Reach-scale bankfull channel types can exist independently of catchment hydrology

Colin Byrne^{1,1}, Gregory Pasternack^{1,1}, Hervé Guillon^{1,1}, Belize Lane^{2,2}, and Samuel Sandoval Solis^{1,1}

¹University of California Davis ²Utah State University

November 30, 2022

Abstract

Reach-scale morphological channel classifications are underpinned by the theory that each channel type is related to an assemblage of reach- and catchment-scale hydrological, topographic, and sediment supply drivers. However, the relative importance of each driver on reach morphology is unclear, as is the possibility that different driver assemblages yield the same reach morphology. Reach-scale classifications have never needed to be predicated on hydrology, yet hydrology controls discharge and thus sediment transport capacity. Scientifically, the novel question is whether two or more regions with different hydrological settings end up with different reach-scale channel types or if channel types may universally transcend hydrological settings because hydrology is not a primary control at the reach scale. This study answered this question by isolating hydrology as a potential driver of channel type. Three methods were employed within a large test basin with diverse hydrological settings (Sacramento River, California): (1) creation of a reach-scale channel classification based on local site surveys, (2) binning of stream sites by annual hydrologic regime, flood magnitude, and dimensionless flood magnitude, and (3) statistical assessment of two hydrogeomorphic linkages: the spatial distribution of channel types across hydrological settings and the dependence of channel type morphological attributes on defining hydrology. Results yielded ten channel types; nearly all types existed in nearly all hydrological settings, which is perhaps a surprising development for hydrogeomorphology. Downstream hydraulic geometry relationships were statistically significant. In addition, cobble-dominated uniform streams showed a consistent inverse relationship between slope and dimensionless flood magnitude, an indication of dynamic equilibrium between transport capacity and sediment supply. However, most morphological attributes showed no sorting by hydrological setting. This study suggests that median hydraulic geometry relations persist across basins and within channel types, but hydrological influence on geomorphic variability is likely due to local influences rather than catchment-scale drivers.

Reach-scale bankfull channel types can exist independently of catchment hydrology

Journal:	Earth Surface Processes and Landforms
Manuscript ID	ESP-19-0231.R2
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Byrne, Colin; University of California Davis, Land, Air and Water Resources Pasternack, Gregory; University of California Davis, Land, Air and Water Resources Guillon, Hervé; University of California Davis, Land, Air and Water Resources Lane, Belize; Utah State University, Department of Civil and Environmental Engineering Sandoval-Solis, Samuel; University of California Davis, Land, Air and Water Resources
Keywords:	channel-reach morphology, multivariate classification, hydrogeomorphic, hydraulic geometry, basin hydrology
Abstract:	Reach-scale morphological channel classifications are underpinned by the theory that each channel type is related to an assemblage of reach- and catchment-scale hydrologic, topographic, and sediment supply drivers. However, the relative importance of each driver on reach morphology is unclear, as is the possibility that different driver assemblages yield the same reach morphology. Reach-scale classifications have never needed to be predicated on hydrology, yet hydrology controls discharge and thus sediment transport capacity. The scientific question is: do two or more regions with quantifiable differences in hydrologic setting end up with different reach-scale channel types, or do channel types transcend hydrologic setting because hydrologic setting is not a dominant control at the reach scale? This study answered this question by isolating hydrologic metrics as potential dominant controls of channel type. Three steps were applied in a large test basin with diverse hydrologic settings (Sacramento River, California) to: (1) create a reach-scale channel classification based on local site surveys, (2) categorize sites by flood magnitude, dimensionless flood magnitude, and annual hydrologic regime type, and (3) statistically analyze two hydrogeomorphic linkages. Statistical tests assessed the spatial distribution of channel types and the dependence of channel type morphological attributes by hydrologic settings. Results yielded ten channel types. Nearly all types existed across all hydrologic settings, which is perhaps a surprising development for hydrogeomorphology. Downstream hydraulic geometry relationships were statistically significant. In addition, cobble-dominated uniform streams showed a consistent inverse relationship between slope and dimensionless flood magnitude, an indication of dynamic equilibrium

between transport capacity and sediment supply. However, most morphological attributes showed no sorting by hydrologic setting. This study suggests that median hydraulic geometry relations persist across basins and within channel types, but hydrologic influence on geomorphic variability is likely due to local influences rather than catchment-scale drivers.

SCHOLARONE[™] Manuscripts

- 1 Reach-scale bankfull channel types can exist independently of catchment hydrology
- 2
- 3 Author names:
- 4 Colin F. Byrne¹, Department of Land, Air & Water Resources, One Shields Ave., Davis,
- 5 CA 95616; cfbyrne@ucdavis.edu
- 6 Gregory B. Pasternack¹
- 7 Hervé Guillon¹
- 8 Belize A. Lane²
- 9 Samuel Sandoval-Solis¹
- 10
- 11 Author affiliations:
- ¹University of California Davis, Department of Land, Air & Water Resources
- 13 ²Utah State University, Civil and Environmental Engineering
- 14
- 15 Abstract
- 16
- 17 Reach-scale morphological channel classifications are underpinned by the theory that
- 18 each channel type is related to an assemblage of reach- and catchment-scale
- 19 hydrologic, topographic, and sediment supply drivers. However, the relative importance
- 20 of each driver on reach morphology is unclear, as is the possibility that different driver
- 21 assemblages yield the same reach morphology. Reach-scale classifications have never
- 22 needed to be predicated on hydrology, yet hydrology controls discharge and thus
- 23 sediment transport capacity. The scientific question is: do two or more regions with

24 guantifiable differences in hydrologic setting end up with different reach-scale channel 25 types, or do channel types transcend hydrologic setting because hydrologic setting is 26 not a dominant control at the reach scale? This study answered this question by 27 isolating hydrologic metrics as potential dominant controls of channel type. Three steps 28 were applied in a large test basin with diverse hydrologic settings (Sacramento River, 29 California) to: (1) create a reach-scale channel classification based on local site 30 surveys, (2) categorize sites by flood magnitude, dimensionless flood magnitude, and 31 annual hydrologic regime type, and (3) statistically analyze two hydrogeomorphic 32 linkages. Statistical tests assessed the spatial distribution of channel types and the dependence of channel type morphological attributes by hydrologic setting. Results 33 34 yielded ten channel types. Nearly all types existed across all hydrologic settings, which 35 is perhaps a surprising development for hydrogeomorphology. Downstream hydraulic 36 geometry relationships were statistically significant. In addition, cobble-dominated 37 uniform streams showed a consistent inverse relationship between slope and 38 dimensionless flood magnitude, an indication of dynamic equilibrium between transport 39 capacity and sediment supply. However, most morphological attributes showed no 40 sorting by hydrologic setting. This study suggests that median hydraulic geometry 41 relations persist across basins and within channel types, but hydrologic influence on 42 geomorphic variability is likely due to local influences rather than catchment-scale 43 drivers.

44

45 Keywords: channel-reach morphology, multivariate classification, hydrogeomorphic,

46 hydraulic geometry, basin hydrology

47 1. Introduction

48

49 1.1. The importance of reach-scale morphological classification

50

51 Classification of reach-scale morphology is fundamental for integrated river basin 52 management to organize understanding of river forms, process dynamics, and physical 53 habitat along the river network (Gurnell et al., 2016; Kondolf et al., 2016). Numerous 54 river restoration and management protocols leverage reach-scale classifications in a 55 variety of settings throughout the world (Brierley and Fryirs, 2000; Kondolf et al., 2016; 56 Paustian, 2010; Poff et al., 2010; Schmitt et al., 2007). In particular, reach-scale 57 morphology and associated processes are indicative of specific hydraulic conditions 58 (Lane et al., 2018a) that can control biogeochemical and ecological functioning for 59 aquatic species (Dahm et al., 1998; Moir and Pasternack, 2010). Here, we use the term 60 reach-scale morphology to describe streams with similar valley, cross-sectional, 61 planform, longitudinal bedform, and sediment characteristics at scales of 10 – 20 62 channel widths, or more simply, streams comprised of similar morphological units in 63 similar valley settings (Frissell et al., 1986; Wyrick and Pasternack, 2014).

64

Reach-scale classifications seek to organize complex morphologies and processes occurring across a landscape. Although classifications have been conducted for a variety of purposes (see Kondolf et al., 2016 for review), reach-scale morphology represents a mesoscale in which smaller geomorphic units are integrated and larger channel segment and basin processes must be represented by a given smaller form 70 (Frissell et al., 1986). Reach-scale classifications can focus on measured channel 71 attributes and capture sub-reach scale morphological features and hydraulic conditions, 72 such as pool formation by flow-convergence routing or secondary flow dynamics 73 (MacWilliams et al., 2006; Thompson, 1986). Other classifications apply a simplified 74 process domain concept focusing on a metric of erosive force across scales and 75 attempt to correlate reach-scale morphology with reach-, segment-, or basin-scale 76 processes using remotely-sensed channel slope, valley confinement, and drainage area (Church, 2002; Flores et al., 2006; Montgomery, 1999; Polvi et al., 2011; Wohl, 2010). 77

78

79 Classifications are static representations of dynamic systems driven by hydrologic and 80 geomorphic processes influencing reach-scale morphology across multiple scales 81 (Lane, 1995). Although reach-scale morphology (e.g. step-pool, riffle-pool) may remain 82 stable through time, sub-reach scale characteristics exist within an erosional or 83 depositional cycle and are subject to both gradual and nearly instantaneous complex 84 changes (Schumm, 1977). Even within the same reach, entrainment of a given 85 sediment clast can occur under flow conditions ranging from well below flood stage to 86 the rarest flood events (Miller et al., 1977; Shields, 1936). Because entrainment may 87 occur over a range of hydrologic disturbance magnitudes, a relationship may develop 88 between these disturbances and a classified morphology. Given two reaches with 89 similar basin-scale geomorphic settings and sediment size distributions, do differences 90 in reach-scale morphology and channel attributes exist in streams with different patterns 91 or magnitudes of hydrologic disturbance? Alternatively, do two streams exhibit

92 differences in sediment characteristics and morphology because of differences in

- 93 hydrologic disturbance?
- 94

95 1.2. The untested influence of hydrology on reach-scale morphology

96

97 While reach-scale morphology is thought to be driven by catchment hydrology, 98 sediment delivery, and topography, the relative influence of these controls is often 99 unclear. Attempts to relate reach-scale morphology to local hydrology and streamflow 100 patterns stem from established fundamental downstream relationships between 101 discharge magnitude and channel hydraulic geometry (Leopold and Maddock, 1953; 102 Richards, 1977). Bankfull discharge has been combined with slope to represent both 103 hydrologic and landscape influences on transport capacity when defining channel 104 planform (Leopold and Wolman, 1957). Leopold and Wolman (1957) noted the related 105 nature of channel cross-section geometry, planform, longitudinal form, and sediment 106 characteristics. A reach-scale classification aims to encapsulate all of these dimensions 107 of form, which clearly infers inclusion of a discharge metric in classification 108 methodologies.

109

Hydrologic variables such as channel forming flow, flood magnitude, and contributing
area are fundamental to many process domain classifications and analyses (Church,
2002; Flores et al., 2006; Polvi et al., 2011). These classifications have better predictive
power when a hydrologic-based metric representative of transport capacity is included
(Flores et al., 2006), as compared to previous slope-based classifications established

115 by Grant et al. (1990) and Montgomery and Buffington (1997). However, the use of 116 discharge-slope thresholds to define river pattern has been challenged, and evidence 117 suggests that channel geometry, planform, and reach-scale morphology are more 118 closely related to sediment supply and grain size characteristics (Carson, 1984; Church, 119 2006; Friend, 1993; Harvey, 1991; Pfeiffer et al., 2017). It is not surprising that both 120 hydrology and sediment supply are controls on reach-scale morphology, but to what 121 degree is unclear. If transport capacity is indeed the primary driver of channel form, 122 channel types should reflect the hydrologic setting in which a reach exists.

123

124 Hydrologic setting is defined here as the reach-scale hydrologic conditions represented 125 by the following *metrics*: flood magnitude, dimensionless flood magnitude, or annual 126 hydrologic regime. We define the annual hydrologic regime as the characteristic 127 patterns of streamflow (e.g., magnitude, frequency, duration, rate of change, and timing) 128 at any location over a year (Poff et al., 1997). To simplify these patterns, hydrologic 129 regimes are often classified into groups of sites with similar streamflow patterns (Bard et 130 al., 2015; Beechie et al., 2006; Lane et al., 2017a; Thanapakpawin et al., 2007; Yang et 131 al., 2002).

132

In contrast with the literature linking channel metrics to local discharge or transport capacity metrics, no studies have demonstrated a link between channel metrics and annual hydrologic regimes within a region. Pfieffer and Finnegan (2018) note that continental differences in the mobilization of gravel-bed stream sediments, fundamental to the formation of bedforms, occur first due to sediment supply and second due to 138 differences in hydrologic regime. Whether these findings result in distinct reach-scale 139 morphologies is unknown. In a more dichotomous comparison of hydrologic differences 140 in channel form, arid and humid landscapes exhibit differences in channel attributes and 141 sensitivity to hydrologic disturbances (Graf, 1988; Reid and Laronne, 1995; Tooth, 142 2000). At a regional scale, it is unclear whether differences in flow timing, duration, or 143 volume associated with hydrologic disturbances of a snowmelt-dominated regime would 144 yield different reach-scale channel types than disturbances governed by a rain-145 dominated regime. For example, a rain-dominated system may be subject to flashier 146 high flow events while a snowmelt system may exhibit longer duration flood events. 147 Therefore, it is worth investigating if channel type differences, which exist in regions with 148 extreme differences in hydrologic disturbance, also exist within regions with smaller 149 differences in hydrologic disturbance. 150

151 Despite some support in the literature for dominant hydrologic setting control on reach-152 scale morphology, complexity in local channel type formation complicates these 153 relationships. Bedrock, large wood, vegetation, and bioengineered structures can 154 influence reach-scale morphology by forcing the occurrence of certain morphological 155 units (Bisson et al., 1996; Buffington et al., 2002; Fryirs and Brierley, 2012; Montgomery 156 et al., 1996; Wohl, 2013). If a reach is continually subjected to these biological and 157 geological influences, the hydrologic setting is less likely to determine reach-scale 158 morphology. Whether or not hydrologic setting exerts dominant control over local 159 processes is unclear.

160

161 In addition to complexity exerted by local geomorphic influences, there is ample 162 evidence that similar morphologies can exist across a range of arid to humid hydrologic 163 settings (Chin and Wohl, 2005; Makaske, 2001; Montgomery and Buffington, 1997; 164 Sutfin et al., 2014). An argument for limited hydrologic control on reach-scale 165 morphology may be inferred from Hack (1960), who postulated that rivers have many 166 mutually adjustable variables operating via many mechanisms of fluvial adjustment. A 167 shift or difference in hydrologic setting may simply be adjusted away by something else, 168 such as topographic controls or biological influences, without necessitating a shift or 169 difference in channel type. Alternatively, reach-scale morphology could be explained by 170 the minimum energy principle. In this case, a difference in hydrologic setting may not 171 change the fundamental need for a particular reach-scale morphology to be present in 172 order to satisfy a number of documented extremal conditions such as minimum 173 hydraulic dimension variance, minimum energy dissipation rate, minimum stream 174 power, or maximum friction factor (Chang, 1979; Davies and Sutherland, 1983; Huang 175 et al., 2004; Langbein and Leopold, 1964; Yang et al., 1981).

176

To provide more complete understanding of reach-scale morphological controls, we explicitly investigate the relationship between hydrologic setting and reach-scale morphology within a river basin through an array of statistical methods. In particular, we aim to answer the following open scientific question: is hydrologic setting a dominant control on reach-scale morphology, or is morphology largely independent of hydrologic setting because other topographic and local characteristics exert stronger controls? The

- 183 experimental design for addressing this question is below (Section 2), followed by
- 184 specific methodologies in Sections 4 through 6.
- 185
- 186

187 2. Experimental design

188

189 In this study, we quantitatively investigated the relationship between reach-scale 190 morphology and hydrologic setting using several statistical methods. Geomorphic 191 metrics representing reach-scale morphology include common field-measured channel 192 attributes (e.g., bankfull depth) and categorically classified morphologies (e.g., pool-193 riffle), henceforth called channel types. Both reach-scale channel attributes and channel 194 types were determined from field surveys. Hydrologic setting is quantified as the specific 195 value of one of three hydrologic metrics: flood magnitude, dimensionless flood 196 magnitude, or gauge-extrapolated annual hydrologic regime (represented by a 197 classification system derived in Lane et al. 2017a and 2018a). Annual hydrologic regime 198 type is already a set of discrete identifiers, whereas flood magnitude metrics are 199 continuous variables that first need to be binned into categories to make all three 200 metrics comparable.

201

The three categorized hydrologic metrics were analyzed in conjunction with reach-scale morphology to answer two specific hydrogeomorphic questions: (1) do reach-scale channel types exist independently of hydrologic setting, and (2) do reach-scale channel attributes of a given channel type show statistical differences between hydrologic

206 settings? Statistical bootstrapping and nonparametric Kruskal-Wallis tests were used to 207 quantitatively assess the hydrologic-geomorphic relationships for questions (1) and (2), 208 respectively. Given categorized hydrologic metrics and reach-scale channel types, a 209 channel type occurring across all hydrologic metric categories indicates no hydrologic 210 setting control on channel type occurrence (Fig. 1-a1). A channel type occurring in a 211 single hydrologic metric category indicates hydrologic setting control (Fig. 1-a2). In 212 terms of field-measured channel attributes, no significant difference between hydrologic 213 metric categories indicates no hydrologic setting control on the channel attribute (Fig. 1-214 b1). A significant difference between hydrologic metric categories indicates hydrologic 215 setting control on the channel attribute (Fig. 1-b2). The experimental design is 216 conceptualized in Figure 1, the test basin is presented in Section 3 and the specific 217 methodologies related to reach-scale morphology, reach-scale hydrologic setting, and 218 statistical testing of hydrogeomorphic relationships are explained in Sections 4, 5, and Lich 219 6, respectively. 220 221

- 3. Test basin
- 223

The Sacramento River basin is the second largest river by volume draining to the

- 225 Pacific Ocean in the continental United States, making it suitably large and
- hydrogeomorphically diverse to serve as the testbed for this study (Palmer, 2012). The
- 227 basin covers approximately 70,000 km², predominantly within California with the
- 228 northernmost headwaters extending into Oregon (Fig. 2). The Sacramento River basin

229 is comparable to the Yodo (Japan), Kizilirmak (Turkey), and Seine (France) rivers, and 230 estimated to be one of the largest 200 rivers draining directly to an ocean (Milliman and 231 Syvitski, 1992). The basin is geologically complex with multiple physiographic provinces 232 including the Coastal range to the west, the southern Cascade Range, the Sierra 233 Nevada, the volcanic uplands of the Modoc Plateau, and the basin and range province 234 in northeastern California. The Sacramento River flows roughly north to south through 235 the Central Valley of California and combines with the San Joaquin River to form the 236 Sacramento-San Joaquin River Delta, which ultimately drains into the Pacific Ocean 237 through the San Francisco Bay.

238

239 The Sacramento River basin exhibits order-of-magnitude differences in mean annual 240 precipitation, with approximately 28 cm in the northeastern high plateau and basin and 241 range settings to over 275 cm in the northern Sierra Nevada (PRISM Climate Group, 242 2007). The basin is subjected to a Mediterranean climate with cool, wet winters and 243 warm, dry summers. The seasonality and inter-annual variability of storm events plays a 244 large role in the spatiotemporal distribution of flow regimes across the state, while 245 topographic and geologic variabilities add further complexity. Within the basin, portions 246 of the Coastal Range and Sierra Nevada can be subjected to similar major winter storm 247 events, but differences in elevation and topographic orientation drive strong differences 248 in annual hydrologic regime (Lane et al., 2017a).

249

250 In addition to the complex physiographic and climatic conditions across the basin,

streams within the Sacramento River basin have been subjected to a plethora of

252	human-induced hydrogeomorphic alterations over the past two hundred years. Perhaps
253	the most well documented and glaring human-induced fluvial changes were due to
254	hydraulic mining within the basin, of which the impacts are ongoing (Gilbert, 1917;
255	James, 1991; White et al., 2010). Hydrologically, at least 435 dams are in the basin,
256	which will impact the hydrogeomorphology of the streams locally, at the very least, and
257	in some cases have lingering impacts to the entire basin (Kondolf, 1997; Singer, 2007).
258	Heavy agricultural and urban development dominates the Central Valley, and other land
259	use practices include but are not limited to logging, gravel pit mining, and animal
260	grazing (Mount, 1995). All of these changes are important to keep in mind when
261	examining hydrogeomorphic relationships throughout the basin and are addressed in
262	more detail in Section 4.1 in relation to sites analyzed in this study.
263	

264		
265	4. Classification of reach-scale morphology	

266

267 Our quantitative investigation of hydrogeomorphic relationships requires defining 268 measurable geomorphic metrics representing reach-scale morphology. This section 269 presents methods used both to estimate commonly used reach-scale geomorphic 270 attributes and to derive a novel channel type classification.

271

272 A multivariate data-driven statistical approach to reach-scale classification was used in

273 this study to avoid preconceived channel type descriptions and is similar to other

274 statistical classifications (e.g. Sutfin et al. (2014) or Kasprak et al. (2016)). Twelve

275	geomorphic attributes were considered for the reach-scale classification. Nine
276	geomorphic attributes were calculated from field surveys: water surface slope (s),
277	bankfull depth (d), bankfull width (w), bankfull width-to-depth ratio (w/d), coefficient of
278	variation of bankfull depth (CV_d), coefficient of variation of bankfull width (CV_w), median
279	grain size (D_{50}), 84 th percentile grain size (D_{84}), and channel roughness (d/D_{50}). Three
280	additional geomorphic attributes were estimated using geographic information system
281	(GIS) techniques: hydrologic contributing area (A_c), sinuosity (k), valley confinement
282	distance (C_{v}).
283	

4.1. Site selection

285

286 A stratified statistical sampling design selected a reasonable number of representative 287 sites to characterize variability in fluvial geomorphic settings across the landscape. Out 288 of ~119,000 possible 200-m reaches basin-wide, a total of 288 wadeable stream 289 reaches were selected for surveying with 139 and 149 surveyed by the University of California Davis (UCD) and by the California State Water Resources Board's Surface 290 291 Water Ambient Monitoring Program (SWAMP), respectively (Fig. 2). Because the study focused on wadeable streams of 2nd or larger Strahler-order, over 90% of survey sites 292 were on 2nd to 4th order streams (Strahler, 1957). In addition, over 90% of sites were 293 294 located in one of the six mountainous Level III ecoregions that make up the basin 295 (Omernik, 1987). Survey sites were selected to avoid confluence influences with median 296 distances of 431 meters and 43 bankfull channel widths away from the nearest 297 confluence.

298

299 A geospatial analysis selected specific survey locations using a ESRI ArcGIS 10.4 300 (ESRI, 2016). Contributing area was calculated based on the United States Geological 301 Survey (USGS) 10-m National Elevation Dataset (NED) and streamlines defined by the 302 National Hydrography Dataset (NHD) version 2 (Gesch et al., 2002; McKay et al., 303 2012). Slope was estimated from the 10-m DEM as the change in elevation along the 304 reach divided by the reach length. Because desktop estimates of slope are susceptible 305 to error, especially for short stream segments (Neeson et al., 2008), slope was re-306 calculated from survey measurements for use in subsequent geomorphic statistical 307 analysis. GIS desktop slope computation was not used in the geomorphic classification 308 and only aided site selection.

309

310 Field survey site locations were determined using an equal effort stratified random 311 sampling scheme based on GIS-desktop-computed slope and contributing area values, 312 as documented in Lane et al. (2017b). Slope categories, based on Rosgen (1994) as a classification comparison, were defined as <0.1%, 0.1-2%, 2-4%, 4-10%, and >10%. 313 314 Contributing area categories differed based on physiographic province (i.e. Pacific 315 Border or Cascade-Sierra Nevada) due to the assumption that differences in climate, 316 topography, and lithology would drive differences in transport capacity under similar 317 contributing area settings (Lane et al., 2017b). Pacific Border area categories were <50, 318 50-5,000, and >5,000 km², while Cascade-Sierra Nevada sites were <300, 300-9,000, 319 and >9,000 km². The slope - area sampling protocol was designed to capture variability 320 in transport capacity. Since some slope – area bins were expected to be more prevalent on the landscape than others (e.g. streams of a given Strahler order are approximately
twice as common as streams of one higher order), an equal number of reaches was
surveyed in each bin to ensure that all channel settings, including rare channel types,
are represented in the classification.

325

326 In relation to anthropogenic impacts within the basin, 88% of the sites surveyed in this 327 study are classified as free flowing rivers (Grill et al., 2019), although impacts to low 328 order streams may not always be appropriately represented in this number (Grill et al., 329 2019). The numerous stream reaches in the basin with large upstream storage dams 330 that have been documented to substantially alter hydrology were not the focus of this 331 study (Singer, 2007). The land use of survey sites can be summarized as 70% forest 332 and woodland, 13% developed and other human use, 10% shrub and herb vegetation, 333 5% agricultural and developed vegetation, and 3% desert and semi-desert (USGS, 334 2016). Of the developed sites, 76% exist within open space while the remaining 24% 335 exist in low or medium development (USGS, 2016). Sites that showed clear evidence of 336 human engineering along the survey length were not included in this analysis. As the 337 majority of these sites exist within mountainous, forested sites, we expect that mining, 338 logging, or grazing would impose the most relevant hydrogeomorphic changes to these 339 sites. However, there has been ample time (e.g., decades) and sufficient flooding for 340 Hack's (1960) "quick" natural geomorphic adjustments to such anthropogenic impacts. 341 In addition, sediment yields within the basin have fallen considerably since the peak of 342 hydraulic mining (Wright and Schoellhamer, 2004). This means that if an overarching 343 hydrologic setting control on channel type exists, it should be able to readjust such

mountain-setting anthropogenic dynamics and be clearly apparent in the data. Selecting
sites with a stratified sampling approach ideally normalizes the anthropogenic impacts
across all sites.

347

348 4.2. Site data acquisition and processing before classification

349

350 Field surveys were completed by UCD survey teams in summers of 2015 through 2017. 351 Survey methodologies were based on SWAMP protocols to enable comparability 352 between datasets (Ode, 2007). At each site, average bankfull width was estimated to 353 determine the reach survey length. Survey lengths were 150 or 250 m for streams with 354 average wetted widths less than or greater than 10 m, respectively, as is required in the 355 SWAMP protocol. This produced stream reaches with a median length of 18.8 channel 356 widths. Eleven equally spaced cross-sectional transects along the reach were surveyed 357 using rod and level techniques. Bankfull depth was defined using geomorphic and 358 vegetative indices as defined by Ode (2007) for SWAMP protocols, including slope 359 breaks, change from annual to perennial vegetation, and changes in sediment size. 360 Bankfull depth and water depth were recorded at the thalweg. A Wolman pebble count 361 was conducted at each transect (Wolman, 1954), and a longitudinal survey was 362 conducted along the thalweg at each cross-section. 363

Mean values of bankfull width, depth, and bankfull width-to-depth ratio were calculated as the mean of all survey transect measurements. In addition, 50th and 84th percentile grain sizes were calculated over the entirety of each reach. If the channel was split 367 within the survey length, bankfull depth was calculated as the mean of each split 368 channel at a given transect and bankfull width was calculated as the sum of each split 369 channel width. Width-to-depth of split channels at a transect was calculated as the 370 average width-to-depth of each individual channel. Reach slope was calculated from the 371 best-fit regression line of surveyed water surface elevations along the thalweg. The 372 roughness parameter was calculated as the ratio of bankfull depth to median grain size. 373 Within-reach coefficients of variation of bankfull width and bankfull depth were 374 calculated as the ratio of standard deviation to mean attribute values across the 375 surveyed transects. Here, coefficients of variation of width and depth are referred to as 376 topographic variability attributes (TVAs), which can exhibit considerable importance in 377 identifying distinct channel types (Lane et al., 2017b).

378

379 A GIS was also used to estimate certain channel and valley attributes used in statistical 380 analysis: contributing area, sinuosity and valley confinement. The same values of 381 contributing area used in site selection were used in site classification (see Section 4.1). 382 Sinuosity has been used as a defining metric in previous classifications (Rosgen, 1994) 383 and was calculated as the ratio of channel thalweg length to distance between upstream 384 and downstream vertices. Stream channels were digitized based upon aerial imagery, 385 digital USGS topographic maps, and NHD layers for 1000 m. Because sinuosity is 386 sensitive to the scale at which it is calculated (Snow, 1989), 1000 m sinuosity was used 387 to represent the channel reach length at approximately 100 times the bankfull width, 388 which would capture channel meandering at sites with both small and large channels. 389

390 Valley confinement and setting play both gualitative and guantitative roles in the 391 majority of previous channel classification methodologies due to the influence of distinct 392 valley setting processes in the creation of characteristic forms (Beechie and Imaki, 393 2014; Brierley and Fryirs, 2000; Fryirs et al., 2016; O'Brien et al., 2019; Rosgen, 1994). 394 Here, valley widths were delineated using a methodology similar to previous literature 395 (Gilbert et al., 2016; O'Brien et al., 2019). For the purposes of this study, 25 percent 396 slope was chosen as a threshold between valley bottom and valley wall capturing a 397 medial value between clay and sand dominated hill footslopes (Carson, 1972). The 10-398 m DEM was converted to a slope raster to create valley bottom polygons of less than 399 25% slope. Cross-sections of 5,000 m, a distance great enough to decipher between 400 small upland and large lowland valleys, were reduced in length so that the cross-401 sections spanned the local channel-bounding valley bottom polygon. Four cross-402 sections per 200-m of stream length were averaged to calculate a single valley 403 confinement distance that was subsequently used in the geomorphic classification. 404 Confined, partly-confined, and unconfined valley nomenclature of channel type valley setting was defined by a logarithmic scale of <= 100 m, >100 and <= 1000 m, and > 405 406 1000 m, respectively.

407

408 4.3. Multivariate statistical channel archetyping

409

Our multivariate statistical reach-scale classification used a similar method as Lane et
al. (2017b) and followed five general steps: (1) data preparation, (2) informative analysis
of multivariate distances and variance between survey sites, (3) classification of sites,

(4) classification validation, and (5) quantification of channel types. The R language was
used for all analysis (R Core Team, 2017). Data preparation consisted of rescaling
reach-scale attributes from zero to one and removing highly correlated attributes based
on Pearson correlation (correlations > 0.7 or < -0.7). Methods and results for step two
are presented in Supplementary Information since they are less directly relevant to
answering the specific research question addressed herein.

419

420 Site classification was conducted using Ward's algorithm (Ward's hierarchical 421 clustering; WHC) (Murtagh and Legendre, 2014a, 2014b; Ward, 1963) and 422 complemented with heuristic refinement. The WHC utilized the 'hclust' function with the 423 'Ward.D2' (stats package) and the 'NbClust' function to assess the suggested number 424 of hierarchical clusters using the graphical Hubert and Arabie index (NbClust package) 425 (Hubert and Arabie, 1985; Murtagh and Legendre, 2014a). The WHC minimizes within-426 cluster variance and maximizes between-cluster variance. The variance between sites 427 was based on Euclidean distances. Here, heuristic refinement is based on expert 428 opinion and refers to an iterative process of examining site photographs and interpreting 429 geomorphic context of each site and its defining channel type. This process assesses 430 whether statistical branches are indeed representative of differences in reach-scale 431 form or are the result of multivariate distances between sites that may accumulate but 432 are not representative of obvious form characteristics in comparison with other channel 433 types. The goal of heuristic refinement was not to make large adjustments to the purely 434 statistical classification, but to ensure that it was capturing real-world differences. 435

> 19 http://mc.manuscriptcentral.com/esp

436	The validation step used the 'rpart' package to calculate classification tree performance
437	in correctly binning channel types and assessing cross-validation accuracy (De'ath and
438	Fabricius, 2000; Therneau and Atkinson, 2018). Classification trees represent a
439	diagnostic tool and interpretable technique to understand the stability of the multivariate
440	clustering. Cross-validation accuracy is a measure of the model to generalize to unseen
441	data. Finally, pair-wise significant differences between channel types were quantified
442	using Dunn Tests with the 'dunn_test' function (rstatix package) (Kassambara, 2019).
443	
444	Steps three through five were iteratively repeated. A combination of reach-scale
445	attributes was used as input to the final three steps. For example, in the first iteration,
446	only reach-scale attributes that were not highly correlated were considered. If the input
447	attributes led to low classification tree cross-validation performance or a low number of
448	pair-wise significant differences between channel types, a different combination of input
449	attributes was tested. Ultimately, the combination that produced the highest cross-
450	validation percentage was retained for the final classification.
451	
452	
453	5. Hydrologic metric categorization methods to assess hydrogeomorphic questions
454	
455	This section describes categorization of the three hydrologic metrics considered in this
456	study as alternative representations of hydrologic setting.
457	
458	5.1. Flood magnitude

459

460 Flood peak magnitude was used to assess the strength and capability of hydrologic 461 disturbance to carve a river of any specific type. Theoretically, small floods should not 462 be able to create the same channel types are large floods. Sacramento River basin 463 flood magnitudes were collected from a previous USGS flood-frequency analysis of 464 gauges with a minimum of 30 years of unregulated flow (Parrett et al., 2011). Only 465 gauges located along streamlines described by the hydrologic classification of five 466 annual hydrologic regimes were used for a total of 84 locations with USGS flood-467 frequency estimates. Statistically significant contributing area-discharge regressions 468 were generated for each of the annual hydrologic regimes based on gauge records (see 469 Supplementary Information). Flood magnitudes of 2-, 5-, 10-, 25-, and 50-year 470 recurrence intervals were calculated from the regressions at each of the channel survey sites. A proportional flood magnitude metric of the ratio of Q_{50-year} to Q_{2-year} was also 471 472 investigated. Ultimately, 10-year recurrence interval floods were considered here 473 because, under this condition, statistically significant results presented in this study 474 were most consistently maximized. Use of the results that maximized statistically 475 significant returns would provide the strongest indication of hydrologic setting influence 476 on reach-scale morphology. The 10-year recurrence interval has physical importance 477 because California has experienced an approximately decadal flood recurrence interval 478 over its measured and longer anecdotally recorded history (Dettinger, 2016; Guinn, 479 1890). Such a consistent disturbance regime would be expected to influence channel 480 type if hydrologic setting is indeed a dominant control.

481

482 Site-specific flood magnitudes were linearly binned into terciles (<33%, 33-66%, >66%), 483 to represent low, medium, and high flood magnitudes, respectively (Fig. 3b). In addition, 484 a decile linear binning was done to equal the number of channel types. Tercile 485 categories are more appropriate for determining statistical significance between low and 486 high flood magnitudes while decile categories are more appropriate for determining 487 whether channel types exist in significantly few flood magnitude categories. 488 5.2. Dimensionless flood magnitude 489 490 Because a given flood magnitude is expected to have different impacts in channels of 491 492 varying geometry and grain size, flood magnitude was scaled by geomorphic attributes 493 to ascertain a dimensionless relative disturbance value. Dimensionless flood 494 magnitudes were calculated by non-dimensionalizing discharges calculated in the flood 495 magnitude analysis by median grain size (D_{50}) and bankfull width (w). Dimensionless 496 discharge was previously defined by Parker et al. (1979) and Pitlick and Cress (2002) 497 (Eqn. 1).

498

499 $\tilde{Q} = Q / (\sqrt{RgD_{50}} * D_{50}^2)$ (Eqn. 1)

500

Here *R* is the submerged specific gravity of sediment assumed to be 1.65 and *g* is the acceleration due to gravity. The equation was adapted for this study to account for channel dimensions (bankfull width, *w*) in addition to D_{50} with the interest of 504 understanding the relative magnitude of a defining flood in relation to channel

505 dimensions and roughness elements (Eqn. 2).

506

507

 $\tilde{Q} = Q / \left(\sqrt{RgD_{50}} * w^2\right) \tag{Eqn. 2}$

508

509 Similar to dimensional flood magnitudes, sites were grouped into low, medium, or high 510 dimensionless flood magnitude using terciles (Fig. 3c), and split into ten quantile

511 categories.

512

513 5.3. Annual Hydrologic Regime 🦯

514

A previously established hydrologic stream classification within California defines key 515 516 characteristics of the dominant annual flood hydrograph related to timing, magnitude, 517 duration, frequency, and rate of change characteristics at a given location (Lane et al., 518 2018b). Lane et al. (2018b) classified stream gauges in California based on a variety of 519 hydrologic indices (e.g. mean annual flow, date of minimum/maximum flow, small/large 520 flood frequency, etc.) and extrapolated those attributes using topographic, geologic, and 521 climatic conditions to define annual hydrologic regimes to ungauged streams (Lane et 522 al., 2017a). Annual hydrologic regime types were directly attributed to reach-scale 523 survey sites in this study using the NHD stream network.

524

525 Five annual hydrologic regimes were represented by the 288 surveyed channel reach

526 locations included High elevation and Low Precipitation (HLP) (n = 25), Low-volume

527 Snowmelt and Rain (LSR) (n = 120), Perennial Groundwater and Rain (PGR) (n = 54), 528 Rain and seasonal Groundwater (RGW) (n = 51), and Winter Storms (WS) (n = 38) 529 (Table 1, Fig. 3a). Differences captured by these annual hydrologic regimes may 530 theoretically result in differences in channel form. For example, HLP streams may be 531 subjected to lower specific water yields than PGR streams, which may result in 532 transport of relatively smaller grain sizes. The WS streams may exhibit differences in 533 flashiness compared to LSR streams which could result in differences in the duration of 534 sediment transport. Finally, rainfall events in RGW and PGR streams may alter channel 535 form differently based on differences in groundwater contributions and runoff and 536 erosion characteristics of corresponding catchments. 537 538 539 6. Methods to assess dominant hydrologic influence on reach-scale morphology

540

541 Prior to statistical analysis of hydrologic setting influence on channel type, multivariate 542 outliers within each channel type were removed. Multivariate outliers suggest forms that 543 differ from the median tendencies of a multivariate cluster, making them least 544 representative of a given channel type and less indicative of relationships between that 545 channel type and hydrologic setting. Mahalanobis distances were used to determine 546 multivariate outliers based on the 'mvoutlier' package (Filzmoser et al., 2005; Filzmoser 547 and Gschwandtner, 2012) with the chi-squared quantile specified as 97.5% and a 548 proportion of observations used in calculation of the minimum covariance determinant of 549 0.75.

5	5	0
\sim	-	v

551	To address the hydrogeomorphic questions posed in this study, the geomorphic
552	classification was statistically evaluated with respect to each of the three hydrologic
553	metrics using the same statistical tests. The dominance of hydrologic setting on channel
554	type occurrence (i.e. question 1) was assessed using nonparametric statistical
555	bootstrapping to understand how channel types are distributed across settings relative
556	to equal-probability random occurrence. The dominance of hydrologic setting on reach-
557	scale channel attributes (i.e. question 2) was assessed using a nonparametric Kruskal-
558	Wallis test for each channel attribute in each channel type to test for differences
559	between hydrologic settings. All statistical tests are summarized in Table 2.
560	
561	Statistical bootstrapping indicates whether a channel type is more or less likely to occur
562	within a given hydrologic setting relative to equal-probability random occurrence.
563	Bootstrapping was conducted by randomly assigning a hydrologic setting to each of the
564	outlier-filtered sites within each channel type. This was repeated 1,000 times to obtain
565	robust statistical expectations of the uniqueness between hydrologic setting and
566	channel type. Two different tests were considered.
567	
568	First, for each channel type, the percent of sites occurring in each hydrologic metric
569	category was compared between real and bootstrapped datasets (Table 2; B1). If the
570	number of sites in a category (observed results) is indistinguishable from random
571	(bootstrapped results), there is no indication of dominant control on channel type. For a

572 hydrologic setting to dominantly control channel type, we propose that > 70% of

573 hydrologic metric categories across all channel types would deviate from a random
574 number of sites (p < 0.05).

575

The second test compared the number of hydrologic metric categories occurring in a channel type with bootstrapped results (Table 2; B2). Results are deemed significant if the occurrence probability of the observed number of hydrologic metric categories in a channel type is less than 5% when compared to bootstrapping results. For hydrologic setting to dominantly control channel type, we propose that >70% of channel types should deviate from the random number of hydrologic metric categories occurring within a channel type.

583

584 Kruskal-Wallis tests were conducted to investigate hydrologic influence on reach-scale 585 channel attributes (Table 2; KW1). The tests were conducted within each channel type 586 between every possible hydrologic setting for two sets of variables: gross dimensional 587 attributes and feature attributes. Slope, bankfull depth, bankfull width, and width-to-588 depth ratio constitute gross dimensional attributes, which the literature expects to have 589 tight linkages with hydrologic setting. Coefficient of variation in bankfull depth, 590 coefficient of variation in bankfull width, sinuosity, D_{50} , and D_{84} are termed feature 591 attributes because the literature has either not significantly investigated their reach-592 scale linkages with hydrology or they are considered as secondary adjustable fluvial 593 variables. The 'kruskal.test' function (stats package) was used to calculate significance 594 levels. For channel types that only occurred in one hydrologic setting, this analysis was 595 not possible. Therefore, the analysis generated 81 tests for each of the hydrologic

596 metrics (i.e. nine reach-scale attributes tested in nine channel types). To more simply 597 represent all Kruskal-Wallis tests, the results are presented as a binary plot of statistical 598 significance for each channel attribute in each channel type as seen in the conceptual 599 example of Figure 4. The occurrence of multiple significant returns for a given channel 600 attribute across channel types would indicate that hydrologic setting consistently leads 601 to differences in that channel attribute. We propose that an attribute should show 602 significant differences in >70% of channel types at the 95% confidence level for 603 hydrologic setting to be deemed a dominant control on that attribute. Further 604 investigation into the meaning of significant returns was conducted for channel 605 attributes that showed significance across multiple channel types. 606 607 608 7. Results 609 610 In the following section we discuss the following key results: (1) the Sacramento River 611 basin exhibits ten distinct channel types, (2) flood magnitude can explain aspects of 612 channel geometry, but not channel type, (3) dimensionless flood magnitude explains the 613 influence of transport capacity in uniform streams, and (4) reach-scale morphology is 614 independent from annual hydrologic regime. 615 616 7.1. Ten channel types described by reach-scale morphological classification

617

618 Ten channel types, made up of between 4 and 45 sites, were identified using WHC with 619 heuristic refinement and tested for geomorphic significance and performance with a classification tree analysis (Figs. 5a, 5b, and 6). The compilation of 'NbClust' metrics 620 621 suggests three Ward's clusters as the optimal number of groupings driven by strong 622 breaks in sediment size and valley confinement. As three groups was insufficient to 623 describe the variability of reach-scale morphology within the basin, secondary 624 indications by Hubert and Arabie values at 10 and 13 groups were the focus of heuristic 625 refinement. The final ten channel types were the result of a heuristic dissolution and 626 aggregation of the WHC dendrogram including the combination of splits in clusters 3 627 and 7, which outperformed combination with channel types 1 and 10, respectively, 628 under classification tree cross-validation. Physical similarity between combined clusters 629 was confirmed based on analysis of site photography. The classification tree produced 630 a ten-fold cross-validated classification rate of 75%. Further statistical analysis 631 addressing the "Accuracy of reach-scale channel types" can be found in the 632 Supplementary Information. A thorough discussion of the classification in comparison to the Lane et al. (2017b), Montgomery and Buffington (1997), and Rosgen (1994, 1996) 633 634 classifications can also be found in the Supplementary Information.

635

Channel types presented here showed significant differences in every channel attribute
used in the geomorphic classification identified by pairwise differences (p < 0.05; Fig. 7).
Because sediment size and valley confinement play an important role in clustering, the
classification is broadly numerically organized from large to small clast size (Fig. 7).
Channel types were also generally organized by confinement based on the median

641 valley confinement value of each channel type (Fig. 7). While there was not a high log-642 log inverse correlation between sediment size and confinement using individual site 643 data ($R^2 = 0.27$, p < 0.01), there is an inverse relationship between sediment size and 644 valley confinement for median values of channel types 2 through 10 ($R^2 = 0.65$, p < 645 0.01). Figures depicting these relationships can be found in the Supplementary 646 Information. The unconfined valley, boulder-bedrock, bed undulating channel type 647 (channel type 1) exists as a more unique setting within the basin and is discussed 648 below.

649

Given the relationship between confinement and sediment size, the classification 650 651 generally progresses from confined, mountainous upland streams with large sediment 652 sizes to unconfined, lowland streams and rivers with small sediment. A notable 653 exception is the unconfined valley, boulder-bedrock, bed undulating channel type, which 654 fits within the conceptual framework of large to small sediment size rivers, but the sites 655 exist in predominantly unconfined valleys. This lack of confinement indicates colluvial 656 and mass movement processes are unlikely in these settings. Therefore, the large 657 sediment clasts and unique Modoc Plateau volcanic terrain at these locations are either 658 transported from upstream or non-fluvial legacy deposits of the underlying volcanic 659 terrain (Hauer and Pulg, 2018). The uniqueness of this channel type likely means that 660 hydrologic metrics presented below have less influence.

661

662 7.2. Flood magnitude can explain aspects of channel geometry, but not channel type663

664	Statistical bootstrapping of flood magnitude settings showed the most significant
665	returns, but below the 70% threshold (Fig. 8a & 8b). It should be noted that unlike the
666	conceptual examples of bar plots given in graphics a1 and a2 of Figure 1, columns are
667	not of the same height in Figure 8 due to unequal sampling of the channel types.
668	However, the same tests can be applied. For test B1, 18.5% of tercile flood magnitude
669	settings were significant (splits for low, medium, and high flood magnitude defined at 64
670	and 194 m ³ /s) (p < 0.05; Fig. 8a). For test B2, which used decile flood magnitude
671	settings (splits defined at 20.9, 34.9, 56.2, 92.8, 122.7, 152.1, 238.6, 373.9, and 592.7
672	m ³ /s), the number of hydrologic settings was significant for 40% of channel types (p <
673	0.05; Fig. 8b). Both results indicate that certain channel types exhibit basin scale flood
674	magnitude-morphology relationships, but similarities in reach-scale morphology appear
675	predominantly governed by other factors. Therefore, flood magnitude does not appear
676	to be a dominant control on form between channel types but is rather only correlated to
677	certain forms based on where a specific channel type is found in the drainage network.
678	
679	While flood magnitude does not capture differences between channel types, it does
680	explain differences in channel geometry within multiple channel types (test KW1).
681	Significant differences in gross geometry attributes exist across channel types (Fig. 8c).
682	Bankfull width shows significant differences between flood magnitude settings in 67% of
683	channel types (p < 0.05), which nearly exceeds the proposed significant threshold.
684	Because flood magnitude was calculated from contributing area - discharge
685	regressions, the significant differences associated with bankfull width are linked to well-
686	established downstream hydraulic geometry relationships. Positive relationships

between bankfull width and flood magnitude exist for several step-pool, uniform, and

687

688 riffle-pool channel types as well as the channel type that gualitatively includes 689 anastomosed channels (channel type 9). When combined, all basin sites demonstrate a 690 clear relationship between bankfull width and flood magnitude ($R^2 = 0.56$, p < 0.01), and 691 these relationships hold true within individual channel types as well. 692 693 7.3. Dimensionless flood magnitude best represents transport capacity, but not channel 694 type occurrence 695 Statistical bootstrapping results suggest that dimensionless flood magnitude does not 696 697 control channel type presence (Fig. 9a & 9b). Under test B1, the number of hydrologic 698 setting occurrences was significant in 17% of bins (low, medium, and high 699 dimensionless flood magnitude split at 0.83 and 2.41) (p < 0.05; Fig. 9a; Table S5). For 700 test B2, 30% of channel types displayed a significant number of 10-bin hydrologic 701 settings (splits defined at dimensionless flood magnitudes of 0.27, 0.48, 0.76, 1.06, 702 1.40, 1.83, 2.61, 4.56, and 9.40) (p < 0.05; Fig. 9b; Table S3). Both results are well 703 below the suggested 70% threshold and are likely the result of spurious correlation 704 between channel attributes and channel type. That is, streams with relatively small and 705 large sediment sizes exhibit high and low dimensionless flood magnitude values, 706 respectively. Therefore, dimensionless flood magnitude appears to be a poor indicator 707 of reach-scale morphology overall. 708

709 While the majority of significant values were associated with feature attributes, 710 dimensionless flood magnitude settings showed significant differences in slope, a gross 711 dimensional attribute (test KW1; Fig. 9c). In four channel types including cascade/step-712 pool (channel type 2), cobble uniform streams (channel types 5 and 7), and high w/d 713 riffle-pool (channel type 8), slope was found to be significantly lower in sites with high 714 dimensionless flood magnitudes. In uniform streams, the lack of variability in channel 715 depth and width and the expression of slope as a critical factor in reach-scale 716 morphology is logical because equivalent transport capacities needed to transport 717 equivalent sediment yields can be achieved with increased slope and decreased flow or 718 decreased slope and increased flow (Lane, 1954). Other factors in greater variability 719 channel types may dampen this slope relationship. The remaining significant attributes 720 are dominated by feature attributes, predominantly D_{50} and D_{84} , which are likely 721 attributable to spurious correlation rather than physical significance. Unlike channel 722 width (Leopold and Maddock, 1953), sediment size is generally negatively correlated 723 with contributing area or discharge for 2nd order and larger streams (Brummer and 724 Montgomery, 2003; Knighton, 1980). This results in an inverse relationship between 725 dimensionless flood magnitude, as calculated here, and sediment size, meaning that 726 significant differences are likely to be accentuated in this analysis for D_{50} and D_{84} . 727

728 7.4. Reach-scale morphology is independent of annual hydrologic regime

729

Statistical bootstrapping revealed that the occurrences of hydrologic settings within a
 given channel type were rarely significant and thus the hydrogeomorphic linkage was

732 random (Fig. 10a & 10b). For test B1, the number of sites within a hydrologic setting for 733 each channel type was found to be significant in 6% of all bins (p < 0.05, Fig. 10a). All 734 significant findings are likely explained by the landscape features important in defining 735 the annual hydrologic regime. For example, 67% of low width-to-depth, gravel sites 736 (channel type 9) exist within the Rain and Seasonal Groundwater streams of the Central 737 Valley, which are characterized by relatively low slopes (<1%), agricultural land use, 738 and at times anastomosed streams. Test B2 showed that there was minimal 739 significance when investigating how many hydrologic settings a channel type occurs in 740 with only 20% of channel types showing significance (p < 0.05; Fig. 10b). These 741 significant returns are complementary to the test B1 and likely a product of their 742 landscape setting at the sub-basin scale rather than hydrology controlling the channel 743 type. Both statistical tests fell well below the threshold of 70% proposed to indicate clear 744 hydrologic setting control of channel types. Results of 6% and 20% are far below any 745 reasonable definition of dominant physical control of one variable over another. 746 747 Hydrologic setting was found to drive differences in gross dimensional channel 748 attributes within a channel type to a greater extent than feature attributes, but still below 749 a level of dominant control (statistical test KW1; Fig. 10c). No attribute was significant 750 across more than 44% of channel types. Significant differences in width are likely 751 indicative of hydraulic geometry differences between annual hydrologic regimes. For 752 example, bankfull width was significantly higher in RGW settings (p < 0.05), which 753 generally coincide with higher order streams lower in the basin. However, significance in

754 *w/d* does not show the same consistency as *w* since it both increases and decreases in

755 tandem with hydrologic setting in some cases (p < 0.05). This precludes a simple 756 explanation of the patterning of significance for w/d and may be due to landscape 757 setting. Significant returns associated with slope may also be a result of landscape 758 setting. Landscape influence can be observed as streams in three of nine channel types 759 are significantly steeper in Low Volume Snowmelt and Rain stream sites (p < 0.05). 760 which also relates to the mountainous terrain in which this hydrologic setting is found. 761 762 763 8. Discussion 764 765 8.1. Channel types exist across all hydrologic settings 766 767 Contrary to the hypothesis that certain channel types only occur in certain hydrologic 768 settings, study results demonstrate that channel types almost always exist across all 769 hydrologic settings. The few channel types preferentially occurring in certain hydrologic 770 settings can be attributed to relationships between median geomorphic attributes and 771 hydrologic settings (e.g. hydraulic geometry). However, even for significant 772 hydrogeomorphic relationships, hydrologic setting does not preclude those channel 773 types from also existing in other settings. Therefore, hydrologic setting is unlikely to be 774 the dominant control on channel morphology or, if initially the dominant control, it is 775 consistently dampened throughout the channel network by other local processes that 776 create each of various channel types. This indicates that reach-scale morphology must

be a product of other geomorphic influences such as sediment regime, topography,

geology, or a specific interaction of hydrology with these influences.

779

780 Channel hydraulics, a product of hydrology and topographic steering, play an important 781 role in the formation of morphological units. Differences in hydraulics have been 782 hypothesized as controls in the formation of various channel types, such as riffle-pool 783 and step-pool channels (Church and Zimmermann, 2007; MacWilliams et al., 2006; 784 Thompson, 1986; Zimmermann et al., 2010). In the case of channel hydraulics, 785 hydrologic setting is more likely to change acutely at stream confluences, while 786 topography can show abrupt, complex longitudinal change between tributary junctions, 787 especially in mountainous terrain (Wohl, 2000). Variability among topographic attributes 788 can be independent or linked, yielding different functional landforms, and then these 789 may be hierarchically nested at different flow stages to further complicate hydraulics 790 and drive different morphological outcomes (Pasternack et al., 2018a, 2018b). This 791 supports the idea that the existence of a given channel type is perhaps less informed by 792 hydrologic setting and instead driven by topographic influences.

793

Sediment supply or non-fluvial bed material may also impact reach-scale morphology more directly than hydrologic setting (Church, 2006; Friend, 1993; Harvey, 1991; Hauer and Pulg, 2018). Although substantial geomorphic change is often related to flood events, the sediment characteristics may control specific changes to channel form more than the amount of water (Wohl et al., 2015). For example, Tooth and Nanson (2004) demonstrate two arid region rivers with similar discharge regimes but different morphologies partially attributed to sediment caliber. In conjunction and at a continental
scale, Phillips and Jerolmack (2016) concluded that channels self-organize shape to
achieve a critical shear depth needed to transport available bed sediments during
floods, which is exemplified by studies of bar and channel pattern dynamics associated
with sediment fluxes in dammed and dam removal settings (East et al., 2015, 2018;
Melis et al., 2012). Both examples point to reach-scale sediment conditions as important
drivers of channel morphology.

807

808 In regard to the channel classification presented here, confined low-order streams are 809 likely subjected to episodic but infrequent lateral inputs of sediment by mass movement 810 events, while unconfined low gradient and high-order streams are likely subjected to 811 more gradual, longitudinal sediment inputs (Benda and Dunne, 1997b, 1997a; Benda et 812 al., 2004; Grant and Swanson, 1995). Sloan et al. (2001) noted that valley floor 813 modification is less dependent on the magnitude and frequency of in-channel flood 814 events and more dependent on the denudation of landscapes and mass movement 815 events. Because results presented here show that the hydrologic metrics are not 816 statistically related to the occurrence of channel types, it is possible that sediment 817 supply in combination with sediment size would be a better indicator of reach-scale 818 morphology. Further, the known land-use changes across the Sacramento River basin 819 and alterations in sediment regimes in a number of rivers may further drive dependence 820 of channel types on sediment supply (Gilbert, 1917; James, 1991; White et al., 2010). 821 Site specific sediment regimes were not the focus of this study but are an important 822 avenue for future research.

823

824 Qualitative reasoning provides a partial understanding of the disconnection between 825 hydrologic setting and reach-scale morphology. For a specified stream location, 826 observations of the reach-scale hydrology responsible for a given form are difficult to 827 obtain except following a large channel-altering flood event (Dean and Schmidt, 2013). 828 It may be possible to estimate bankfull channel discharge or flow depth necessary to 829 entrain bed sediments, but when a flow has occurred and to what extent the channel 830 shape was altered are complex questions. Further complicating the relationships 831 between form and hydrology, different channel types are likely formed and maintained 832 under different flow magnitudes (Knighton, 1998). Similar forms are also found within 833 different climatic conditions (e.g. temperate vs. arid) and thus subjected to large 834 differences in annual hydrologic conditions (Wohl and Merritt, 2008). In comparison, 835 biological characteristics along a river reach are likely to display indicators related to 836 recent flow patterns or events (e.g. riparian recruitment) and flows over longer periods 837 of time (e.g. plant senescence) (Polvi et al., 2011). The fact that geomorphic 838 characteristics are likely less relatable to recent flow events than through biological 839 indicators may simply be representative of the low and high influences hydrologic 840 setting has on reach-scale channel types and biological conditions, respectively. 841 Individual morphological units can also be formed by local processes, for example in the 842 formation of forced pool or riffle conditions involving bedrock or large woody debris 843 (Fryirs and Brierley, 2012; Montgomery and Buffington, 1998). This clear evidence of 844 morphological unit formation points toward local valley influences being key drivers of 845 reach-scale morphology as opposed to hydrologic setting as local geomorphic

influences can dictate thresholds of geomorphic form (Montgomery, 1999; Poff et al.,2006).

848

849 8.2. Hydrologic setting does not control topographic variability of channel dimensions850

851 A number of extremal hypotheses have been suggested for the development of 852 repeating channel patterns and forms, and the majority fit within the context of the 853 minimum energy principle (Huang et al., 2004). With depth variability shown here to be 854 unrelated to hydrologic settings and bedforms being a major component of energy 855 dissipation in rivers (Davies and Sutherland, 1980), it would suggest that the nature of 856 energy dissipation induced by stream form is primarily controlled by factors other than 857 hydrologic setting (e.g. lithology, topography, sediment supply). Langbein and Leopold 858 (1964) note two distinct sources of variance in channels: that associated with variation 859 around an average condition as a system searches for equilibrium and that which exists 860 in any natural system because of local factors that make two systems inherently 861 different. The latter form of variance at a sub-basin scale could conceptually be 862 represented by distinct channel types. This would mean that channel types are far more 863 dependent on local valley topography and sediment supply. Extreme hydrologic events 864 that have been observed to cause large changes in channel width and pattern (Yochum 865 et al., 2017) may be representative of variance around the average condition. This 866 result would suggest that channels take the reach-scale morphology of local conditions 867 and that reach-scale morphology is dimensionally adjusted to the continuum basin 868 conditions such as those defined by downstream hydraulic geometry relationships.

869

870	Results from all hydrogeomorphic analyses show relatively few significant differences in
871	TVA values by hydrologic setting. TVAs were identified as key attributes in
872	distinguishing channel types, and different channel types exhibit differences in hydraulic
873	patterns relevant to ecological functioning (Lane et al., 2018a). The hydrologic metrics
874	evaluated here do not capture significant differences in TVAs, and consequently do not
875	control variability in channel dimensions. Montgomery (1999) conceptualized that
876	continuum processes would likely be more influential on channel size, while channel
877	morphology would be dependent on local controls. This study confirms that concept by
878	showing that TVA values are not influenced by hydrologic setting. This is
879	complementary to the fact that hydraulic geometry relationships exhibit variability
880	around a median condition that cannot be ascribed to sub-basin hydrology (Park, 1977).
881	If variability in form is not controlled by hydrologic setting, then it is logical that reach-
882	scale channel types, which are often defined by characteristic bedforms, are not related
883	to hydrologic settings across a basin. Therefore, future predictions of reach-scale
884	morphology across entire networks should strive to quantify local geologic, topographic,
885	and sediment supply attributes of the landscape. With rapidly expanding high-resolution
886	data sources and computational power, techniques such as machine learning may be
887	effective to achieve more complete understanding of controls on topographic variability
888	and reach-scale channel types (Guillon et al., 2020).

889

890 8.3. Hydrologic analysis constraints

892 Although reach-scale hydrologic settings provide limited information about the likelihood 893 of occurrence of a given channel type, study results do not preclude hydrologic 894 influence on reach-scale morphology, such as through site-specific hydrology. Historical 895 flow conditions are likely to play a role in channel pattern at a minimum and when 896 thinking about at-a-station form at different flow magnitudes (Heitmuller et al., 2015). 897 Channel-width expansion and contraction cycles have been linked to hydrologic 898 disturbance events (Dean and Schmidt, 2013; Pizzuto, 1994; Sholtes et al., 2018) and 899 long-term effects of natural and anthropogenic alterations to river systems (Friedman et 900 al., 2015; Grams and Schmidt, 2002; Swanson et al., 2011). These documented 901 impacts of hydrologic change occur in channels where width expansion is possible and 902 are likely related to classic relationships of single and multi-threaded channels and 903 discharge (Leopold and Wolman, 1957; Schumm, 1977). Our final reach-scale 904 classification lacks a braided, gravel-bed river type which precludes the comparison 905 between single and multi-threaded river channels in this study. Even with a braided 906 channel type, at-a-station hydrologic records are probably much more important to 907 channel types than more readily available extrapolated or modeled hydrologic 908 information.

909

Beyond historical flow events, consistent nuanced differences in at-a-station hydrology may also play a role in reach-scale morphology. Given that channel hydraulics create and maintain various morphological units and that hydraulics are a product of hydrology as well as topographic steering and biological influences, there may be differences in sub-basin hydrology at reach-scales associated with changing landscape conditions.

Page 42 of 204

915 Deal et al. (2018) note that climatic signals are often muted across basins due to 916 landscape characteristics. Locations with less muted climatic signals and exhibiting 917 median basin-scale hydrology may also display median hydraulic geometry tendencies. 918 However, locations that do not display expected hydrology may lead to the scatter of 919 channel types across hydrologic settings observed here. For example, in conjunction 920 with distinct changes in slope and confinement, basin hydrology is observed to be highly 921 altered on alluvial fans or in alpine meadows (Hooke, 1967; McClymont et al., 2010). A 922 second possibility is that hydrologic influences are most impactful at small catchment 923 scales (Gomi et al., 2002). It is possible for two headwater basins to have distinctly 924 different retention capacity and therefore different flood characteristics. Differences in 925 hydrologic inputs from these two basins would impact reach-scale morphology. For 926 example, if a headwater basin is prone to debris flow conditions and is directly 927 connected to a confined stream (Brummer and Montgomery, 2003; Rathburn et al., 928 2018), that basin will contribute considerably more sediment to the stream compared to 929 a disconnected or low-sediment basin. If differences in debris flow susceptibility are 930 driven by differences in hydrology, then hydrology is the key driver in that system. 931 Recovery times of channels subjected to disturbances would also be dependent on 932 hydrology (Wohl and Pearthree, 1991). Finally, reach-scale hydrologic dynamics may 933 also play a role in the vegetation assemblage, which can influence local morphology 934 through processes such as bank or bar stabilization and channel narrowing (Gurnell, 2014). Therefore, hydrologic importance does not necessarily need to be linked to the 935 936 hydrologic settings that were examined here.

938 While results showed that hydrologic setting is a poor indicator of channel type, results 939 may differ in basins with more unique hydrologic settings. We may expect to find a 940 number of cases where the findings presented here do not hold true, especially in 941 peculiar places (Grant and O'Connor, 2003). While all rivers are unique, certain 942 hydrologic settings show more distinct characteristics. For example, rivers in karst 943 environments have complex hydrodynamic and erosional characteristics that ultimately 944 lead to substantial differences in hydrology and morphological form (Ford and Williams, 945 2007; Ritter et al., 1995). At these locations hydrogeomorphic correlations may be 946 considerably more distinct. Other peculiar river environments likely exist that are 947 observable as hydrologic settings, which would also contradict our findings. Further 948 research on the uniqueness of hydrologic settings across larger areas may prove to be 949 important to decipher areas where hydrologic settings may play a role in channel form 950 beyond hydraulic geometry relationships.

951

952 Given that the Sacramento River basin has been subjected to numerous 953 hydrogeomorphic alterations, the basin itself could be one of the aforementioned 954 peculiar places. It may be that the results presented here are not the norm and similar 955 methodologies used in other portions of the world would show strong dependence of 956 reach-scale channel types on hydrologic setting. However, this is unlikely for two 957 reasons. First, almost all rivers around the world have faced some anthropogenic 958 impacts, so the idea of finding perfect locations to test the premise of this study is 959 guestionable. Second, in defense of the relevance of the Sacramento River basin for 960 such testing, the results presented here conform with long standing hydrogeomorphic

concepts of a link between form and process, such as predictable downstream hydraulic
geometry. Hydrologic setting does display a noticeable relationship with bankfull width.
This discharge-based control on channel size contradicts the view that the basin is too
heavily impacted to show real hydrologic controls. In consequence, the fact that reachscale channel types do not appear to align with hydrologic settings in this study
indicates that similar findings are likely in other locations.

- 967
- 968

969 9. Conclusions

970

971 This study sought to address whether hydrologic settings are indicative of reach-scale 972 morphology or, alternatively, whether reach-scale morphology exists independently of 973 hydrologic settings within a basin. Statistically-derived channel types in the Sacramento 974 River basin, a moderately sized catchment with high topographic and hydrologic 975 variability, were found to exist across almost all hydrologic settings examined. Statistical 976 bootstrapping results indicate that continuum hydrology is not a dominant control on 977 classified reach-scale morphologies, but does influence channel dimensions. Results 978 further suggest that even median channel dimensions are often influenced by other 979 geomorphic processes or controls. Given the hierarchical nature of rivers, this analysis 980 only focuses on one scale of basin and channel morphology so hydrology may still be 981 an observable control at other scales. Isolation of potential controls, such as hydrology, 982 sediment supply, topography, and local geomorphic drivers, can infer the level of 983 influence each has on reach-scale morphology through the rigorous statistical

- 984 methodologies presented here and should be pursued in future studies to further inform
- 985 classification-based river management strategies.

986

987 References

988

- Bard A, Renard B, Lang M, Giuntoli I, Korck J, Koboltschnig G, Janža M, d'Amico M,
- Volken D. 2015. Trends in the hydrologic regime of Alpine rivers. Journal of Hydrology
 529: 1823–1837. DOI: 10.1016/j.jhydrol.2015.07.052
- 992 Beechie T, Buhle E, Ruckelshaus M, Fullerton A, Holsinger L. 2006. Hydrologic regime
- and the conservation of salmon life history diversity. Biological Conservation **130**: 560–
 572. DOI: 10.1016/j.biocon.2006.01.019

Beechie T, Imaki H. 2014. Predicting natural channel patterns based on landscape and
geomorphic controls in the Columbia River basin, USA. Water Resources Research 50:
39–57. DOI: 10.1002/2013WR013629

- Benda L, Dunne T. 1997a. Stochastic forcing of sediment routing and storage in
- 999 channel networks. Water Resources Research **33**: 2865–2880. DOI:
- 1000 10.1029/97WR02387
- Benda L, Dunne T. 1997b. Stochastic forcing of sediment supply to channel networks
 from landsliding and debris flow. Water Resources Research 33: 2849–2863. DOI:
 10.1029/97WR02388
- Benda LEE, Poff NL, Miller D, Dunne T, Reeves G, Pess G, Pollock M. 2004. The network dynamics hypothesis: how channel networks structure riverine habitats.
- 1006 BioScience **54**: 413–427.
- 1007 Bisson PA, Montgomery DR, Buffington JM. 1996. Valley segments, stream reaches, 1008 and channel units. Methods in stream ecology : 23–52.
- 1009 Brierley GJ, Fryirs K. 2000. River Styles, a Geomorphic Approach to Catchment
- 1010 Characterization: Implications for River Rehabilitation in Bega Catchment, New South
- 1011 Wales, Australia. Environmental Management **25**: 661–679. DOI:
- 1012 10.1007/s002670010052
- 1013 Brummer CJ, Montgomery DR. 2003. Downstream coarsening in headwater channels.
- 1014 Water Resources Research **39** DOI: 10.1029/2003WR001981 [online] Available from:
- 1015 https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003WR001981 (Accessed 11
- 1016 September 2018)

- 1017 Buffington JM, Lisle TE, Woodsmith RD, Hilton S. 2002. Controls on the size and
- 1018 occurrence of pools in coarse-grained forest rivers. River Research and Applications **18**:
- 1019 507–531. DOI: 10.1002/rra.693
- 1020 Carson MA. 1972. Hillslope form and process . University Press: Cambridge
- 1021 Carson MA. 1984. The meandering-braided river threshold: A reappraisal. Journal of
- 1022 Hydrology **73**: 315–334. DOI: 10.1016/0022-1694(84)90006-4
- 1023 Chang HH. 1979. Minimum stream power and river channel patterns. Journal of 1024 Hydrology **41**: 303–327. DOI: 10.1016/0022-1694(79)90068-4
- 1025 Chin A, Wohl EE. 2005. Toward a theory for step pools in stream channels. Progress in
- 1026 Physical Geography: Earth and Environment **29**: 275–296. DOI:
- 1027 10.1191/0309133305pp449ra
- 1028 Church M. 2002. Geomorphic thresholds in riverine landscapes. Freshwater biology 47:1029 541–557.
- 1030 Church M. 2006. Bed Material Transport and the Morphology of Alluvial River Channels.
- 1031 Annual Review of Earth and Planetary Sciences **34**: 325–354. DOI:
- 1032 10.1146/annurev.earth.33.092203.122721
- 1033 Church M, Zimmermann A. 2007. Form and stability of step-pool channels: Research
- 1034 progress. Water Resources Research **43** DOI: 10.1029/2006WR005037 [online]
- 1035 Available from: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005037
- 1036 (Accessed 27 August 2018)
- 1037 Dahm CN, Grimm NB, Marmonier P, Valett HM, Vervier P. 1998. Nutrient dynamics at
- 1038 the interface between surface waters and groundwaters. Freshwater Biology **40**: 427– 1039 451. DOI: 10.1046/j.1365-2427.1998.00367.x
- 1040 Davies TR, Sutherland AJ. 1980. Resistance to flow past deformable boundaries. Earth 1041 Surface Processes **5**: 175–179.
- Davies TRH, Sutherland AJ. 1983. Extremal hypotheses for river behavior. Water
 Resources Research 19: 141–148. DOI: 10.1029/WR019i001p00141
- Deal E, Braun J, Botter G. 2018. Understanding the Role of Rainfall and Hydrology in
 Determining Fluvial Erosion Efficiency. Journal of Geophysical Research: Earth Surface
 1046 123: 744–778. DOI: 10.1002/2017JF004393
- 1047 Dean DJ, Schmidt JC. 2013. The geomorphic effectiveness of a large flood on the Rio
- 1048 Grande in the Big Bend region: Insights on geomorphic controls and post-flood
- 1049 geomorphic response. Geomorphology **201**: 183–198. DOI:
- 1050 10.1016/j.geomorph.2013.06.020

- 1051 De'ath G, Fabricius KE. 2000. Classification and Regression Trees: A Powerful yet
- 1052 Simple Technique for Ecological Data Analysis. Ecology **81**: 3178–3192. DOI:
- 1053 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
- 1054 Dettinger M. 2016. Historical and Future Relations Between Large Storms and Droughts
- 1055 in California. San Francisco Estuary and Watershed Science **14** DOI:
- 1056 https://do10.15447/sfews.2016v14iss2art1 [online] Available from:
- 1057 https://escholarship.org/uc/item/1hq3504j (Accessed 27 February 2020)
- 1058 East AE et al. 2015. Large-scale dam removal on the Elwha River, Washington, USA:
- 1059 River channel and floodplain geomorphic change. Geomorphology **228**: 765–786. DOI: 1060 10.1016/j.geomorph.2014.08.028
- 1061 East AE, Logan JB, Mastin MC, Ritchie AC, Bountry JA, Magirl CS, Sankey JB. 2018.
- 1062 Geomorphic Evolution of a Gravel-Bed River Under Sediment-Starved Versus
- 1063 Sediment-Rich Conditions: River Response to the World's Largest Dam Removal.
- 1064 Journal of Geophysical Research: Earth Surface **123**: 3338–3369. DOI:
- 1065 **10.1029/2018JF004703**
- ESRI. 2016. ArcGIS Desktop . Environmental Systems Research Institute: Redlands,CA
- 1068 Filzmoser P, Garrett RG, Reimann C. 2005. Multivariate outlier detection in exploration
- 1069 geochemistry. Computers & Geosciences **31**: 579–587. DOI:
- 1070 10.1016/j.cageo.2004.11.013
- 1071 Filzmoser P, Gschwandtner M. 2012. mvoutlier: Multivariate outlier detection based on 1072 robust methods. R package version **1**
- 1073 Flores AN, Bledsoe BP, Cuhaciyan CO, Wohl EE. 2006. Channel-reach morphology
- 1074 dependence on energy, scale, and hydroclimatic processes with implications for
- 1075 prediction using geospatial data. Water Resources Research **42** DOI:
- 1076 10.1029/2005WR004226 [online] Available from:
- 1077 https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005WR004226 (Accessed 121078 September 2018)
- Ford D, Williams PW. 2007. Karst hydrogeology and geomorphology . [Rev. ed.]. JohnWiley & Sons: Chichester, England ; Hoboken, NJ
- 1081 Friedman JM, Vincent KR, Griffin ER, Scott ML, Shafroth PB, Auble GT. 2015.
- Processes of arroyo filling in northern New Mexico, USA. Geological Society of America
 Bulletin **127**: 621–640.
- 1084 Friend PF. 1993. Control of river morphology by the grain-size of sediment supplied.
- 1085 Sedimentary Geology **85**: 171–177. DOI: 10.1016/0037-0738(93)90081-F

1086 Frissell CA, Liss WJ, Warren CE, Hurley MD. 1986. A hierarchical framework for stream

habitat classification: Viewing streams in a watershed context. Environmental
 Management 10: 199–214. DOI: 10.1007/BF01867358

1089 Fryirs KA, Brierley GJ. 2012. Geomorphic Analysis of River Systems: An Approach to

- 1090 Reading the Landscape . John Wiley & Sons, Ltd: Chichester, UK [online] Available
- 1091 from: http://doi.wiley.com/10.1002/9781118305454 (Accessed 31 July 2018)

1092 Fryirs KA, Wheaton JM, Brierley GJ. 2016. An approach for measuring confinement and

assessing the influence of valley setting on river forms and processes. Earth Surface

1094 Processes and Landforms **41**: 701–710. DOI: 10.1002/esp.3893

1095 Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyler D. 2002. The national 1096 elevation dataset. Photogrammetric engineering and remote sensing **68**: 5–32.

1097 Gilbert GK. 1917. Hydraulic-mining debris in the Sierra Nevada . United States

1098 Geological Survey [online] Available from: https://doi.org/10.3133/pp105 (Accessed 26 1099 September 2019)

- 1100 Gilbert JT, Macfarlane WW, Wheaton JM. 2016. The Valley Bottom Extraction Tool (V-
- 1101 BET): A GIS tool for delineating valley bottoms across entire drainage networks.
- 1102 Computers & Geosciences **97**: 1–14. DOI: 10.1016/j.cageo.2016.07.014

1103 Gomi T, Sidle RC, Richardson JS. 2002. Understanding Processes and Downstream

Linkages of Headwater Systems. BioScience **52**: 905. DOI: 10.1641/0006-

1105 3568(2002)052[0905:UPADLO]2.0.CO;2

1106 Graf WL. 1988. Fluvial processes in dryland rivers . Springer-Verlag: Berlin [online]

1107 Available from:

1108 https://scholar.google.com/scholar_lookup?title=Fluvial%20processes%20in%20dryland

1109 %20rivers&author=W.L.%20Graf&publication_year=1988 (Accessed 4 December 2018)

- 1110 Grams PE, Schmidt JC. 2002. Streamflow regulation and multi-level flood plain
- 1111 formation: channel narrowing on the aggrading Green River in the eastern Uinta
- 1112 Mountains, Colorado and Utah. Geomorphology 44: 337–360. DOI: 10.1016/S0169-
- 1113 **555X(01)00182-9**

Grant GE, O'Connor JE. 2003. A peculiar river: geology, geomorphology, and hydrology of the Deschutes River, Oregon . American Geophysical Union

- 1116 Grant GE, Swanson FJ. 1995. Morphology and processes of valley floors in mountain
- 1117 streams, western Cascades, Oregon. Geophysical Monograph-American Geophysical
- 1118 Union **89**: 83–83.
- 1119 Grant GE, Swanson FJ, Wolman MG. 1990. Pattern and origin of stepped-bed
- 1120 morphology in high-gradient streams, Western Cascades, Oregon. GSA Bulletin **102**:
- 1121 340–352. DOI: 10.1130/0016-7606(1990)102<0340:PAOOSB>2.3.CO;2

1122 Grill G et al. 2019. Mapping the world's free-flowing rivers. Nature **569**: 215–221. DOI:

- 1123 10.1038/s41586-019-1111-9
- 1124 Guillon H, Byrne CF, Lane BA, Solis SS, Pasternack GB. 2020. Machine Learning
- 1125 Predicts Reach-Scale Channel Types From Coarse-Scale Geospatial Data in a Large
- 1126 River Basin. Water Resources Research **56**: e2019WR026691. DOI:
- 1127 10.1029/2019WR026691
- Guinn JM. 1890. Exceptional years: a history of California floods and drought. Historical Society of Southern California, Los Angeles (1890) **1**: 33–39. DOI: 10.2307/41167825
- 1130 Gurnell AM. 2014. Plants as river system engineers. Earth Surface Processes and
- 1131 Landforms **39**: 4–25. DOI: 10.1002/esp.3397
- 1132 Gurnell AM et al. 2016. A multi-scale hierarchical framework for developing
- 1133 understanding of river behaviour to support river management. Aquatic Sciences **78**: 1–
- 1134 16. DOI: 10.1007/s00027-015-0424-5
- Hack JT. 1960. Interpretation of erosional topography in humid temperate regions.
 American Journal of Science **258-A**: 80–97.
- Harvey AM. 1991. The influence of sediment supply on the channel morphology of
- upland streams: Howgill Fells, Northwest England. Earth Surface Processes and
 Landforms 16: 675–684. DOI: 10.1002/esp.3290160711
- 1139 Landforms 16: 675–684. DOI: 10.1002/esp.3290160711
- Hauer C, Pulg U. 2018. The non-fluvial nature of Western Norwegian rivers and the
- implications for channel patterns and sediment composition. CATENA **171**: 83–98. DOI:
- 1142 10.1016/j.catena.2018.06.025
- Heitmuller FT, Hudson PF, Asquith WH. 2015. Lithologic and hydrologic controls of
- 1144 mixed alluvial–bedrock channels in flood-prone fluvial systems: Bankfull and
- 1145 macrochannels in the Llano River watershed, central Texas, USA. Geomorphology **232**:
- 1146 1–19. DOI: 10.1016/j.geomorph.2014.12.033
- Hooke RLeB. 1967. Processes on Arid-Region Alluvial Fans. The Journal of Geology**75**: 438–460. DOI: 10.1086/627271
- Huang HQ, Chang HH, Nanson GC. 2004. Minimum energy as the general form of
- 1150 critical flow and maximum flow efficiency and for explaining variations in river channel
- pattern. Water Resources Research **40** DOI: 10.1029/2003WR002539 [online] Available
- 1152 from: http://doi.wiley.com/10.1029/2003WR002539 (Accessed 26 February 2019)
- Hubert L, Arabie P. 1985. Comparing partitions. Journal of Classification 2: 193–218.
 DOI: 10.1007/BF01908075
- James LA. 1991. Incision and morphologic evolution of an alluvial channel recovering from hydraulic mining sediment. Geological Society of America Bulletin **103**: 723–736.

- 1157 Kasprak A et al. 2016. The Blurred Line between Form and Process: A Comparison of
- 1158 Stream Channel Classification Frameworks. PLOS ONE **11**: e0150293. DOI:
- 1159 10.1371/journal.pone.0150293
- 1160 Kassambara A. 2019. rstatix: Pipe-Friendly Framework for Basic Statistical Tests.
- 1161 [online] Available from: https://CRAN.R-project.org/package=rstatix
- 1162 Knighton AD. 1980. Longitudinal changes in size and sorting of stream-bed material in
- 1163 four English rivers. GSA Bulletin **91**: 55–62. DOI: 10.1130/0016-
- 1164 7606(1980)91<55:LCISAS>2.0.CO;2
- Knighton D. 1998. Fluvial Forms and Processes: A New Perspective . Routledge: NewYork, NY
- 1167 Kondolf GM. 1997. Hungry Water: Effects of Dams and Gravel Mining on River
- 1168 Channels. Environmental Management **21**: 533–551. DOI: 10.1007/s002679900048
- 1169 Kondolf GM, Piégay H, Schmitt L, Montgomery DR. 2016. Geomorphic classification of
- 1170 rivers and streams. In Tools in Fluvial Geomorphology, Kondolf GM and Piégay H
- 1171 (eds). John Wiley & Sons, Ltd; 133–158. [online] Available from:
- http://onlinelibrary.wiley.com/doi/10.1002/9781118648551.ch7/summary (Accessed 23
 January 2018)
- 1174 Lane BA, Dahlke HE, Pasternack GB, Sandoval-Solis S. 2017a. Revealing the Diversity
- 1175 of Natural Hydrologic Regimes in California with Relevance for Environmental Flows
- 1176 Applications. JAWRA Journal of the American Water Resources Association **53**: 411–
- 1177 430. DOI: 10.1111/1752-1688.12504
- Lane BA, Pasternack GB, Dahlke HE, Sandoval-Solis S. 2017b. The role of topographic
- 1179 variability in river channel classification. Progress in Physical Geography :
- 1180 0309133317718133. DOI: 10.1177/0309133317718133
- 1181 Lane BA, Pasternack GB, Sandoval-Solis S. 2018a. Integrated analysis of flow, form,
- and function for river management and design testing. Ecohydrology DOI:
- 1183 10.1002/eco.1969 [online] Available from:
- 1184 https://onlinelibrary.wiley.com/doi/abs/10.1002/eco.1969 (Accessed 9 April 2018)
- Lane BA, Sandoval-Solis S, Stein ED, Yarnell SM, Pasternack GB, Dahlke HE. 2018b.
- 1186 Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water
- 1187 Management. Environmental Management DOI: 10.1007/s00267-018-1077-7 [online]
- 1188 Available from: http://link.springer.com/10.1007/s00267-018-1077-7 (Accessed 2 July
- 1189 **2018**)
- 1190 Lane EW. 1954. The importance of fluvial morphology in hydraulic engineering .
- 1191 Hyraulic Laboratory Report. U.S. Department of Interior Bureau of Reclamation
- Lane SN. 1995. The Dynamics of Dynamic River Channels. Geography **80**: 147–162.

1193 Langbein WB, Leopold LB. 1964. Quasi-equilibrium states in channel morphology.

1194 American Journal of Science **262**: 782–794. DOI: 10.2475/ajs.262.6.782

Leopold LB, Maddock T. 1953. The Hydraulic Geometry of Stream Channels and SomePhysiographic Implications

1197 Leopold LB, Wolman MG. 1957. River channel patterns: Braided, meandering, and

- straight . USGS Numbered Series. U.S. Government Printing Office: Washington, D.C.
- [online] Available from: http://pubs.er.usgs.gov/publication/pp282B (Accessed 9November 2018)
- 1201 MacWilliams ML, Wheaton JM, Pasternack GB, Street RL, Kitanidis PK. 2006. Flow 1202 convergence routing hypothesis for pool-riffle maintenance in alluvial rivers. Water
- 1203 Resources Research **42**: W10427. DOI: 10.1029/2005WR004391
- 1204 Makaske B. 2001. Anastomosing rivers: a review of their classification, origin and

sedimentary products. Earth-Science Reviews 53: 149–196. DOI: 10.1016/S0012 8252(00)00038-6

McClymont AF, Hayashi M, Bentley LR, Muir D, Ernst E. 2010. Groundwater flow and
 storage within an alpine meadow-talus complex. Hydrology and Earth System Sciences
 1209 14: 859–872. DOI: 10.5194/hess-14-859-2010

- McKay L, Bondelid T, Dewald T, Johnston J, Moore R, Rea A. 2012. NHDPlus version
 2: user guide. US Environmental Protection Agency
- 1212 Melis TS, Korman J, Kennedy TA. 2012. Abiotic & Biotic Responses of the Colorado

1213 River to Controlled Floods at Glen Canyon Dam, Arizona, Usa. River Research and

- 1214 Applications 28: 764–776. DOI: 10.1002/rra.1503
- 1215 Miller MC, McCAVE IN, Komar PD. 1977. Threshold of sediment motion under
- unidirectional currents. Sedimentology 24: 507–527. DOI: 10.1111/j.1365-
- 1217 **3091.1977.tb00136.x**
- 1218 Milliman JD, Syvitski JP. 1992. Geomorphic/Tectonic Control of Sediment Discharge to
- the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology **100**: 525–544.
- 1221 Moir HJ, Pasternack GB. 2010. Substrate requirements of spawning Chinook salmon
- 1222 (Oncorhynchus tshawytscha) are dependent on local channel hydraulics. River
- 1223 Research and Applications **26**: 456–468. DOI: 10.1002/rra.1292
- 1224 Montgomery DR. 1999. Process Domains and the River Continuum. JAWRA Journal of
- the American Water Resources Association **35**: 397–410. DOI: 10.1111/j.1752-
- 1226 **1688.1999.tb03598.x**

- 1227 Montgomery DR, Abbe TB, Buffington JM, Peterson NP, Schmidt KM, Stock JD. 1996.
- 1228 Distribution of bedrock and alluvial channels in forested mountain drainage basins.
- 1229 Nature **381**: 587–589. DOI: 10.1038/381587a0
- 1230 Montgomery DR, Buffington JM. 1997. Channel-reach morphology in mountain drainage 1231 basins. Geological Society of America Bulletin **109**: 596–611.
- 1232 Montgomery DR, Buffington JM. 1998. Channel processes, classification, and response.
- 1233 River Ecology and Management: Lessons from the Pacific Coastal Ecoregion, RJ
- 1234 Naiman and RE Bilby (Editors). Springer-Verlag, New York, New York : 13–42.
- Mount JF. 1995. California rivers and streams: the conflict between fluvial process and land use . Univ of California Press
- Murtagh F, Legendre P. 2014a. Ward's Hierarchical Agglomerative Clustering Method:
 Which Algorithms Implement Ward's Criterion? Journal of Classification **31**: 274–295.
- 1239 DOI: 10.1007/s00357-014-9161-z
- 1240 Murtagh F, Legendre P. 2014b. Ward's Hierarchical Clustering Method: Clustering
- 1241 Criterion and Agglomerative Algorithm. Journal of Classification **31**: 274–295. DOI: 1242 10.1007/s00357-014-9161-z
- Neeson TM, Gorman AM, Whiting PJ, Koonce JF. 2008. Factors Affecting Accuracy of
 Stream Channel Slope Estimates Derived from Geographical Information Systems.
 North American Journal of Fisheries Management 28: 722–732. DOI: 10.1577/M05127.1
- 1247 O'Brien GR, Wheaton JM, Fryirs K, Macfarlane WW, Brierley G, Whitehead K, Gilbert J,
- 1248 Volk C. 2019. Mapping Valley Bottom Confinement at the Network Scale. Earth Surface
- 1249 Processes and Landforms **0** DOI: 10.1002/esp.4615 [online] Available from:
- 1250 https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.4615 (Accessed 28 March 2019)
- 1251 Ode PR. 2007. Standard operating procedures for collecting benthic macroinvertebrate
- 1252 samples and associated physical and chemical data for ambient bioassessments in
- 1253 California. California State Water Resources Control Board. Surface Water Ambient
- 1254 Monitoring Program (SWAMP) Bioassessment SOP 1
- 1255 Omernik JM. 1987. Ecoregions of the Conterminous United States. Annals of the
- Association of American Geographers 77: 118–125. DOI: 10.1111/j.1467-
- 1257 **8306.1987.tb00149.x**
- 1258 Palmer T. 2012. Field guide to California rivers . Univ of California Press
- 1259 Park CC. 1977. World-wide variations in hydraulic geometry exponents of stream
- 1260 channels: An analysis and some observations. Journal of Hydrology **33**: 133–146. DOI:
- 1261 10.1016/0022-1694(77)90103-2

Parker G. 1979. Hydraulic geometry of active gravel rivers. Journal of the HydraulicsDivision **105**: 1185–1201.

Parrett C, Veilleux A, Stedinger JR, Barth NA, Knifong DL, Ferris JC. 2011. Regional
skew for California, and flood frequency for selected sites in the Sacramento-San
Joaquin River Basin, based on data through water year 2006. U. S. Geological Survey

Pasternack GB, Baig D, Weber MD, Brown RA. 2018a. Hierarchically nested river
landform sequences. Part 1: Theory. Earth Surface Processes and Landforms 43:
2510–2518. DOI: 10.1002/esp.4411

Pasternack GB, Baig D, Weber MD, Brown RA. 2018b. Hierarchically nested riverlandform sequences. Part 2: Bankfull channel morphodynamics governed by valley

- nesting structure. Earth Surface Processes and Landforms 43: 2519–2532. DOI:
 10.1002/esp.4410
- 1274 Paustian SJ. 2010. A Channel Type Users Guide for the Tongass National Forest,
- 1275 Southeast Alaska . Technical Report. USDA Forest Service, Region 10 [online]

1276 Available from: https://dspace.nmc.edu/handle/11045/20008 (Accessed 22 September

1277 **2017**)

1278 Pfeiffer AM, Finnegan NJ, Willenbring JK. 2017. Sediment supply controls equilibrium

- 1279 channel geometry in gravel rivers. Proceedings of the National Academy of Sciences 1280 **114**: 3346–3351. DOI: 10.1073/pnas.1612907114
- Phillips CB, Jerolmack DJ. 2016. Self-organization of river channels as a critical filter on climate signals. Science **352**: 694–697. DOI: 10.1126/science.aad3348

Pitlick J, Cress R. 2002. Downstream changes in the channel geometry of a large gravel
bed river. Water Resources Research 38: 34-1-34–11. DOI: 10.1029/2001WR000898

- 1285 Pizzuto JE. 1994. Channel adjustments to changing discharges, Powder River,
- 1286 Montana. Geological Society of America Bulletin **106**: 1494–1501. DOI: 10.1130/0016-1287 7606(1994)106<1494:CATCDP>2.3.CO;2
- Poff NL et al. 2010. The ecological limits of hydrologic alteration (ELOHA): a new
 framework for developing regional environmental flow standards. Freshwater Biology
 55: 147–170.
- 1291 Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE,
- 1292 Stromberg JC. 1997. The natural flow regime. BioScience : 769–784.

1293 Poff NL, Bledsoe BP, Cuhaciyan CO. 2006. Hydrologic variation with land use across

- 1294 the contiguous United States: Geomorphic and ecological consequences for stream
- 1295 ecosystems. Geomorphology **79**: 264–285. DOI: 10.1016/j.geomorph.2006.06.032

- 1296 Polvi LE, Wohl EE, Merritt DM. 2011. Geomorphic and process domain controls on
- riparian zones in the Colorado Front Range. Geomorphology **125**: 504–516. DOI:
- 1298 10.1016/j.geomorph.2010.10.012
- PRISM Climate Group. 2007. Oregon State University [online] Available from:http://prism.oregonstate.edu
- 1301 R Core Team. 2017. R: A Language and Environment for Statistical Computing . R
- 1302 Foundation for Statistical Computing: Vienna, Austria [online] Available from:
- 1303 https://www.R-project.org/
- 1304 Rathburn SL, Shahverdian SM, Ryan SE. 2018. Post-disturbance sediment recovery:
- 1305 Implications for watershed resilience. Geomorphology **305**: 61–75. DOI:
- 1306 10.1016/j.geomorph.2017.08.039
- 1307 Reid I, Laronne JB. 1995. Bed Load Sediment Transport in an Ephemeral Stream and a
- Comparison with Seasonal and Perennial Counterparts. Water Resources Research 31:
 773–781. DOI: 10.1029/94WR02233
- 1310 Richards KS. 1977. Channel and flow geometry: a geomorphological perspective.
- 1311 Progress in Physical Geography: Earth and Environment **1**: 65–102. DOI:
- 1312 **10.1177/030913337700100105**
- Ritter DF, Kochel RC, Miller JR, Miller JR. 1995. Process geomorphology . Wm. C.
 Brown Dubuque, IA
- 1315 Rosgen DL. 1994. A classification of natural rivers. CATENA 22: 169–199. DOI:
- 1316 10.1016/0341-8162(94)90001-9
- 1317 Rosgen DL. 1996. Applied river morphology . Wildland Hydrology
- 1318 Schmitt L, Maire G, Nobelis P, Humbert J. 2007. Quantitative morphodynamic typology
- 1319 of rivers: a methodological study based on the French Upper Rhine basin. Earth
- 1320 Surface Processes and Landforms **32**: 1726–1746. DOI: 10.1002/esp.1596
- 1321 Schumm SA. 1977. The fluvial system . Wiley: New York
- Shields A. 1936. Application of similarity principles and turbulence research to bed-loadmovement
- 1324 Sholtes JS, Yochum SE, Scott JA, Bledsoe BP. 2018. Longitudinal variability of
- 1325 geomorphic response to floods: Geomorphic response to floods. Earth Surface
- 1326 Processes and Landforms DOI: 10.1002/esp.4472 [online] Available from:
- 1327 http://doi.wiley.com/10.1002/esp.4472 (Accessed 24 September 2018)
- 1328 Singer MB. 2007. The influence of major dams on hydrology through the drainage
- 1329 network of the Sacramento River basin, California. River Research and Applications 23:
- 1330 55–72. DOI: 10.1002/rra.968

- 1331 Sloan J, Miller JR, Lancaster N. 2001. Response and recovery of the Eel River,
- 1332 California, and its tributaries to floods in 1955, 1964, and 1997. Geomorphology **36**:
- 1333 129–154. DOI: 10.1016/S0169-555X(00)00037-4
- 1334 Snow RS. 1989. Fractal sinuosity of stream channels. Pure and applied geophysics1335 **131**: 99–109.
- 1336 Strahler AN. 1957. Quantitative analysis of watershed geomorphology. Eos,
- 1337 Transactions American Geophysical Union **38**: 913–920. DOI:
- 1338 10.1029/TR038i006p00913
- 1339 Sutfin NA, Shaw JR, Wohl EE, Cooper DJ. 2014. A geomorphic classification of
- ephemeral channels in a mountainous, arid region, southwestern Arizona, USA.
- 1341 Geomorphology **221**: 164–175. DOI: 10.1016/j.geomorph.2014.06.005
- 1342 Swanson BJ, Meyer GA, Coonrod JE. 2011. Historical channel narrowing along the Rio
- 1343 Grande near Albuquerque, New Mexico in response to peak discharge reductions and
- engineering: magnitude and uncertainty of change from air photo measurements. Earth
- 1345 Surface Processes and Landforms **36**: 885–900. DOI: 10.1002/esp.2119
- 1346 Thanapakpawin P, Richey J, Thomas D, Rodda S, Campbell B, Logsdon M. 2007.
- 1347 Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW 1348 Thailand. Journal of Hydrology **334**: 215–230. DOI: 10.1016/j.jhydrol.2006.10.012
- 1349 Therneau TM, Atkinson EJ. 2018. rpart: Recursive Partitioning and Regression Trees. . 1350 Mayo Foundation [online] Available from: https://CRAN.R-project.org/package=rpart
- 1351 Thompson A. 1986. Secondary flows and the pool-riffle unit: A case study of the
- 1352 processes of meander development. Earth Surface Processes and Landforms 11: 631-
- 1353 641. DOI: 10.1002/esp.3290110606
- 1354Tooth S. 2000. Process, form and change in dryland rivers: a review of recent research.1355Earth-Science Reviews **51**: 67–107. DOI: 10.1016/S0012-8252(00)00014-3
- 1356 Tooth S, Nanson GC. 2004. Forms and processes of two highly contrasting rivers in arid 1357 central Australia, and the implications for channel-pattern discrimination and prediction.
- 1357 GSA Bulletin **116**: 802–816. DOI: 10.1130/B25308.1
- 1359 USGS. 2016. GAP/LANDFIRE National Terrestrial Ecosystems 2011. DOI:
- 1360 10.5066/f7zs2tm0 [online] Available from:
- 1361 https://www.sciencebase.gov/catalog/item/573cc51be4b0dae0d5e4b0c5 (Accessed 30
- 1362 September 2019)
- 1363 Ward JHJ. 1963. Hierarchical Grouping to Optimize an Objective Function. Journal of
- the American Statistical Association **58**: 236–244. DOI:
- 1365 10.1080/01621459.1963.10500845

1366 White JQ, Pasternack GB, Moir HJ. 2010. Valley width variation influences riffle–pool

- 1367 location and persistence on a rapidly incising gravel-bed river. Geomorphology **121**:
- 1368 206–221. DOI: 10.1016/j.geomorph.2010.04.012
- 1369 Wohl E, Bledsoe BP, Jacobson RB, Poff NL, Rathburn SL, Walters DM, Wilcox AC.
- 1370 2015. The Natural Sediment Regime in Rivers: Broadening the Foundation for
- 1371 Ecosystem Management. BioScience 65: 358–371. DOI: 10.1093/biosci/biv002
- 1372 Wohl EE. 2000. Mountain rivers
- 1373 Wohl EE. 2010. A brief review of the process domain concept and its application to
- 1374 quantifying sediment dynamics in bedrock canyons. Terra Nova 22: 411–416. DOI:
 1375 10.1111/j.1365-3121.2010.00950.x
- 1376 Wohl EE. 2013. The complexity of the real world in the context of the field tradition in 1377 geomorphology. Geomorphology **200**: 50–58. DOI: 10.1016/j.geomorph.2012.12.016
- 1378 Wohl EE, Merritt DM. 2008. Reach-scale channel geometry of mountain streams.
- 1379 Geomorphology **93**: 168–185. DOI: 10.1016/j.geomorph.2007.02.014
- Wohl EE, Pearthree PP. 1991. Debris flows as geomorphic agents in the Huachuca
 Mountains of southeastern Arizona. Geomorphology 4: 273–292. DOI: 10.1016/0169555X(91)90010-8
- Wolman MG. 1954. A method of sampling coarse river-bed material. Eos, Transactions
 American Geophysical Union **35**: 951–956. DOI: 10.1029/TR035i006p00951
- 1385 Wright SA, Schoellhamer DH. 2004. Trends in the Sediment Yield of the Sacramento
- 1386 River, California, 1957–2001. San Francisco Estuary and Watershed Science 2 DOI:
- 1387 10.15447/sfews.2004v2iss2art2 [online] Available from:
- 1388 https://escholarship.org/uc/item/891144f4 (Accessed 7 February 2020)
- 1389 Wyrick JR, Pasternack GB. 2014. Geospatial organization of fluvial landforms in a
- 1390 gravel–cobble river: Beyond the riffle–pool couplet. Geomorphology 213: 48–65. DOI:
 1391 10.1016/j.geomorph.2013.12.040
- 1392 Yang CT, Song CCS, Woldenberg MJ. 1981. Hydraulic geometry and minimum rate of
- 1393 energy dissipation. Water Resources Research **17**: 1014–1018. DOI:
- 1394 10.1029/WR017i004p01014
- 1395 Yang D, Kane DL, Hinzman LD, Zhang X, Zhang T, Ye H. 2002. Siberian Lena River
- hydrologic regime and recent change. Journal of Geophysical Research: Atmospheres
 107: ACL 14-1-ACL 14-10. DOI: 10.1029/2002JD002542
- 1398 Yochum SE, Sholtes JS, Scott JA, Bledsoe BP. 2017. Stream power framework for
- predicting geomorphic change: The 2013 Colorado Front Range flood. Geomorphology
 292: 178–192.

- I401 Zimmermann A, Church M, Hassan MA. 2010. Step-pool stability: Testing the jammed
- 1402 state hypothesis. Journal of Geophysical Research: Earth Surface **115** DOI:
- 1403 10.1029/2009JF001365 [online] Available from:
- 1404 http://doi.wiley.com/10.1029/2009JF001365 (Accessed 27 August 2018)

1405

- 1406
- 1407

1408 Acknowledgements

1409

- 1410 This research was supported by the California State Water Resources Control Board
- 1411 under grant number 16-062-300. We also acknowledge the USDA National Institute of
- 1412 Food and Agriculture, Hatch project numbers #CA-D-LAW-7034-H and
- 1413 CA-D-LAW-2243-H. Finally, we would like to thank Brianna Ordung and John Deane for
- 1414 their roles in field data collection.

1415

1416

1417 Data Availability Statement

1418

- 1419 The geomorphic data that support the findings of this study are available in the
- 1420 supplementary material of this article. The hydrologic data that support the findings of
- 1421 this study are available from references provided within the methodology of this article
- 1422 or, where adapted, are available from the corresponding author on reasonable request.

1424 Figure 1. Conceptual diagram representing the experimental design used in this study.

1425 In the results box, graphics (a1) and (b1) illustrate the possible outcome in which

1426 hydrologic setting has no explanatory power to differentiate among any channel types or

1427 any channel attributes. In graphics (a2) and (b2), hydrologic setting is envisioned to

1428 have dominant explanatory power over channel types.

1429

Figure 2. Map of the Sacramento River basin showing 288 stream survey locations
 among 2nd order and larger streams.

1432

1433 Figure 3. Hydrologic settings binned by stream length for (a) flood magnitude (adapted

1434 from Parrett et al. 2011) (b) by site for dimensionless flood magnitude, and (c) by

stream length for annual hydrologic regime (derived from Lane et al, 2018b).

1436

Figure 4. A conceptual example of how individual Kruskal-Wallis tests between hydrologic settings are represented in a compact binary plot for each attribute in each channel type. Box-and-whisker plots are shown for channel type 4 only. A grey box in the binary plot represents a significant difference between hydrologic settings for a given attribute (p < 0.05), while a white box represents an absence of a significant difference.

1443

1444 Figure 5. Results from (a) hierarchical clustering by Ward's algorithm analyses, and (b)

1445 classification tree analysis. (A_c is contributing area, s is surveyed slope, d is bankfull

1446 depth, w is bankfull width, w/d is bankfull width-to-depth ratio, CV_d is coefficient of

Page 60 of 204

1447	variation in bankfull depth, CV_w is coefficient of variation in bankfull width, D_{84} is
1448	sediment size at the 84 th percentile, and C_{v} is valley confinement; dashed lines only an
1449	aid to indicate which attribute is associated with which vector).
1450 1451	Figure 6. The ten channel types for the Sacramento River basin determined by
1452	multivariate statistical analysis with heuristic refinement.
1453 1454	Figure 7. Box and whisker plots representing differences in geomorphic attributes
1455	between channel types. Purple boxes represent channel types significantly different
1456	than multiple other channel types, orange boxes represent channel types significantly
1457	different than one other channel type, and white boxes represent no significant
1458	differences from all other channel types (p < 0.05). (A_c is contributing area, s is
1459	surveyed slope, <i>d</i> is bankfull depth, <i>w</i> is bankfull width, <i>w/d</i> is bankfull width-to-depth
1460	ratio, CV_d is coefficient of variation in bankfull depth, CV_w is coefficient of variation in
1461	bankfull width, D_{84} is sediment size at the 84 th percentile, and C_v is valley confinement.)
1462	
1463	Figure 8. Statistical analysis of reach-scale morphology – flood magnitude relationships
1464	including (a) the proportion of each channel type falling within tercile bins (statistical test
1465	B1), (b) the proportion of each channel type falling within ten quantile bins labeled by
1466	the upper value of flood magnitude (statistical test B2), and (c) a binary display of
1467	channel attribute significance between flood magnitude categories within a channel type
1468	(statistical test KW1). In the bar plots, black borders indicate that (a) the number of
1469	channel type sites within a hydrologic setting or (b) the number of hydrologic settings
1470	within a channel type have a less than 5% probability of occurrence when compared to

bootstrapping results. In (c), a grey rectangle represents a significant difference (p <0.05).

1473

1474 Figure 9. Statistical analysis of reach-scale morphology – dimensionless flood 1475 magnitude relationships including (a) the proportion of each channel type falling within 1476 tercile bins (statistical test B1), (b) the proportion of each channel type falling within ten 1477 guantile bins labeled by the upper value of dimensionless flood magnitude (statistical 1478 test B2), and (c) a binary display of channel attribute significance between 1479 dimensionless flood magnitude bins within a channel type (statistical test KW1). In the 1480 bar plots, black borders indicate that (a) the number of channel type sites within a 1481 hydrologic setting or (b) the number of hydrologic settings within a channel type have a 1482 less than 5% probability of occurrence when compared to bootstrapping results. In (c), a 1483 grey rectangle represents a significant difference (p < 0.05). 1484 1485 Figure 10. Statistical analysis of reach-scale morphology – annual hydrologic regime 1486 relationships including (a) the proportion of each channel type falling within tercile bins 1487 (statistical test B1), (b) the proportion of each channel type falling within each annual 1488 hydrologic regime bin (statistical test B2), and (c) a binary display of channel attribute

significance between annual hydrologic regime bins within a channel type (statistical

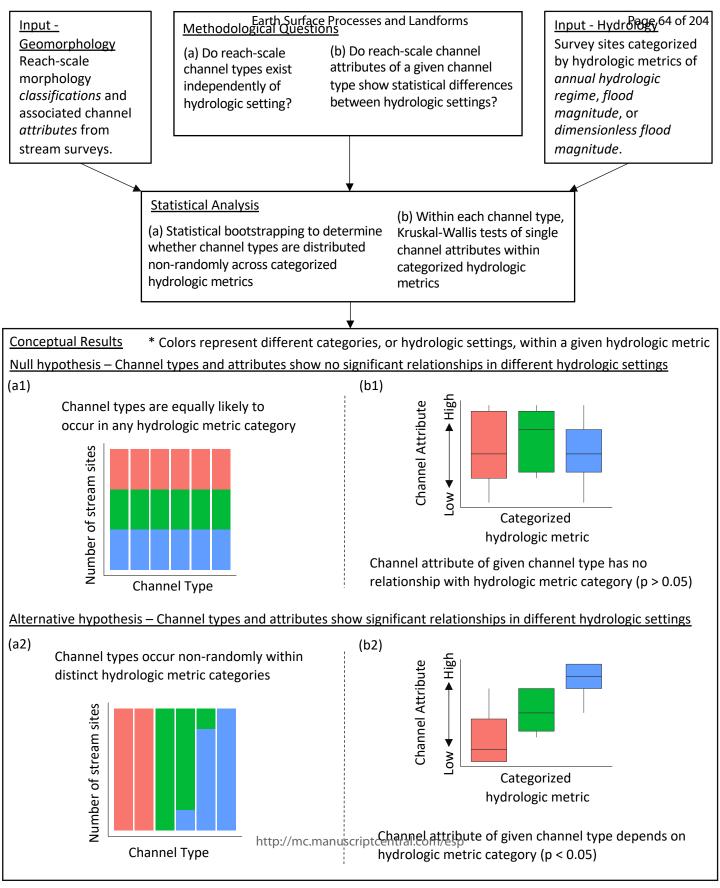
1490 test KW1). In the bar plots, black borders indicate that (a) the number of channel type

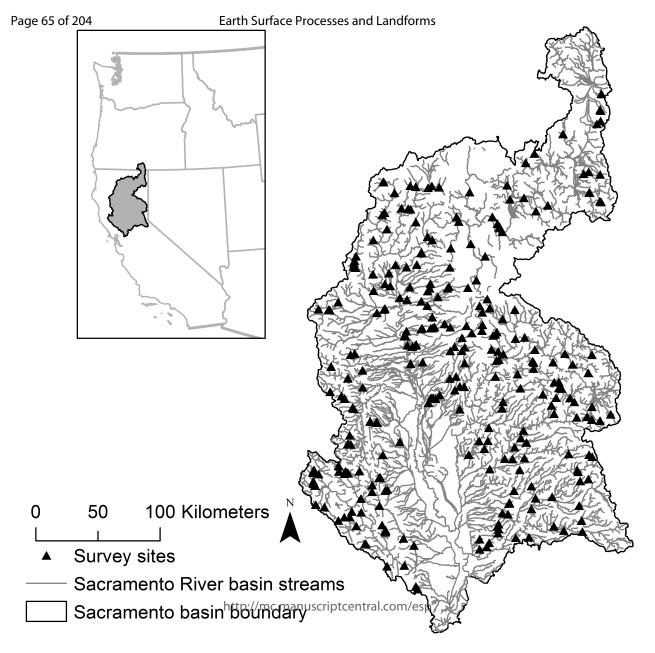
sites within a hydrologic setting or (b) the number of hydrologic settings within a channel

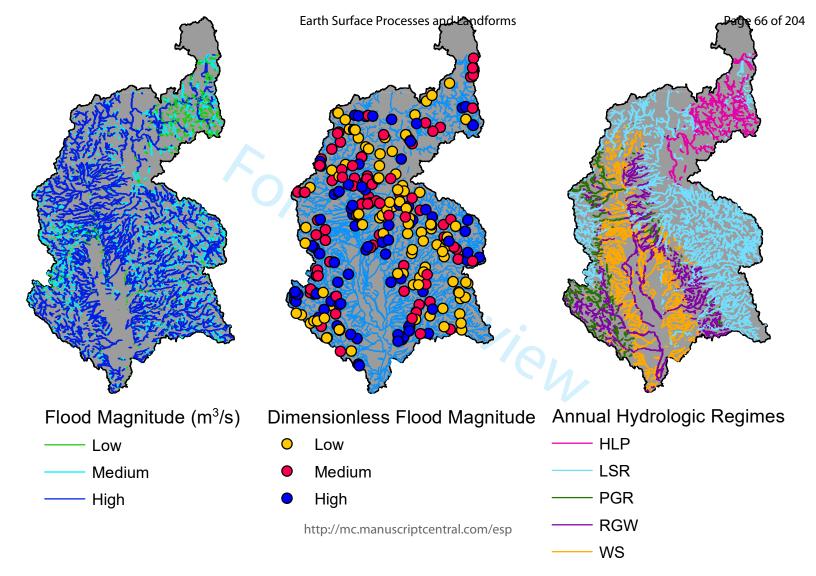
type have a less than 5% probability of occurrence when compared to bootstrapping

1493 results. In (c), a grey rectangle represents a significant difference (p < 0.05).

Class	Hydrologic Classification	Hydrologic Characteristics	Physical and Climatic Catchmer Controls
HLP (25 sites)	High elevation, low precipitation	Upland streams with low discharge, but a distinct snowmelt pulse	 Catchments predominantly located on the Modoc Plateau High elevations and dominate by volcanic rock and high organic content soils
LSR (120 sites)	Low-volume snowmelt and rain	 Transition between snowmelt and high-volume snowmelt and rain Bimodal with distinct spring snowmelt pulse and winter rain peaks 	Mid-elevation catchments with limited contributing areas and low winter temperatures
PGR (54 sites)	Perennial groundwater and rain	• Characteristics of winter storms (predictable winter rain events) and groundwater (low seasonality), but generally stable flows	Low elevation catchments with low riparian soils clay content o underlain by residual sedimentary rock materials
RGW (51 sites)	Rain and seasonal groundwater	Bimodal hydrograph driven by predictable winter rains and supplemented at other times by groundwater	 Low elevation catchments with limited winter precipitation ofter associated with igneous and metamorphic rock materials Coastal catchments with smal aquifers driving short residence times
WS (38 sites)	Winter storms	Predictable large fall and winter rainfall with January peak flows	Low elevation catchments with substantial winter precipitation

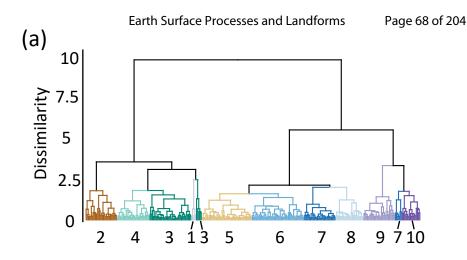

1494Table 1. Description of annual hydrologic regimes within the Sacramento River Basin1495(Adapted from Lane et al. (2017a, 2018b))HydrologicPhysical and Climatic Catel

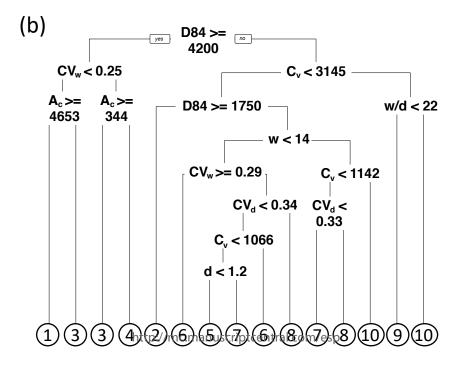

1498 Table 2. Statistical tests used to determine if hydrologic setting is a dominant control on

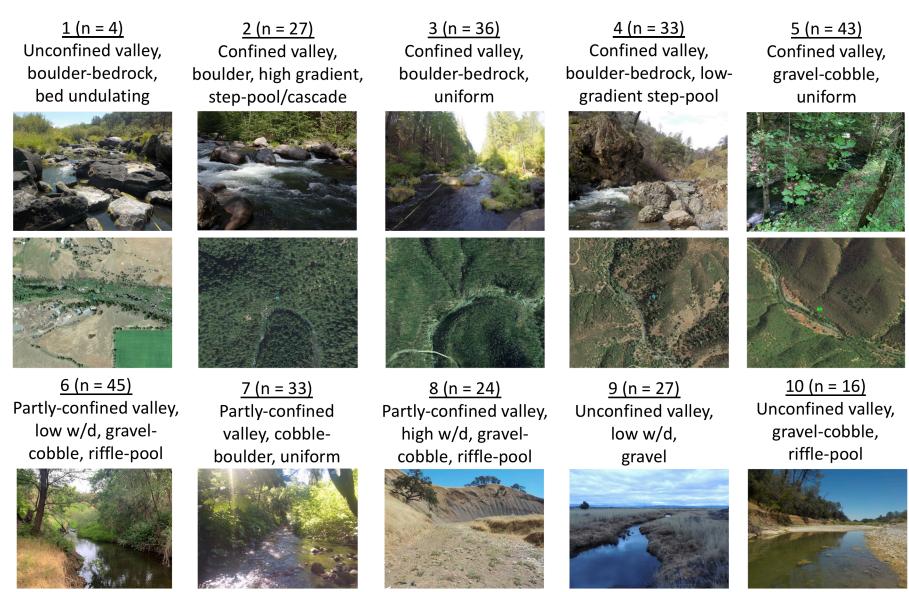

1499 reach-scale morphology

each-scale morphology			
Statistical tests	Type of statistical test	Significance meaning (<5% probability of occurrence)	Test abbreviatio
Reach-scale channel type tests			
Number of sites in a hydrologic setting (Figure 1, Test a)	Bootstrapping of terciles	The channel type occurs at a higher proportion in a single hydrologic setting than randomly expected	B1
Number of hydrologic settings in a channel type (Figure 1, Test a)	Bootstrapping of deciles	The channel type occurs in a lower number of hydrologic settings than randomly expected	B2
Reach-scale geomorphic attribute test			
Within channel type differences in attributes (Figure 1, Test b)	Kruskal-Wallis	A given attribute of the channel type displays significant differences between hydrologic settings	KW1

1500 1501

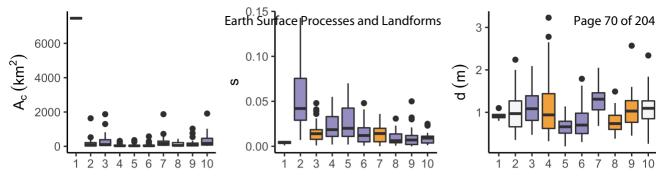


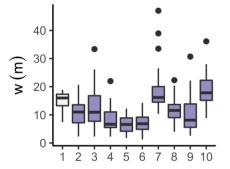


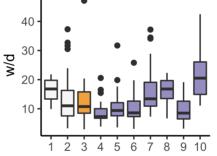

_Earth Surface Processes and and orms Page 67 of 204 w/d d w Channel Type 1 2 3 4 p < 0.05 p > 0.05 p < 0.05 (m) p (m) M p/w http://mc.manuscriptcentral.com/esr

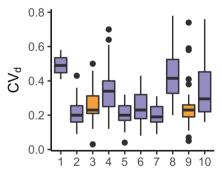
Channel type 4 sites grouped by hydrologic setting

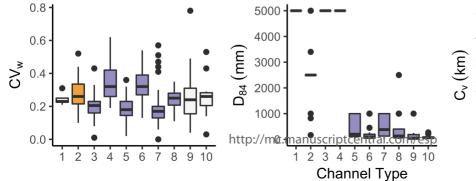
Earth Surface Processes and Landforms

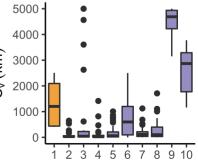


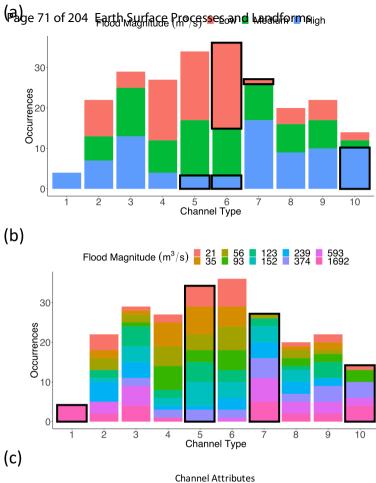


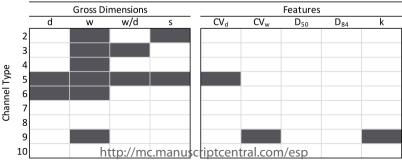

http://mc.manuscriptcentral.com/esp

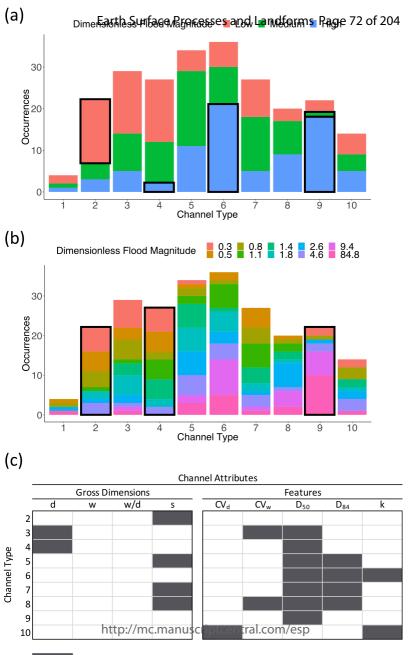


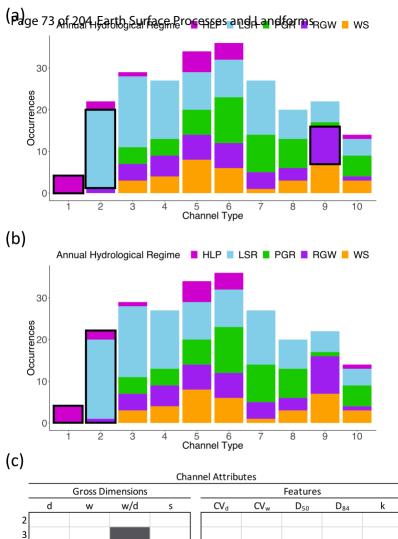












Significant relationship between flood magnitude settings

Significant relationship between dimensionless flood magnitude settings

Significant relationship between annual hydrological regime settings

http://mc.manuscriptcentral.com/esp

4

Supplementary information to 'Reach-scale bankfull channel types can exist independently of catchment hydrology'

C.F. Byrne, G.B. Pasternack, H. Guillon, B.A. Lane, S. Sandoval-Solis

Summary statistics of reach-scale sites and channel types

Table S1. Statistical measure of site attributes considered for classification of reach-scale channel types.

	Ac (km^2)	s	d (m)	w (m)	w/d	d/D50	CVd	CVw	k	D50 (mm)	D84 (mm)	Cv (m)
Minimum	1	0.000	0.2	1.3	2.9	0	0.03	0.00	1.01	2	2	1
Maximum	7498	0.143	3.2	47.0	47.1	1285	0.78	0.78	2.20	5000	5000	5000
Range	7497	0.143	3.0	45.7	44.2	1285	0.75	0.78	1.19	4998	4998	4999
Mean	261	0.020	1.0	11.0	12.6	58	0.27	0.25	1.22	249	1733	871
Median	53	0.014	0.9	9.4	10.6	11	0.24	0.24	1.20	70	405	109
Standard Deviation	901	0.020	0.5	6.7	7.1	143	0.13	0.11	0.16	655	2081	1455

Table S2. Median channel attributes considered for classification of reach-scale channel types.

Channel Type	Ac (km^2)	\mathbf{s}	d (m)	w (m)	w/d	d/D50	CVd	CVw	k	D50 (mm)	D84 (mm)	Cv (m)
1	7466	0.004	0.9	16.0	16.8	5	0.49	0.23	1.10	564	5000	1202
2	84	0.042	1.0	11.0	11.0	5	0.20	0.26	1.20	250	2500	28
3	100	0.014	1.1	10.9	10.8	6	0.23	0.20	1.20	190	5000	46
4	31	0.018	0.9	6.7	7.3	6	0.34	0.32	1.19	128	5000	23
5	30	0.020	0.7	6.6	9.4	10	0.20	0.18	1.12	57	200	62
6	32	0.012	0.7	6.8	8.6	23	0.23	0.32	1.20	40	95	598
7	164	0.014	1.3	16.2	13.4	16	0.19	0.17	1.23	87	380	114
8	54	0.006	0.7	11.6	16.8	28	0.42	0.25	1.19	27	130	104
9	74	0.007	1.0	8.1	8.5	65	0.23	0.24	1.15	11	45	4688
10	170	0.009	1.1	17.8	20.5	35	0.30	0.26	1.14	28	64	2868

Valley confinement-sediment size relationships

Within the main text of the associated manuscript, statistical relationships between valley confinement distances and sediment size are documented. Figure S1 displays the log-log regressions associated with the statistical metrics in the manuscript.

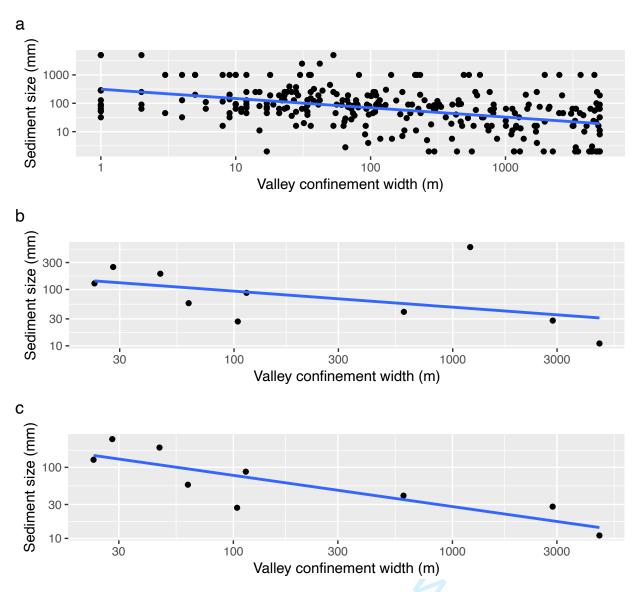


Figure S1. Relationships between valley confinement and sediment size for a) values at all 288 sites, b) median values at all ten channel types, and c) median values for channel types 2 through 10.

Calculation of site-specific flood discharge

In order to compare reach-scale channel types to flood magnitudes, flows for 2-, 5-, 10-, 25-, and 50-year recurrence interval flood events were estimated at each survey site. These estimations were developed based on the combination of USGS estimations of flow at 84 reference gauges with a minimum of 30-years of flow data and streams binned by defining annual hydrologic regime (Lane et al., 2018b; Parrett et al., 2011). Gauges were binned according to their spatial overlap with binned streams. Contributing area at each gauge location was also estimated using data from 10-m DEM and streamlines from the National Hydrography Dataset Plus Version 2. The binning of gauges by hydrologic regime resulted in notable and consistent differences between gauges in different hydrologic settings, especially high-elevation, low-elevation (HLP) gauges (Fig. S4).

Given the differences in gauge discharge estimates for each of the annual hydrologic regimes, estimation of discharges for all survey sites were also dependent upon the annual hydrologic regime in which it is located. Best-fit power functions were fit to the log-log drainage area-discharge relationships of the following form:

$$Q = kA^m$$

where Q is discharge, A is contributing drainage area, and k and m are numerical constants. Calculated discharges for each site were then used in the comparison of reach-scale channel types with flood magnitude and dimensionless flood magnitude. As discussed in the main text, estimates of flood magnitude for a 10-year recurrence interval were used in the statistal hydrogeomorphic analysis because statistical results were maximized or near maximum. The fit parameters for each of the annual hydrologic regimes at the 10-year recurrence interval are documented in Table S2.

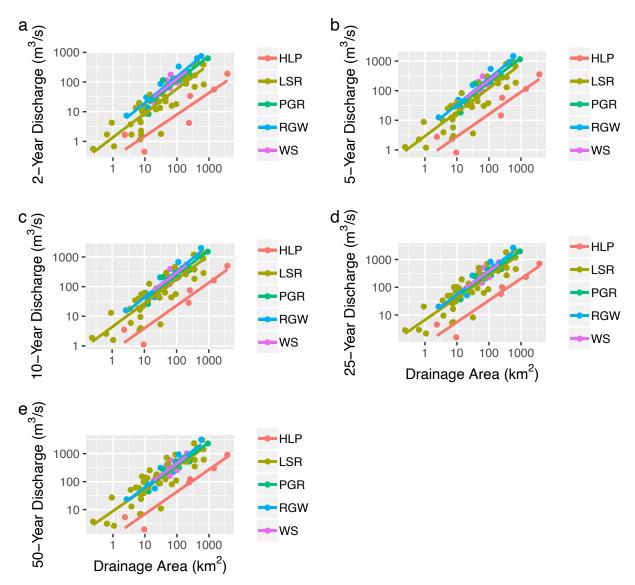


Figure S4. Area-discharge flood regressions for five hydrologic regions within the Sacramento River basin developed from USGS calculated flood magnitudes at reference gauges.

	HLP	LSR	PGR	RGW	WS
2-year	0.76	0.79	0.80	0.93	0.62
5-year	0.83	0.78	0.85	0.93	0.61
10-year	0.86	0.77	0.86	0.93	0.60
25-year	0.88	0.76	0.88	0.92	0.58
50-year	0.89	0.75	0.89	0.91	0.56

Table S3. Adjusted r-squared values for all log-transformed linear regressions in Figure S2 (p < 0.05 for all regressions).

Assessing site distances and variance in multiple dimensions

Informative analysis of multivariate distances between survey sites was informed by non-metric multidimensional scaling (NMDS) to visualize site distances (Anderson, 2001; Clarke, 1993; Kruskal, 1964), and principal component analysis (PCA) was used to understand what reach-scale attributes explained the most variance between sites. NMDS was conducted using the metaMDS function (vegan package) and calculated based upon Euclidean distance between rescaled attributes (Oksanen et al., 2019). The PCA used the 'prcomp' function (stats package) and was calculated based on rescaled attributes. In the presented results, the PCA vectors are plotted on top of the NMDS ordination as the metaMDS function automatically rotates the NMDS axes to those associated with the PCA analysis. The results helped to understand how the study sites and reach-scale attributes were related within multivariate space, but ultimately did not define the reach-scale classification.

Sediment size and valley confinement were identified as the most influential channel attributes in assessing distances between sites in multivariate space. The two-dimensional non-metric multidimensional scaling (NMDS) stress was 0.141 (Fig. S2). When analyzed in three-dimensions, the NMDS stress drops to 0.097, representative of a 'good' ordination (Clarke, 1993), with a non-metric coefficient of determination of 0.991 between observed dissimilarity and ordination distance (Fig. S3). The first and second principle component axes (PCAs) resulting from the NMDS ordination explained 45 and 19% of the variance in the data, respectively. Loadings of 0.94 for D84 and 0.91 for Cv for PCA-1 and PCA-2, respectively. These loading values indicate that these two variables had the strongest influence on multivariate variance between sites as compared to other independent variables.

Final channel types were made up of 4 to 45 sites. Clusters with a small number of sites were avoided, as outliers were expected to represent site-specific differences rather than larger basin trends. However, it was ultimately the uniqueness of cluster attributes that drove final classifications. For example, there are only four sites in channel type 1 (Fig. 5b), but the sites are clustered closely to one another and do not exhibit similarities to other channel types. That differentiates the grouping from the concept of a statistical outlier. An outlier is an individual sample far away from a grouping, while a set of outliers is a number of such randomly distributed individual samples probabilistically unlike to present as a tight grouping. Though a set of outliers could theoretically group by random chance, geomorphic interpretation of any grouping can evaluate whether a cluster is meets the concept of a channel type or just a random statistical artifact. In addition, Dunn's Tests aided in assessing uniqueness.

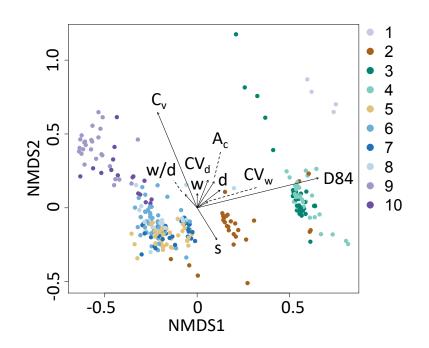


Figure S2. Site data plotted in the first two NMDS dimensions. The NMDS solution is oriented with the first two PCAs. Therefore, vectors represent the influence of hydrogeomorphic site attributes on the variance between sites. The longer the vector, the more variance is explained by the attribute.

5http://mc.manuscriptcentral.com/esp

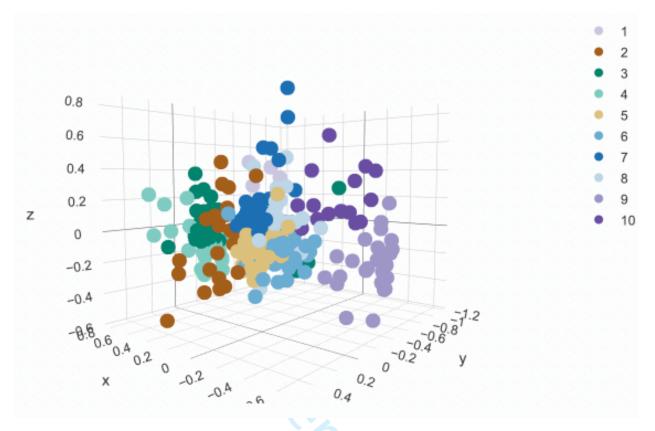


Figure S3. A three-dimensional representation of the NMDS organization of sites.

Accuracy of reach-scale channel types

Cross-validation of the classification tree was conducted in order to better understand the stability of the multivariate classification. The cross-validation metric is included in the manuscript as it provides the most simple representation of the classification. Two other methods were used to conduct tests of the ability of the classification to predict against unseen data: a multinomial logistic regression implemented with an artificial neural-network (ANN) approach and a generalized linear model (GLM) approach. The ANN approach was implemented using the "multinom" function ('nnet' package) and the GLM approach used the "glmnet" function ('glmnet' package). Both functions were run 100 times with a 70-30 percent random subsetting of the classified dataset for training and prediction, respectively. The 100 iterations were conducted to account for sites that may be more or less representative of a channel type and impact the prediction percentage. The average prediction rate of the 100 runs for the ANN and the GLM approaches were 80% and 77%, respectively, which are comparable results to the classification tree cross-validation percentage.

Comparison of statistical reach-scale morphological classifications in the Sacramento River basin

Multivariate statistical analysis was used here to generate a data-driven classification for the particular basin geomorphology (Kasprak et al., 2016; Sutfin et al., 2014), which is in contrast to classifications based on preconceived definitions of reach-scale morphology. This approach is preferable when there is uncertainty as to what channel types exist in a region, and the larger the region the more likely there will be such uncertainty. On the other hand, it is possible that the larger the region, there might exist rare, unique channel types missed by sampling and thus not represented in a data-driven classification methodology. Further difficulty in multivariate statistical classification arises when selecting the appropriate number of final channel types. The classification is likely to make more physical sense with fewer channel types due to large differences in just a few channel attributes, but it may not be representative of the true geomorphic variability in a region of interest. However, uncorrelated channel attributes not influential in the highest statistical splits will likely be uniform across types as more dissimilar sites are lumped together. Alternatively, retaining more channel types may capture more variability across more attributes, but the multivariate nature of clustering may be capturing differences that have no physical meaning or conflicting physical meaning on various branches of a hierarchical clustering dendrogram. Statistical tests that help in selecting the number of stream classes (e.g. the NbClust package) were found to be more indicative of clustering based on valley confinement and sediment size, but less indicative of less statistically dominant differences in reach-scale morphology like TVAs, which are fundamental to hydraulic differences in forms and critical in many established channel classifications (e.g. plane bed vs. riffle-pool) (Montgomery and Buffington, 1997).

The reach-scale morphological classification for the Sacramento River basin expands upon a previously developed data-driven sub-classification by Lane et al. (2017). Lane et al. (2017) only focused on sites in the LSR annual hydrological regime setting. The classification presented here includes 168 sites in other annual hydrological settings in addition to 120 in the LSR setting (Lane et al., 2017). This classification also quantified and accounted for valley confinement as opposed to using it only for qualitative interpretation in the previous classification. Five outcomes can be observed in a qualitative reconciliation between the two classifications: comparable channel types, sub-channel types exist in Lane et al. (2017) compared to broader channel types in the present Sacramento basin classification, broader channel types exist in Lane et al. (2017) compared to sub-channel types in the present Sacramento basin classification, channel types in the present classification do not exist in Lane et al. (2017), and channel types in Lane et al. (2017) do not exist in present Sacramento basin classification. More detailed relationships between the two classifications are presented in Table S4.

The Sacramento River basin reach-scale classification generally corresponds with other established classification systems. Here, we place our statistically-derived classification in the context of two of the most influential reach-scale classifications: The Montgomery and Buffington (1997) classification of mountain systems and the Rosgen channel classification system (Rosgen, 1994, 1996). A large majority of stream classes defined by Montgomery and Buffington (1997) are represented here; however, a number of additional channel types and valley settings are represented in the Sacramento basin as well. It may be that in smaller and more homogeneous landscapes (e.g. all confined mountain streams) fewer channel types exist (Montgomery and Buffington, 1997). The Sacramento basin classification indicates that valley confinement setting is likely to be important in differentiating channel types and associated hydrogeomorphic processes in more heterogeneous landscapes. Overly

simplistic or insufficient channel types may miss key differences in form that may be important to physical interpretation or ecohydraulic conditions. The Rosgen (1996) classification is more likely to encompass all channel types identified in the Sacramento Basin classification, but because it does not explicitly stratify channel types by valley confinement (which is not the same as Rosgen's entrenchment ratio), it misses an important landscape-scale topographic control on channel typology. Confinement plays an implicit role in the lettering in that system but is not alone at that level. Rosgen (1996) has an independent qualitative valley classification system. The Rosgen classification is broad in nature to span many channel types, but is not quantitatively tested and proven, so our proposed statistical methodology is likely superior within a specific basin by characterizing distinct and regionally appropriate reach-scale morphologies and their continuum within a specific river basin. Given the binned sampling approach used here, the presented channel types represent both commonly observed and rare reach-scale morphologies specific to the Sacramento basin, but likely unsuitable for other regions.

Classification methods should be applicable in any region and support development of channel types that are physically interpretable, correspond with other established channel classifications, and incorporate regionally specific information to tailor classifications to the particularities of the region that may not be captured in more narrowly defined or broad classifications (Montgomery and Buffington, 1997; Rosgen, 1996). This knowledge is key for fundamental understanding of regional river geomorphology and its interplay with hydrology. Furthermore, reach-scale classification provides a link to the defining physical habitat and ecohydraulics at locations within a river network (Kammel et al., 2016; Lane et al., 2018a). Therefore, it may support efforts to conserve and restore aquatic and riparian ecosystems that are key challenges in modern water resources management. For instance, reach scale classifications can be used to refine flow-ecology response relationships in well-established environmental flows methods such as ELOHA (Poff et al., 2010).

review

8 http://mc.manuscriptcentral.com/esp

Reconciliation Outcomes	Lane et al. (2017) channel types	Sacramento Basin channel types	Cause of reconciliation outcome
1. Comparable channel types	 * Confined headwater small boulder-cascade * Partly-confined large uniform * Unconfined large uniform boulder 	* Confined boulder high-gradient step-pool/cascade * Partly-confined cobble-boulder uniform * Unconfined boulder-bedrock bed undulating	* Channel types that exist across both classifications are likely defined by distinct channel attributes and exist across a wide variety of landscapes * Differences in channel type naming strategies and final statistics that drive nomenclature result in different channel type names
2. Sub-classifications in Lane et al. (2017) compared to broader channel types in present Sacramento basin classification	* Unconfined upland plateau large uniform * Unconfined anastomosing plateau small pool-riffle * Partly-confined expansion pool-wide bar	* Unconfined low w/d gravel * Partly-confined high w/d gravel-cobble riffle-pool	* When combined with a larger number of sites across various landscape settings, unconfined plateau and partly-confined expansion sites do not statistically differentiate themselves from other unconfined and partly-confined sites, respectively
3. Broader classifications in Lane et al. (2017) represented by multiple channel types in present Sacramento basin	* Partly-confined pool-riffle * Confined cascade/step-pool	* Partly-confined high w/d gravel-cobble riffle-pool * Partly-confined low w/d gravel-cobble riffle-pool * Confined boulder-bedrock low-gradient step-pool * Confined boulder-bedrock uniform	* Differences in w/d proved significant to define two types of riffle-pool streams in partly-confined settings, while variability metrics differentiated between step-pool and uniform streams of similar slope
4. Channel types in the present classification do not exist in Lane et al. (2017)		 * Confined gravel-cobble uniform * Unconfined gravel-cobble riffle-pool 	* Channel types exist in current classification, but not in Lane et al. (2017) due to the addition of sites in other landscape settings
5. Channel types in Lane et al. (2017) do not exist in present Sacramento basin classification	* Unconfined large meandering sand bed		* Changes in the defining hydrological settings of certain sites was changed between morphological classifications leading to those sites being excluded from the present classification (Lane et al., 2018)

Table S4. Comparison of reach-scale classification with Lane et al. (2017b).

Site data

Table S5. Reach-scale data for all sites used in geomorphic classification.

	Ac	s	d	w	w/d	d/D50	CVd	CVw	k	D50	D84	$\mathbf{C}\mathbf{v}$	Ls
HLP_518KNCAWC	47	0.041	0.5	13.0	25.8	2.0	0.12	0.42	1.1	248	1000	108	150
HLP_526CE0323	157	0.029	1.3	7.7	6.1	260.0	0.12	0.44	1.1	5	95	262	150
$HLP_{526}PS0072$	361	0.016	0.7	5.6	7.7	8.2	0.16	0.14	1.2	85	757	34	750
$HLP_526PS0396$	71	0.022	0.3	1.9	5.6	6.7	0.37	0.32	1.4	45	1000	2501	144
$HLP_526PS0440$	275	0.020	0.7	4.8	7.3	10.8	0.11	0.33	1.2	65	270	821	150
$\mathrm{HLP}_526\mathrm{PS}1420$	76	0.028	0.4	1.3	3.1	20.0	0.19	0.54	1.2	20	193	32	150
HLP_526PSCBBL	35	0.047	0.5	2.8	6.2	9.6	0.18	0.17	1.1	52	1000	0	150
$HLP_526PSCBLK$	14	0.005	0.4	3.3	7.8	200.0	0.08	0.22	1.3	2	2	1155	150
$HLP_{526WE0506}$	275	0.024	0.4	13.7	32.7	1.6	0.43	0.44	1.2	250	2500	172	150
HLP_526WTCACT	88	0.042	1.3	4.4	3.3	9.4	0.21	0.32	1.4	138	3400	9	150
HLP_527CE0093	13	0.054	0.4	2.7	6.5	25.0	0.32	0.36	1.3	16	250	36	298
$HLP_{527}PS0388$	32	0.015	0.5	1.8	3.8	17.2	0.18	0.21	1.1	29	77	65	143
$HLP_527PS1156$	18	0.042	0.5	2.1	4.4	13.9	0.20	0.27	1.1	36	111	26	150
$HLP_527PS1412$	25	0.043	0.6	2.4	4.0	22.2	0.17	0.16	1.3	27	147	72	150
$HLP_527SED084$	44	0.007	0.3	4.3	17.2	30.0	0.28	0.23	1.1	10	40	1682	293
HLP_3	45	0.010	0.3	8.8	33.7	0.1	0.21	0.03	1.7	3	6	3320	150
HLP_4	1030	0.020	1.3	10.5	12.9	0.1	0.05	0.22	1.1	11	190	5000	150
HLP_10	71	0.039	1.2	10.6	8.6	6.3	0.25	0.24	1.2	190	5000	616	150
HLP_24	44	0.007	0.4	16.0	37.3	0.4	0.11	0.26	1.3	1000	5000	536	150
HLP_28	233	0.003	0.5	23.1	47.1	2.6	0.28	0.43	1.2	190	5000	5000	150
HLP_37	591	0.012	0.9	8.2	8.9	4.7	0.12	0.29	1.4	190	5000	2628	150
HLP_53	7498	0.006	0.9	16.8	19.1	0.9	0.46	0.20	1.1	1000	5000	2509	150
HLP_54	7498	0.005	0.9	18.9	21.8	0.9	0.41	0.23	1.3	1000	5000	1956	250
HLP_{55}	7434	0.004	1.1	15.2	14.5	8.2	0.58	0.21	1.1	128	5000	449	150
HLP_59	7398	0.001	0.8	7.4	9.9	8.3	0.52	0.31	1.1	90	5000	404	150
$LSR_{504}PS0227$	544	0.009	1.6	30.7	19.1	16.0	0.25	0.31	1.3	100	250	4728	250
LSR_505BMCMCR	4	0.098	0.7	7.3	10.0	2.6	0.20	0.35	1.2	280	820	44	150
LSR_505CE0137	31	0.032	1.1	3.7	3.7	66.0	0.23	0.35	1.1	16	250	3150	148
LSR_505LBCAMR	9	0.143	0.9	7.1	8.7	2.2	0.22	0.28	1.2	390	2500	25	150
$LSR_505PS0156$	624	0.018	1.5	15.7	10.9	27.1	0.10	0.14	1.8	54	1000	0	250
LSR_505PS1180	187	0.023	1.1	14.1	16.3	15.1	0.53	0.27	1.7	75	205	2119	300
$LSR_{507}CE0581$	84	0.048	0.7	9.1	14.4	2.7	0.19	0.28	1.2	250	2500	14	198
$LSR_{507MZCAML}$	20	0.075	1.0	6.4	6.9	24.8	0.19	0.27	1.2	39	165	34	150
$LSR_{507}PS0122$	366	0.017	1.3	11.4	12.6	25.6	0.25	0.26	1.2	50	2500	108	150
$LSR_507PS0286$	6	0.076	0.4	2.3	5.8	5.6	0.26	0.42	1.1	79	2500	272	134
LSR_507PS0314	488	0.020	2.0	10.9	5.7	8.0	0.22	0.13	1.3	250	2500	28	150
$LSR_{507SHA915}$	68	0.048	1.1	9.5	8.7	17.2	0.29	0.17	1.4	64	5000	226	150
LSR_507WE0988	21	0.028	0.4	6.8	19.8	1.4	0.23	0.24	1.2	250	1000	1707	150
LSR_509ACNFPP	108	0.027	1.3	12.7	10.0	12.2	0.26	0.15	1.1	110	1000	114	600
$LSR_{509ACSFPP}$	119	0.028	1.5	16.6	11.2	18.6	0.18	0.44	1.2	80	1000	112	150
LSR_509ATCINC	231	0.017	1.2	16.2	13.4	14.0	0.11	0.06	1.3	87	1000	129	150
LSR_509BCCH32	48	0.026	1.3	11.7	9.4	10.1	0.18	0.20	1.1	130	1000	34	150
LSR_509BSCADC	22	0.048	0.7	6.7	10.0	3.5	0.17	0.19	1.2	200	1000	9	150
LSR_509CBCADC	16	0.079	1.3	7.4	6.1	1.3	0.20	0.22	1.5	1000	5000	30	150
LSR_509CTCADC	5	0.016	0.5	4.4	8.4	255.5	0.22	0.52	1.5	2	20	17	150

	Ac	s	d	w	w/d	d/D50	CVd	CVw	k	D50	D84	$\mathbf{C}\mathbf{v}$	Ls
LSR_509DCPWxx	439	0.021	1.5	22.3	18.5	1.5	0.69	0.25	1.3	1000	2500	35	250
LSR_509DRCBPC	316	0.028	1.2	21.5	19.1	3.9	0.15	0.19	1.2	300	1000	130	250
LSR_509ICPPCX	261	0.044	1.0	8.3	9.7	12.0	0.20	0.25	1.3	79	1000	118	300
LSR_509PS0049	79	0.015	1.2	39.0	34.5	579.1	0.31	0.47	1.5	2	64	437	285
$LSR_{509}PS0085$	132	0.042	1.8	20.6	12.6	7.1	0.22	0.26	1.3	250	2500	12	240
LSR 509PS0170	22	0.034	0.8	7.4	9.8	15.5	0.16	0.23	1.1	50	350	34	150
LSR 509PS0234	261	0.016	1.1	15.5	15.1	5.2	0.27	0.11	1.3	210	1000	56	500
LSR 514DNCLDC	24	0.036	1.0	9.7	10.9	1.0	0.21	0.23	1.2	1000	5000	10	150
LSR 514PS0099	500	0.015	2.1	25.6	13.7	5.6	0.35	0.23	1.2	370	5000	28	250
$LSR_{514SED078}$	76	0.011	0.7	20.8	28.9	11.3	0.19	0.15	1.3	64	250	1124	250
LSR 517LCCAYB	12	0.022	0.4	4.3	12.7	5.6	0.39	0.38	1.2	75	190	333	143
LSR 517PS0054	56	0.047	1.8	14.6	9.3	1.2	0.29	0.30	1.4	2500	5000	42	150
LSR 517PS0061	18	0.053	1.7	9.9	6.9	6.8	0.35	0.42	1.3	250	5000	105	150
LSR 517PS0074	25	0.042	1.1	12.2	11.1	6.3	0.19	0.20	1.2	180	1000	101	150
LSR_517WE0515	375	0.007	0.8	13.4	18.8	3.1	0.22	0.33	1.3	250	5000	15	150
LSR 518BTCASC	53	0.025	0.7	10.7	14.7	8.3	0.21	0.14	1.1	90	315	323	150
LSR_518CE0015	460	0.013	0.9	20.0	23.7	3.5	0.24	0.14	1.3	250	1000	36	425
LSR_518CE0034	64	0.020	0.9	14.4	17.1	3.6	0.24	0.17	1.4	250	1000	53	277
LSR 518CE0047	34	0.025	0.3	10.6	42.5	4.0	0.22	0.29	1.2	64	250	3140	148
LSR_518CE0114	1633	0.052	1.1	14.3	14.7	4.2	0.21	0.27	1.4	250	2500	26	376
LSR 518CE0242	26	0.015	0.5	9.8	19.9	7.8	0.10	0.04	1.4	64	64	1008	148
LSR_518CE0338	4	0.106	1.2	9.3	8.3	15.9	0.12	0.36	1.1	72	1000	81	150
LSR_518CE0543	238	0.005	0.5	12.3	26.6	230.0	0.21	0.21	1.1	2	2	3455	148
LSR_518CE0575	21	0.006	0.5	3.0	5.9	270.0	0.19	0.42	1.3	2	16	3302	141
$LSR_{518}CE0879$	1911	0.008	1.5	20.0	14.9	725.0	0.29	0.26	1.2	2	16	1160	198
LSR_518CE0895	2	0.013	1.0	8.5	8.3	64.6	0.24	0.24	1.5	16	64	3993	148
LSR_518CPCRCR	46	0.044	2.2	13.5	6.5	18.7	0.34	0.19	1.4	120	2500	38	300
LSR 518GZCUPx	35	0.013	1.0	13.1	15.3	13.5	0.35	0.25	1.4	71	1000	110	450
LSR_518PS0017	61	0.015	0.9	16.1	20.4	7.4	0.39	0.14	1.3	120	5000	12	150
$LSR_518PS0029$	526	0.040	1.2	12.4	11.0	3.7	0.29	0.37	1.2	320	2500	38	300
LSR 518PS0033	5	0.091	0.7	6.6	9.4	9.7	0.20	0.26	1.2	74	5000	12	143
LSR 518PS0045	11	0.052	0.5	5.5	12.4	1.7	0.29	0.49	1.3	280	5000	0	135
LSR 518PS0089	29	0.005	0.3	6.2	18.8	170.0	0.15	0.32	1.1	2	2	563	285
LSR_518PS0093	70	0.049	0.6	10.3	17.6	8.3	0.20	0.13	1.3	74	430	68	150
LSR_518PS0113	34	0.049	1.1	11.6	10.6	9.0	0.20	0.26	1.1	126	1000	22	150
LSR_518PS0125	1872	0.013	1.5	19.8	13.1	22.1	0.16	0.30	1.3	69	1000	12	250
LSR 518RCNAPC	27	0.024	1.2	17.2	14.9	16.2	0.22	0.28	1.3	75	270	1794	150
LSR_518SDCAHR	65	0.011	0.7	4.9	6.6	30.6	0.20	0.37	1.4	24	69	1005	150
LSR_518SED013	53	0.012	0.7	9.5	14.6	11.2	0.21	0.43	1.3	58	250	603	150
$LSR_518SED015$	60	0.005	0.6	13.6	21.2	33.7	0.20	0.21	1.1	19	73	397	250
LSR_518SED082	20	0.004	0.8	13.1	17.5	107.1	0.60	0.21	1.1	7	64	172	150
LSR_518SED086	50	0.032	1.0	10.8	11.6	10.5	0.29	0.17	1.4	95	2500	10	300
LSR_518SED089	30	0.011	0.2	6.0	31.7	4.9	0.29	0.09	2.0	40	150	430	150
LSR_518SED091	38	0.011	0.5	8.8	17.9	30.6	0.51	0.28	1.1	16	64	1008	150
LSR 518SNCABC	52	0.028	0.5	4.0	7.8	17.4	0.18	0.30	1.1	30	97	185	143

Table S5 (cont'd). Reach-scale data for all sites used in geomorphic classification (cont'd).

Table S5 ((cont'd).	Reach-scale	data for	all sites	used in g	eomorphic	classification	(cont'd).
) T		(

	Ac	s	d	w	w/d	d/D50	CVd	CVw	k	D50	D84	$\mathbf{C}\mathbf{v}$	Ls
LSR_518WE0521	60	0.020	1.4	14.9	10.9	15.9	0.17	0.23	1.3	88	310	61	150
LSR_518WLCBCP	24	0.031	0.4	1.6	4.0	30.9	0.24	0.39	1.2	13	49	1294	128
LSR_518WLCBWL	20	0.036	0.7	25.0	37.2	38.0	0.14	0.00	1.1	18	91	281	143
LSR_518YLCAFR	199	0.030	1.9	16.8	10.5	6.6	0.44	0.22	1.7	290	5000	0	250
LSR_521BTCLBC	305	0.014	0.9	8.5	9.2	470.5	0.14	0.08	1.2	2	5000	270	250
$LSR_522GSCBSC$	262	0.018	0.6	11.5	22.0	11.8	0.36	0.26	1.3	50	120	28	150
LSR_522MFSCRB	83	0.021	0.8	9.1	11.8	18.1	0.21	0.15	1.4	45	1000	21	150
$LSR_522PS0430$	247	0.030	1.1	14.5	13.9	11.7	0.18	0.13	1.4	93	1000	12	250
$LSR_522WE0767$	36	0.015	0.4	7.4	20.6	6.1	0.21	0.36	1.3	64	5000	21	150
$LSR_523PS0172$	9	0.075	1.0	5.3	5.3	9.2	0.09	0.24	1.2	110	2500	6	150
LSR_523PS0414	67	0.041	1.2	9.3	8.7	18.5	0.22	0.22	1.3	64	5000	6	150
LSR_523TMCATG	409	0.041	0.7	15.5	23.9	5.7	0.12	0.15	1.3	115	2500	8	150
$LSR_523WE0512$	67	0.029	0.4	6.8	20.7	5.4	0.20	0.21	1.4	64	2500	0	150
$LSR_526CE0341$	90	0.050	0.8	11.8	17.5	0.8	0.31	0.22	1.2	1000	2500	12	200
LSR_526CE0483	9	0.070	0.5	4.7	11.3	7.8	0.25	0.28	1.3	57	520	774	298
$LSR_526PS0220$	469	0.019	1.3	18.6	14.3	1.3	0.18	0.14	2.2	1000	1000	491	250
$LSR_526PS0356$	767	0.001	1.3	8.1	6.4	655.0	0.22	0.49	1.4	2	26	4820	150
LSR_526WE0744	154	0.026	0.4	11.2	31.6	0.2	0.14	0.26	1.2	2500	2500	31	150
LSR_0	298	0.002	0.7	18.4	25.2	11.4	0.27	0.14	1.1	64	90	3331	250
LSR_1	15	0.003	1.4	10.0	7.3	85.1	0.33	0.39	1.1	16	32	477	150
LSR_2	86	0.005	0.8	10.1	13.1	17.1	0.23	0.18	1.1	45	90	1174	150
LSR_5	101	0.050	0.8	6.6	8.5	17.2	0.18	0.20	1.3	45	90	3566	250
LSR_6	46	0.011	0.5	5.1	9.8	185.1	0.38	0.31	1.1	3	45	4386	150
LSR_7	1299	0.011	0.8	14.9	18.1	0.8	0.34	0.15	1.2	1000	5000	8	250
LSR_8	4	0.024	0.4	6.5	15.6	6.5	0.18	0.31	1.1	64	190	294	250
LSR_9	221	0.006	0.6	7.2	12.7	6.3	0.22	0.17	1.0	90	5000	5000	150
LSR_11	78	0.031	0.5	6.6	14.2	0.5	0.50	0.27	1.1	1000	5000	3606	150
LSR_{12}	4	0.026	0.9	3.5	3.9	7.0	0.24	0.27	1.1	128	5000	67	250
LSR_13	21	0.008	0.3	5.3	16.5	2.5	0.18	0.23	1.0	128	5000	78	150
LSR_14	148	0.033	1.8	14.8	8.1	1.8	0.12	0.51	1.3	1000	5000	10	250
LSR_15	11	0.033	0.6	5.9	10.4	12.5	0.29	0.24	1.2	45	5000	74	150
LSR_16	14	0.008	0.6	4.8	8.7	6.2	0.41	0.37	1.1	90	5000	80	150
LSR_17	33	0.016	0.9	6.4	6.8	0.9	0.21	0.62	1.1	1000	5000	214	150
LSR_{18}	181	0.008	1.0	16.0	15.4	8.1	0.60	0.25	1.1	128	5000	42	250
LSR_20	6	0.015	0.6	4.3	6.9	6.3	0.61	0.35	1.1	90	5000	10	150
LSR_21	8	0.024	0.4	2.3	6.4	4.0	0.64	0.29	1.1	90	5000	77	150
LSR_22	36	0.033	0.7	7.7	11.0	7.8	0.25	0.33	1.2	90	5000	190	250
LSR_23	13	0.026	1.3	7.7	5.9	1.3	0.18	0.20	1.1	1000	5000	4	150
LSR_25	733	0.016	0.8	2.3	2.9	0.8	0.46	0.14	1.2	1000	5000	4564	250
LSR_29	52	0.008	0.6	5.8	9.9	6.5	0.32	0.20	1.0	90	5000	203	150
LSR_32	821	0.010	1.9	33.4	17.5	1.9	0.23	0.21	1.1	1000	5000	82	250
LSR_34	1872	0.001	1.2	16.9	14.1	18.7	0.26	0.20	1.2	64	5000	33	250
LSR_36	250	0.006	0.7	14.0	20.3	10.8	0.40	0.35	1.4	64	190	17	250
LSR_38	288	0.017	0.7	9.2	13.4	10.2	0.35	0.43	1.1	90	190	34	250
LSR_40	123	0.015	1.5	17.3	11.4	1.5	0.21	0.24	1.1	1000	5000	142	150

							~~~	~ * *				~	-
	Ac	s	d	W	w/d	d/D50	CVd	CVw	k	D50	D84	Cv	Ls
$LSR_{41}$	417	0.0090	1.4	26.1	18.8	7.3	0.23	0.09	1.1	190	5000	68	250
$LSR_{42}$	723	0.0030	1.2	33.5	28.5	26.1	0.19	0.06	1.1	45	128	197	250
$LSR_{43}$	182	0.0040	0.7	6.3	8.6	11.5	0.38	0.41	1.4	64	5000	10	150
$LSR_{44}$	98	0.0280	0.8	11.7	15.1	4.1	0.15	0.10	1.0	190	2500	110	150
$LSR_{45}$	821	0.0010	1.5	24.1	15.7	12.0	0.41	0.22	1.2	128	5000	0	250
$LSR_{46}$	196	0.0090	0.7	13.1	18.5	7.9	0.24	0.20	1.2	90	5000	110	250
$LSR_47$	633	0.0080	1.1	19.1	17.1	1.1	0.21	0.31	1.2	1000	5000	36	250
$LSR_{48}$	312	0.0010	0.6	10.6	18.5	35.7	0.29	0.25	1.3	16	32	8	250
$LSR_{49}$	371	0.0300	0.6	18.2	30.5	0.6	0.36	0.52	1.2	1000	5000	9	250
$LSR_{50}$	47	0.0180	0.7	7.2	10.6	5.3	0.25	0.16	1.1	128	5000	251	150
PGR 0	14	0.0006	0.7	4.8	6.7	89.6	0.45	0.16	1.1	8	23	1106	150
PGR 2	221	0.0001	1.5	10.7	7.3	132.5	0.11	0.17	1.1	11	23	178	150
PGR 3	90	0.0040	2.1	47.0	22.9	64.0	0.21	0.57	1.1	32	64	687	250
PGR 4	47	0.0065	0.7	10.3	14.4	44.8	0.41	0.18	1.2	16	64	53	150
PGR 5	32	0.0107	0.7	6.1	9.2	10.4	0.30	0.34	1.2	64	90	1452	150
PGR_6	246	0.0041	1.5	18.4	12.7	11.4	0.19	0.20	1.2	128	200	117	250
PGR_0 PGR_7	48	0.0041	0.8	10.4 10.9	12.7	51.0	0.19	0.20	1.2	128	128	28	150
PGR 8	48 168	0.0118	2.8	13.9	5.0	0.7	0.20	0.10	1.1	5000	5000	20	150
	48	0.0130			13.6	64.5	0.23		1.1	11	90	15	
PGR_9 PGR_10	48 67	0.0090	0.7	9.7 9.5	11.7	101.8	$0.24 \\ 0.58$	0.13 0.20	1.2	8	90 64	15 91	150 150
rGn_10	07	0.0045	0.8	9.5	11.7	101.0	0.56	0.20	1.0	0	04	91	100
PGR_11	19	0.0126	0.7	8.4	11.9	15.6	0.19	0.27	1.1	45	128	55	150
$PGR_{12}$	32	0.0109	0.7	5.2	7.5	10.7	0.14	0.18	1.1	64	190	2	150
$PGR_{13}$	6	0.0023	1.1	4.6	4.1	12.4	0.26	0.42	1.1	90	5000	1	150
$PGR_{14}$	101	0.0088	1.6	14.6	9.5	24.2	0.25	0.19	1.3	64	1000	23	150
$PGR_{15}$	6	0.0153	0.7	5.3	7.3	0.2	0.20	0.42	1.2	5000	5000	0	150
PGR 16	245	0.0206	0.6	7.1	11.0	10.1	0.27	0.27	1.1	64	200	31	150
PGR 17	164	0.0051	1.0	15.3	15.3	91.3	0.25	0.18	1.2	11	23	217	150
PGR 18	10	0.0027	1.5	6.9	4.7	1.5	0.20	0.23	1.2	1000	5000	5	150
PGR 19	398	0.0002	1.1	14.5	13.1	12.3	0.26	0.17	1.5	90	190	10	250
PGR_20	52	0.0107	1.4	12.9	9.2	31.2	0.15	▲ 0.13	1.6	45	1000	104	150
PGR 21	16	0.0005	1.3	10.4	7.7	7.1	0.27	0.13	1.2	190	1000	21	150
PGR 22	38	0.0053	0.8	10.4 10.4	13.1	24.7	0.27	0.13	1.2	32	128	4	150
PGR 23	8	0.0007	0.8	6.3	7.6	51.5	0.27	0.22	1.1	16	32	790	150
PGR_23 PGR_24	5	0.0007	0.8	3.3	9.3	11.2	$0.13 \\ 0.37$	0.13	1.3	32	52 64	790 361	150
PGR_25	971	0.0038	0.4	23.0	25.9	27.7	0.37	0.49	1.1	32	64	1260	150
$PGR_{26}$	220	0.0011	1.5	15.0	10.2	261.4	0.21	0.19	1.1	6	11	118	150
$PGR_{27}$	6	0.0050	0.7	4.4	6.5	15.2	0.12	0.37	1.1	45	200	9	150
PGR_28	1025	0.0091	1.1	20.9	19.1	24.3	0.37	0.29	1.2	45	90	2671	250
$PGR_{29}$	43	0.0084	1.3	10.3	8.1	637.3	0.30	0.38	1.8	2	45		150
$PGR_{30}$	34	0.0003	0.5	2.6	5.4	240.5	0.17	0.24	1.2	2	8	4986	150
PGR_31	317	0.0185	0.9	6.5	7.3	19.8	0.34	0.44	1.3	45	5000	12	150
PGR_32	5	0.0014	0.9	6.1	6.7	14.1	0.38	0.19	1.1	64	200	303	150
PGR_33	17	0.0140	0.9	7.0	7.5	234.6	0.43	0.28	1.2	4	32	96	150
PGR_34	23	0.0039	1.1	23.6	21.4	49.0	0.28	0.25	1.1	23	64	1955	250
PGR 35	19	0.0033	0.7	5.6	8.6	40.5	0.34	0.43	1.3	16	45	1201	150

Table S5 (cont'd). Reach-scale data for all sites used in geomorphic classification (cont'd).

Table S5 (cont'd). Reach-scale data for all sites used in geomorphic classification (cont'd).	Table S5 (co	ont'd).	Reach-scale	data for	all sites	used in	geomorphic	classification	(cont'd).
-----------------------------------------------------------------------------------------------	--------------	---------	-------------	----------	-----------	---------	------------	----------------	-----------

	Ac	s	d	w	w/d	d/D50	$\mathrm{CVd}$	CVw	k	D50	D84	$\mathbf{C}\mathbf{v}$	Ls
PGR_36	11	0.0048	1.2	9.2	7.7	74.1	0.34	0.33	1.1	16	90	92	150
PGR_37	21	0.0054	1.4	7.7	5.6	7.3	0.21	0.21	1.2	190	5000	23	150
PGR_38	3	0.0308	0.6	4.0	6.7	4.7	0.60	0.25	1.1	128	1000	12	150
PGR_41	46	0.0143	0.9	6.6	7.4	4.7	0.22	0.18	1.3	190	5000	41	150
PGR_42	42	0.0025	0.8	7.3	9.4	17.3	0.31	0.35	1.4	45	200	3	150
PGR_43	48	0.0057	0.9	11.7	12.7	10.2	0.35	0.29	1.2	90	200	69	150
PGR_44	135	0.0013	1.1	15.5	14.1	68.8	0.30	0.26	1.1	16	32	1647	150
$PGR_{45}$	204	0.0014	1.0	9.1	9.1	250.5	0.57	0.17	1.1	4	11	1710	150
PGR_47	1027	0.0092	1.0	28.0	28.0	62.4	0.44	0.21	1.1	16	45	3193	250
PGR_509BCCBPW	164	0.0142	0.7	16.9	23.6	5.8	0.27	0.07	1.3	125	1000	155	250
PGR_513PS0024	26	0.0280	3.2	14.2	4.4	50.4	0.30	0.19	1.2	64	5000	11	250
PGR_504CE0210	193	0.0155	1.6	15.1	10.0	6.4	0.26	0.16	1.1	250	250	4771	250
$PGR_{508}PS0458$	614	0.0240	0.8	26.6	34.1	27.3	0.19	0.11	1.0	30	79	527	250
PGR_513PS0088	577	0.0185	0.9	10.2	12.1	23.1	0.20	0.32	1.1	40	95	97	250
PGR_513PS0200	96	0.0155	0.8	9.0	12.3	22.1	0.31	0.19	1.3	37	115	76	150
PGR_524PS0202	299	0.0070	1.1	20.4	20.8	26.1	0.34	0.21	1.1	41	140	166	250
$PGR_{513}PS0248$	62	0.0200	0.6	7.8	15.1	7.9	0.26	0.10	1.1	70	240	24	150
PGR_524SHA916	271	0.0150	1.7	12.5	7.5	16.5	0.27	0.17	1.2	80	5000	73	250
PGR_513BTCACC	46	0.0260	0.5	5.5	12.4	5.0	0.34	0.26	1.2	100	5000	17	150
RGW_0	8	0.0260	0.9	5.8	6.9	0.9	0.39	0.30	1.3	1000	5000	3	150
RGW_1	6	0.0230	0.4	5.3	13.8	12.1	0.51	0.28	1.1	32	200	1	150
RGW_2	37	0.0060	0.8	8.8	11.3	6.1	0.32	0.10	1.1	128	200	62	150
RGW_3	40	0.0090	1.1	18.1	16.2	5.9	0.14	0.21	1.4	190	5000	95	250
RGW_4	241	0.0030	1.8	36.1	19.6	115.0	0.63	0.19	1.1	16	45	1707	250
RGW_5	5	0.0110	0.4	3.4	8.1	9.2	0.20	0.22	1.1	45	90	235	150
RGW_6	35	0.0035	0.4	7.4	19.6	34.5	0.42	0.23	1.2	11	16	748	150
RGW_7	5	0.0060	1.2	15.1	12.4	1.2	0.78	0.32	1.3	1000	1000	233	150
RGW_8	197	0.0030	1.3	13.2	10.5	39.2	0.19	0.22	1.2	32	64	5000	250
RGW_9	263	0.0020	2.1	22.0	10.7	16.1	0.24	0.44	1.2	128	5000	4	250
RGW_10	22	0.0090	0.8	11.2	14.3	0.8	0.28	0.31	1.3	1000	1000	221	150
RGW_11	52	0.0060	1.1	14.6	13.8	66.2	0.27	0.51	1.1	16	64	63	150
RGW_12	7	0.0080	0.5	3.1	6.7	14.5	0.18	0.16	1.0	32	128	9	150
RGW_15	97	0.0080	0.8	9.4	12.3	47.7	0.20	0.15	1.1	16	32	4889	150
RGW_16	97	0.0010	1.3	12.2	9.2	29.5	0.21	0.25	1.1	45	200	812	150
RGW_18	41	0.0370	1.4	9.9	7.1	0.4	0.34	0.32	1.3	5000	5000	0	150
RGW_23	79	0.0030	0.8	6.7	8.8	8.4	0.42	0.25	1.3	90	5000	817	150
$RGW_27$	10	0.0030	0.7	4.6	6.4	129.7	0.17	0.15	1.3	6	16	1365	150
RGW_29	195	0.0020	1.0	11.6	11.5	5.3	0.31	0.10	1.2	190	5000	18	150
RGW_31	181	0.0010	1.0	16.1	15.6	128.9	0.24	0.10	1.3	8	32	5000	250
RGW_36	327	0.0040	0.9	15.1	17.5	13.4	0.23	0.25	1.1	64	128	4269	250
RGW_37	136	0.0040	1.3	9.9	7.6	118.8	0.23	0.20	1.4	11	23	1124	150
RGW_41	43	0.0200	1.4	8.7	6.3	6.9	0.21	0.21	1.0	200	5000	233	150
RGW_42	40	0.0020	1.0	9.4	9.5	15.5	0.30	0.15	1.3	64	200	93	250
RGW_43	31	0.0200	1.0	11.7	11.6	5.3	0.32	0.16	1.1	190	5000	29	150
RGW_44	7	0.0130	1.1	7.2	6.7	0.3	0.35	0.35	1.6	5000	5000	53	150

	Ac	s	d	w	w/d	d/D50	CVd	CVw	k	D50	D84	$\mathbf{C}\mathbf{v}$	Ls
RGW_45	4	0.0200	0.5	6.8	12.6	6.0	0.31	0.39	1.2	90	1000	41	150
RGW_46	9	0.0270	0.7	6.6	9.4	15.5	0.10	0.18	1.0	45	128	17	150
RGW_47	40	0.0070	1.2	12.4	10.4	13.2	0.18	0.29	1.1	90	200	1488	250
RGW_48	4	0.0060	0.6	5.5	8.9	0.6	0.16	0.19	1.1	1000	1000	5	150
$RGW_{50}$	8	0.0080	0.8	16.3	20.0	4.1	0.27	0.22	1.2	200	1000	9	250
RGW 51	52	0.0100	1.3	11.0	8.9	6.2	0.40	0.31	1.1	200	5000	1415	150
RGW 507CE0181	27	0.0200	0.6	4.1	7.6	2.2	0.40	0.24	1.1	250	1000	764	150
RGW 520CE0562	87	0.0110	1.4	11.0	8.2	21.2	0.11	0.04	1.2	64	250	4808	250
RGW 509PCDTWR	21	0.0250	1.1	7.2	6.6	17.4	0.16	0.11	1.0	64	115	72	150
RGW 514CE0139	39	0.0270	0.6	8.2	15.4	2.2	0.10	0.40	1.2	250	1000	598	150
10W_0140100		0.0210	0.0	0.2	10.4	2.2	0.00	0.40	1.2	200	1000	050	100
$RGW_{514}PS0351$	37	0.0150	1.3	17.1	13.3	10.9	0.09	0.18	1.1	120	380	313	250
$RGW_513PS0008$	19	0.0290	1.2	9.1	8.6	14.7	0.37	0.29	1.2	80	1000	0	150
RGW_513STCAIV	8	0.0480	1.0	7.7	8.1	5.8	0.14	0.43	1.1	150	450	36	150
$RGW_517PS0078$	19	0.0350	0.7	5.8	9.0	7.3	0.21	0.32	1.2	92	1000	448	150
$RGW_{514}CE0555$	63	0.0580	0.3	2.7	8.2	1.3	0.24	0.27	1.2	250	1000	2	150
RGW 504PS0019	199	0.0060	0.8	7.9	10.2	35.1	0.32	0.13	1.1	22	40	4688	150
RGW 504CE0657	100	0.0110	0.5	6.1	16.4	7.1	0.59	0.15	1.4	64	250	5000	150
RGW 504PS0051	74	0.0210	1.3	22.2	17.1	23.9	0.13	0.30	1.2	55	185	4579	250
RGW 504PS0371	161	0.0100	1.0	14.6	18.2	40.6	0.58	0.28	1.1	24	80	4499	250
RGW_507PS0142	196	0.0100	1.5	21.2	16.3	40.0 17.2	0.38	0.41	1.3	85	250	295	250 250
			1.0										
RGW_508BERPRK	292	0.0110	1.4	12.4	10.0	22.2	0.38	0.26	1.0	95	5000	468	250
RGW_504DCFRxx	69	0.0360	1.5	8.1	6.0	5.9	0.49	0.34	1.1	250	5000	23	150
$RGW_{504}WE0527$	68	0.0290	1.7	17.8	10.4	7.2	0.09	0.10	1.1	250	2500	24	250
$RGW_{509}CE0305$	285	0.0210	1.0	19.6	22.3	15.8	0.48	0.31	1.2	80	192	98	250
RGW_509PS0334	302	0.0190	1.8	18.6	10.6	19.8	0.15	0.30	1.1	90	380	94	250
WS 0	77	0.0040	0.6	6.0	10.0	6.6	0.03	0.01	1.8	90	5000	19	250
WS 1	93	0.0030	0.8	7.4	9.4	280.5	0.24	0.18	1.1	3	23	65	150
WS 3	33	0.0290	0.2	3.2	14.5	7.0	0.04	0.02	1.1	32	128	670	250
WS 4	100	0.0010	1.1	11.1	10.1	69.2	0.12	0.32	1.4	16	45	731	250
WS 5	69	0.0030	0.5	8.0	16.1	89.3	0.45	0.20	1.5	6	32	401	150
WS_7	57	0.0030	1.0	12.0	11.6	8.1	0.16	0.11	1.1	128	200	27	150
WS_9	10	0.0170	0.6	4.2	6.9	4.8	0.33	0.28	1.1	128	5000	23	150
WS_10	69	0.0038	0.7	12.1	18.1	29.7	0.28	0.11	1.3	23	45	466	150
WS_11	32	0.0140	1.1	8.1	7.5	5.4	0.23	0.10	1.1	200	5000	5	150
WS_12	25	0.0090	0.9	7.4	8.8	9.4	0.23	0.15	1.1	90	200	56	150
WS_13	100	0.0040	1.0	8.3	8.2	62.8	0.29	0.12	1.3	16	45	580	150
WS 14	83	0.0160	0.8	13.2	15.6	37.3	0.27	0.26	1.3	23	200	64	150
WS_16	6	0.0170	0.7	4.4	3.6	7.3	0.28	0.25	1.3	90	1000	2	150
WS_17	10	0.0050	0.4	5.4	13.2	72.9	0.32	0.30	1.4	6	64	144	150
WS_18	6	0.0140	0.6	4.3	7.4	104.2	0.22	0.23	1.1	6	23	866	150
WS_20	69	0.0000	1.2	7.1	6.0	588.6	0.22	0.22	1.1	2	2	4375	150
WS_514PS0084	7	0.0000	0.5	4.0	7.9	51.0	0.41	0.78	1.1	10	1000	3842	150
WS_515PS0490	30	0.0010	1.0	6.7	6.7	515.0	0.20	0.06	1.1	2	2	4688	150
WS_520PS0202	25	0.0010	1.0	8.4	8.7	480.0	0.23	0.29	1.2	2	2	5000	150
WS_511CE0663	35	0.0120	1.6	7.6	4.9	815.0	0.23	0.13	1.2	2	250	1922	150
	00	5.0120	1.0		1.0	010.0	0.20	0.10		-	-00	10-2	100

Table S5 (cont'd). Reach-scale data for all sites used in geomorphic classification (cont'd).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ac	s	d	w	w/d	d/D50	CVd	CVw	k	D50	D84	$\mathbf{C}\mathbf{v}$	Ls
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														150
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														150
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
WS_508SHA910840.0150.922.123.821.60.160.281.6431103066250WS_508SHA911890.0102.317.311.197.50.760.431.124553279250WS_508SHA9121530.0101.617.013.442.60.490.181.138723777250WS_511PS0401550.0302.68.83.41285.00.070.151.22134175150WS_514CE0171560.0161.814.38.228.00.150.151.2642502088250WS_519CE0211860.0061.07.57.7515.00.260.171.1223292150WS_505PS0174500.0181.511.38.13.30.200.211.2445500050250														
WS_508SHA911890.0102.317.311.197.50.760.431.124553279250WS_508SHA9121530.0101.617.013.442.60.490.181.138723777250WS_511PS0401550.0302.68.83.41285.00.070.151.22134175150WS_514CE0171560.0161.814.38.228.00.150.151.2642502088250WS_519CE0211860.0061.07.57.7515.00.260.171.1223292150WS_505PS0174500.0181.511.38.13.30.200.211.2445500050250														250
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	—													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														250
WS_514CE0171       56       0.016       1.8       14.3       8.2       28.0       0.15       0.15       1.2       64       250       2088       250         WS_519CE0211       86       0.006       1.0       7.5       7.7       515.0       0.26       0.17       1.1       2       2       3292       150         WS_505PS0174       50       0.018       1.5       11.3       8.1       3.3       0.20       0.21       1.2       445       5000       50       256	_													
WS_519CE0211       86       0.006       1.0       7.5       7.7       515.0       0.26       0.17       1.1       2       2       3292       150         WS_505PS0174       50       0.018       1.5       11.3       8.1       3.3       0.20       0.21       1.2       445       5000       50       250														
WS_505PS0174 50 0.018 1.5 11.3 8.1 3.3 0.20 0.21 1.2 445 5000 50 250														150
WS_526PS0764 88 0.085 1.3 11.0 8.6 1.3 0.17 0.40 1.1 1000 2500 647 250														
				1.3	-11.0	8.6	13	0.29	0.29	1.5	1000			

Table S5 (cont'd). Reach-scale data for all sites used in geomorphic classification (cont'd).

16 http://mc.manuscriptcentral.com/esp

#### References

Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology **26** : 32–46. DOI: 10.1111/j.1442-9993.2001.01070.pp.x [online] Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1442-9993.2001.01070.pp.x/abstract (Accessed 10 October 2017)

Clarke KR. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology **18** : 117–143. DOI: 10.1111/j.1442-9993.1993.tb00438.x [online] Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1442-9993.1993.tb00438.x/abstract (Accessed 10 October 2017)

Kammel LE, Pasternack GB, Massa DA, Bratovich PM. 2016. Near-census ecohydraulics bioverification of *Oncorhynchus mykiss* spawning microhabitat preferences. Journal of Ecohydraulics 1 : 62–78. DOI: 10.1080/24705357.2016.1237264 [online] Available from: https://www.tandfonline.com/doi/full/10.1080/24705357.2016.1237264 (Accessed 10 September 2018)

Kasprak A et al. 2016. The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks. PLOS ONE **11** : e0150293. DOI: 10.1371/journal.pone.0150293 [online] Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150293 (Accessed 25 January 2018)

Kruskal JB. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika **29** : 1–27. DOI: 10.1007/BF02289565 [online] Available from: https://link.springer. com/article/10.1007/BF02289565 (Accessed 7 February 2018)

Lane BA, Pasternack GB, Dahlke HE, Sandoval-Solis S. 2017. The role of topographic variability in river channel classification. Progress in Physical Geography : 0309133317718133. DOI: 10.1177/0309133317718133 [online] Available from: http://dx.doi.org/10.1177/0309133317718133 (Accessed 22 August 2017)

Lane BA, Pasternack GB, Sandoval-Solis S. 2018a. Integrated analysis of flow, form, and function for river management and design testing. Ecohydrology DOI: 10.1002/eco.1969 [online] Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/eco.1969 (Accessed 9 April 2018)

Lane BA, Sandoval-Solis S, Stein ED, Yarnell SM, Pasternack GB, Dahlke HE. 2018b. Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management. Environmental Management DOI: 10.1007/s00267-018-1077-7 [online] Available from: http://link. springer.com/10.1007/s00267-018-1077-7 (Accessed 2 July 2018)

Montgomery DR, Buffington JM. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin **109** : 596–611. [online] Available from: http://gsabulletin. gsapubs.org/content/109/5/596.short (Accessed 28 August 2017)

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2019. Vegan: Community ecology package [online] Available from: https://CRAN.R-project.org/package=vegan

Parrett C, Veilleux A, Stedinger JR, Barth NA, Knifong DL, Ferris JC. 2011. Regional skew for California, and flood frequency for selected sites in the Sacramento-San Joaquin River Basin, based on data through water year 2006. U. S. Geological Survey

Poff NL et al. 2010. The ecological limits of hydrologic alteration (ELOHA): A new framework

for developing regional environmental flow standards. Freshwater Biology **55** : 147–170. [online] Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2427.2009.02204.x/full (Accessed 17 August 2016)

Rosgen DL. 1994. A classification of natural rivers. CATENA **22** : 169–199. DOI: 10.1016/0341-8162(94)90001-9 [online] Available from: http://www.sciencedirect.com/science/article/pii/0341816294900019 (Accessed 28 August 2017)

Rosgen DL. 1996. Applied river morphology. Wildland Hydrology

Sutfin NA, Shaw JR, Wohl EE, Cooper DJ. 2014. A geomorphic classification of ephemeral channels in a mountainous, arid region, southwestern Arizona, USA. Geomorphology **221** : 164–175. DOI: 10.1016/j.geomorph.2014.06.005 [online] Available from: http://www.sciencedirect.com/science/article/pii/S0169555X14003031 (Accessed 27 January 2018)

ini. (Accessi