778 

encompassed by the distorted contour 𝛤 2779 

 2780 

Combining the equations (A-9) and (A-26), we have  2781 

 𝑑𝛷 𝒓𝒐, 𝑡 𝑑𝛷 𝒓𝒐, 𝑡 𝑩 𝒓, 𝑡 𝑑𝑡 ∙ 𝑽𝑫 𝒓, 𝑡 𝑑𝑡 𝑑𝒍  (A-33) 

From equation (A-12), we obtain that the variation of the magnetic flux is, to the first order in 𝑑𝑡 2782 

 𝑑𝛷 𝒓𝒐, 𝑡 𝑩 𝒓, 𝑡 ∙ 𝒅𝒉 𝒓𝒐, 𝒓 𝑽𝑫 𝒓, 𝑡 𝑑𝑡 𝒅𝒍  (A-34) 

This expression is also: 2783 

 𝑑𝛷 𝒓𝒐, 𝑡 𝑩 𝒓, 𝑡 ∙ 𝒅𝒉 𝒓𝒐, 𝒓 𝒅𝒉 𝒓, 𝒓 𝒅𝒍  (A-35) 

Using equation (A-15), this result is equivalent to equation (A-25). A geometric definition for the 2784 

variation of the magnetic flux according to equation (A-35) is represented in Fig. 18. 2785 

 2786 
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 2787 
Fig. 18 Geometric interpretation of the variation of the magnetic flux 2788 

 2789 

A.4.  Reformulation in terms of deviation from the average 2790 

 2791 

Noticing that the drift velocity of a guiding center trapped in a magnetic field in stationary 2792 

conditions in the absence of electric fields is: 2793 

 𝑽𝑫,𝒔 𝒓, 𝑡
𝑀
𝛾𝑞

𝛻𝐵 𝒓, 𝑡 𝒆𝒐

𝐵 𝒓, 𝑡
 (A-36) 

and introducing the infinitesimal time step spent along the drift contour, 𝑑𝜏, such that 2794 

|𝑑𝜏|
𝑑𝑙

𝑽𝑫,𝒔 𝒓, 𝑡
(A-37) 

The equation (A-25) becomes:  2795 

𝑑𝛷
𝑑𝑡

𝒓𝒐, 𝑡
𝑀
𝛾𝑞

𝑑𝐵
𝑑𝑡

𝒓, 𝑡
𝑑𝐵
𝑑𝑡

𝒓𝒐, 𝑡 𝑑𝜏 (A-38) 

Let us introduce the linear operator  to denote the spatial drift average along the guiding 2796 

drift contour, 𝛤. It is defined by 2797 

𝑓 𝑡
1

𝜏
𝑓 𝒓 𝜏 , 𝑡 𝑑𝜏 (A-39) 
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This operation determines the spatial average of the quantity, 𝑓, along the drift contour, 𝛤, 2798 

weighted by the time spent drifting through each location under stationary conditions.  2799 

Thus  2800 

𝑑𝛷
𝑑𝑡

𝒓𝒐, 𝑡
𝜏
𝑞

𝑀
𝛾

𝑑𝐵
𝑑𝑡

𝑡
𝑀
𝛾

𝑑𝐵
𝑑𝑡

𝒓𝒐, 𝑡 (A-40) 

 2801 

In the case of an equatorial guiding center trapped in a magnetic field in the absence of 2802 

electrostatic fields 2803 

𝑀
𝛾

𝑑𝐵
𝑑𝑡

𝑑𝜀
𝑑𝑡

 
(A-41) 

where 𝜀 is the total energy of the guiding center. Thus, we obtain that 2804 

𝑑𝛷
𝑑𝑡

𝒓𝒐, 𝑡
𝜏
𝑞

𝑑𝜀
𝑑𝑡

𝑡
𝑑𝜀
𝑑𝑡

𝒓𝒐, 𝑡 (A-42) 

This expression is identical to the one derived by Northrop (1963). It is valid in the most general 2805 

case (e.g., Cary and Brizard 2009; Lejosne et al. 2012; Lejosne 2013). As a result,  2806 

𝑑𝐿∗

𝑑𝑡
𝒓𝒐, 𝑡

𝐿∗

𝑞𝛺𝐵 𝑅
𝑑𝜀
𝑑𝑡

𝑡
𝑑𝜀
𝑑𝑡

𝒓𝒐, 𝑡 (A-43) 

where 𝛺 2𝜋 𝜏⁄  is the population drift frequency. 2807 

2808 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

91 
 

REFERENCES 2809 

 2810 

A.F. Ali, S.R. Elkington, W. Tu, L.G. Ozeke, A.A. Chan, R.H.W. Friedel, Magnetic field power 2811 

spectra and magnetic radial diffusion coefficients using CRRES magnetometer data. J. Geophys. 2812 

Res. Space Physics, 120: 973–995 (2015). https://doi.org/10.1002/2014JA020419 2813 

 2814 

A.F. Ali, D.M. Malaspina, S.R. Elkington, A.N. Jaynes, A.A. Chan, J. Wygant, C.A. Kletzing, 2815 

Electric and magnetic radial diffusion coefficients using the Van Allen probes data. J. Geophys. 2816 

Res. Space Physics, 121, 9586–9607 (2016). https://doi.org/10.1002/2016JA023002 2817 

 2818 

M. Andriopoulou, et al., A noon-to-midnight electric field and nightside dynamics in Saturn’s 2819 

inner magnetosphere, using microsignature observations. Icarus, 220, 503–513 (2012). 2820 

https://doi.org/10.1016/j.icarus.2012.05.010 2821 

 2822 

M. Andriopoulou, et al., Spatial and temporal dependence of the convective electric field in 2823 

Saturn’s inner magnetosphere. Icarus, 229, 57–70 (2014). 2824 

https://doi.org/10.1016/j.icarus.2013.10.028 2825 

 2826 

A.R. Azari, M.W. Liemohn, X. Jia, M.F. Thomsen, D.G. Mitchell, N. Sergis, et al., Interchange 2827 

injections at Saturn: Statistical survey of energetic H+ sudden flux intensifications. J. Geophys. 2828 

Res. Space Physics, 123, 4692–4711 (2018). https://doi.org/10.1029/2018JA025391 2829 

 2830 

D.N. Baker, S. Kanekal, J.B. Blake, B. Klecker, G. Rostoker, Satellite anomalies linked to 2831 

electron increase in the magnetosphere, Eos Trans., AGU, 75, 404 (1994). 2832 

https://doi.org/10.1029/94EO01038 2833 

 2834 

F. Bagenal, R.J. Wilson, S. Siler, W.R. Paterson, W.S. Kurth, Survey of Galileo plasma 2835 

observations in Jupiter’s plasma sheet. J. Geophys. Res. Planets, 121 (2016). 2836 

https://doi.org/10.1002/2016JE005009 2837 

 2838 

W. Baumjohann, G. Paschmann, H. Lühr, Characteristics of High-Speed Ion Flows in the Plasma 2839 

Sheet, J. Geophys. Res., 95, A4, 3801-3809 (1990). https://doi.org/10.1029/JA095iA04p03801 2840 

 2841 

T. Beutier, D. Boscher, A three-dimensional analysis of the electron radiation belt by the 2842 

Salammbô code. J. Geophys. Res., 100 (A8), 14853–14861 (1995). 2843 

https://doi.org/10.1029/94JA03066 2844 

 2845 

T.J. Birmingham, F.C. Jones, Identification of moving magnetic field lines. J. Geophys. Res., 73, 2846 

5505–5510 (1968). https://doi.org/10.1029/JA073i017p05505 2847 

 2848 

T.J. Birmingham, Convection electric fields and the diffusion of trapped magnetospheric 2849 

radiation. J. Geophys. Res., 74(9), 2169–2181 (1969). https://doi.org/10.1029/JA074i009p02169 2850 

 2851 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

92 
 

T. Birmingham, et al., The electron diffusion coefficient in Jupiter’s magnetosphere. J. Geophys. 2852 

Res, 79, 1, 87-97 (1974). https://doi.org/10.1029/JA079i001p00087 2853 

 2854 

D.H. Brautigam, J.M. Albert, Radial diffusion analysis of outer radiation belt electrons during 2855 

the October 9, 1990, magnetic storm. J. Geophys. Res., 105(A1), 291–309 (2000). 2856 

https://doi.org/10.1029/1999JA900344 2857 

 2858 

D.H. Brautigam, G.P. Ginet, J.M. Albert, J.R. Wygant, D.E. Rowland, A. Ling, J. Bass, CRRES 2859 

electric field power spectra and radial diffusion coefficients. J. Geophys. Res., 110, A02214 2860 

(2005). https://doi.org/10.1029/2004JA010612 2861 

 2862 

N. Brice, T.R. McDonough, Jupiter’s radiation belts, Icarus, 18, 206–219 (1973). 2863 

https://doi.org/10.1016/0019-1035(73)90204-2 2864 

 2865 

A.J. Brizard, A.A. Chan, Relativistic bounce-averaged quasilinear diffusion equation for low-2866 

frequency electromagnetic fluctuations. Phys. Plasmas, 8(11), 4762–4771 (2001). 2867 

https://doi.org/10.1063/1.1408623 2868 

 2869 

W.L. Brown, Observations of the Transient Behavior of Electrons in the Artificial Radiation 2870 

Belts. In: McCormac B.M. (eds) Radiation Trapped in the Earth’s Magnetic Field. Astrophysics 2871 

and Space Science Library, vol 5. Springer, Dordrecht (1966). https://doi.org/10.1007/978-94-2872 

010-3553-8_44 2873 

 2874 

J.R. Cary, A.J. Brizard, Hamiltonian theory of guiding-center motion. Rev. Mod. Phys., 81, 2, 2875 

693-738 (2009). https://link.aps.org/doi/10.1103/RevModPhys.81.693 2876 

 2877 

C. Cattell, et al. Discovery of very large amplitude whistler‐mode waves in Earth's radiation 2878 

belts. Geophys. Res. Lett., 35, L01105 (2008). https://doi.org/10.1029/2007GL032009 2879 

 2880 

S. Chandrasekhar, Stochastic Problems in Physics and Astronomy. Reviews of Modern Physics, 2881 

15, 1 (1943). https://doi.org/10.1103/RevModPhys.15.1 2882 

 2883 

Y. Chen, T. W. Hill, A. M. Rymer, R. J. Wilson, Rate of radial transport of plasma in Saturn's 2884 

inner magnetosphere. J. Geophys. Res., 115, A10211 (2010). 2885 

https://doi.org/10.1029/2010JA015412  2886 

 2887 

A.F. Cheng, et al., Energetic ion and electron phase space densities in the magnetosphere of 2888 

Uranus. J. Geophys. Res., 92, A13, 15315-15328 (1987). 2889 

https://doi.org/10.1029/JA092iA13p15315 2890 

 2891 

A.F. Cheng, et al., Energetic ion phase space densities in Neptune’s magnetosphere. Icarus, 99, 2892 

420-429 (1992). https://doi.org/10.1016/0019-1035(92)90157-3 2893 

 2894 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

93 
 

G. Clark, C. Paranicas, D. Santos-Costa, S. Livi, N. Krupp, D.G. Mitchell, E. Roussos, W.-L. 2895 

Tseng, Evolution of electron pitch angle distributions across Saturn’s middle magnetospheric 2896 

region from MIMI/LEMMS. Planet. Space Sci., 104, 18–28 (2014). 2897 

https://doi.org/10.1016/j.pss.2014.07.004  2898 

 2899 

G. Clark, B.H. Mauk, C. Paranicas, P. Kollmann, H.T. Smith, Charge states of energetic oxygen 2900 

and sulfur ions in Jupiter’s magnetosphere. J. Geophys. Res. Space Physics, 121, 2264–2273 2901 

(2016).  https://doi.org/10.1002/2015JA022257 2902 

 2903 

J.F. Cooper, Nuclear cascades in Saturn’s rings - Cosmic ray albedo neutron decay and origins of 2904 

trapped protons in the inner magnetosphere. J. Geophys. Res., 88, 3945–3954 (1983).  2905 

https://doi.org/10.1029/JA088iA05p03945 2906 

 2907 

J.F. Cooper et al., Local time asymmetry of drift shells for energetic electrons in the middle 2908 

magnetosphere of Saturn. Adv. Space Res., 21, 11 1479-1482 (1998). 2909 

https://doi.org/10.1016/S0273-1177(98)00022-2 2910 

 2911 

J.F. Cooper, S.J. Sturner, Energetic radiation from galactic cosmic ray interactions with Saturn’s 2912 

main rings. J. Geophys. Res. Space Physics, 123 (2018). https://doi.org/10.1029/2018JA025583 2913 

 2914 

J.M. Cornwall, Diffusion Processes Influenced by Conjugate‐Point Wave Phenomena. Radio 2915 

Science, 3 (1968). https://doi.org/10.1002/rds196837740 2916 

 2917 

F.V. Coroniti, Energetic Electrons in Jupiter’s Magnetosphere. The Astronomical Journal 2918 

Supplement Series, 244, 27, 261-281(1974). https://doi.org/10.1086/190296  2919 

 2920 

S. W. H. Cowley, The Causes of Convection in the Earth’s Magnetosphere: A Review of 2921 

Developments During the IMS, Reviews of Geophysics and Space Physics, 20, 3, 531-565 2922 

(1982). https://doi.org/10.1029/RG020i003p00531 2923 

 2924 

S. W. H. Cowley et al., Jupiter’s polar ionospheric flows: Theoretical interpretation, Geophys. 2925 

Res. Lett., 30(5), 1220 (2003). https://doi.org/10.1029/2002GL016030 2926 

 2927 

S. W. H. Cowley, et al., Saturn’s polar ionospheric flows and their relation to the main 2928 

auroral oval, Annales Geophysicae, 22: 1379–1394 (2004). https://doi.org/10.5194/angeo-22-2929 

1379-2004 2930 

 2931 

C.M. Cully, J.W. Bonnell, R.E. Ergun, THEMIS observations of long‐lived regions of large‐2932 

amplitude whistler waves in the inner magnetosphere. Geophys. Res. Lett., 35, L17S16 (2008). 2933 

https://doi.org/10.1029/2008GL033643 2934 

 2935 

G.S. Cunningham, V. Loridan, J.‐F. Ripoll, M. Schulz, Neoclassical diffusion of radiation‐belt 2936 

electrons across very low L‐shells. J. Geophys. Res. Space Physics, 123, 2884– 2901 (2018). 2937 

https://doi.org/10.1002/2017JA024931 2938 

 2939 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

94 
 

L. Davis Jr., D.B. Chang, On the effect of geomagnetic fluctuations on trapped particles. J. 2940 

Geophys. Res., 67(6), 2169–2179 (1962). https://doi.org/10.1029/JZ067i006p02169 2941 

 2942 

I. De Pater, C.K. Goertz, Radial diffusion models of energetic electrons and Jupiter’s 2943 

synchrotron radiation 2: Time Variability, J. Geophys. Res., 99, A1, 2271-2287 (1994). 2944 

https://doi.org/10.1029/93JA02097 2945 

 2946 

I. De Pater, et al., Outburst of Jupiter's synchrotron radiation after the impact of comet 2947 

Shoemaker-Levy 9, Science, 268, 5219, 1879-1883 (1995). 2948 

https://doi.org/10.1126/science.11536723 2949 

 2950 

A.J. Dessler, R. Karplus, Some effects of diamagnetic ring currents on Van Allen radiation, J. 2951 

Geophys. Res., 66(8), 2289–2295 (1961). https://doi.org/10.1029/JZ066i008p02289 2952 

 2953 

A.Y. Drozdov, Y.Y. Shprits, N.A. Aseev, A.C. Kellerman, G.D. Reeves, Dependence of 2954 

radiation belt simulations to assumed radial diffusion rates tested for two empirical models of 2955 

radial transport. Space Weather, 15, 150–162 (2017). https://doi.org/10.1002/2016SW001426 2956 

 2957 

M. Dumont et al., Jupiter’s equatorward auroral features: Possible signatures of magnetospheric 2958 

injections, J. Geophys. Res. Space Physics, 119, 10,068–10,077 (2014). 2959 

https://doi.org/10.1002/2014JA020527 2960 

 2961 

J.W. Dungey, Effects of Electromagnetic Perturbations on Particles Trapped in the Radiation 2962 

Belts, Space Sci. Rev., 4, 199 (1965). https://doi.org/10.1007/BF00173882 2963 

 2964 

S.R. Elkington, M.K. Hudson, A.A. Chan, Acceleration of relativistic electrons via drift‐resonant 2965 

interaction with toroidal‐mode Pc‐5 ULF oscillations. Geophys. Res. Lett. (1999). 2966 

https://doi.org/10.1029/1999GL003659 2967 

 2968 

S.R. Elkington, M.K. Hudson, A.A. Chan, Resonant acceleration and diffusion of outer zone 2969 

electrons in an asymmetric geomagnetic field. J. Geophys. Res., 108, 1116, A3 (2003). 2970 

https://doi.org/10.1029/2001JA009202 2971 

 2972 

C.‐G. Fälthammar, Effects of time-dependent electric fields on geomagnetically trapped 2973 

radiation. J. Geophys. Res., 70(11), 2503–2516 (1965). 2974 

https://doi.org/10.1029/JZ070i011p02503 2975 

 2976 

C.‐G. Fälthammar, On the transport of trapped particles in the outer magnetosphere. J. Geophys. 2977 

Res., 71(5), 1487–1491 (1966). https://doi.org/10.1029/JZ071i005p01487 2978 

 2979 

C.-G. Fälthammar, Radial diffusion by violation of the third adiabatic invariant, in Earth's 2980 

Particles and Fields, edited by B. M. McCormac, pp. 157–169, Reinhold, New York (1968).  2981 

 2982 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

95 
 

C.-G. Fälthammar, F. S. Mozer, On the concept of moving magnetic field lines. Eos Trans. 2983 

AGU, 88 (2007). https://doi.org/10.1029/2007EO150002 2984 

 2985 

T.A. Farley, Radial diffusion of electrons at low L values. J. Geophys. Res., 74(1), 377–380 2986 

(1969a). https://doi.org/10.1029/JA074i001p00377 2987 

 2988 

T.A. Farley, Radial diffusion of starfish electrons. J. Geophys. Res., 74(14), 3591–3600 2989 

(1969b). https://doi.org/10.1029/JA074i014p03591 2990 

 2991 

Y. Fei, A.A. Chan, S.R. Elkington, M.J. Wiltberger, Radial diffusion and MHD particle 2992 

simulations of relativistic electron transport by ULF waves in the September 1998 storm. J. 2993 

Geophys. Res., 111, A12209 (2006). https://doi.org/10.1029/2005JA011211 2994 

 2995 

R.W. Fillius, C.E. McIlwain, Adiabatic betatron acceleration by a geomagnetic storm. J. 2996 

Geophys. Res., 72(15), 4011–4015 (1967). https://doi.org/10.1029/JZ072i015p04011 2997 

 2998 

R.W. Fillius, et al., Radiation belts of Jupiter: A second look. Science, 188, 4187, 465-467 2999 

(1974). https://doi.org/10.1126/science.188.4187.465 3000 

 3001 

L.A. Frank, J.A. Van Allen, H. K. Hills, A study of charged particles in the Earth's outer 3002 

radiation zone with explorer 14. J. Geophys. Res., 69(11), 2171–2191 (1964).  3003 

https://doi.org/10.1029/JZ069i011p02171 3004 

 3005 

L.A. Frank, Inward radial diffusion of electrons of greater than 1.6 million electron volts in the 3006 

outer radiation zone. J. Geophys. Res., 70(15), 3533–3540 3007 

(1965). https://doi.org/10.1029/JZ070i015p03533 3008 

 3009 

S.A. Glauert, R.B. Horne, N.P. Meredith, Three‐dimensional electron radiation belt simulations 3010 

using the BAS Radiation Belt Model with new diffusion models for chorus, plasmaspheric hiss, 3011 

and lightning‐generated whistlers. J. Geophys. Res. Space Physics, 119, 268–289 (2014). 3012 

https://doi.org/10.1002/2013JA019281 3013 

 3014 

S.A. Glauert, R.B. Horne, N.P. Meredith, A 30‐year simulation of the outer electron radiation 3015 

belt. Space Weather, 16, 1498–1522 (2018). https://doi.org/10.1029/2018SW001981 3016 

 3017 

T.I. Gombosi, D.N. Baker, A. Balogh, et al., Anthropogenic Space Weather. Space Sci Rev 212: 3018 

985 (2017). https://doi.org/10.1007/s11214-017-0357-5 3019 

 3020 

T. Gold, Motions in the magnetosphere of the Earth. J. Geophys. Res., 64, 9 (1959). 3021 

https://doi.org/10.1029/JZ064i009p01219 3022 

 3023 

J.C. Green, M.G. Kivelson, Relativistic electrons in the outer radiation belt: Differentiating 3024 

between acceleration mechanisms. J. Geophys. Res., 109, A03213 3025 

(2004). https://doi.org/10.1029/2003JA010153 3026 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

96 
 

 3027 

J.C. Green, J. Likar, Y. Shprits, Impact of space weather on the satellite industry. Space Weather, 3028 

15, 804–818 (2017). https://doi.org/10.1002/2017SW001646 3029 

 3030 

S. Han et al., Investigating solar wind-driven electric field influence on long-term dynamics 3031 

of Jovian synchrotron radiation. Journal of Geophysical Research: Space Physics, 123, 9508–3032 

9516 (2018). https://doi.org/ 10.1029/2018JA025849 3033 

 3034 

A. Hegedus, et al., Measuring the Earth's Synchrotron Emission from Radiation Belts with a 3035 

Lunar Near Side Radio Array. Radio Science (2020). https://doi.org/10.1029/2019RS006891 3036 

 3037 

N. Herlofson, Diffusion of Particles in the Earth's Radiation Belts. Phys. Rev. Lett. 5, 414 3038 

(1960). https://doi.org/10.1103/PhysRevLett.5.414 3039 

 3040 

T.W. Hill, Inertial Limit on Corotation. J. Geophys. Res., 84, A11 (1979). 3041 

https://doi.org/10.1029/JA084iA11p06554 3042 

 3043 

T.W. Hill, Longitudinal asymmetry of the Io plasma torus. Geophys. Res. Lett., 10: 969-972 3044 

(1983). https://doi.org/10.1029/GL010i010p00969 3045 

 3046 

T.W. Hill, et al., Evidence for rotationally driven plasma transport in Saturn’s magnetosphere. 3047 

Geophys. Res. Lett.,, 32, L14S10 (2005). https://doi.org/10.1029/2005GL022620 3048 

 3049 

R.H. Holzworth, F. S. Mozer, Direct evaluation of the radial diffusion coefficient near L=6 due 3050 

to electric field fluctuations. J. Geophys. Res., 84(A6), 2559–2566 (1979). 3051 

https://doi.org/10.1029/JA084iA06p02559 3052 

 3053 

L.L. Hood, Radial diffusion in Saturn’s radiation belts - A modeling analysis assuming satellite 3054 

and ring E absorption. J. Geophys. Res., 88, 808–818 (1983). 3055 

https://doi.org/10.1029/JA088iA02p00808 3056 

 3057 

R.B. Horne, S.A. Glauert, N.P. Meredith, D. Boscher, V. Maget, D. Heynderickx, D. Pitchford, 3058 

Space weather impacts on satellites and forecasting the Earth's electron radiation belts with 3059 

SPACECAST. Space Weather, 11, 169– 186 (2013). https://doi.org/10.1002/swe.20023 3060 

 3061 

R.B. Horne, D. Pitchford, Space Weather Concerns for All‐Electric Propulsion Satellites. Space 3062 

Weather, 13, 430– 433 (2015). https://doi.org/10.1002/2015SW001198 3063 

 3064 

R.B. Horne, M.W. Phillips, S.A. Glauert, N.P. Meredith, A.D.P. Hands, K. Ryden, W. Li, 3065 

Realistic worst case for a severe space weather event driven by a fast solar wind stream. Space 3066 

Weather, 16, 1202–1215 (2018). https://doi.org/10.1029/2018SW001948 3067 

 3068 

C.-L. Huang, H.E. Spence, M.K. Hudson, S.R. Elkington, Modeling radiation belt radial 3069 

diffusion in ULF wave fields: 2. Estimating rates of radial diffusion using combined MHD and 3070 

particle codes. J. Geophys. Res., 115, A06216 (2010). https://doi.org/10.1029/2009JA014918 3071 

 3072 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

97 
 

M.K. Hudson, S.R. Elkington, J.G. Lyon, C.C. Goodrich, T.J. Rosenberg, Simulation of 3073 

Radiation Belt Dynamics Driven by Solar Wind Variations. In Sun-Earth Plasma Connections 3074 

(eds J.L. Burch, R.L. Carovillano and S.K. Antiochos) (1999). 3075 

https://doi.org/10.1029/GM109p0171 3076 

 3077 

S.A. Jacques, L. Davis Jr., Diffusion Models for Jupiter’s Radiation Belt. NASA/Caltech 3078 

technical report N75-15574, Report Number: NASA-CR-141967, Document ID: 19750007502, 3079 

(1972). http://hdl.handle.net/2060/19750007502 3080 

 3081 

A.N. Jaynes, D. Malaspina, A.A. Chan, S.R. Elkington, A.F. Ali, M. Bruff, H. Zhao, D.N. Baker, 3082 

X. Li, S. Kanekal, Battle Royale: VLF-driven local acceleration vs ULF driven radial transport. 3083 

AGU Fall Meeting Abstracts (2018a). 3084 

https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/369848 3085 

 3086 

A.N. Jaynes, A.F. Ali, S.R. Elkington, D.M. Malaspina, D.N. Baker, X. Li, et al., Fast diffusion 3087 

of ultrarelativistic electrons in the outer radiation belt: 17 March 2015 storm event. Geophys. 3088 

Res. Lett., 45, 10,874–10,882 (2018b). https://doi.org/10.1029/2018GL079786 3089 

 3090 

S. Jurac, J.D. Richardson, A self-consistent model of plasma and neutrals at Saturn: Neutral 3091 

cloud morphology. J. Geophys. Res., 110, A09220 (2005). 3092 

https://doi.org/10.1029/2004JA010635. 3093 

 3094 

P.J. Kellogg, Possible explanation of the radiation observed by Van Allen at high altitudes in 3095 

satellites. Nuovo cimiento, [10] 11, 48 (1959a). https://doi.org/10.1007/BF02724906 3096 

 3097 

P.J. Kellogg, Van Allen Radiation of Solar Origin. Nature, Lond. 183, 1295-7 (1959b). 3098 

https://doi.org/10.1038/1831295a0. 3099 

 3100 

C. F. Kennel, F. Engelmann, Velocity space diffusion from weak plasma turbulence in a 3101 

magnetic field. The Physics of Fluids, 9(12), 2377-2388 (1966). 3102 

https://doi.org/10.1063/1.1761629 3103 

 3104 

H.‐J. Kim, A.A. Chan, Fully adiabatic changes in storm time relativistic electron fluxes. J. 3105 

Geophys. Res., 102(A10), 22107–22116 (1997). https://doi.org/10.1029/97JA01814 3106 

 3107 

K.C. Kim, Y. Shprits, D. Subbotin, B. Ni, Understanding the dynamic evolution of the 3108 

relativistic electron slot region including radial and pitch angle diffusion. J. Geophys. Res., 116, 3109 

A10214 (2011). https://doi.org/10.1029/2011JA016684 3110 

 3111 

P. Kollmann et al., Energetic particle phase space densities at Saturn: Cassini observations and 3112 

interpretations. J.Geophys. Res., 116, A05222 (2011). https://doi.org/10.1029/2010JA016221 3113 

 3114 

P. Kollmann, E. Roussos, C. Paranicas, N. Krupp, D. K. Haggerty, Processes forming and 3115 

sustaining Saturn’s proton radiation belts. Icarus, 222, 323–341 (2013). 3116 

https://doi.org/10.1016/j.icarus.2012.10.033 3117 

 3118 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

98 
 

P. Kollmann, E. Roussos, A. Kotova, C. Paranicas, N. Krupp, The evolution of Saturn’s radiation 3119 

belts modulated by changes in radial diffusion. Nature Astronomy 1, 872–877 (2017). 3120 

https://doi.org/10.1038/s41550-017-0287-x 3121 

 3122 

P. Kollmann, E. Roussos, C.P. Paranicas, E.E. Woodfield, B.H. Mauk, G. Clark, D.C. Smith, J. 3123 

Vandegriff, Electron acceleration to MeV energies at Jupiter and Saturn. J. Geophys. Res. Space 3124 

Phys, 123, 9110– 9129 (2018). https://doi.org/10.1029/2018JA025665 3125 

 3126 

H. Korth, M.F. Thomsen, J.E. Borovsky, D.J. McComas, Plasma sheet access to geosynchronous 3127 

orbit. J. Geophys. Res., 104(A11), 25047– 25061 (1999). https://doi.org/10.1029/1999JA900292 3128 

 3129 

N. Krupp et al., Dynamics of the Jovian Magnetosphere. In: Jupiter. The Planet, Satellites and 3130 

Magnetosphere (2005). Cambridge University Press. ISBN: 0-521-81808-7 3131 

 3132 

H.R. Lai et al., Transport of magnetic flux and mass in Saturn’s inner magnetosphere, J. 3133 

Geophys. Res. Space Physics, 121, 3050–3057 (2016). https://doi.org/10.1002/2016JA022436 3134 

 3135 

L.J. Lanzerotti, C.G. Maclennan, M. Schulz, Radial diffusion of outer‐zone electrons: An 3136 

empirical approach to third‐invariant violation. J. Geophys. Res., 75(28), 5351–5371 (1970).  3137 

https://doi.org/10.1029/JA075i028p05351 3138 

 3139 

L.J. Lanzerotti, C.G. Maclennan, M. Schulz, Reply [to “Comments on ‘Radial diffusion of outer‐3140 

zone electrons’”]. J. Geophys. Res., 76(22), 5371–5373 (1971). 3141 

https://doi.org/10.1029/JA076i022p05371 3142 

 3143 

L.J. Lanzerotti, C.G. Morgan, ULF geomagnetic power near L = 4: 2. Temporal variation of the 3144 

radial diffusion coefficient for relativistic electrons. J. Geophys. Res., 78(22), 4600–4610 (1973). 3145 

https://doi.org/10.1029/JA078i022p04600 3146 

 3147 

L.J. Lanzerotti, D.C. Webb, C.W. Arthur, Geomagnetic field fluctuations at synchronous orbit 2. 3148 

Radial diffusion. J. Geophys. Res., 83(A8), 3866–3870 (1978). 3149 

https://doi.org/10.1029/JA083iA08p03866 3150 

 3151 

S. Lejosne, Modélisation du phénomène de diffusion radiale au sein des ceintures de radiation 3152 

terrestres par technique de changement d’échelle. PhD thesis, Université de Toulouse, France 3153 

(2013). https://hal.archives-ouvertes.fr/tel-01132913/document 3154 

 3155 

S. Lejosne, Analytic expressions for radial diffusion. Journal of Geophysical Research: Space 3156 

Physics, 124 (2019). https://doi.org/10.1029/2019JA026786 3157 

 3158 

S. Lejosne, D. Boscher, V. Maget, G. Rolland, Bounce‐averaged approach to radial diffusion 3159 

modeling: From a new derivation of the instantaneous rate of change of the third adiabatic 3160 

invariant to the characterization of the radial diffusion process. J. Geophys. Res., 117, A08231 3161 

(2012). https://doi.org/10.1029/2012JA018011 3162 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

99 
 

 3163 

S. Lejosne, D. Boscher, V. Maget, G. Rolland, Deriving electromagnetic radial diffusion 3164 

coefficients of radiation belt equatorial particles for different levels of magnetic activity based on 3165 

magnetic field measurements at geostationary orbit. J. Geophys. Res. Space Physics, 118, 3147–3166 

3156 (2013). https://doi.org/10.1002/jgra.50361 3167 

 3168 

X. Li, et al., Quantitative prediction of radiation belt electrons at geostationary orbit based on 3169 

solar wind measurements. Geophys. Res. Let. 28, 9, 1887-1890 (2001). 3170 

https://doi.org/10.1029/2000GL012681 3171 

 3172 

Z. Li, M. Hudson, M. Patel, M. Wiltberger, A. Boyd, D.Turner, ULF wave analysis and radial 3173 

diffusion calculation using a global MHD model for the 17 March 2013 and 2015 storms, J. 3174 

Geophys. Res. Space Physics, 122, 7353– 7363 (2017). https://doi.org/10.1002/2016JA023846 3175 

 3176 

A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, Second edition, Applied 3177 

Mathematical Sciences, Springer-Verlag, New York (1992). https://doi.org/10.1007/978-1-4757-3178 

2184-3 3179 

 3180 

W.W. Liu, G. Rostoker, D. N. Baker, Internal acceleration of relativistic electrons by large‐3181 

amplitude ULF pulsations. J. Geophys. Res., 104(A8), 17391–17407 (1999). 3182 

https://doi.org/10.1029/1999JA900168 3183 

 3184 

W. Liu, W. Tu, X. Li, T. Sarris, Y. Khotyaintsev, H. Fu, H. Zhang, Q. Shi, On the calculation of 3185 

electric diffusion coefficient of radiation belt electrons with in situ electric field measurements 3186 

by THEMIS. Geophys. Res. Lett., 43, 1023–1030 (2016). 3187 

https://doi.org/10.1002/2015GL067398 3188 

 3189 

L. Lorenzato, A. Sicard, S. Bourdarie, A physical model for electron radiation belts of Saturn. J. 3190 

Geophys. Res. Space Physics 117, A08214 (2012). https://doi.org/10.1029/2012JA017560 3191 

 3192 

X. Ma et al., Flux tube entropy and specific entropy in Saturn's magnetosphere. Journal of 3193 

Geophysical Research: Space Physics, 124, 1593–1611 (2019). 3194 

https://doi.org/10.1029/2018JA026150 3195 

 3196 

V. Maget, S. Bourdarie, D. Boscher, R.H.W. Friedel, Data assimilation of LANL satellite data 3197 

into the Salammbô electron code over a complete solar cycle by direct insertion. Space Weather, 3198 

vol. 5, no. S10003 (2007). https://doi.org/10.1029/2007SW000322 3199 

 3200 

V. Maget, S. Bourdarie, D. Boscher, Direct data assimilation over solar cycle time-scales to 3201 

improve proton radiation belt models. IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2188–2196 3202 

(2008). https://doi.org/10.1109/TNS.2008.921928 3203 

 3204 

I.R. Mann, et al., Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt. 3205 

Nature Phys 12:978–983 (2016). https://doi.org/10.1038/nphys3799 3206 

 3207 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

100 
 

I.R. Mann, et al. Reply to ‘The dynamics of Van Allen belts revisited’. Nature Physics, 14(2), 3208 

103–104 (2018). https://doi.org/10.1038/nphys4351 3209 

 3210 

R.A. Mathie, I.R. Mann, A correlation between extended intervals of Ulf wave power and storm‐3211 

time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett.,27, 3261 3212 

(2000). https://doi.org/10.1029/2000GL003822 3213 

 3214 

B.H. Mauk, et al., Fundamental Plasma Processes in Saturn's Magnetosphere, In: Saturn from 3215 

Cassini-Huygens, Springer Science+Business Media B.V. (2009). https://doi.org/10.1007/978-1-3216 

4020-9217-6_11 3217 

 3218 

B.H. Mauk, Comparative investigation of the energetic ion spectra comprising the 3219 

magnetospheric ring currents of the solar system, J. Geophys. Res. Space Physics, 119 (2014). 3220 

https://doi.org/10.1002/2014JA020392 3221 

 3222 

G.D. Mead, Deformation of the geomagnetic field by the solar wind. J. Geophys. Res., 69(7), 3223 

1181– 1195 (1964). https://doi.org/10.1029/JZ069i007p01181 3224 

 3225 

G.D. Mead, W.N. Hess, Jupiter's radiation belts and the sweeping effect of its satellites, J. 3226 

Geophys. Res., 78( 16), 2793– 2811 (1973). https://doi.org/10.1029/JA078i016p02793 3227 

 3228 

D.G. Mitchell, et al., Injection, Interchange, and Reconnection: Energetic particle observations in 3229 

Saturn’s magnetosphere, In: Magnetotails in the Solar System, John Wiley & Sons Inc. (2015). 3230 

ISBN 9781118842324. https://doi.org/10.1002/9781118842324.ch19 3231 

 3232 

A. Mogro-Campero, Absorption of radiation belt particles by the inner satellites of Jupiter, In: 3233 

Jupiter: Studies of the interior, atmosphere, magnetosphere, and satellites. The University of 3234 

Arizona Press, ISBN 0-8165-530-6 (1976). http://adsabs.harvard.edu/abs/1976jsia.coll.1190M 3235 

 3236 

F.S. Mozer, Power spectra of the magnetospheric electric field. J. Geophys. Res., 76(16), 3651–3237 

3667 (1971). https://doi.org/10.1029/JA076i016p03651 3238 

 3239 

F.S. Mozer, et al., Direct observation of radiation-belt electron acceleration from electron-volt 3240 

energies to megavolts by nonlinear whistlers. Physical review letters, 113(3), 035001 (2014). 3241 

https://doi.org/10.1103/PhysRevLett.113.035001 3242 

 3243 

M.P. Nakada, G. D. Mead, Diffusion of protons in the outer radiation belt. J. Geophys. 3244 

Res., 70(19), 4777–4791 (1965). https://doi.org/10.1029/JZ070i019p04777 3245 

 3246 

M.P. Nakada, J.W. Dungey, W.N. Hess, On the origin of outer‐belt protons: 1..J. Geophys. Res., 3247 

70(15), 3529–3532 (1965). https://doi.org/10.1029/JZ070i015p03529 3248 

 3249 

Q. Nénon, A. Sicard, S. Bourdarie, A new physical model of the electron radiation belts of 3250 

Jupiter inside Europa’s orbit. J. Geophys. Res Space Physics, 122, 5148– 5167 (2017). 3251 

https://doi.org/10.1002/2017JA023893 3252 

 3253 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

101 
 

Q. Nénon, A. Sicard, P. Kollmann, H.B. Garrett, S.P.A. Sauer, C. Paranicas, A physical model of 3254 

the proton radiation belts of Jupiter inside Europa's orbit. J. Geophys. Res. Space Physics, 123, 3255 

3512–3532 (2018). https://doi.org/10.1029/2018JA025216 3256 

 3257 

W.A. Newcomb, Motion of magnetic lines of Force. Annals of Physics, 3, 347-385 (1958). 3258 

https://doi.org/10.1016/0003-4916(58)90024-1 3259 

 3260 

L.L. Newkirk, M. Walt, Radial diffusion coefficient for electrons at 1.76 < L < 5. J. Geophys. 3261 

Res., 73(23), 7231–7236 (1968a). https://doi.org/10.1029/JA073i023p07231 3262 

 3263 

L.L. Newkirk, M. Walt, Radial diffusion coefficient for electrons at low L values. J. Geophys. 3264 

Res., 73(3), 1013–1017 (1968b). https://doi.org/10.1029/JA073i003p01013 3265 

 3266 

T.G. Northrop, The Adiabatic Motion of Charged Particles. Wiley- 3267 

Interscience, Hoboken, N. J. ISBN-13: 978-0470651391 (1963). 3268 

 3269 

T.G. Northrop, E. Teller, Stability of the adiabatic motion of charged particles in the Earth’s 3270 

field. Phys. Rev., 117, 215–225 (1960). https://doi.org/10.1103/PhysRev.117.215 3271 

 3272 

T.P. O'Brien, J.E. Mazur, T.B. Guild. What the Satellite Design Community Needs From the 3273 

Radiation Belt Science Community. In Dynamics of the Earth's Radiation Belts and Inner 3274 

Magnetosphere (eds D. Summers, I. R. Mann, D.N. Baker and M. Schulz) (2013). 3275 

https://doi.org/10.1029/2012GM001316 3276 

 3277 

T.P. O'Brien, Breaking all the invariants: Anomalous electron radiation belt diffusion by pitch 3278 

angle scattering in the presence of split magnetic drift shells. Geophys. Res. Lett., 41, 216– 222 3279 

(2014). https://doi.org/10.1002/2013GL058712 3280 

 3281 

T.P. O’Brien et al., Changes in AE9/AP9-IRENE Version 1.5, in IEEE Transactions on Nuclear 3282 

Science, vol. 65, no. 1, pp. 462-466 (2018). https://doi.org/10.1109/TNS.2017.2771324 3283 

 3284 

L. Olifer, I.R. Mann, L.G. Ozeke, I.J. Rae, S.K. Morley, On the relative strength of electric and 3285 

magnetic ULF wave radial diffusion during the March 2015 geomagnetic storm. J. Geophys. 3286 

Res. Space Physics, 124, 2569– 2587 (2019). https://doi.org/10.1029/2018JA026348 3287 

 3288 

L.G. Ozeke, I.R. Mann, I.J. Rae, Mapping guided Alfvén wave magnetic field amplitudes 3289 

observed on the ground to equatorial electric field amplitudes in space. J. Geophys. Res., 114, 3290 

A01214 (2009). https://doi.org/10.1029/2008JA013041 3291 

 3292 

L.G. Ozeke, et al., ULF wave derived radiation belt radial diffusion coefficients. J. Geophys. 3293 

Res., 117, A04222 (2012). https://doi.org/10.1029/2011JA017463 3294 

 3295 

L.G. Ozeke, I.R. Mann, K.R. Murphy, I.J. Rae, D.K. Milling, Analytic expressions for ULF 3296 

wave radiation belt radial diffusion coefficients. J. Geophys. Res. Space Physics, 119, 1587–3297 

1605 (2014). https://doi.org/10.1002/2013JA019204 3298 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

102 
 

 3299 

M.K. Öztürk, R.A. Wolf, Bifurcation of drift shells near the dayside magnetopause. J. Geophys. 3300 

Res., 112, A07207 (2007). https://doi.org/10.1029/2006JA012102 3301 

 3302 

M. Palmroth et al., Vlasov methods in space physics and astrophysics. Living Reviews in 3303 

Computational Astrophysics, 4, 2365-0524 (2018). https://doi.org/10.1007/s41115-018-0003-2 3304 

 3305 

M. Paonessa, Voyager observations of ion phase space densities in the Jovian magnetosphere. J. 3306 

Geophys. Res., 90, A1, 521-525 (1985). https://doi.org/10.1029/JA090iA01p00521 3307 

 3308 

C. Paranicas, et al., Effects of radial motion on interchange injections at Saturn. Icarus 264, 342–3309 

351 (2016). https://doi.org/10.1016/j.icarus.2015.10.002 3310 

 3311 

E.N. Parker, Geomagnetic fluctuations and the form of the outer zone of the Van Allen radiation 3312 

belt. J. Geophys. Res., 65(10), 3117–3130 (1960). https://doi.org/10.1029/JZ065i010p03117 3313 

 3314 

K.L. Perry, M.K. Hudson, S.R. Elkington, Incorporating spectral characteristics of Pc5 waves 3315 

into three‐dimensional radiation belt modeling and the diffusion of relativistic electrons. J. 3316 

Geophys. Res., 110, A03215 (2005). https://doi.org/10.1029/2004JA010760 3317 

 3318 

K.L. Perry, M.K. Hudson, S.R. Elkington, Correction to “Incorporating spectral characteristics of 3319 

Pc5 waves into three‐dimensional radiation belt modeling and the diffusion of relativistic 3320 

electrons”. J. Geophys. Res., 111, A11228 (2006). https://doi.org/:10.1029/2006JA012040 3321 

 3322 

D.H. Pontius Jr., T.W. Hill, Rotation driven plasma transport: The coupling of macroscopic 3323 

motion and microdiffusion. J. Geophys. Res, 94, A11, 15041-15053 (1989). 3324 

https://doi.org/10.1029/JA094iA11p15041 3325 

 3326 

D.H. Pontius Jr., R.A. Wolf, Transient Flux Tubes in the terrestrial magnetosphere, Geophys. 3327 

Res. Lett., 17, 1, 49-52 (1990). https://doi.org/10.1029/GL017i001p00049 3328 

 3329 

M. Qin, X. Zhang, B. Ni, H. Song, H. Zou, Y. Sun, Solar cycle variations of trapped proton flux 3330 

in the inner radiation belt. J. Geophys. Res. Space Physics, 119, 9658–9669 (2014). 3331 

https://doi.org/10.1002/2014JA020300 3332 

 3333 

J.D. Richardson, A Quantitative Model of Plasma in Neptune’s Magnetosphere. Geophys. Res. 3334 

Lett., 20, 14, 1467-1470 (1993). https://doi.org/10.1029/93GL01353 3335 

 3336 

P. Riley, R.A. Wolf, Comparison of diffusion and particle drift descriptions of radial transport in 3337 

the Earth's inner magnetosphere. J. Geophys. Res., 97(A11), 16865–16876 3338 

(1992). https://doi.org/10.1029/92JA01538 3339 

 3340 

J.G. Roederer, On the adiabatic motion of energetic particles in a model magnetosphere. J. 3341 

Geophys. Res., 72(3), 981– 992 (1967). https://doi.org/10.1029/JZ072i003p00981 3342 

 3343 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

103 
 

J.G. Roederer, Dynamics of Geomagnetically Trapped Radiation. New York: Springer (1970). 3344 

https://doi.org/10.1007/978‐3‐642‐49300‐3 3345 

 3346 

J.G. Roederer, Geomagnetic field distortions and their effects on radiation belt particles. Rev. 3347 

Geophys., 10(2), 599–630 (1972). https://doi.org/10.1029/RG010i002p00599 3348 

 3349 

J.G. Roederer, M. Schulz, Effect of shell splitting on radial diffusion in the magnetosphere. J. 3350 

Geophys. Res., 74(16), 4117– 4122 (1969). https://doi.org/10.1029/JA074i016p04117 3351 

 3352 

J.G. Roederer, M. Schulz, Splitting of drift shells by the magnetospheric electric field. J. 3353 

Geophys. Res., 76, 4, 1055-1059 (1971). https://doi.org/10.1029/JA076i004p01055 3354 

 3355 

J.G. Roederer, H.H. Hilton, M. Schulz, Drift shell splitting by internal geomagnetic multipoles. 3356 

J. Geophys. Res., 78, 133-144 (1973). https://doi.org/10.1029/JA078i001p00133 3357 

 3358 

J.G. Roederer, H. Zhang, Dynamics of Magnetically Trapped Particles, Foundations of the 3359 

Physics of Radiation Belts and Space Plasmas, Astrophysics and Space Science Library, vol. 3360 

403, Springer-Verlag, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41530-2 3361 

 3362 

J.G. Roederer, S. Lejosne, Coordinates for representing radiation belt particle flux. J. Geophys. 3363 

Res. Space Physics, 123, 1381–1387 (2018). https://doi.org/10.1002/2017JA025053 3364 

 3365 

G. Rostoker, S. Skone, D.N. Baker, On the origins of relativistic electrons in the magnetosphere 3366 

associated with some geomagnetic storms. Geophys. Res. Lett., 25, 3701 (1998).  3367 

https://doi.org/10.1029/98GL02801 3368 

 3369 

E. Roussos, et al., Electron microdiffusion in the Saturnian radiation belts: Cassini 3370 

MIMI/LEMMS observations of energetic electron absorption by the icy moons. J. Geophys. Res. 3371 

(Space Physics), 112, 6214 (2007). https://doi.org/862 10.1029/2006JA012027 3372 

 3373 

E. Roussos, et al., Discovery of a transient radiation belt at Saturn. J. Geophys. Res., 35, L22106 3374 

(2008). https://doi.org/10.1029/2008GL035767 3375 

 3376 

E. Roussos, et al., Energetic electron microsignatures as tracers of radial flows and dynamics in 3377 

Saturn’s innermost magnetosphere. J. Geophys. Res., 115, A03202 (2010). 3378 

https://doi.org/10.1029/2009JA014808 3379 

 3380 

E. Roussos, et al., The variable extension of Saturn's electron radiation belts. Planetary and 3381 

Space Science, 104 ,3-17 (2014). https://doi.org/10.1016/j.pss.2014.03.021 3382 

 3383 

E. Roussos, et al., Evidence for dust-driven, radial plasma transport in Saturn’s inner radiation 3384 

belts, Icarus, 274, 272–283 (2016). http://doi.org/10.1016/j.icarus.2016.02.054 3385 

 3386 

E. Roussos, et al., A radiation belt of energetic protons located between Saturn and its rings. 3387 

Science, 362(6410) (2018). https://doi.org/10.1126/science.aat1962 3388 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

104 
 

 3389 

E. Roussos, et al., Drift-resonant, relativistic electron acceleration at the outer planets: Insights 3390 

from the response of Saturn’s radiation belts to magnetospheric storms. Icarus, 305, 160 – 173 3391 

(2018b).  https://doi.org/10.1016/j.icarus.2018.01.016 3392 

 3393 

R.Z. Sagdeev, A.A, Galeev, Nonlinear Plasma Theory (edited by T. M. O'Neil and D. L. Book), 3394 

W. A. Benjamin, New York (1969). 3395 

 3396 

D. Santos-Costa, S.A. Bourdarie, Modeling the inner Jovian electron radiation belt including 3397 

non-equatorial particles. Planetary and Space Science, Volume 49, Issues 3–4, 2001, Pages 303-3398 

312, ISSN 0032-0633 (2001). https://doi.org/10.1016/S0032-0633(00)00151-3 3399 

 3400 

D. Santos-Costa, M. Blanc, S. Maurice, S.J. Bolton, Modeling the electron and proton radiation 3401 

belts of Saturn. Geophys. Res. Lett., 30, 2059 (2003). https://doi.org/10.1029/2003GL017972 3402 

 3403 

D. Sawyer, J. Vette, AP-8 trapped proton environment for solar maximum and 3404 

solar minimum. National Space Science Data Center, Report 76-06, Greenbelt, Maryland (1976). 3405 

 3406 

M. Schulz, Drift-shell splitting at arbitrary pitch angle. J. Geophys. Res., 77(4), 624–634 (1972). 3407 

https://doi.org/10.1029/JA077i004p00624 3408 

 3409 

M. Schulz, The Magnetosphere, in Geomagnetism. Academic Press, J.A. Jacobs, Pages 87-293, 3410 

ISBN 9780123786746 (1991). https://doi.org/10.1016/B978-0-12-378674-6.50008-X. 3411 

 3412 

M. Schulz, Particle drift and loss rates under strong pitch angle diffusion in Dungey’s model 3413 

magnetosphere. J. Geophys. Res., 103, A1, 61-67 (1998). https://doi.org/10.1029/97JA02042 3414 

 3415 

M. Schulz, A. Eviatar, Diffusion of equatorial particles in the outer radiation zone. J. Geophys. 3416 

Res., 74(9), 2182–2192 (1969). https://doi.org/10.1029/JA074i009p02182 3417 

 3418 

M. Schulz, and L.J. Lanzerotti, Particle Diffusion in the Radiation Belts. Springer-Verlag Berlin 3419 

Heidelberg (1974). https://doi.org/10.1007/978-3-642-65675-0 3420 

 3421 

R.S. Selesnick, E.C. Stone, Energetic electrons at Uranus: Bimodal diffusion in a satellite limited 3422 

radiation belt. J. Geophys. Res., 96, A4, 5651-5665(1991). https://doi.org/10.1029/90JA02696 3423 

 3424 

R.S. Selesnick, E.C. Stone, Radial diffusion of relativistic electrons in Neptune’s magnetosphere. 3425 

Geophys. Res. Lett., 21, 15, 1579-1582 (1994). https://doi.org/10.1029/94GL01357 3426 

 3427 

R.S. Selesnick, M.D. Looper, R.A. Mewaldt, A theoretical model of the inner proton radiation 3428 

belt. Space Weather, 5, S04003 (2007). https://doi.org/10.1029/2006SW000275 3429 

 3430 

R.S. Selesnick, M.K. Hudson, B.T. Kress, Direct observation of the CRAND proton radiation 3431 

belt source. J. Geophys. Res. Space Physics, 118, 7532–7537 (2013). 3432 

https://doi.org/10.1002/2013JA019338 3433 

 3434 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

105 
 

R.S. Selesnick, Y.-J. Su, J.B. Blake, Control of the innermost electron radiation belt by large-3435 

scale electric fields. J. Geophys. Res. Space Physics, 121 (2016). 3436 

https://doi.org/10.1002/2016JA022973 3437 

 3438 

V.A. Sergeev, V. Angelopoulos, J.T Gosling, C.A. Cattell, C. A., C.T. Russell, Detection of 3439 

localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res., 3440 

101, A5, 10817-10825 (1996). https://doi.org/10.1029/96JA00460 3441 

 3442 

Y.Y. Shprits et al., Radial diffusion modeling with empirical lifetimes: Comparison with CRRES 3443 

observations. Ann. Geophys., 23(4), 1467–1471 (2005). https://doi.org/10.5194/angeo-23-1467-3444 

2005 3445 

Y.Y. Shprits et al., Review of modeling of losses and sources of relativistic electrons in the outer 3446 

radiation belt I: Radial transport. J. Atmos. Sol. Terr. Phys., 70, 1679-1693 (2008). 3447 

https://doi.org/10.1016/j.jastp.2008.06.008 3448 

 3449 

Y.Y. Shprits et al., Review of modeling of losses and sources of relativistic electrons in the outer 3450 

radiation belt II: Local acceleration and loss. J. Atmos. Sol. Terr. Phys., 70, 1694-1713 (2008b). 3451 

https://doi.org/10.1016/j.jastp.2008.06.014 3452 

 3453 

Y.Y. Shprits et al., Unusual Stable Trapping of the Ultra-Relativistic Electrons in the Van Allen 3454 

Radiation Belts. Nature Phys., 9, 699–703 (2013). https://doi.org/10.1038/NPHYS2760 3455 

 3456 

Y.Y. Shprits et al., Combined convective and diffusive simulations: VERB-4D comparison with 3457 

17 March 2013 Van Allen Probes observations, Geophys. Res. Lett., 42, 9600–9608 (2015). 3458 

https://doi.org/10.1002/2015GL065230 3459 

 3460 

Y.Y. Shprits et al., The dynamics of Van Allen belts revisited. Nature Physics, 14, 102–103  3461 

(2018).  https://doi.org/10.1038/nphys4350 3462 

 3463 

S.F. Singer, Trapped albedo theory of the radiation belt. Phys. Rev. Lett., 1, 181 (1958). 3464 

https://doi.org/10.1103/PhysRevLett.1.300 3465 

 3466 

G.L. Siscoe, D. Summers, Centrifugally driven diffusion of iogenic plasma. J. Geophys. Res., 86, 3467 

A10, 8471-8479 (1981a). https://doi.org/10.1029/JA086iA10p08471 3468 

 3469 

G.L. Siscoe, et al., Ring current impoundment of the Io plasma torus. J. Geophys. Res., 86, A10, 3470 

8480-8484 (1981b). https://doi.org/10.1029/JA086iA10p08480 3471 

 3472 

E.C. Sittler, et al., Ion and neutral sources and sinks within Saturn’s inner magnetosphere: 3473 

Cassini results. Planetary and Space Science, 56, 3–18 (2008). 3474 

https://doi.org/10.1016/j.pss.2007.06.006 3475 

 3476 

D.J. Southwood, M.G. Kivelson, Magnetospheric interchange instability. J. Geophys. Res., 3477 

92(A1), 109– 116 (1987). https://doi.org/10.1029/JA092iA01p00109 3478 

 3479 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

106 
 

D.J. Southwood, M.G. Kivelson, Magnetospheric interchange motions. J. Geophys. Res., 94 3480 

(A1), 299– 308 (1989). https://doi.org/10.1029/JA094iA01p00299 3481 

 3482 

E.C. Stone, The physical significance and application of L, Bo, and Ro to geomagnetically 3483 

trapped particles. J. Geophys. Res., 68(14), 4157–4166 (1963). 3484 

https://doi.org/10.1029/JZ068i014p04157 3485 

 3486 

Z. Su, F. Xiao, H. Zheng, S. Wang, STEERB: A three-dimensional code for storm-time 3487 

evolution of electron radiation belt. J. Geophys. Res., 115, A09208 (2010). 3488 

https://doi.org/10.1029/2009JA015210 3489 

 3490 

Z. Su, et al., Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons. 3491 

Nature Communications, 6, 10096 (2015). https://doi.org/10.1038/ncomms10096 3492 

 3493 

D.A. Subbotin, Y.Y. Shprits, Three-dimensional modeling of the radiation belts using the 3494 

Versatile Electron Radiation Belt (VERB) code. Space Weather, 7 :10001 (2009). 3495 

https://doi.org/10.1029/2008SW000452 3496 

 3497 

D.A. Subbotin, Y.Y. Shprits, B. Ni, Long‐term radiation belt simulation with the VERB 3‐D 3498 

code: Comparison with CRRES observations. J. Geophys. Res., 116, A12210 (2011). 3499 

https://doi.org/10.1029/2011JA017019 3500 

 3501 

D. A. Subbotin, Y.Y. Shprits. Three‐dimensional radiation belt simulations in terms of adiabatic 3502 

invariants using a single numerical grid. J. Geophys. Res., 117, A05205 (2012). 3503 

https://doi.org/10.1029/2011JA017467 3504 

 3505 

D. Summers, C. Ma, Rapid acceleration of electrons in the magnetosphere by fast-mode MHD 3506 

waves. J. Geophys. Res., 105(A7), 15887–15895 (2000). https://doi.org/10.1029/1999JA000408 3507 

 3508 

D. Summers, G.L. Siscoe, Coupled low-energy - ring current plasma diffusion in the Jovian 3509 

magnetosphere. J. Geophys. Res. 90, A, 2665-2671 (1985). 3510 

https://doi.org/10.1029/JA090iA03p02665 3511 

 3512 

Y. X. Sun, et al., Spectral signatures of adiabatic electron acceleration at Saturn through 3513 

corotation drift cancelation. Geophys. Res. Lett., 46, 10240-10249 (2019). 3514 

https://doi.org/10.1029/2019GL084113 3515 

 3516 

G.I. Taylor. Diffusion by continuous movements. Proc. London Math. Soc., 2, 196-211 (1922). 3517 

https://doi.org/10.1112/plms/s2-20.1.196 3518 

 3519 

M.F. Thomsen, C.K. Goertz, J.A. Van Allen, On Determining Magnetospheric Diffusion 3520 

Coefficients From the Observed Effects of Jupiter’s Satellite Io. J. Geophys. Res., 82, 35 (1977). 3521 

https://doi.org/10.1029/JA082i035p05541 3522 

 3523 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

107 
 

M.F. Thomsen, J.A. Van Allen, Motion of trapped electrons and protons in Saturn’s inner 3524 

magnetosphere. J. Geophys. Res., 85, 5831–5834 (1980).  3525 

https://doi.org/10.1029/JA085iA11p05831 3526 

 3527 

M.F. Thomsen, et al., Saturn’s inner magnetospheric convection pattern: Further evidence. J. 3528 

Geophys. Res., 117, A09208 (2012). https://doi.org/10.1029/2011JA017482 3529 

 3530 

R.M. Thorne, Radiation belt dynamics: The importance of wave-particle interactions. Geophys. 3531 

Res. Lett., 37, L22107 (2010). https://doi.org/10.1029/2010GL044990 3532 

 3533 

A.D. Tomassian, T.A. Farley, A.L. Vampola, Inner-zone energetic-electron repopulation by 3534 

radial diffusion. J. Geophys. Res., 77(19), 3441–3454 (1972). 3535 

https://doi.org/10.1029/JA077i019p03441 3536 

 3537 

F.  Tsuchiya et al., Short-term changes in Jupiter’s synchrotron radiation at 325 MHz: Enhanced 3538 

radial diffusion in Jupiter’s radiation belt driven by solar UV/EUV heating. J. Geophys. Res., 3539 

116, A09202 (2011). https://doi.org/10.1029/2010JA016303 3540 

 3541 

W. Tu, et al., Quantifying radial diffusion coefficients of radiation belt electrons based on global 3542 

MHD simulation and spacecraft measurements. J. of Geophys. Res., 117, A10210 (2012). 3543 

https://doi.org/10.1029/2012JA017901 3544 

 3545 

W. Tu, et al., Modeling radiation belt electron dynamics during GEM challenge intervals with 3546 

the DREAM3D diffusion model. J. Geophys. Res. Space Physics, 118, 6197–6211 (2013). 3547 

https://doi.org/10.1002/jgra.50560 3548 

 3549 

B.A. Tverskoy, Space Research V, Proc. 5th Int. Space Science Symp, Amsterdam: North-3550 

Holland, p. 367 (1964). 3551 

 3552 

A.Y. Ukhorskiy, M.I. Sitnov, Radial transport in the outer radiation belt due to global 3553 

magnetospheric compressions. J. Atmos. Sol.-Terr. Phys. 70, 1714 (2008). 3554 

https://doi.org/10.1016/j.jastp.2008.07.018 3555 

 3556 

A.Y. Ukhorskiy, M.I. Sitnov, K. Takahashi, B.J. Anderson, Radial transport of radiation belt 3557 

electrons due to stormtime pc5 waves. Ann. Geophys. 27, 2173 (2009). 3558 

https://doi.org/10.5194/angeo-27-2173-2009 3559 

 3560 

J.A. Van Allen, L.A. Frank, Radiation Around the Earth to a Radial Distance of 107,400 km. 3561 

Nature, volume 183, pages 430–434 (1959). https://doi.org/10.1038/183430a0 3562 

 3563 

J.A. Van Allen, et al., Sources and Sinks of Energetic Electrons and Protons in Saturn‘s 3564 

Magnetosphere, J. Geophys. Res., 85, A11, 5679-5694 (1980a). 3565 

https://doi.org/10.1029/JA085iA11p05679 3566 

 3567 

J.A. Van Allen, et al., The Energetic Charged Particle Absorption Signature of Mimas. J. 3568 

Geophys. Res., 85, A11, 5709-5718 (1980b). https://doi.org/10.1029/JA085iA11p05709 3569 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

108 
 

 3570 

J.A. Van Allen, Energetic particles in the inner magnetosphere of Saturn. In: Saturn, The 3571 

University of Arizona Press, ISBN 0-8165-0829-1 (1984). 3572 

 3573 

A. Varotsou, et al., Three dimensional test simulations of the outer radiation belt electron 3574 

dynamics including electron-chorus resonant interactions, J. Geophys. Res., 113, A12212 (2008). 3575 

https://doi.org/10.1029/2007JA012862.  3576 

 3577 

S.N. Vernov, et al., Possible mechanism of production of terrestrial corpuscular radiation under 3578 

the action of cosmic rays. Soviet Phys., Doklady,4,154 (1959).  3579 

 3580 

J. Vette, The AE-8 trapped electron model environment. National Space Science Data 3581 

Center, Report 91-24, Greenbelt, Maryland (1991). 3582 

 3583 

L.S. Waldrop et al., Three-dimensional convective flows of energetic ions in Jupiter’s equatorial 3584 

magnetosphere. J. Geophys. Res. Space Physics, 120, 10,506– 10,527 (2015). 3585 

https://doi.org/10.1002/2015JA021103 3586 

 3587 

M. Walt, Radial diffusion of trapped particles and some of its consequences. Rev. Geophys., 3588 

9(1), 11–25 (1971a). https://doi.org/10.1029/RG009i001p00011 3589 

 3590 

M. Walt, The radial diffusion of trapped particles induced by fluctuating magnetospheric fields. 3591 

Space Sci. Rev., 12: 446 (1971b). https://doi.org/10.1007/BF00171975 3592 

 3593 

M. Walt, L.L. Newkirk, Comments [on “Radial diffusion of outer‐zone electrons”]. J. Geophys. 3594 

Res., 76(22), 5368–5370 (1971). https://doi.org/10.1029/JA076i022p05368 3595 

 3596 

M. Walt, Introduction to geomagnetically trapped radiation. Cambridge University Press  3597 

(1994). https://doi.org/10.1017/CBO9780511524981 3598 

 3599 

M. Walt, Source and loss processes for radiation belt particles. in Radiation Belts: Models and 3600 

Standards, vol. 97, edited by J.F. Lemaire, D. Heynderickx, and D.N. Baker, p.1, AGU, 3601 

Washington D.C. (1996). https://doi.org/10.1029/GM097p0001 3602 

 3603 

H. I. West Jr., R.M. Buck, G.T. Davidson, The dynamics of energetic electrons in the Earth's 3604 

outer radiation belt during 1968 as observed by the Lawrence Livermore National Laboratory's 3605 

Spectrometer on Ogo 5. J. Geophys. Res., 86(A4), 2111–2142 (1981). 3606 

https://doi.org/10.1029/JA086iA04p02111 3607 

 3608 

R.J. Wilson et al., Evidence from radial velocity measurements of a global electric field in 3609 

Saturn’s inner magnetosphere, J. Geophys. Res. Space Physics, 118, 2122–2132 (2013). 3610 

https://doi.org/10.1002/jgra.50251 3611 

 3612 

E.E. Woodfield, et al., The origin of Jupiter's outer radiation belt. J. Geophys. Res. Space 3613 

Physics, 119, 3490–3502 (2014). https://doi.org/10.1002/2014JA019891 3614 

 3615 



Revised Version submitted Jan 2020 to Space Science Reviews 
 

109 
 

E.E. Woodfield, et al., Formation of electron radiation belts at Saturn by Z-mode wave 3616 

acceleration. Nature Communications,5062, 9, 1, 2041-1723 (2018). 3617 

https://doi.org/10.1038/s41467-018-07549-4 3618 

 3619 

M. A. Xapsos, P. M. O'Neill and T. P. O'Brien, Near-Earth Space Radiation Models. in IEEE 3620 

Transactions on Nuclear Science, vol. 60, no. 3, pp. 1691-1705 (2013). 3621 

https://doi.org/10.1109/TNS.2012.2225846 3622 


