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Abstract

Earthquakes in seismological catalogs and acoustic emission events in lab experiments can be statistically described as a

linear Hawkes point process, where the spatio-temporal rate of events is a linear superposition of background intensity and

the aftershock clusters triggered by preceding activity. Traditionally, statistical seismology has interpreted this model as the

outcome of an epidemic branching process, where one-to-one causal links can be established between mainshocks and aftershocks.

Declustering techniques have been used to infer the underlying triggering trees and relate their topological properties with

epidemic branching models. Here, we review how the standard Epidemic Type Aftershock Sequence (ETAS) model extends

from the Galton-Watson (GW) branching processes and bridges two extreme cases: Poisson sampling and scale-free power-law

trees. We report the most essential topological properties expected in GW epidemic trees: the branching probability, the

distribution of tree size, the expected family size, and the relation between average leaf-depth and tree size. We find that such

topological properties depend exclusively on two sampling parameters of the standard ETAS model: the average branching

ratio N b and the exponent ratio α/b determining the branching probability distribution. From these results, one can use the

memory-less GW as a null-model for empirical triggering processes and assess the validity of the ETAS model to reproduce the

statistics of natural and artificial catalogs.
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• Epidemic aftershock models are interpreted as branching processes with causal-
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• If valid, model predictions can be used to classify natural and artificial catalogs.
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Abstract

Earthquakes in seismological catalogs and acoustic emission events in lab experiments
can be statistically described as a linear Hawkes point process, where the spatio-
temporal rate of events is a linear superposition of background intensity and the after-
shock clusters triggered by preceding activity. Traditionally, statistical seismology has
interpreted this model as the outcome of an epidemic branching process, where one-to-
one causal links can be established between mainshocks and aftershocks. Declustering
techniques have been used to infer the underlying triggering trees and relate their topo-
logical properties with epidemic branching models. Here, we review how the standard
Epidemic Type Aftershock Sequence (ETAS) model extends from the Galton-Watson
(GW) branching processes and bridges two extreme cases: Poisson sampling and scale-
free power-law trees. We report the most essential topological properties expected in
GW epidemic trees: the branching probability, the distribution of tree size, the ex-
pected family size, and the relation between average leaf-depth and tree size. We find
that such topological properties depend exclusively on two sampling parameters of
the standard ETAS model: the average branching ratio Nb and the exponent ratio
α/b determining the branching probability distribution. From these results, one can
use the memory-less GW as a null-model for empirical triggering processes and assess
the validity of the ETAS model to reproduce the statistics of natural and artificial
catalogs.

1 Introduction

The concept of aftershocks is traditionally associated with seismology (Utsu et
al., 1995), but similar phenomena have been observed in other natural systems and
are common in many mechanical processes in rocks, composites and porous materials
(Benioff, 1951; Hirata, 1987; Baró et al., 2013; Ribeiro et al., 2015; Davidsen et al.,
2017). Aftershocks are identified in sequences of point events as a sudden increase of
the activity causally linked to a previous event—usually stronger— called a mainshock.
The empirical Omori-Utsu law (Utsu et al., 1995) describes the common temporal
evolution of the number of aftershocks after time τ since a mainshock of magnitude
mMS as:

NAS(τ |mMS) ∼
k10mMS

(C + τ)p
, (1)

where p is a power-law exponent usually close to 1 and k a productivity factor. Ad-
ditionally, aftershocks are spatially clustered, usually according to power-law decay
with distance to the mainshock r := ||r− rMS||, being r and rMS the locations of the
aftershock and the mainshock respectively (Guo & Ogata, 1995). Different sophistica-
tions have been proposed accounting for more precise observations such as anisotropic
spatial drift of the aftershock production and non-factorizable magnitude dependen-
cies (Ogata & Zhuang, 2006), generalized scaling forms (Vere-Jones, 2005; Saichev et
al., 2005; Davidsen & Baiesi, 2016) or more complex temporal decay forms (Davidsen
et al., 2017; Baró & Davidsen, 2017). Such details are excluded from the following
mathematical and numerical developments but will be recovered in the discussion of
the results.

Due to the complexity of the seismogenic mechanisms, statistical seismology
considers all earthquakes —mainshocks and aftershocks— as non-isolated stochastic
events in space and time, rather than the outcome of deterministic mechanical pro-
cesses. Mainshocks and aftershock sequences from different mainshocks coexist in the
same regions and temporal windows. As consequence, all events are customarily in-
terpreted as point events in a stochastic point process, determined by an intensity
µ(t, r,m) accounting for the instantaneous probability of finding an event defined by a
mark —in this case, the earthquake magnitude m— at a spatiotemporal (t, r) location.
Simple proportional hazard models consider events to be independent, with a space-
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Figure 1. Schematic representation of a temporal sequence of aftershocks as events in a

marked point process (top); the intensity can be inferred under the assumption of a linear

Hawkes process (center); and interpreted as a branching process (bottom). Background events

occur at Depth = 0. Dark green circles represent leaves or singlets if Depth = 0.

time dependent µ (Varotsos et al., 1996). More sophisticated hazard models take into
account the correlations between events caused by aftershock production (Vere-Jones
& Ozaki, 1982; Ogata, 1988; Michael, 1997; Zhuang et al., 2002; Turcotte et al., 2007).
The most simple aftershock model is to consider a linear Hawkes self-exciting pro-
cess (Hawkes & Oakes, 1974) incorporating the observations of statistical seismology.
In a linear Hawkes process, the intensity can be expressed as the linear superposition
of a background rate µ0 and the individual contribution of all previous events {i} with
a triggering term Ψi:

µ(t, r,m) = µ0(t, r,m) +
∑

i|ti<t

Ψi(m, t, r|mi, ti, ri). (2)

Notice that the linear Hawkes model assumes an additive contribution for each event in
the intensity, meaning that all events can generate aftershocks. This effective stochastic
process is often interpreted as the result of an epidemic or branching process (Vere-
Jones & Davies, 1966; Ogata, 1988; Saichev & Sornette, 2004; Turcotte et al., 2007).
Fig. 1 shows a schematic representation of a sequence of point events interpreted as the
outcome of a history-dependent intensity, or Hawkes process, and its representation
as a branching process. The branching process is strictly constituted by two distinct
categories of events: background independent events generated entirely by the back-
ground rate (µ0 in Eq. (2)), and triggered events, caused by a unique preceding parent
event i, through its individual and independent contribution to the intensity (Ψi in
Eq. (2)), represented as arrows in Fig. 1. Under the branching process assumption,
earthquake catalogs are built as branching forests, linear superpositions of indepen-
dent topological objects that here we call triggering trees. Each triggering tree is a
structure of causally connected events initiated by a background event, the root of
the tree (at Depth = 0 in Fig. 1), that can trigger a number N1 of events in a first
generation of aftershocks (Depth = 1 in Fig. 1). In its turn, each of the Nd events in
the d-th generation of aftershocks can trigger events in the (d + 1)-th generation of
aftershocks, and so on. We call leaves those events with no offspring, extinguishing a
branch (dark-green circles in Fig. 1). Singlets are background events which are also
leaves, i.e. have no offspring. The triggering tree is extinguished when all events in a
maximum generational depth D are leaves.

–3–
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Assuming the validity of the branching process approach, the identification of
triggering trees would provide valuable topological information of the branching and
enable the direct measurement of the triggering kernel Ψi (Zhuang et al., 2004; David-
sen et al., 2017). Hence, this representation of aftershock sequences is a useful ap-
proach, whether we can argue if strictly valid. Whilst the stochastic point process
resulting from the branching process can be represented as a linear Hawkes process,
the linear Hawkes processes do not require the existence of explicit one-to-one causal
links between events. In theory, univocal causal links in mechanical interactive sys-
tems can be defined from an energy stability point of view. This can be shown in
micromechanical models such as the viscoelastic democratic fiber bundle model (Baró
& Davidsen, 2018). In field studies, however, we have a limited capability to identify
such a deterministic process. The bare statistical analysis of earthquake catalogs do
not determine the explicit causal links but provide, instead, an assessment of its point
process representation (2) where all terms contribute to µ with their specific weight.
Advanced declustering techniques, either stochastic (Zhuang et al., 2004) or based on
the nearest neighbor distance (Baiesi & Paczuski, 2004; Zaliapin & Ben-Zion, 2013b,
2013a) can be used to infer the most plausible one-to-one causal structure. This clas-
sification is never entirely free of uncertainty (Zhuang et al., 2002) but appears to be
reliable when tested against synthetic catalogs (Zaliapin & Ben-Zion, 2013b). Notice
that the topological concepts discussed in the following sections are only valid under
the branching process assumption and have no correspondence to the more general
point process description.

Recently, the analysis of seismological catalogs as branching processes revealed
significant deviations between the reconstructed clusters or triggering trees, and the
branching model expectations in southern California (Zaliapin & Ben-Zion, 2013a).
The same authors suggested a regional classification based upon such inconsistencies
in the topological properties. Thereupon, aftershock sequences or clusters were classi-
fied into two distinct categories: bursts and swarms. Burst-like clusters were defined as
clusters of events with shallow generational depth (d), where most activity is accumu-
lated in the first generation of aftershocks, mostly a consequence of significantly strong
mainshocks. The burst-like activity was found to be compatible with the numerical re-
sults of the Epidemic Aftershock Sequence (ETAS) model, defined in the next section,
by imposing the parameters fitted from field catalogs. Burst-like sequences were linked
to tectonic settings with low heat flow. On the contrary, swarm-like clusters designate
aftershock sequences with deeper generational depths, usually growing with the size
of the swarm. The swarm-like activity was not predicted by the ETAS model with
the fitted parameters and was found to match those regions with high heat flow. The
results by Zaliapin and Ben-Zion (2013a) paved the road for a new analytical method-
ology based upon the topological statistics of triggering trees. This methodology will
potentially lead to a better understanding of the seismogenic mechanisms behind trig-
gering processes and improve the accuracy of stochastic point-process models with
potential applicability to hazard assessment (Field et al., 2014). Overall, the study of
topological properties of triggering trees will foreseeably be gaining more popularity in
the following years, thanks to the improved refinement of event detection techniques
(Shelly et al., 2016; Ross et al., 2017). However, few works (Saichev & Sornette, 2004;
Saichev et al., 2005) have addressed the topological properties expected from these
hypothetical branching models, and a global picture of the model predictions remains
incomplete.

Here, we will introduce some of the most common topological features used to
characterize natural triggering for the standard ETAS model, defined as a particular
Galton-Watson branching model. We will revisit the results by Saichev et al. (2005)
and introduce general predictions regarding the concepts of family size and average
leaf-depths. These results can be useful as a benchmark to validate ETAS as a null-
hypothesis to natural and synthetic catalogs. As a main result, we will prove that
the relation between average leaf-depths and cluster sizes depends exclusively on the
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probabilistic nature of the individual branching ratios, determined in the ETAS model
by the ratio of parameters b/α and the average branching rate. This has a direct
implication on the separation between swarm-like and burst-like clusters.

2 Epidemic aftershocks as Galton-Watson branching models

Epidemic Type Aftershock Sequence (ETAS) models are based on field and lab
observations such as the empirical Omori-Utsu law (1) and the spatial distribution of
aftershocks. Here we discuss the standard ETAS model (Ogata, 1988), simulating a
Hawkes process where the triggering kernel is factorized in its dependencies as:

Ψi(m, t, r|mi, ti, ri) = ρm(m)nb(mi)Ψt(t− ti)Ψr(||r− ri||). (3)

Both the temporal and spatial kernel are normalized to
∫∞

0
Ψt(t − ti)dt = 1 and

∫

R
Ψr(||r− ri||)dr = 1 and, therefore, have no effect on the topology of the triggering

trees. The magnitudes (m) of the events are independent and identically distributed
(i.i.d.) following the Gutenberg-Richter law (Gutenberg & Richter, 1944):

ρm(m) := 10−b(m−mc)/(b log(10)), (4)

being the magnitude of completeness mc an effective lower-bound to the distribution.
For the sake of simplicity, we consider mc to be also the minimum magnitude able to
generate aftershocks. We also consider that the number Ni of aftershocks generated
by event i is a Poisson number with a characteristic branching ratio nb := E(Ni):

P(Ni = k|nb) =
nk
be

−nb

k!
. (5)

The branching ratio is given by the aftershock production in Eq. (3):

nb(mi) := kc10
α(mi−mc), (6)

reproducing the mainshock-magnitude (mi) dependence in the Omori-Utsu law (1)
with a productivity exponent α usually found between 0.5 and 1 in field (Utsu et
al., 1995) and experiments (Baró et al., 2013; Davidsen et al., 2017). The term kc
normalizes the aftershock production for mi = mc. Since magnitudes are independent,
the number of aftershocks is equivalent to a random sampling of i.i.d. nb for all mi

values. Given Eqs. (4,6):

ρnb
(nb) =

b

α

1

kc

(

nb

kc

)−( b

α
+1)

(7)

where the ratio α/b is bound inside the range (0, 1]. From now on we change the
notation from kc to the more convenient average branching ratio Nb := 〈nb〉 = kc

b
b−α .

The number of first generation aftershocks for all events and all nb is i.i.d. as:

P(Ni = k) =

∫

ρnb
(n)P(Ni = k|n)dn =

b

α

(

Nb

(

1− α
b

))
b

α

k!
Γ

(

k − b

α
,Nb

(

1− α

b

)

)

. (8)

Therefore, the standard ETAS model is a particular case of a Galton-Watson
(GW) process (Pitman, 2006), where all individual events i, background and triggered,
have the same probability to trigger a number Ni of events defined by an offspring
distribution P(Ni = k) := p1(k). In this case, for large k, this distribution can be
approximated to a power-law p1(k) ∼ k−γ1 with the exponent value γ1 = b/α+ 1
inherited from the nb distribution (7). Considering 0 < α ≤ b, this exponent values
are constraint to 2 ≤ γ1. This result agrees with the reconstructed trees in seismol-
ogy (Baiesi & Paczuski, 2004; Zaliapin & Ben-Zion, 2013b), where b ≈ α and the
distribution of the number of first generation aftershocks —called degree distribution
by Baiesi and Paczuski (2004)— is a power-law with an exponent γ1 ≈ 2.
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A singular case of the ETAS model is found for α = 0. In that case, the distribu-
tion (8) becomes a Dirac delta around kc: limr→0 ρ(nb) = δ(nb−kc), i.e. nb(= kc = Nb)
is unique and all events have the same probability of generating aftershocks given by
Eq. (5). The ETAS model for α = 0 is, thus, equivalent to a Poisson Galton-Watson
(P-GW) branching process (Pitman, 2006).

The numerical results in the following sections are obtained through Monte-Carlo
generation of a number of aftershock sequences up to N = 107. We use an arbitrary
threshold mc = 1. The background rate and the spatio-temporal kernel parameters
are ignored since they play no role in this study.

3 Tree and family sizes

A fundamental concept for the topological characterization of the branching pro-
cess is the tree-size (NT ) defined here as the total number of members in an extin-
guished tree for t → ∞: NT :=

∑D
d=0 Nd. Notice that, for Nb > 1, there is a non-zero

probability of finding eternal trees (D → ∞) with a non-defined NT . We only consider
values Nb < 1 through all the discussion, imposing that all trees are extinguished at
a finite time. Again, since all events i are i.i.d., NT is i.i.d. as well, with a given
P(NT = K) := pT (K). In the case of the P-GW, obtained by imposing α = 0, this
distribution is known to be a Borel distribution (Pitman, 2006):

p T (K|nb) =
(nbK)K−1e−nbk

K!
. (9)

As a matter of fact, notice that, for large nb and K, this distribution can be approxi-
mated by the exponentially tapered power-law: p T,nb

(K) ∼ K−3/2e−K(1−nb)
2/2. This

exponent γN = 3/2 is common in the avalanche size distribution of mean-field models
with avalanche dynamics (Sethna et al., 1993; Zapperi et al., 1995; Fisher et al., 1997;
Vespignani & Zapperi, 1998; Baró & Davidsen, 2018), sometimes regarded as loop-less
triggering processes, i.e. P-GW processes.

A decade ago, Saichev et al. (2005) found the mathematical expression for the
distribution of tree sizes (NT ). Fig. 2 shows a numerical verification of the results.
The insets (Figs. 2.b,c) show in log-log scale the distributions of NT given Nb = 0.995
and Nb = 0.30 respectively for a selected collection of α/b values, compared with
the theoretical result for the P-GW. Fig. 2.a shows the power-law exponent (γ̂N )
estimated by maximum likelihood (Baró & Vives, 2012) for Nb = 0.99 and Nb = 0.30
as function of α/b. As expected, the Borel distribution (9) is recovered for α = 0.
The distribution for 0 < α ≤ b is different and can be summarized in the following
observations: (i) For all values 0 ≤ α/b < 1 the original power-law behavior in (9) is
preserved below a chacateristic NT value Nc ≈ (1−Nb)

1/(1−α/b) (Saichev et al., 2005)
but with a general exponent value γlow

N . (ii) This effective power-law exponent γlow
N

observed below Nc increases from the expected 1.5 for α/b < 0.5 towards higher values
γlow
N ≈ 2.0 for α/b ≈ 1 (see Fig. 2.a). The thick gray line in Fig. 2.b represents the

Borel distribution for Nb = 0.99, indistinguishable to a power-law with γlow
N within

the range of observation. Since the characteristic scale is high (Nc > 104 for all
α/b), the exponents are used as a proxy for γlow

N . The present results for γlow
N agree

with Saichev et al. (2005), which predicted a transition from γlow
N = 1.5 for b/α < 0.5 to

γlow
N = 1+ b/α for 0.5 ≤ α/b ≤ 1 (dashed green line in Fig. 2.a). (iii) The exponential

regime for large trees found in the Borel distribution becomes fat-tailed with a power-
law exponent γhigh

N = 1+b/α for all the regime 0 < α < b, reminiscent of the large scale
regime in Eqs. (7,8). This power-law regime can be observed in the distributions for
Nb = 0.30 represented in Fig. 2.c. The exponents for Nb = 0.30 are used as a proxy for
γhigh
N since the selected estimation interval is considerably above Nc except for α = b.

(iv) For α = b, both exponents coincide and Nc diverges. The power-law behavior
has a single exponent (γN ≈ 2.0) with an infinite domain. This singular scale-free

–6–



manuscript submitted to JGR: Solid Earth

1.5

2

2.5

3

3.5

4

0.2 0.4 0.6 0.8 1

a)

10−6

10−4

10−2

100

100 101 102 103

b)

nb = 0.99
10−6

10−4

10−2

100

100 101 102 103


)

nb = 0.30

γ
N

α/b

P
(N

T
)

NT

α/b

GW

0.40
0.60
0.80
0.99

P
(N

T
)

NT

α/b

GW

0.40
0.60
0.80
0.99

Figure 2. (color on-line) (a) Estimated power-law exponents γ̂N for the distribution of tree

sizes (NT ) assuming P(NT = k|k > Nmin) ∼ k−γN for Nb = 0.99 (green triangles) and Nb = 0.30

(blue circles) and different values of α/b. Error-bars show an estimate of σ of the likelihood

function (Baró & Vives, 2012). The blue and green lines represent the results by (Saichev et

al., 2005). The dashed black line marks the value γN = 3/2 expected in a P-GW process. (b,c)

Distribution of NT for selected α/b values and (b) Nb = 0.995 and (c) Nb = 0.30 represented

in integer exponential binning. The exponents are estimated by maximum-likelihood within the

interval Nmin < NT < ∞ taking Nmin = 10 for Nb = 0.995 and Nmin = 35 for Nb = 0.30 (dashed

vertical lines). Grey lines represent the result for a P-GW process with the same Nb (9).
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sampling is usually observed in field catalogs and incited the development of the more
restrictive Branching Aftershock Sequence (BASS) model introduced by Turcotte et
al. (2007). In this singular solution, the value of Nb only affects the proportion of
singlets P(NT = 0) (8), offsetting the distribution for all NT > 0. This can be shown
by comparing the faintest lines in Fig. 2.b and Fig. 2.c.

Other common topological observables can be inferred from the sampling distri-
bution. Eq. (8) establishes a relation between the ETAS parameters and the num-
ber of singlets, by imposing k = 0. Given that the branching process is GW, the
same value provides the average fraction of leaves in trees and a good approxima-
tion to the average family size 〈B〉. The family size (B) is defined by Zaliapin and
Ben-Zion (2013a) as ‘the average number of offspring over all earthquakes in the fam-
ily that have at least one offspring’. This definition is mathematically identical to
B := NT−1

NT−nl

, being NT the cluster size and nl the number of leaves. Notice that,

for large clusters, B ≈
(

1− nl

NT

)−1

. Thus, the expected value of B is directly related

to the probability that an event is a leaf (nl/NT ), which is equivalent to P (Ni = 0) or
g(0) in Zaliapin and Ben-Zion (2013a). Notice that P (Ni = 0) and B depend on Nb

and the ratio α/b but are essentially independent of the number of events (NT ) in the
standard ETAS model when NT is large enough.

4 Generational depth and sizes

Some of the most commonly used topological properties of a GW process re-
lated to the generational depth of extinguished trees can be derived from the dualities
between branching processes and random walks (Bennies & Kersting, 2000; Pitman,
2006). The concept of Harris path (Harris, 1951) is particularly useful for the topo-
logical analysis of aftershock sequences since it establishes a link between topological
concepts such as size and depth with properties of a one-dimensional stochastic pro-
cess. The Harris path can be interpreted as a sorted exploration of the branching tree
in the following way: Consider an event i in the tree (parameterized as t − 1 in the
Harris path) of depth d(t − 1) := di that can either be a root (d = 0) or a triggered
event from a parent with index p. We ask if this event i has a new child c. If it does,
we repeat the process with that first child event, now with d(t) := dc = d(t− 1)+ 1; if
it does not, we decrease the generation by one (d(t) := dp = d(t− 1)− 1), move back
to the parent and ask if p has another child unexplored by the Harris path. Starting
from the mainshock or root of the tree, d(t = 1) = 0, all events {i} are explored
{Ni +1} times before reaching d(T ) = −1 at exactly t = T ≡ 2NT . Leaves are identi-
fied as local maximums in the profile. We find a leaf l at t if d(t) = d(t− 1) + 1 and
d(t+ 1) = d(t) − 1, and l is explored exactly once by the Harris path.

Let’s consider, for a moment, that the tree is generated through a GW process
with a geometric offspring distribution. This is p1,Nb

(k) = Nb
k(Nb+1)−k−1 in terms of

Nb. The probability of finding a new child, adding a step d → d+1 in the Harris path,
is independent of the number of previous children of the same parent and, therefore,
the Harris path is equivalent to a random walk (Harris, 1951). Hence, the depth
profile is a diffusion process that scales with time as t1/2. All magnitudes associated
with charactersitic depths such as the maximum depth D and the average leaf-depth
(〈dl〉) are expected to scale with the size of the tree as N

1/2
T . Whilst the random walk

analogy is only strictly valid in the geometric case, the Harris path of a GW with
another offspring distributions is asymptotically equivalent to a random walk for large
tree sizes as long as Nb . 1 and the variance is well defined (0 < σ2 < ∞) (Aldous,
1991; Pitman, 2006). This approximation is valid for the P-GW process, but not for
the ETAS model when α/b > 0.5, rendering exponents values lower than 3 in Eq. 8
and, hence, infinite variance.
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Figure 3. a) Relation dl(NT |nb) of N = 106 simulated P-GW trees for nb = 0.8, 0.9, 0.99.

Black line represents the expected relation 〈dl|NT 〉 ∼ N0.5
T . (don’t need b)

Fig. 3.a shows the numerical validation of the diffusive assumption in the case
of the P-GW. On average, the dependence between dl and NT follows the relation
〈〈dl〉|NT 〉 ∼ N0.5

T , which extends to significantly low values of Nb. Although not
shown here, a proportional relationship is also found in other characteristic depths
such as the average depth of all events 〈〈d〉|NT 〉 ∼ N0.5

T and average maximum depth
〈〈D〉|NT 〉 ∼ N0.5

T . Notice that, similarly as how a stochastic process cannot diffuse
faster than a ballistic trajectory, the maximum depth cannot be larger than the tree
size, forcing the limit 〈dl〉 < NT which biases the average values for small trees (usually
NT < 20 as seen in Fig. 3).

The topological relations between depths and sizes are more complex in the ETAS
model due to the power-law sampling (8). Here we only introduce the numerical results
and leave the mathematical derivation, if possible, as an open question for future
works. Fig. 4.a shows the conditional average 〈〈dl〉|NT 〉 for different parameters α/b.
An scatter plot of the data pairs (〈dl〉, NT ) for α/b = 0.6 and Nb = 0.995 is also
shown as example. The distribution of small trees exhibits the aforementioned limit
〈dl〉 < NT , biasing the bivariate distribution for NT < 20. For larger trees, an average
power-law relation is observed beyond statistical fluctuations:

〈〈dl〉|NT 〉 ∝ Nγd

T . (10)

This power-law relation gets distorted for low values of Nb, although one is still able
to estimate a reliable power-law relation for a shorter range. The inset in Fig. 4.b
shows the exponent values γd fitted for trees with 30 < NT < 1000. The exponent
appears to be consistent with the typical GW process (γd = 0.5) for the relatively
broad range 0 < α/b < 0.3 but drops towards lower exponent values for larger ratios.
This first regime for low α/b values is consistent with the asymptotic limit since the
effective power-law exponent γ1 in Eq. 8 is higher than 3. For 0.5 < α/b < 1, the
drift from the diffusive relationship is apparent for all values of Nb. Close to α/b = 1,
the depth of triggering trees appear to be independent of NT . The branching ratio
Nb changes the range of the distribution in NT as well as the dependence on the
bivariate distribution. For low Nb values, large events tend to have shallower trees
than predicted by the diffusive relationship. As a consequence, the effective exponent
γd depends on Nb for intermediate values of α/b but almost coincide for the extreme
cases α < 0.3b and α ≈ 1 . The exponent transition is steeper for low Nb values.
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Figure 4. a) Relation between average leaf-depths (〈dl〉) and tree size (NT ) for Nb = 0.99.

The scatter plot corresponds to trees sampled with α/b = 0.60. Lines show the conditional

averages 〈〈dl〉|NT 〉 in independent windows of NT . Error bars represent σ of the conditional dis-

tribution. b) estimated exponent γ̂d of the power-law relation (10) within 30 < NT < 1000 for

Nb = 0.99 (triangles) and N = 0.50 (circles) and different ratios α/b.

5 Discussion

The analytical and numerical results obtained here from the branching process
models highlight three direct measurements that stand out to characterize the topology
of epidemic aftershock processes: the direct triggering distribution p1(k), the relation
〈dl〉, NT and the size distribution pN (K). Their joint analysis can verify whether
the relation between 〈dl〉 and NT corresponds to the expected behavior of the specific
branching model hypothesis and an ETAS model with independently fitted parameters
k0, b and α. Scalar measurements such as the fraction of singlets or leaves, the family
size B, and the bulk average leaf-depth 〈〈dl〉〉, which entangle both dependencies in
Nb and α/b, can mislead the validation or fitting of a branching model. However,
the expected relationships between such scalar measurements, such as the fraction of
leaves and singlets, can serve for preliminary rejection tests.

The ETAS model can potentially explain the topological variability of trigger-
ing trees reconstructed from seismological catalogs (Zaliapin & Ben-Zion, 2013a) and
acoustic emission experiments (Davidsen et al., 2017). Provided the validity of the
branching model approach, unequivocal relations exist between the topological prop-
erties and the parameters of aftershock production, determined by Nb and α/b in the
ETAS model (8). Assuming independence between the values of nb —guaranteed in
the present study because of the independence of m— all topological information is
contained in the distribution of nb (as Eq. 7 in the ETAS). In general, the same rela-
tions can be extrapolated to other GW models with well defined p1(k). Beyond strict
GW processes, the same results would be locally valid in models implementing spatio-
temporal variations of the ETAS parameters such as the spatially-variating ETAS
model (SVETAS) introduced by Nandan et al. (2017). In that case, the topological
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properties would depend on the local distribution of Nb and α/b. A global evaluation
would report a spread in the (〈dl〉,NT ) space with a blurred power-law relationship,
as reported by Zaliapin and Ben-Zion (2013a) in southern California.

The ETAS model is a peculiar case of GW processes where the aftershocks sam-
pling is power-law (Saichev et al., 2005), leading to a natural cluster classification in
the terms presented by Zaliapin and Ben-Zion (2013a). The results shown in Fig. 4
validate the hypothesis that swarms, like bursts, can appear as a consequence of event-
event triggering processes, i.e. aftershocks, represented as one-to-one causal links in
branching processes (Zaliapin & Ben-Zion, 2013a). The topological properties of the
trees used for the classification of swarms and bursts —and, in particular, the exponent
γd— differ depending on the parameter ratio α/b and the branching ratio Nb. Such
classification is noticeably sharp in the parameter space for low Nb ( Fig. 4.b) but
smooth for high branching ratios (Nb . 1). The two classes are found in the extreme
cases α = b and α = 0. When α < 0.5b, the P-GW limit is recovered and trees grow as
swarms, forming relatively slender tree structures, with γd ≈ 0.5. In the opposite case
scenario, when α ≈ b, only strong events are likely to generate aftershocks. Because
the branching ratio is fixed, most of the triggered activity for α ≈ b is due to the few
stronger events, which, as consequence, are more likely to be background events. The
first generation offspring of this strong event is unlikely to generate aftershocks of their
own, rendering spray-like short tree sequences and star-shaped spatial structures char-
acteristic of burst-like activity (Zaliapin & Ben-Zion, 2013a). Although the transition
is not sharp in the parameter space, the empirical α/b values are typically close to
one in seismological catalogs. Hence the separation between α/b ≈ 1 and α/b < 1 is a
natural choice to define the classification between burst-like and swarm-like clusters.
The GW model does not expect values γd > 0.5. Significantly higher exponent values
might indicate memory in the branching process, which cannot be modeled as a GW.

Overall, the ETAS model establishes a clear relationship between the topological
properties and the ratio between the Gutenberg-Richter exponent b and the produc-
tivity exponent α. Swarms are resulting particularly problematic when validating
the ETAS model through this relationship. On the one hand, Zaliapin and Ben-Zion
(2013a) had shown how the ETAS model parameterized with field estimations fails
to predict the observed topology of swarms in southern California, where α ≈ b and
γT ∼ 1. The distribution of swarm-like activity in hot areas (Zaliapin & Ben-Zion,
2016) is consistent with the power-law behavior in Eq.(8), rendering the expected value
for b/α = 1. Hence, the swarm-like shape of the trees is inconsistent with the ETAS
model given the fitted parameters (see Fig. 4). On the other hand, cluster reconstruc-
tion techniques are based on the homogeneous Poisson null-hypothesis (Zaliapin &
Ben-Zion, 2013b) and do not take into account spatio-temporal variations due to ex-
ogenous geological or anthropogenic processes, i.e. when µ0(t, r) has a dependence in
both space and time. This is the case, for example, of episodic volcanic (Roberts et al.,
2016), natural geothermal (Gaeta et al., 1998), or human-induced (Ellsworth, 2013)
seismicity, or even tectonic seismicity in the presence of seasonal variations (Ueda
& Kato, 2019). Spatio-temporal correlations in such settings are not necessarily a
consequence of a history-dependence and might disrupt the performance of cluster
detection techniques, which will overestimate triggering relationships. Precisely, the
random linking of uncorrelated events would lead to the generation of a P-GW process,
compatible with the tree shapes reported by Zaliapin and Ben-Zion (2013a). In par-
ticular, geothermal systems reproducing P-GW processes might not represent actual
triggering, but rather exogenous variations in the background rate. Studies focused
on well confined episodes of seismic activity are advised to validate the results.

Discrepancies between model and data might be corrected by modifications of
the ETAS models implementing more sophisticated field observations. Magnitude-
magnitude correlations (Lippiello et al., 2008; Davidsen & Green, 2011) or depth-
dependent m-distributions would, in general, fall outside the GW category. However,
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this is not a rule of thumb. In particular, recent observations suggest a simple distinc-
tion in the Gutenberg-Richter exponent for aftershocks (bAS) and mainshocks (b) (Gu
et al., 2013; Davidsen & Baiesi, 2016; Davidsen et al., 2017). This specific modification
falls still within the GW category. The relation between topological properties would,
in that case, depend on kc, α, bAS and b.

Finally, any empirical study on the topological properties should account for the
fact that natural catalogs have a limited spatial and temporal range. Even if the
branching approach is valid, the concept of leaf and root are ill-defined in spatially
confined or finite time series (Zhuang et al., 2002). Events misclassified as mainshocks
might be actually triggered by remote or ancestral events (van der Elst, 2017) and ap-
parent leaves might generate aftershocks outside the observational range. The results
can be especially biased for the analysis of short catalogs, considering the power-law
kernels in Ψt and Ψr of the ETAS model.

6 Conclusions

Here, we have considered the branching model as a valid representation of after-
shock sequences and other triggering processes. The reconstruction of triggering trees
accounting for all event-event correlations opens new perspectives to learn about the
seismogenic mechanisms behind aftershocks and improve our current forecasting tech-
niques. We have revisited, and added to, the expected topological properties for the
standard Epidemic-Type Aftershock Sequence model (ETAS), which is interpreted as
a fat-tailed Galton-Watson process, extended from the Poisson Galton-Watson process
(P-GW) which is recovered as a particular case. This list of properties had been pro-
posed in previous works to be helpful to characterize and classify aftershock sequences.
Specifically, this analysis serves to distinguish between swarms and bursts (Zaliapin &
Ben-Zion, 2013a, 2016).

All the singular properties of the ETAS model within the GW category derive
from the power-law distribution of branching ratios nb leading to a similar power-law
in p1(k). In particular, all topological properties depend only on two parameters:
the average branching ratio Nb and the ratio between exponents α/b. Since the P-
GW is recovered as a limiting case of the ETAS model we observe a transition in
the distribution of tree sizes (NT ). The Nb controls the characteristic NT marking
the transition between two distinct power-law exponents (γlow

N and γhigh
N ) , which

coincide to γlow
N = γhigh

N = 2 for α = b, and recovers the Borel distribution for α = 0.
Characteristic generational depths are strongly dependent on α/b once the power-law
tail has a significant statistical weight (γ1 < 3). The average leaf-depth of a tree (〈dl〉)
has a power-law dependence with NT for high branching ratios or low exponent ratios
α/b. The exponent of this power-law relation coincides with γd = 0.5, typical in well
defined GW processes, for α = 0 and decreases for values b . 2α, vanishing to zero at
the limit α = b. For low branching ratios this transition in the exponent gets sharper
and occurs at lower values, for example b/α ∼ 0.3 for Nb = 0.5. This numerical
result interprets the separation between bursts and swarms as a phenomenological
observation based upon the common α ≈ b found in nature. A regional analysis of
the ratio is required to validate the exponent dependence on the α/b ratio. In any
case, the results in the ETAS model prove that the topological structure of swarms,
as bursts, can be explained as an event-event triggering processes, i.e. aftershocks,
represented by one-to-one causal links.

In general, this study can be used to validate the ETAS model for the description
of the triggering processes associated with tectonic and induced seismicity as well as
acoustic emission experiments (Benioff, 1951; Hirata, 1987; Baró et al., 2013; Ribeiro
et al., 2015; Costa et al., 2016; Davidsen et al., 2017) and micromechanical models
(Yamashita & Knopoff, 1987; Dieterich, 1994; Hainzl et al., 1999; Lyakhovsky et al.,
2005; Jagla & Kolton, 2010; Zhang & Shcherbakov, 2016; Baró & Davidsen, 2018).
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A rejection of the ETAS model from the topological properties of the triggering trees
might indicate more sophisticated epidemic processes, involving magnitude-magnitude
correlations or depth dependencies. On the contrary, the validation of the ETAS model
would set a step forward in the testing and development of new micromechanical
models implementing seismogenic mechanisms of aftershocks and other event-event
triggering mechanisms.
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