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Abstract

The distribution and drainage of meltwater at the base of glaciers sensitively affects fast ice flow. Classical studies suggest that

thin meltwater films between the overlying ice and a hard-rock bed channelize into efficient drainage elements by melting the

overlying ice. However, these studies do not account for the presence of soft deformable sediment observed underneath many

West Antarctic ice streams, and the inextricable coupling that sediment exhibits with meltwater drainage. Our work presents an

alternate channel initiation mechanism where meltwater films grow by eroding the sediment beneath. We conduct a linearized

stability analysis on a meltwater film flowing over an erodible bed. We solve the Navier Stokes equations for the film flow,

and we compute bed evolution with the Exner equation. We identify a regime where the coupled dynamics of hydrology and

sediment transport generate a morphological instability that would indicate channel initiation. We show that this instability

operates at time scales much faster than ice dynamics, thus occurring prior to the classical channelization instabilities. We

discuss the physics of the instability using the framework of ripple formation on erodible beds.
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Abstract

The distribution and drainage of meltwater at the base of glaciers sen-
sitively affects fast ice flow. Classical studies suggest that thin meltwater
films between the overlying ice and a hard-rock bed channelize into effi-
cient drainage elements by melting the overlying ice. However, these stud-
ies do not account for the presence of soft deformable sediment observed
underneath many West Antarctic ice streams, and the inextricable cou-
pling that sediment exhibits with meltwater drainage. Our work presents
an alternate channel initiation mechanism where meltwater films grow by
eroding the sediment beneath. We conduct a linearized stability analysis
on a meltwater film flowing over an erodible bed. We solve the Navier
Stokes equations for the film flow, and we compute bed evolution with
the Exner equation. We identify a regime where the coupled dynamics
of hydrology and sediment transport generate a morphological instability
that would indicate channel initiation. We show that this instability op-
erates at time scales much faster than ice dynamics, thus occurring prior
to the classical channelization instabilities. We discuss the physics of the
instability using the framework of ripple formation on erodible beds.

1 Introduction

Liquid water is present underneath more than half of the Antarctic Ice Sheet [56].
The hydrological environments in which this water is stored and transported
are diverse, ranging from subglacial lakes to water-saturated wetlands situated
underneath fast flowing ice [58]. Out of these, the drainage system underneath
ice streams, corridors of rapid ice flow that are tens of kilometers thick and
hundreds of kilometers long, is not only the most spatially extensive but also
inextricably coupled with the dynamics of the overlying ice flow [6, 44, 57, 23].
While our understanding of this subglacial water drainage system is incomplete,
it is becoming increasingly clear that it is both spatially and temporally variable
[24].

Water flow, however, is not the only dynamic component in the extensive
wetlands underneath the West Antarctic ice streams. Large portions of this
area rest on weak and unconsolidated sediment, commonly referred to as till
[25]. Samples collected from the subglacial environment at Ice Stream B, Siple
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Coast, have revealed a fine-grained, clay-rich lithology [68] that likely experi-
ences significant deformation [1, 38, 66] and transport [1] due to streaming ice
flow.

The insight that sediments play an important role in subglacial hydrology
and ice flow is not new, and several previous models of subglacial hydrology have
made progress in that regard. Early attempts treated the subglacial horizon as
an aquifer with porous flow being the primary means of water drainage [65, 46].
While percolation of water into the till is clearly important in altering the basal
resistance that the till layer provides to ice flow [69, 7], water transport through
the till layer is likely very inefficient [2] because of the low permeability of clay-
rich till [37, 38]. Therefore, later models have replaced the idea of Darcian-type
water transport through a porous aquifer by the assumption that the majority of
water flows in a thin pressurized film between the ice and the till [74, 2, 45, 43].

Walder [72] identified a problem with large-scale water transport via film
flow, namely that meltwater films over hard beds are fundamentally unstable.
His work [72] highlights that a small perturbation in film thickness would lead
to higher flow speed, which would induce greater viscous dissipation and pref-
erential carving into the overlying ice. Creyts and Schoof [14] later showed that
this instability is partially suppressed by bed roughness, reinvigorating the idea
that films could support meltwater transport at least up to a certain thickness.
They argue that stress localization on bed protrusions leads to enhanced ice
roof closure that counters film expansion, thus entailing the possibility of finite-
sized films. Nonetheless, as the thickness of the meltwater film grows, the water
would eventually carve into the ice, thus transforming the film into a more ef-
ficient drainage element such as a Röthlisberger channel [60] or linked cavities
[27]. This insight is reflected in current subglacial hydrology models for hard
beds that generally include both films and channels [61, 62, 35, 34, 76].

In hard bed settings, efficient drainage systems will be inevitably carved
into the ice [27]. But the wide-spread occurrence of till under ice sheets [67, 68]
suggests the possibility of drainage elements incised into the sediment layer,
commonly referred to as canals [73, 52, 53, 41, 16]. Walder and Fowler [73] show
that dynamic till, in particular the processes of till erosion and deformation, is
key to the sustenance of canals. Ng [52] builds on the work by Walder and
Fowler by describing the meltwater flux and sediment transport dynamics over
the longitudinal span of a canal. Since the coupled processes of meltwater and
till feature prominently in the functioning of canals, it is likely that they also
play a key role in the formation of canals. Departing from the classical idea of
Walder’s instability [72] that films grow into channels by melting the ice above,
we hypothesize that meltwater films on soft beds grow into canals by eroding
the sediment beneath.

Kyrke-Smith and Fowler [43] have previously studied that evolution of melt-
water films on soft beds. They emphasize the role of dynamic till by explicitly
including erosion and deformation into their model. However, they retain the
assumption from the hard-bed setting that bed roughness stabilizes thin films
[14]. This assumption implicitly imposes key dynamics involving ice, water and
till onto the soft-bed setting without resolving the underlying processes. Our
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work provides an alternative framework for the stability of meltwater films that
relies purely on the coupled dynamics of hydrology and sediment transport.

We model the meltwater film as flow over an erodible bed and study potential
channelization via morphological instabilities, similar to granular ripple forma-
tion, e.g., [39, 29, 59, 11]. We compute bed-form evolution using the classical
Exner equation which represents sediment mass conservation. We use the 3-D
Navier-Stokes equations to compute flow velocities within the film. A depth-
averaged velocity approach, while commonly used for meltwater films [27], is
not suitable for morphological instabilities because of the lack of resolution of
near-bed flow dynamics [13, 47].

Walder’s instability of film expansion via dissipation-induced melting of the
ice is known to drive channel initiation [72, 74]. To identify potential insta-
bilities that may occur prior to Walder’s instability, we assume non-turbulent
flow within our meltwater film. This assumption allows us to study the film
within a regime where dissipation and associated ice melt is mitigated. In this
regime, and over length scales comparable to film thickness, the overlying ice
is effectively decoupled from the film hydrology. Our setup then allows us to
explore instabilities associated with the sediment bed rather than the ice.

We conduct a linearized stability analysis to identify the mechanisms within
the meltwater film system that lead to instabilities. Our findings point to ad-
vection within the film flow as a key destabilizer of the system, which is con-
sistent with previous studies of ripple formation instabilities [39, 40]. On the
other hand, prior studies generally attribute the stability of films with regard
to short-wavelength perturbations to diffusive mechanisms within the sediment
transport dynamics [11]. Our work identifies a hydrodynamic mechanism based
on flow acceleration that can stabilize the film at short wavelengths. While
sediment-based mechanisms may provide additional stability to the system, our
work shows that they are not necessary for the selection of the fastest growing
perturbation wavelength.

2 Model

We consider a thin layer of subglacial meltwater, flowing between two initially
homogeneous, infinitely extended layers of ice and till on the top and bottom,
respectively, both inclined at an angle β with respect to the horizontal. The
surface of the ice possesses its own slope, α with respect to its base. We adopt
a Cartesian coordinate system (x, y, z). As shown in Figure 1, the x- axis is
parallel to the bed and denotes the along-flow direction, while the y- and z-
axes span the cross-flow direction and the depth of the film. We represent the
ice-water interface by z = h(x, y, t) and the till-water interface by z = r(x, y, t).

Our model includes two components: fluid flow, described by mass and
momentum conservation; and sediment transport, which governs the evolution
of the till-water interface. We discuss the thermal and mechanical interactions
of ice and water, and revisit the underlying assumptions in Section 4. The
key thermal interaction between ice and water lies in the energy budget at the
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Figure 1: Setup of the model. The thicknesses of the three layers is not drawn to
scale. The ice column is several orders of magnitude thicker than the meltwater
film.

corresponding interface, namely the melting of the ice caused by the heat flux
from the film. We assume a non-turbulent flow regime where the dissipation-
induced melting of the ice is suppressed. Combined with the assumption that
sediment transport processes are significantly faster than ice-related processes,
we can effectively treat the ice-water interface as a fixed boundary. The key
mechanical interaction between ice and water is the pressure exerted on the
film by the weight of the overlying ice column. The corresponding pressure
gradient serves as a driving force for the film flow.

We now present the governing equations of the meltwater film system.

2.1 Hydrology

Conservation of mass within the subglacial meltwater film, along with incom-
pressibility, yields,

∇ · u = 0, on r < z < h, (1)

where u = (u, v, w) is the fluid velocity along the axes (x, y, z) respectively.
The Navier-Stokes equations express momentum conservation within the

meltwater film,

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u + g, on r < z < h, (2)

where t stands for time, ν is the kinematic viscosity of water at the melting point
and ρ is the density of water, p is the fluid pressure, g = (g sinβ, 0 − g cosβ)
is the gravitational force, and g is the gravitational acceleration on the Earth’s
surface.

We assume that the ice-water interface is a fixed boundary and apply the
no-slip condition,

u = 0, v = 0, w = 0, at z = h. (3)
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The overlying ice affects the pressure in the film through its overburden
weight. The balance of normal stresses of the ice and water at the interface is
given by,

p = pa + (Z0 + Z1(x))ρig cosβ, at z = h, (4)

where pa is the atmospheric pressure at the surface of the ice and ρi is the density
of ice. The term Z0 is the leading order ice thickness measured perpendicular to
the bed. At length scales comparable to meltwater film thickness, Z0 is constant,
indicating that the ice surface is parallel to the bed. The term Z1(x) represents
smaller scale change in the ice thickness along x. In (4), the fluid normal stress
at the ice-water interface reduces to the pressure p as a consequence of (1) and
(3). We approximate the normal stress imposed by the ice on the film by weight
of the overlying ice column. This approximation follows from the Shallow Ice
assumption, namely that the ice thickness is considerably smaller than the ice
sheet length scale.

The till-water interface is also a solid boundary where the no slip condi-
tion would apply. Since the bed is erodible, the vertical velocity satisfies the
kinematic boundary condition,

u = 0, v = 0, w =
∂r

∂t
, at z = r. (5)

2.2 Sediment Bed-load Transport

We model the evolution of the till-water interface z = r(x, y, t) through the
Exner equation,

∂r

∂t
+

1

1− φm
∇ · q = 0 (6)

where φm is the mean sediment porosity and q = (qx, qy) is the sediment flux
vector. The Exner equation is a mass conservation statement for the sediment
layer, stating that the till-water interface evolves in time according to gradients
of the sediment flux.

To close the model, we use a classical constitutive relation that expresses
the sediment flux q as a function of the shear stress applied by the water film
onto the bed [50, 77, 70],

q = τ̂F

(
|τ|

(ρs − ρ)gD

)
D

√
ρs − ρ
ρ

gD, (7)

where D is the sediment grain diameter, ρs is the sediment density and F is
a non-dimensional function to be defined later. The bed stress vector, τ =
(τx, τy), and its unit vector, τ̂, are given by,

τi = ρνtTi
(
∇u +∇uT

)
n, τ̂ =

τ

|τ|
, at z = r. (8)

The vectors tx and ty are the unit tangent vectors to the bed in the x- and
y- directions respectively, and n is the normal surface vector for the bed z =
r(x, y, t).
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There is considerable disagreement functional form of the relationship be-
tween sediment flux and bed shear stress, e.g., [64, 22, 31]. As a result, there
is a variety of empirically derived power-law formulas in the literature, each
calibrated to its own setting, e.g., [77, 70]. This diversity of forms highlights
that the physics of bed-load transport is not yet fully understood.

Observations of bed-load transport highlight that there is a threshold value
of bed stress below which there is purportedly no grain motion at the bed,
as discussed in the classical work by Shields [64] and others, for example [51,
10, 36]. Houssais et. al. [36] suggest that this threshold value, known as the
critical Shields stress, marks a phase transition for the granular material. Below
the threshold the bed stress is balanced by extremely slow creep deep in the
sediment, while exceeding the threshold leads to the formation of an overlying
bed-load layer undergoing dense granular flow at a time-scale comparable to
that of near-bed fluid flow. Experimental studies [36, 10, 55] characterize this
phase transition as a toggle point, where bed-load transport is deemed active
only when the fluid bed stress exceeds the threshold stress. Our model utilizes
the threshold in the same manner and we assume that the film bed stress always
exceeds this threshold. This assumption is a key prerequisite for the linearization
stability analysis conducted in Section 5.

For the purposes of this study, we choose the classic functional by Meyer-
Peter and Müller [50],

F

(
|τ|
[τb]

)
= A

(
|τ|
[τb]
− τc

∗
)m

, A = 8, m = 1.5, (9)

where τc
∗ is the non-dimensional critical Shields stress, and [τb] = (ρs − ρ)gD

is the bed stress scale as per the functional [50]. We do not include sediment
suspension in our model since the lack of turbulence precludes the possibility of
sediment saltation, e.g., [4, 28, 10].

We choose a specific functional for the purposes of our analysis, but our
approach can be repeated with any other functional satisfying (7). The linear
stability analysis conducted in Section 5 demonstrates that, as long as the form
expressed in (7) holds, the exact choice of functional does not alter the overall
stability of the meltwater film. Insensitivity to the functional broadens the
applicability of our model to a wide variety of glaciological settings.

2.3 Steady State

We solve the system of equations (1-6) for the steady state. We assume that
the steady state solution is uniform in the x and y directions.

The ice topography imposes a driving force on the fluid, as described in (4).
The flow pressure gradient arises from the small-scale change in ice thickness,
∂Z1

∂x . We parametrize this term as,

∂Z1

∂x
= − tanα, (10)
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where α is a constant that can be considered as the angle of the ice surface with
respect to the bed. We combine both the driving forces, gravity (2) and ice
overburden (4), into a single parameter,

Π = σi tanα cosβ + sinβ, where σi =
ρi
ρ
. (11)

We denote steady state variables by an overlying bar. We define H as half
the steady state film thickness. The constant of half allows us to avoid re-scaling
in other equations.

h(x, y) = 2H, r(x, y) = 0, (12)

u(x, y, z) =
H2gΠ

2ν

z

H

(
2− z

H

)
, v = 0, w = 0, on r ≤ z ≤ h, (13)

p(x, y, z) = pa + ρigZ0 cosβ − ρgx tanα cosβ, on r ≤ z ≤ h, (14)

τ1(x, y) = ρgHΠ, τ2(x, y) = 0, (15)

q1(x, y) = F

(
|τ|

(ρs − ρ)gD

)
D

√
ρs − ρ
ρ

gD, q2(x, y) = 0. (16)

3 Non-dimensionalization and Simplification

We list the main variables and define their scales (denoted by square brackets)
in Table 1.

The scale for the bed-load flux [q] in our study differs from the classical
scales, e.g., [77, 70] which use grain settling velocities. Since our model resolves
vertical velocities, our proposed scaling is based on vertical gradients of the
velocity.

Denoting the non-dimensionalized variables with stars, the non-dimensional
forms of equations (1-9) are given by,

∇ · u∗ = 0, on r∗ < z∗ < 2, (17)

γ
∂u∗

∂t∗
= −u∗ · ∇u∗ +

1

Re

[
∇2u∗ − 2

Π
∇p∗ +

2

Π
g∗
]
, on r∗ < z∗ < 2, (18)

∂r∗

∂t∗
= −∇ · q∗, q∗ = κF (S|τ∗|)τ̂, F (S|τ∗|) = 8(S|τ∗| − τc

∗)1.5, (19)

u∗ = 0, p∗ =
pa
ρgH

+ σi
Z0

H
cosβ − σix∗ cosβ tanα, at z∗ = 2, (20)

u∗ = 0, v∗ = 0, w∗ = Lγ
∂r∗

∂t∗
, at z∗ = Lr∗, (21)

where g∗ = (sinβ, 0,− cosβ), Re is the Reynolds number, L is the grain-to-film
size ratio, σ is the grain-to-fluid density ratio, γ is the hydrology-to-sediment
transport time scale ratio, S is the steady state non-dimensional bed stress, also
known as Shields number, and κ is a non-dimensional constant for the bed-load
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Table 1: Characteristic scales of system variables.

Variable Scale Description
[x] , [y] , [z] H The coordinate system scales with the film thickness.

[h] H The ice-water interface, which is considered a fixed
boundary, is at distance 2H from the till-water bound-
ary.

[r] D The evolution of the till-water interface is governed by
an active bed-load transport layer that is a few grain
diameters in thickness [28, 36].

[u] H2gΠ
2ν The steady state solution (13) determines this velocity

scale as a balance between shear stress and hydraulic
gradient.

[τ] ρgHΠ The bed stress scale is derived from (8).
[p] ρgH This scaling is consistent with the hydrostatic and cryo-

static pressures within the fluid.
[q] ρs

ρ D
D
H [u] The bed-load flux is defined to scale with sediment den-

sity (∼ σ), bed-load layer thickness (∼ D) and near-bed
fluid velocity (∼ D

H [u]).
[t] (1− φm)DH[q] This characteristic time scale is defined according to the

Exner equation (6) and describes the rate of sediment
transport.

functional,

L =
D

H
, Re =

[u]H

ν
, σ =

ρs
ρ
, γ =

H

[u] [t]
, S =

[τ]

(ρs − ρ)gD
, κ =

D
√

(σ − 1)gD

[q]
.

(22)
The main dimensional parameters of the system, H,D, β, α,Π, ρ, ρs, ρi, φm, g, ν, τc

∗,
reduce to the following independent dimensionless quantities, Re,L, β, α,σ, σi, φm, τc

∗.
We do not include the terms pa and Z0 as parameters since they only contribute
to the ambient pressure in (20) and do not affect the dynamics of the system.
The dependent dimensionless quantities are given by,

γ =
Lσ

1− φm
, S =

Π

(σ− 1)L
, κ =

√
2(σ − 1)

σ
√

ReLΠ
, Π = σi tanα cosβ + sinβ.

(23)
Among the eight independent non-dimensional quantities, the latter four,

σ, σi, φm, τc
∗ tend to vary by less than an order of magnitude over the range of

subglacial settings. We represent them with constant values as given in Table 2.
We also assume that the bed slope and surface slope are roughly comparable,
i.e., β ∼ α, which is justified by observational records, e.g., [21, 15]. This allows
us to simplify the driving force parameter Π in (11),

Π ≈ 2 sinα. (24)
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Summarizing, the system is determined by three non-dimensional parameters
Re,L and α where Re represents the fluid flux, L governs the hydrology-to-
sediment transport time scale ratio, and α characterizes the fluid driving force.

Table 2: Fundamental parameters of the model, along with their estimates and
ranges.

Parameter Estimate/Range Description
H 10−4 m ≤ H ≤ 10−2 m Film thickness (divided by 2). Values based on

observations [32] and drainage theory [14].
D 10−6 m ≤ D ≤ 10−4 m Grain diameter. Core measurements [67] reveal

a bi-model clay (D ∼ 1µm) and sand distribu-
tion (D ∼ 100µm).

β 10−4 ≤ β ≤ 0.1. Bed slope angle. Values from [21]. The large
range allows our model to consider both the po-
lar and alpine settings.

α 10−4 ≤ α ≤ 0.1. Ice surface slope angle. Values from [21].
g 9.8 ms−2 Gravitational acceleration near the Earth’s sur-

face.
ν 1.787× 10−6 m2s Kinematic viscosity of water at 0◦ C.
ρ 1000 kgm−3 Density of water at 0◦ C.
ρs 2600 kgm−3 Density of sediment grains, assuming clay-like

material.
ρi 917 kgm−3 Density of ice.
φm 0.4 Mean porosity of subglacial sediment [68].
τc
∗ 0.12 Threshold Shields stress. Empirical value [10,

55, 36].
Z0 0.1 km ≤ Z0 ≤ 4 km Characteristic glacier thickness [15]. For alpine

glaciers Z0 ∼ 100 m. For Antarctic ice sheets
Z0 ∼ 1 km.

L 10−4 ≤ L ≤ 10−2 Grain-to-film size ratio. Our model assumes
L� 1.

σ 2.6 Grain-to-fluid density ratio.
Re Re < 104 Reynolds number. We assume a non-turbulent

regime.

We assume that sediment grains are very small compared to the film size,
i.e., L � 1. In that case, (23) implies that γ � 1 and makes the till-water
boundary conditions (21) homogeneous,

w∗ = Lγ
∂r∗

∂t∗
= O(L2) ∼ 0. (25)

4 Applicability of the Model

Since glacial settings are diverse it is valuable to clarify where the assumptions
and scaling choices within our model are applicable. In this section we present
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plots of parameter spaces and identify regions of the parameter space that lie
within the scope of our model.

One of the key requirements of our model is maintaining a low-to-intermediate
Reynolds number for the film flow (Re < 104). Since the Reynolds number, de-
fined in (22), is governed by the film thickness scale H and the surface slope
α, due to (24), we plot contours of Re against these parameters in Figure 2(a).
The range of surface slopes aims to capture both the polar setting, especially
the Siple Coast, West Antarctica (e.g., α ∼ 0.001 [21]) as well as the alpine set-
ting which is characterized by steeper slopes. The red shaded region highlights
Re > 104 which we consider as the turbulent regime. Our model is only applica-
ble to non-turbulent films, which are on the order of centimeters in thickness or
less, as per Figure 2(a). Observational evidence records films with thicknesses
of 1µm to 0.1mm [33, 71], which is on the lower end of our parameter space.
Theoretical studies generally assume films that are millimeters thick [72, 14].

(a) Reynolds Number Re. (b) Shields Number S.

Figure 2: (a) Contour plot of Re for a given film size H and surface slope α. (b)
Contour plot of the non-dimensional bed stress S for a given grain-to-film size
L and surface slope α. The model is inapplicable within the shaded regions.

Active sediment transport at the bed of the film is a key prerequisite for po-
tential channelization. This requirement can be described by the non-dimensional
bed stress exceeding the critical Shields stress needed to erode sediment grains.
Within our model, the non-dimensional bed stress S is a function of surface
slope α and grain-to-film size ratio L, described in (22). Figure 2(b) shows the
contour plots of S over the ranges of α and L. The region where the bed stress
does not exceed the critical Shields threshold is represented by the red shaded
triangle.

The parameter L also governs feedbacks between the bed and the vertical
flow velocity as represented in the kinematic boundary condition (5). The as-
sumption L � 1 enables us to ignore kinematic boundary effects in (25). The
yellow shaded rectangle in Figure 2(b) highlights the region of L > 10−2, which
is beyond the scope of our model.
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4.1 Competition between Ice Melt and Sediment Trans-
port

The existing literature focuses primarily on the role of thermal processes in
driving channelization of subglacial drainage [72, 75]. Comparatively less effort
has been devoted to understanding the role of sediment transport processes in
shaping subglacial hydrological systems over soft beds. Our study attempts to
address this gap with the mechanical model outlined in Section 2 that couples
hydrology and sediment transport. Since our model does not include thermal
processes, its applicability is restricted to a regime where sediment transport is
significantly faster than film-induced melting of the ice. We conduct a rudimen-
tary comparison of time scales to identify the parameter space that characterizes
this regime. To that aim, we introduce a simple thermal model for melting of
the ice. Note that the presence of a subglacial meltwater film indicates a tem-
perate basal setting, i.e., the base of the ice is at melting point. The energy
balance at the ice-water interface is described by the Stefan equation,

LHρi
∂h

∂t
= Q+ −Q−, (26)

where LH = 3.36 ·105J kg−1 is the latent heat of fusion of water, Q+ is the heat
flux into the ice from the water along the direction normal to the interface, and
Q− is the analogous heat outflux.

The potential sources of heat influx Q+ for subglacial settings are frictional
heating of ice sliding over the bed, film thermal dissipation and geothermal heat
flux [15]. Frictional heating is suppressed in the presence of a meltwater film
which lubricates the ice-bed contact. Thermal dissipation within the film is
negligible in non-turbulent settings. The main source of heat flux in our setting
is geothermal, which is transported through the film to the ice-water interface.
We assume that heat influx Q+ scales with the geothermal heat flux G, i.e.,
Q+ ∼ G.

The heat outflux at the ice-water interface is a result of conduction through
the ice. With the goal of deriving a conservative upper bound on the ice melt,
we assume that the outflux is negligible compared to the influx, i.e., Q− = 0.
We derive the ice melt time scale [ti] using (26),

LHρi
D

[ti]
= G, (27)

where geothermal heat flux is assumed to be the dominant source of heat.
We scale the evolution of the ice-water interface h by the sediment grain size
D to make an appropriate comparison with the erosion-based evolution of the
till-water interface.

The Exner equation (6) and the Stefan equation (26) highlight two processes
for the evolution of a meltwater film. We compare the time scales of these two
processes, namely ice melt and sediment transport, to identify which process
is faster at carving out a channel. We represent the ratio of the time scales of
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these two processes, R = [t]
[ti]

defined in (27) and Table 1,

R =
ν(1− φm)G

σD2LHρig sinα
. (28)

We calculate R over our parameter space. Observational estimates for
geothermal heat flux in the Siple coast region show a range of 0.04 Wm−2 ≤
G ≤ 0.13 Wm−2 [49]. Since the variation in G is less than an order of mag-
nitude, we choose a representative value, G = 0.13 Wm−2. This higher end
value provides a conservative upper bound for the rate of ice melt. We plot R
as a function of surface slope α and grain diameter D in Figure 3, along with
a constant geothermal heat flux value G = 0.13Wm−2. The figure indicates
sediment transport is several orders of magnitude faster than ice melt for most
of the parameter space. The red shaded triangle denotes the region where R is
close to 1, indicating that the model is inapplicable within the region. Overall,
Figure 3 suggests that decoupling the dynamics of the ice-water interface from
the meltwater film for the purposes of stability analysis is a suitable assumption
for a large variety of glaciological settings.

Figure 3: Contour plots of the time scales ratio, R, defined in (28). Geothermal
heat flux G = 0.13 Wm−2. The red shaded region indicates R > 0.01 where the
two time scales are comparable.

5 Linear Stability Analysis

To better understand the stability of a subglacial meltwater film flowing over a
sediment bed, we perform a linearized stability analysis on the model presented
in Section 3.

We consider small amplitude perturbations about the steady state (13) and
expand dependent non-dimensional variables as,

f(x, y, z, t) = f(z) + εf̃(x, y, z, t), ε� 1, (29)

where barred quantities represent steady state variables, and for simplicity we
have omitted stars denoting non-dimensional variables. In light of the domain
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being infinitely extended in the x and y directions, we represent the perturbation
as elements of the Fourier basis,

f̃(x, y, z, t) = f̂(z, t) exp (ik1x+ ik2y) , (30)

where k1, k2 are the wavenumbers of the perturbations in the x- and y- directions
respectively. Given the linearity of the system, we also assume separation of
variables in z and t, so that,

f̂(z, t) = f ′(z) exp (ωt), ω = ωr + iωi. (31)

where wr and wi are the real and imaginary parts of ω respectively. Note that
the sediment flux q and bed-form r do not vary along the depth, hence the
variables r′ and q′ are independent of z.

The sign of the real part of ω is the key indicator of stability within the
meltwater film. If ωr > 0, then the perturbation in the system described by
wavenumbers (k1, k2) undergoes exponential amplification with time. As long as
the bed is perturbed as well, i.e., r′ 6= 0, it would experience similar amplification
for ωr > 0. We interpret such unstable bed-form growth as subglacial channel
initiation. The goal of the linear stability analysis is to compute ωr given model
parameters and perturbation wavenumbers k1, k2. If there exists a perturbation
(k1, k2) for which ωr > 0, then the system is deemed unstable.

We introduce small amplitude perturbations described in (31) and linearize
the equations (17- 21) around the steady state. Denoting the derivative d

dz by
D, we obtain the equations,

0 = ik1u
′ + ik2v

′ + Dw′, on 0 < z < 2, (32)

γωu′ = −ik1uu′ − wDu− 2ik1
ΠRe

p′ +
1

Re

[
−k21 − k22 + D2

]
u′, on 0 < z < 2,

(33)

γωv′ = −ik1uv′ −
2ik1
ΠRe

p′ +
1

Re

[
−k21 − k22 + D2

]
v′, on 0 < z < 2, (34)

γωw′ = −ik1uw′ −
2

ΠRe
Dp′ +

1

Re

[
−k21 − k22 + D2

]
w′, on 0 < z < 2, (35)

0 = u′, 0 = v′ 0 = w′, 0 = p′, at z = 2, (36)

0 = u′ + Lr′Du, 0 = v′, 0 = w′, at z = 0, (37)

ωr′ = −ik1SκdF [Du′ + ik1w
′]− ik2κF [Dv′ + ik2w

′] , at z = 0, (38)

where, F and dF
d|τ| are steady state sediment transport values derived via (19)

for τ = (1, 0),

F = F (S|τ|) = A(S−0.12)m, dF = dF (S|τ|) = Am(S−0.12)m−1, A = 8, m = 1.5.
(39)

Since the bed-load transport functional (9) is non-differentiable at the thresh-
old for initiating grain erosion, it is mathematically necessary that the system
always exceed the threshold so that we can linearize the sediment transport
equations for the perturbations around the steady state.
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In (37), the no-slip boundary conditions (21) at the moving boundary z = r
have been transformed by a Taylor expansion in ε into equivalent boundary
conditions imposed at the domain boundary z = 0. The equivalence allows us
to solve the system of equations on a fixed domain while obtaining the solution
to the original problem with an evolving till-water interface.

5.1 Reformulation in Terms of Streamfunction

The perturbation introduced into the steady state is two-dimensional in nature,
described by the wavenumbers k1 and k2. To simplify our analysis, we reduce
the perturbation to a single dimension. The Squire transformation [20, 5, 30] is
a classical method that projects three-dimensional fluid flow onto a plane while
preserving its perturbation characteristics. This plane, known as the Squire
plane, is defined by the z-axis, and the vector (k1, k2) in the horizontal plane.
We define k as the Squire perturbation wavenumber, θ as the Squire angle, and
U as the horizontal velocity in the (k1, k2) direction, such that,

k1 = k sin θ, k2 = k cos θ, kU ′ = k1u
′ + k2v

′. (40)

We take appropriate linear combinations of equations (32-37) to replace u′ and
v′ with U ′,

0 = ikU ′ + Dw′, on 0 < z < 2, (41)

γωU ′ = −ik1uU ′ − ik1Duw′ − 2ik

ΠRe
p′ +

1

Re

[
−k2 + D2

]
U ′, on 0 < z < 2,

(42)

γωw′ = −ik1uw′ −
2

ΠRe
Dp′ +

1

Re

[
−k2 + D2

]
w′, on 0 < z < 2, (43)

U ′ = 0, w′ = 0, p′ = 0, at z = 2, (44)

kU ′ = −k1LDur′, w′ = 0, at z = 0. (45)

The Exner equation (38) does not map perfectly onto the U ′ and w′ notation
since the coefficients of k1u

′ and k2v
′ are not equal. We remedy this anomaly

by assuming that θ � 1, i.e., k1 � k2. This allows us to add and subtract terms
of the type O(k1) so that we can replace the term ik1SκdF [Du′ + ik1w

′] with
ik1κF [Du′ + ik1w

′] to yield,

ωr′ = −ikκF [DU ′ + ikw′] , at z = 0. (46)

The assumption k1 � k2 means that the along-flow perturbations have very
long wavelengths compared to the across-flow perturbations. These are precisely
the type of perturbations we are interested in, since the formation of channels
that run along x-direction requires bed-form structure in the y-direction. Note
that setting k1 = 0, i.e., θ = 0, completely removes the influence of the steady
state from the above equations, effectively rendering the linear stability analysis
inconclusive. We generally choose θ = 0.01.
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We introduce a streamfunction ψ so that mass balance (41) holds implicitly,

U ′ = Dψ, w′ = −ikψ. (47)

Streamfunction notation allows us to eliminate the pressure term and reformu-
late our equations into the Orr-Sommerfeld (OS) equation [5, 20, 54],

γω
[
D2 − k2

]
ψ = −ik1

[
uD2ψ − ψD2u− k2uψ

]
+

1

Re

[
D2 − k2

]2
ψ, on 0 < z < 2.

(48)
The boundary equations arise from (44), (45) and (46),

Dψ = 0, ψ = 0, at z = 2, (49)

Dψ = − sin(θ)LDur′, ψ = 0, at z = 0, (50)

ωr′ = −ikκFD2ψ at z = 0. (51)

In deriving (51) we have used the boundary condition ψ(0) = 0.
Given k1 and k2, we compute ωr by solving (48) with boundary conditions

(49), (50), and boundary evolution (51) for the unknowns ψ, r′ and ω. Note
that we can normalize r′ as r′ = 1.

5.2 Numerics

We reformulate the system of equations (48), (49), (50) and (51) as an eigen-
value problem and solve numerically to obtain the eigenvalue-eigenvector pairs
ω and (ψ, r′). To discretize the system of equations, we use a spectral Galerkin
method originally proposed by Shen et al. [63] and adapted for the current
problem from [8, 9]. We express the stream-function as a linear combination
of doubly integrated Legendre polynomials that vanish at the boundaries, plus
two low order polynomials that incorporate the till-water boundary conditions.
We present the details of the discretization in the Supplementary Material.

The key benefit of Spectral Galerkin methods is that numerical accuracy does
not depend on spatial discretization, but on the number of spectral elements.
This method is particularly well-suited to our physical system where spatial res-
olution of the near-bed dynamics, especially the computation of the derivatives
D2ψ in (51), is crucial for determining bed stability. Spectral Galerkin methods
are known to be highly accurate for solving the OS equation with homogenous
boundary conditions [42], with the key advantage of not producing spurious
eigenvalues.

6 Results

We study the stability characteristics of the meltwater film for given parameters
and perturbation wavenumber k. We solve the system of equations (48-51) to
obtain the eigenvalue-eigenvector solutions ω and (ψ, r′) respectively. Recall
that the variable ω = ωr + iωi represents the growth rate of the perturbation,
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and ωr > 0 implies that the system is unstable. The function ψ(z) is the
perturbed streamfunction, and r′ characterizes the amplitude of the bed-form
perturbation.

The system of equations (48-51) exhibits an infinite number of eigenvalue-
eigenvector solutions ω and (ψ, r′) for any given wavenumber k. These eigenpairs
represent a variety of states that the system can exist in for a given perturbation.
These states and their superimpositions characterize the various responses, to
linear order, of the coupled hydrodynamics and sediment transport of the sys-
tem to the imposed perturbation. By solving the discretized the system, we
numerically compute a finite number of these solutions, equal to the number of
equations in the discretized system. From now on, ω, ψ, r′ refer to the solutions
of the discretized equations.

6.1 System Instability

We consider a meltwater film with the following parameter values: Reynolds
number Re = 20, grain-to-film size ratio L = 10−3 and surface slope α = 0.001.
This system corresponds to film thickness 2H ≈ 4mm and grain diameter D ≈
2µm. We discretize the system with number of spectral elements N = 300 and
plot the spectra of eigenvalues in Figure 4(a) for wavenumbers 10−3 ≤ k ≤
103. For each wavenumber k on the x-axis, we plot on the y-axis the top fifty
eigenvalues with the largest real parts. We indicate the sign of ωr by open circles
(positive) and dots (negative). Figure 4 remains qualitatively similar over the
ranges of parameters Re,L and α.

(a) Active bed evolution. (b) No bed evolution.

Figure 4: Plot of real parts of the eigenspectra for Re = 20, L = 10−3, α = 10−3.
(a) Spectra for the standard system of equations. The eigenvalue isolated at
the bottom corresponds to the sediment transport eigenvalue. (b) The Exner
equation (51) is replaced by ω = 0.

Most of the spectra lie in the upper half of Figure 4(a) and has negative
real part. One eigenvalue stands out in magnitude. This distinctive eigenvalue
arises because of the significant difference between the times scales of hydrology
and sediment transport (γ � 1). In the system of equations, since the sedi-
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ment transport equation (51) is the only equation where γ does not multiply ω,
that equation yields an eigenvalue of relatively smaller magnitude. We refer to
this particular eigenvalue as the sediment transport eigenvalue, since it corre-
sponds to bed-form evolution. Its positive real part indicates a morphological
instability.

We test the hypothesis that the distinctive eigenvalue represents the bed-
form instability. We replace the Exner equation (51) with ωr′ = 0 which com-
pletely nullifies bed evolution. The corresponding spectra in Figure 4(b) show
that the distinctive eigenvalue has disappeared from the plot while leaving the
other eigenvalues unchanged, supporting our claim that the eigenvalue in Figure
4(a) with the smallest magnitude represents the bed-form instability.

The stability of the system is determined by the interplay of three physical
processes within the OS equation (48), namely acceleration, advection, and
diffusion,

γ

Acceleration︷ ︸︸ ︷
ω
[
D2 − k2

]
ψ =

Advection︷ ︸︸ ︷
−ik1

[
uD2 −D2u− k2u

]
ψ+

1

Re

Diffusion︷ ︸︸ ︷[
D2 − k2

]2
ψ . (52)

We investigate how these processes affect the stability of the system at different
wavenumbers k.

6.2 Diffusion Causes Bed-form Migration

We first study a diffusion-only system where we suppress the advection (Re� 1)
and acceleration (γ � 1). We numerically solve the system of equations (48-
51) and we isolate the sediment transport eigenvalue ω, and the corresponding
streamfunction ψ, as the eigenvalue with the smallest magnitude. Figure 5
highlights the velocity and shear stress perturbations which are solutions to
the system of equations. Panels (a) and (c) consider the case k = 1 and show
the Squire velocity vector field (U , w), as well as the color plots of U and the
perturbation of the shear stress,

τ = D2ψ. (53)

The solid line represents the till-water interface perturbation, where its am-
plitude is not to scale since perturbations within our study are infinitesimal.
Panels (b) and (d) represent short wavelength perturbation regime (k = 10).

The horizontal velocities at the till-water interface are generated by the bed
perturbation as described by (50). The velocities then diffuse toward the ice,
and their corresponding derivatives create the stress field. The near-bed vertical
velocities and associated circulation cells are generated by mass conservation
over the horizontal velocity gradients at the boundary.

Figure 5 shows that bed-stress and bed-form are in phase, in which case
(51) indicates that the real part of the sediment transport eigenvalue is zero.
Since the system perturbations have the form exp(k1x + k2y + ωt), the fact
that ωr = 0 implies that the bed-form neither amplifies nor decays, but simply
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(a) Velocities (k = 1). (b) Velocities (k = 10).

(c) Shear Stress (k = 1). (d) Shear Stress (k = 10).

Figure 5: Solution for the diffusion-only case: no fluid advection or acceleration,
Re,γ = 10−6 and F,L,κ. θ = π

2 . (a) shows the velocity field and the color plot
of Squire horizontal velocity U for the long wavelength regime (k = 1). (c)
shows the shear stress τ in the Squire direction for k = 1. The triangle markers
indicate the sign of the stress (right-ward pointing stands for positive values).
(b) and (d) represent the short wavelength regime (k = 10). The solid line
represents the bed-form perturbation. Its amplitude is not to scale.

migrates along the bed. Thus suggests that diffusion by itself does not affect
the stability of the system. In other words, a diffusion-only system is neutrally
stable.

We develop a reduced model to better understand the physics in the diffusion-
only case that leads to ωr = 0. Figure 5(b) suggests the formation of a bound-
ary layer for the short wavelength regime (k � 1). We assume the following
re-scaling of variables,

z? = kz, ψ? =
kψ

L sin θ
, ω? =

ω

k2FκL sin θ
. (54)

The re-scaled OS equation (48) takes the form,

a1ω(D2 − 1)ψ? = −ia2
[(

2z? − k−1z?2
)

(D2 − 1) + 2k−1
]
ψ? + (D2 − 1)2ψ?,

(55)
where, a1 = FLγReκ sin θ, a2 = Rek−2 sin θ. (56)

The limits a1 → 0 and a2 → 0 to suppress acceleration and advection. We
perform an asymptotic expansion of the variables to study the short wavelength
regime,

z? = z(0)+O(k−1), ψ? = ψ(0)+O(k−1), ω? = ω(0)+O(k−1), k � 1. (57)
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We reduce the equations (55), (50), (49) and (51) to leading order as k →∞,

0 = (D2 − 1)2ψ(0), on 0 < z(0) <∞, (58)

Dψ(0) = −2, ψ(0) = 0, at z(0) = 0, (59)

Dψ(0) → 0, ψ(0) → 0, as z(0) →∞, (60)

ω(0) = −iD2ψ(0) at z(0) = 0. (61)

The leading order solution of the reduced boundary layer model is given by,

ψ(0) = −2z(0) exp(−z(0)), ω(0) = −4i, (62)

Comparison between the analytical and the re-scaled numerical solutions show
good agreement (see Supplementary Material Figure S1). The above analysis
supports the hypothesis that ωr = 0 to leading order in the short wavelength
regime, which implies that diffusion by itself is neutrally stable, i.e., it does not
affect the stability of the system.

In the long wavelength regime (k � 1), we consider the following re-scaled
variables,

ψ? =
ψ

L sin θ
, ω? =

ω

FLkκ sin θ
, (63)

to obtain the re-scaled OS equation,

b1kω
?(D2 − k2)ψ? = −ib2k

[(
2z − z2

)
(D2 − k2) + 2

]
ψ? + (D2 − 1)2ψ, (64)

where, b1 = FLγReκ sin θ, b2 = Re sin θ. (65)

The advection and acceleration terms automatically vanish as k → 0. We
consider the asymptotic expansion of the system at k = 0,

z = z(0) +O(k), ψ? = ψ(0) +O(k), ω? = ω(0) +O(k), k � 1. (66)

The equations (48-51) as k → 0, to leading order, read as,

0 = D4ψ(0), on 0 < z < 2, (67)

Dψ(0) = −2, ψ(0) = 0, at z(0) = 0, (68)

Dψ(0) = 0, ψ(0) = 0, as z(0) = 2, (69)

ω(0) = −iD2ψ(0) at z(0) = 0. (70)

Omitting the asymptotic notation, the leading order solution is given by,

ψ = −2z + 2z2 − 1

2
z3, ω = −4i, (71)

and shows that ωr = 0 as k → 0, which implies that the diffusion-only system
is neutrally stable.
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6.3 Advection Destabilizes the System

We study the role of advection-diffusion interaction in the instability by con-
sidering a set of parameters that suppress acceleration (γ � 1). Figure 6
shows plots velocity and shear stress for the advection-diffusion regime. The
computed velocity field exhibits a right-ward skew. This skew causes leads a
left-ward phase shift of the shear stress, especially the bed stress, providing a
phase advance over the bed-form. The bed stress advancing ahead of the bed-
form implies that Im(τ) > 0 which yields ωr > 0 from (51) and (53), suggesting
that advection contributes to the instability of the system.

(a) Velocities (k = 1). (b) Velocities (k = 10).

(c) Shear Stress (k = 1). (d) Shear Stress (k = 10).

Figure 6: Advection creates a right-ward skew of velocity and phase advance
of the shear stress. Solution of the system for the advection-diffusion case,
Re = 20, γ = 10−6 and F,L, κ = 1. θ = π

2 . (a) and (b) represent the long
wavelength regime with k = 1. (c) and (d) represent the short wavelength
regime with k = 10. The solid line represents the bed-form perturbation. Its
amplitude is not to scale.

We use a reduced model to test our hypothesis that the advection-diffusion
force balance leads to ωr > 0 in the short wavelength regime. We take the limit
a1 → 0 of the re-scaled OS equation (55) to suppress the acceleration term. The
short wavelength asymptotic expansion (57) yields,

2ia2z
(0)(D2 − 1)ψ(0) = (D2 − 1)2ψ(0), on 0 < z(0) <∞, (72)

while the boundary equations are identical to the short wavelength diffusion
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case, (59-61). The leading order solution is given by,

ψ(0) =
2
∫ z
0

∫∞
v
e2v−s−zAi(c−1s+ c2)dsdv∫∞

0
e−sAi(c−1s+ c2)ds

, ω(0) =
−2iAi(c2)∫∞

0
e−sAi (c−1s+ c2) ds

,

(73)
where c = 1

3
√
2ia2

with arg(c) = −π6 , and Ai(s) is one of the two standard linearly

independent solutions of the system D2f = sf . The integrals in (73) converge
as a consequence of the exponential decay rate of Ai(s) for −π3 < arg(s) < π

3 .
The Supplementary Material Figure S3 shows good agreement between the

re-scaled numerical solutions and the analytical solutions given by (73). Our
finding that the real part of the analytical eigenvalue is positive supports our
hypothesis that the interplay of advection and diffusion causes the instability.

In the long wavelength regime, the asymptotic analysis from the previous sec-
tion suggests that diffusion dominates at long wavelengths, yielding a neutrally
stable system, i.e., ωr = 0. Assuming that the sediment transport eigenvalue
varies continuously with the wave number k, if ωr > 0 at some short wavelength,
then it is likely that as k → 0 the real part of the eigenvalue simply decays to 0
while maintaining its sign. This hypothesis indeed seems to hold in the Figure
4, where ωr peaks at k = 0.1 and converges to 0 as k becomes small. The
Supplementary Material provides more details.

We represent the physics of destabilization via advection in Figure 8(a).
The steady state velocity u advects momentum to the perturbed velocity field,
causing the rightward skew that leads to a phase advance in the bed stress which
amplifies the bed-form perturbations.

6.4 Fluid Acceleration Stabilizes the System for Short
Wavelengths

The computed spectra in Figure 4(a) show that the real part of the sediment
transport eigenvalue becomes negative as wavenumber becomes large, indicating
that there is short-wavelength stabilization. Since our analysis suggest that
advection is a destabilizer and diffusion by itself does not influence stability, we
study the role of acceleration as a potential stabilizer.

We consider a regime of short wavelength (k � 1) and comparatively low
Reynolds number (Re = 1) to partially suppress advection while maintaining
the influence of acceleration (γ = 0.5). Figure 7 shows plots of computed
velocity fields and shear stresses for this parameter regime. In contrast with the
right-ward velocity skew in the advection-diffusion case, Figure 7(a) highlights a
left-ward velocity skew, which creates a right-ward phase shift of the bed stress.
The bed stress lagging behind the bed-form implies that Im(τ) < 0, and hence
yields ωr < 0. This suggests that acceleration contributes to the stability of the
system.

We study the nature of the stabilization for the short wavelength regime with
a reduced model. We follow the same recipe outlined in the previous subsections
in (54) and (57). The limit k →∞ of the reduced OS equation (55) removes all
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(a) Velocities (k = 5). (b) Velocities (k = 10).

(c) Shear Stress (k = 5). (d) Shear Stress (k = 10).

Figure 7: Acceleration creates a left-ward skew of velocity and phase lag of
the bed stress. Solution of the system for low Reynolds number and short
wavelength: Re, F,L = 1. θ = π

2 . γ = 0.5. (a) k = 5. (b) k = 10. Plot
analogous to Figure 5.

the advection terms,

a1ω(D2 − 1)2ψ(0) = (D2 − 1)2ψ(0), on 0 < z <∞. (74)

Omitting the asymptotic notation, the leading order solution of (74) and (59-61)
is given by,

ψ =
2i

a1

(
e−z(1−ia1) − e−z

)
, ω = −2a1 − 4i, (75)

where we note that ωr < 0. This analysis suggests that the interaction between
acceleration and diffusion stabilizes the system for short wavelengths.

We summarize the physical intuition for the stabilizing effect of acceleration
in Figure 8(b). The key insight is that as the hydrology and sediment transport
time-scales become comparable (γ ∼ 1) the diffusion speed for fluid momentum
becomes comparable to the speed of bed-form migration. The relative motion
between the fluid velocities that diffuse toward the ice and the bed-form migra-
tion results in a left-skew of the velocity. This creates a corresponding phase
lag in the bed stress that stabilizes the system. As the hydrology time scale
becomes smaller (γ � 1), the velocity field adjusts itself more quickly to the
moving bed-form, effectively reducing the skew. The limiting case of γ → 0
completely removal of the skew and reduces the system to the diffusion-only
case in Figure 5.
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(a) Advection destabilizes. (b) Acceleration stabilizes.

Figure 8: Representations of the physics for the stabilization and destabilization
of the meltwater film caused by acceleration and advection respectively. Skews
in the velocity field leads to phase shifts in the bed stress, which affect the
stability of the system.

6.5 The Most Unstable Perturbation Wavelength

We define the wavenumber ku as the one corresponding to the sediment trans-
port eigenvalue with the largest positive real part. Since perturbations at this
wavenumber grow at the fastest rate, the corresponding wavelength λu = 2πk−1u
is potentially indicative of the initial spacing between channels formed from the
mechanisms of sediment transport described in this paper. To allow the com-
parison of this model against field observations, we perform a sensitivity study
for λu over the three main parameters: Re, the Reynolds number; L, the grain-
to-film size ratio, and α, the surface slope. We set θ = 0.01 which implies that
most of the perturbation is across-flow.

Figure 9 shows the results of the sensitivity analysis. The shaded red region
on the left represents the regime where the bed stress is insufficient to erode the
sediment since it is below the critical Shields threshold. The threshold increases
with grain size as it becomes more and more difficult for the fluid to erode larger
grains (see Figure 2(b)). This is reflected in Figure 9, where the region of no
sediment transport is larger in panel (b) (L = 10−2) than in (a) (L = 10−3).

The four contour values of λu, 0.2, 0.5, 1, 3 are plotted as solid lines and
span the range of the plot where the system is unstable. This suggests that the
most unstable wavelength is either comparable or an order of magnitude smaller
that the film thickness itself. The value of λu generally decreases with Re and
increases with α. Comparing the two sub-figures suggests that λu is largely
independent of L provided the non-dimensional bed stress S is large enough.
The fastest growing wavelength stems from advection dominating acceleration.
Based on the asymptotic analyses from the previous subsections, we measure
the advection-acceleration competition through the ratio of coefficients a1

a2
and

b1k
b2k

from the short (55) and long (64) wavelength regimes respectively. These
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(a) L = 0.001. (b) L = 0.01.

Figure 9: Contours of unstable wavelength λu over parameters Re and α. Solid
line contours represent values of λu. The red shaded rectangular region indicates
that the bed stress is insufficient to erode sediment. The shaded triangular blue
region highlights a region of stability. (a) and (b) represent L = 10−3 and
L = 10−2 respectively. The dashed magenta lines represent contours of C as
per (76).

ratios simplify to the following condition for instability within the system, i.e.,
when advection dominates acceleration,

C� 1, C = FLκγ ≈ 2A
√

2 sinα

(σ− 1)(1− φm)
√

Re

(
2 sinα

(σ − 1)L

)m−1.5
. (76)

In the above, we express γ, κ and F ≈ ASm in terms of Re and α using (39)
and (23).

We plot dashed line contours of C in Figure 9 with the classic Meyer-Peter-
Müller values A = 8 and m = 1.5 [50]. The figure indicates that the region
of stability roughly corresponds to C ≥ 0.1, and that contours of the most un-
stable wavelength λu align with the contours of C provided that the system is
well beyond the threshold Shields stress, i.e. away from the shaded red rectan-
gular region. These findings support the idea that the advection-acceleration
competition, as represented by C, is a measure of the system stability.

7 Discussion

We study subglacial channelization of meltwater films on soft beds using a me-
chanical model that couples hydrology and sediment transport. With a lin-
earized stability analysis, we identify an instability where meltwater films grow
by carving into the sediment layer beneath. This instability provides a potential
mechanism to explain the formation of till-incised canals [73, 52]. We describe
the physics of the channel initiation instability using the framework of flow over
erodible beds [40, 11]. We show that the dynamics of the instability is similar to
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that of ripple formation, where advective processes within the flow destabilize
the system and cause bed-forms to grow. We also show that the hydrology of
the system contains a stabilizing mechanism, namely flow acceleration, which
dominates at short wavelengths. We discuss the implications of our work in the
context of ripple instability dynamics and previous models of subglacial channel
initiation.

7.1 Hydrodynamics Induces Short Wavelength Stabiliza-
tion of Films

Instabilities of flow over erodible beds and the resulting evolution of bed mor-
phology are classical topics in fluid dynamics and hydrology as reviewed, for
example, by [40, 11]. Kennedy [39, 40] was among the first to explain the dy-
namics of the ripple formation instability. He identified that the instability
arises from the phase advance of the bed shear stress over the bed-form, which
is a result of near-bed flow advection being countered by the bed shear stress.
However, the potential flow model used by Kennedy [39] aligned the bed-form
and the bed stress exactly, thus requiring an externally imposed phase advance
to activate the ripple instability. Shallow water models predicted stability of
the bed at all wavelengths since they could not resolve the differences between
mean flow and near-bed flow [47]. Rotational flow models which resolve the
vertical flow velocities, e.g., [29, 59], addressed the phase advance problem suc-
cessfully, and we follow this modeling approach to understand the evolution of
meltwater films. Results from previous rotational flow models [29, 59, 13, 17]
are consistent with the advection-induced instability mechanism discussed by
Kennedy [39, 40] and presented in the current paper (see Figure 8(a)).

The theory of flow over erodible beds was originally intended for analyses of
granular ripples on beaches and riverbeds [11]. Therefore, most film models as-
sume a free surface boundary at the top [29, 59, 13]. Since our model represents
meltwater films capped by ice, i.e., a fixed lid boundary condition, it does not
exhibit the stabilizing effect of a free surface at subcritical flow [11], nor does
it prompt the formation of antidunes at supercritical flow [13, 17]. The lack of
stabilization from a free surface suggests that alternate mechanisms operate to
stabilize films with fixed lids, a point that we will revisit shortly.

The direction of the bed-form presents another difference between our study
and others. We focus on bed formations in the direction near-perpendicular to
the flow because we are interested in the initiation of canals whose axes align
with the film flow direction. Most previous studies [39, 29, 59], by contrast,
analyze ripple formation along the film flow direction. Our results show that
a change in the bed-form direction simply projects the dynamics of the ripple
instability onto that direction. However, the study by Devauchelle et. al. [17],
which includes oblique perturbations as well as a fixed lid boundary condition,
reports that the film is stable for perturbations that are near-perpendicular
to the flow direction. This disagreement between our findings and [17] stems
from the differences between the respective mechanisms of bed-form stabilization
within the underlying models.
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As discussed in the review by Charru et. al. [11], most models of flow over
erodible beds introduce two sediment-based mechanisms to add stability to the
system: a saturation lag in the bed-load density which imposes a minimum bed-
form wavelength; and a gravity effect, where an uneven bed tends to flatten itself
diffusively due to grain motion along small-scale bed slopes. Devauchelle et. al.
[17] obtain stability at short wavelengths as well as for near-perpendicular per-
turbations as a result of these two mechanisms. The saturation lag mechanism
is supported by experimental [3] and observational evidence [12] in the case of
aeolian dunes, but it is not clear how effective it would be for a non-turbulent
thin meltwater film where grain saltation would be suppressed. The gravity
effect is based on experimental studies of grain incipient motion for flow over
an inclined bed, e.g., [18, 26]. This effect is most pronounced when the system
is near the threshold Shields stress, and it diminishes as the bed stress becomes
large [11]. The strength of the gravity effect is a source of uncertainty since
there is no comprehensive study on how it varies with grain properties such as
diameter, density, shape and cohesion. The uncertainty is magnified in the case
of subglacial sediments for which observational records are sparse and varied.

Our model invokes neither of these sediment-based stabilization mechanisms.
Instead, we show the hydrodynamics itself stabilizes short wavelengths through
the acceleration-diffusion mechanism outlined in Figure 8(b). The stabilizing
feedback arises from resolving the linear time-evolution response of the hydrol-
ogy to the perturbation. Figure 8(b) shows that the bed stress lags the bed-form
when the flow diffusion speed is comparable to the bed-form migration speed.
Previous models [29, 59, 13, 17] are unable to reproduce this phase lag because
they assume quasi-steady flow, namely that the fluid flow adapts instantaneously
to any changes in the bed. Quasi-steady flow is justified by arguing that hydrol-
ogy operates significantly faster than sediment transport (γ � 1). While the
assumption may be true for the mean flow of the film, the separation of time
scales is unlikely to hold in the vicinity of the bed. Our results from Figure 4
show that even a three order magnitude difference (γ ∼ 10−3) does not suppress
stabilization at wavelengths around 0.1 times the film size.

In a real meltwater film setting, both the hydrology-based mechanism and
the sediment-based mechanisms likely contribute to the stability of the system.
The latter, however, appear to manifest only in specific regimes such as in the
presence of saltating flow or, in case of the gravity effect, when the system is
close to the critical Shields threshold [11]. Nevertheless, it is possible that that
the sediment-based mechanisms stabilize near-perpendicular perturbations in
meltwater films and limit the instability to the formation of oblique drainage
elements, analogous to the bar instability in [17].

7.2 Canal Initiation on Soft Beds Versus Hard Beds

Walder and Fowler [73] and Ng [52] suggest that efficient drainage systems
on soft subglacial sediment beds take the form of canals that are incised into
the till. Indeed, canals are commonly observed in the subglacial setting (e.g.,
Rutford Ice Stream, West Antarctica [41]), but it is unclear which processes
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lead to their formation. If thin meltwater films collapse by carving into the ice
as a consequence of Walder’s instability [72, 74], Röthlisberger channels [60] will
dominate the early evolution of the hydrological system. This study presents
an alternate framework which emphasizes the role of till and coupled meltwater
flow in the formation of till-incised canals.

Subglacial drainage systems with a dynamic till have been studied previously,
but have not focused specifically on the initiation of canals. Ng [52] describes
the coupled dynamics of hydrology and till in fully-developed subglacial canals.
He presents equillbrium conditions of a till-incised canal system that spans tens
of kilometers. At this length scale, canal evolution is dictated by mass fluxes
of water and sediment rather than smaller scale features such as bed geometry
and vertical flow profiles. Our model provides a complementary approach in
the sense that we study meltwater films at the length scale of the film thickness
and resolve bed geometry and near-bed flow dynamics. Our analysis yields a
channel initiation mechanism that may eventually lead to the formation of long
drainage systems discussed by Ng.

Kyrke-Smith and Fowler [43] develop a model to understand the evolution
of meltwater films on soft beds, where they include the processes of till erosion
and deformation and meltwater generation. Since Walder’s mechanism of film
expansion via dissipation is known to make meltwater films unstable, [43] intro-
duce the framework of supporting clasts, developed by Creyts and Schoof [14],
to suppress Walder’s instability. The key insight from Creyts and Schoof [14]
is that clasts distributed within the till bear the majority of the ice overburden
stress, and this stress localization leads to faster closure of the ice, thus adding
stability to the film.

While the framework of supporting clasts is well suited to subglacial water
systems over hard beds, it is not clear that the framework translates to the soft
bed setting, especially given the potential for the erosion and plastic deformation
[1, 67, 68] of till. Our study highlights an alternate canal initiation mechanism,
where we show that meltwater films grow in an unstable manner by eroding
the till beneath, long before they reach flow speeds that are sufficient to carve
into the ice. In the regime of slow non-turbulent flow, the ice-water interface
is decoupled from the film, and the key dynamics lies exclusively between the
mechanical interactions of water and sediment. The morphological instability
that stems from these sediment-water interactions initiates the transformation
of the film into a canal.

Our study provides an interesting contrast to the condition of stability that
arises from the supporting clasts framework of Creyts and Schoof [14]. For
hard beds, Creyts and Schoof argue that the largest clast size controls the
onset of instability within the meltwater film, since the ice overburden stress
localizes over the largest clasts eventually as the film grows. Our study suggests
that, for plastic beds, sediment grains with the smallest size control the onset
of instability, since they are the easiest to erode. While our study does not
directly account for multiple grain sizes, work by [48] suggests the possibility
that film flow can channelize by preferentially eroding smaller sized grains. Our
work thus brings to light a key physical difference between hard and soft beds,
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where the smallest grain size controls stability for soft beds, unlike in the hard
bed case where stability is controlled by the largest clast size.

8 Conclusion

The linearized stability analysis we have performed in this paper highlights that
water transport over soft beds is associated with dynamic bedform evolution in
the subglacial till and elucidates the conditions under which evenly spaced canals
eroded in the sediment can emerge out of a flat bed as a result of a morphological
instability. Our theory for canal initiation would be testable against idealized
laboratory experiments of thin film flow over granular beds in a Hele-Shaw
cell, which, to our knowledge, are not currently available. The fastest growing
wavelength we identify, however, is unlikely to be compatible with subglacial
morphologies observed in the field [19]. Our study is limited to the physical
processes leading to the initiation of bedforms; making a direct link to field
observables would require follow-up work that captures the non-linear evolution
of the incipient bedform into its fully-fledged form, for example through a depth-
resolved, direct numerical simulation. This would also shed light on whether
and how evenly-spaced incipient canals saturate into a network of fully evolved
drainage elements that can be analyzed in isolation [73, 52, 53] and perhaps
represented in a parametrized form in large-scale hydrological models akin to
existing formulations for hard-rock beds [61, 62, 35, 34, 76].
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[60] Hans Röthlisberger. Water pressure in intra-and subglacial channels. Jour-
nal of Glaciology, 11(62):177–203, 1972.

32



[61] Christian Schoof. Ice-sheet acceleration driven by melt supply variability.
Nature, 468(7325):803–806, 2010.

[62] Christian Schoof, Ian J Hewitt, and Mauro A Werder. Flotation and free
surface flow in a model for subglacial drainage. part 1. distributed drainage.
Journal of Fluid Mechanics, 702:126–156, 2012.

[63] Jie Shen. Efficient spectral-galerkin method i. direct solvers of second-
and fourth-order equations using legendre polynomials. SIAM Journal on
Scientific Computing, 15(6):1489–1505, 1994.

[64] Albert Shields. Anwendung der aehnlichkeitsmechanik und der turbulen-
zforschung auf die geschiebebewegung. PhD Thesis Technical University
Berlin, 1936.

[65] EM Shoemaker. Subglacial hydrology for an ice sheet resting on a de-
formable aquifer. Journal of Glaciology, 32(110):20–30, 1986.

[66] Slawek Tulaczyk, Barclay Kamb, and Hermann F Engelhardt. Estimates
of effective stress beneath a modern west antarctic ice stream from till
preconsolidation and void ratio. Boreas, 30(2):101–114, 2001.

[67] Slawek Tulaczyk, Barclay Kamb, Reed P Scherer, and Hermann F Engel-
hardt. Sedimentary processes at the base of a west antarctic ice stream;
constraints from textural and compositional properties of subglacial debris.
Journal of Sedimentary Research, 68(3):487–496, 1998.

[68] Slawek Tulaczyk, W Barclay Kamb, and Hermann F Engelhardt. Basal
mechanics of ice stream b, west antarctica: 1. till mechanics. Journal of
Geophysical Research: Solid Earth, 105(B1):463–481, 2000.

[69] Slawek Tulaczyk, W Barclay Kamb, and Hermann F Engelhardt. Basal
mechanics of ice stream b, west antarctica: 2. undrained plastic bed model.
Journal of Geophysical Research: Solid Earth, 105(B1):463–481, 2000.

[70] van Rijn Leo C. Sediment transport, part i: Bed load transport. Journal
of Hydraulic Engineering, 110(10):1431–1456, October 1984.

[71] Robert Vivian. The nature of the ice-rock interface: The results of in-
vestigation on 20000m2 of the rock bed of temperate glaciers. Journal of
Glaciology, 25(92):267–277, 1980.

[72] Joseph S Walder. Stability of sheet flow of water beneath temperate glaciers
and implications for glacier surging. Journal of Glaciology, 28(99):273–293,
1982.

[73] Joseph S Walder and Andrew Fowler. Channelized subglacial drainage over
a deformable bed. Journal of Glaciology, 40(134):3–15, 1994.

[74] J Weertman and GE Birchfield. Subglacial water flow under ice streams
and west antarctic ice-sheet stability. Annals of glaciology, 3:316–320, 1982.

33



[75] Johannes Weertman. General theory of water flow at the base of a glacier
or ice sheet. Reviews of Geophysics, 10(1):287–333, 1972.

[76] Mauro A. Werder, Ian J. Hewitt, Christian G. Schoof, and Gwenn E. Flow-
ers. Modeling channelized and distributed subglacial drainage in two dimen-
sions. Journal of Geophysical Research: Earth Surface, 118(4):2140–2158,
2013.

[77] M. S. Yalin. Mechanics of sediment transport. Pergamon Press Oxford,
New York, [1st ed.] edition, 1972.

34



Supplementary Material: Subglacial Canal Initiation Driven by Till Erosion

Indraneel Kasmalkar, Elisa Mantelli, Jenny Suckale

1 Linearization of the Exner Equation

We introduce the perturbation exp(ik1x + ik2y + ωt) into the non-dimenstional Exner equation (3.3) from the manuscript.
Omitting the star notation for non-dimensional variables,

ωr′ = −ik1q′x − ik2q′y, q′ = F (S|τ|)τ̂′ + S|τ|′dF (S|τ|)τ̂. (S.1)

The non-dimensional bed stress τ = (τx, τy) and unit bed stress vectors are given by (2.8),

τi = tTi
(
∇u +∇uT

)
n, τ̂ =

τ

|τ|
, at z = r. (S.2)

The vectors tx, ty are the unit tangent vectors to the bed in the x- and y- directions respectively, and n is the normal surface
vector for the bed z = r(x, y, t),

tx =

(
1, 0, ∂r∂x

)√
1 +

(
∂r
∂x

)2 , ty =

(
1, 0, ∂r∂y

)
√

1 +
(
∂r
∂y

)2 , n =

(
− ∂r
∂x ,−

∂r
∂y , 1

)
√

1 +
(
∂r
∂x

)2
+
(
∂r
∂y

)2 . (S.3)

After introducing the perturbations, these vectors take the form,

tx = (1, 0, 0) + εik1r
′(0, 0, 1), ty = (1, 0, 0) + εik2r

′(0, 0, 1), n = (0, 0, 1) + ε(ik1r
′, ik2r

′, 0). (S.4)

We evaluate the non-dimensional stress terms and their perturbations,

τ = (1, 0), τ′ = (Du′ + ik1w
′,Dv′ + ik2w

′) , τ̂ = (1, 0), τ̂
′

= (0,Dv′ + ik2w
′) . (S.5)

Care needs to be taken for the computation for τ̂
′

=
(

τ
|τ|

)′
. The perturbation of |τ| is given by |τ|′ = 1+ε Real (Du′ + ik1w

′).

Thus,
q′ = ([Du′ + ik1w

′] SdF (S) , F (S) [Dv′ + ik2w
′]) , (S.6)

which yields the linearized Exner equation (5.10),

ωr′ = −ik1SκdF [Du′ + ik1w
′]− ik2κF [Dv′ + ik2w

′] . (S.7)

2 Numerics

For reference, we write the main system of equations (5.20 - 5.23) from the manuscript,

γω
[
D2 − k2

]
ψ = −ik1

[
uD2ψ − ψD2u− k2uψ

]
+

1

Re

[
D2 − k2

]2
ψ, (S.7)

Dψ = 0, ψ = 0, at z = 2, (S.8)

Dψ = − sin(θ)LDur′, ψ = 0, at z = 0, (S.9)

ωr′ = −ikκFD2ψ at z = 0, (S.10)
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where ψ(z) is the streamfunction, z corresponds to the coordinate along the film depth, Re is the Reynolds number, u(z) is
the steady state velocity along the x-direction, r′ is the bed-form perturbation amplitude, k is the perturbation wavenumber,
F is the steady state non-dimensional bed-load flux value, θ is the Squire angle, k1 = k sin θ and κ is a non-dimensional
variable that connects the model scaling to that of the standard bedload transport scaling. We present the details of spectral
Galerkin solver for the equations (S.7 - S.10). For the purpose of the solver, we perform the translation ζ = z− 1. We define
the modified Sobolev space,

H2
±1[−1, 1] =

{
ϕ ∈ L2[−1, 1] : ϕ(±1) = 0,

dϕ

dζ
(±1) = 0,

djϕ

dζj
∈ L2[−1, 1], 0 ≤ j ≤ 2

}
, (S.12)

where L2[−1, 1] is the space of all square-integrable functions on −1 ≤ ζ ≤ 1.
We write (S.7) in weak form by integrating against ϕ ∈ H2

1 [−1, 1],

ωM(ψ,ϕ) = A(ψ,ϕ), (S.13)

where M(ψ, φ) and A(ψ, φ) are the mass and the stiffness bilinear forms, respectively,

M = γ
[
I20 − k2I00

]
, A = ik1

[
U200 − U020 + k2U000

]
+

1

Re

[
I22 − 2k2I20 + k4I00

]
, (S.14)

and, Ij1j2(ψ,ϕ)

∫ 1

−1

dj1ψ

dζj1
dj2ϕ

dζj2
dζ, Uj1j2j3(ψ,ϕ) =

∫ 1

−1

dj1u

dζj1
dj2ψ

dζj2
dj3ϕ

dζj3
dζ. (S.15)

In (S.14) we use integration by parts, combined with boundary terms equaling zero due to (S.12).
We approximate the solution space for ψ by the finite dimensional subspace,

VN = Span{ψj : −1 ≤ j ≤ N}, (S.16)

where, for 1 ≤ j ≤ N , we define ψj as the double-integrated Legendre polynomial Lj+1 such that ψj(±1) =
dψj

dζ (±1) = 0,
namely,

ψj =

√
j +

3

2

(
Lj+3 − Lj+1

(2j + 3)(2j + 5)
− Lj+1 − Lj−1

(2j + 1)(2j + 3)

)
, (S.17)

and ψ0, ψ1 correspond to two low-degree polynomials, linearly independent from the other ψj , to incorporate the two
boundary conditions (S.9) at the till-water interface,

ψ0(z) = (ζ − 1)2, ψ−1(z) = (ζ − 1)2(ζ + 2). (S.18)

We write the solution as ψ =
∑N
j=−1 ajψj . Note that the ice-water boundary conditions (S.8) would be automatically

satisfied by any such ψ. We incorporate the boundary conditions (S.9) and the Exner equation (S.10) in strong form.
We approximate the test function space H2

±1[−1, 1] by the finite dimensional subspace WN , which consists of just the
standard basis functions without the low-degree polynomials.

WN = Span{ψj : 1 ≤ j ≤ N}. (S.19)

We reformulate the bilinear forms A, I, U and M in (S.13) as (N + 3) × (N + 3) matrices. The N + 3 columns stand the
unknowns represented by x = (a−1, a0, a1, ..., aN , r

′). The N + 3 rows stand for integration against the N test functions of
WN , plus three additional rows that describe the two boundary conditions (S.9) and the Exner equation (S.10). With we
obtain a finite dimensional eigenvalue problem, Ax = ωMx, which we solve using the Matlab eig routine.

3 Asymptotic Analysis

3.1 Short Wavelength Diffusion

The analytical solution of the reduced model (6.7 - 6.10) for the short wavelength diffusion-only regime is given by,

ψ(0) = −2z(0) exp(−z(0)), ω(0) = −4i, (S.20)

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk2 sin θ
in Figure S1.

The figure shows good agreement between the numerical and theoretical solutions.
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(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S1: Analytical and re-scaled numerical solutions for the short wavelength diffusion regime.

3.2 Long Wavelength Diffusion

The analytical solution of the reduced model (6.16 - 6.19) for the long wavelength diffusion-only regime is given by,

ψ = −2z + 2z2 − 0.5z3, ω = −4i, (S.21)

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk sin θ
. Figure S2

suggests that the numerical result converges to the theoretical value as k → 0.

(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S2: Analytical and re-scaled numerical solutions for the long wavelength diffusion regime. (a) exhibits ill-conditioning
as k → 0.
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3.3 Short Wavelength Advection

The analytical solution of the reduced model (6.21, 6.8 - 6.10) for the short wavelength advection-diffusion regime is given
by,

ψ =
2
∫ z
0

∫∞
v
e2v−s−zAi(c−1s+ c2)dsdv∫∞

0
e−sAi(c−1s+ c2)ds

, ω =
−2iAi(c2)∫∞

0
e−sAi (c−1s+ c2) ds

, (S.22)

where c = 1
3
√
2ia2

with arg(c) = −π6 , and Ai(z) is one of the two standard linearly independent solutions of the system

D2f = zf . The integrals in (S.22) converge due to the exponential decay rate of Ai(z) for −π3 < z < π
3 .

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk2 sin θ
in Figure S3.

(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S3: Analytical and re-scaled numerical solutions for the short wavelength advection regime.

3.4 Long Wavelength Advection

We reduce the re-scaled OS equation (6.13) for long wavelengths ,

b1ω(D∗2 − k2)ψ∗ = −ib2
[(

2z∗ − z∗2
)

(D∗2 − k2) + 2
]
ψ∗ + (D∗2 − 1)2ψ∗, (S.23)

by b1 → 0 to suppress acceleration, and an asymptotic expansion around k = 0 for the long wavelength regime,

ib2

[
z(0)

(
2− z(0)

)
D2 + 2

]
ψ(0) = D4ψ(0), b2 = Rek sin θ. (S.24)

We find a semi-analytic solution for (S.24), and the associated boundary conditions for the long wavelength regime (6.17
- 6.19) on 0 ≤ z ≤ 2 via a Taylor expansion at z = 0. We solve the reduced model for the coefficients of 1, z, z2, ..., zn−1,
n = 12 using the Matlab sybolic toolbox. We compute D2ψ(0)(0) to first order,

D2ψ(0)(0) =
1436400ib22 + 18711000b2 − 98232750i

−14336b52 + 280704ib42 + 2106720b32 + 476280ib22 + 7484400b2 − 49116375i
+ 2. (S.25)

We assume b2 � 1, which is justified for θ � 1. We compute ω(0) by approximating D2ψ(0)(0) with a first-order Taylor
expansion at b2 = 0,

ω(0) = D2ψ(0)(0) ≈ 4 + 0.762ib2. (S.26)

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk sin θ
. Figure S4

highlights that the numerical result converges to the theoretical value as k → 0. For small wavenumbers, the figure also
displays ill-conditioning effects.
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(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S4: Analytical and re-scaled numerical solutions for the long wavelength advection regime.

3.5 Short Wavelength Acceleration

The analytical solution for the reduced model (6.23, 6.8 - 6.10) is given by,

ψ(0) =
2i
(
e−z

(0)(1−ia1) − e−z(0)
)

a1
, ω(0) = −2a1 − 4i, (S.27)

where a1 = FLReγκ sin θ.
We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk2 sin θ
in Figure S5.

(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S5: Analytical and re-scaled numerical solutions for the short wavelength advection regime.

3.6 Long Wavelength Acceleration

We reduce the re-scaled OS equation (6.13) for long wavelengths,

b1ω(D∗2 − k2)ψ∗ = −ib2
[(

2z∗ − z∗2
)

(D∗2 − k2) + 2
]
ψ∗ + (D∗2 − 1)2ψ∗, (S.28)
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by b1 → 0 to suppress acceleration, and an asymptotic expansion around k = 0 for the long wavelength regime,

b1ω
(0)D2ψ(0) = D4ψ(0). (S.29)

This linear ordinary differential equation has characteristic roots, 0, 0,±
√
b1ω(0). We use the Matlab symbolic toolbox

to solve the above equation. along with associated boundary conditions in the long wavelength regime (6.17 - 6.19), for

0 ≤ z ≤ 2. We then symbolically compute D2ψ(0) as a function of
√
b1ω(0). Assuming b1 < 1, which is justified since L� 1,

we perform a second-order Taylor expansion of D2ψ(0)(0) around
√
b1ω(0) = 0 to get,

D2ψ(0)(0) ≈ A0 +A2

(√
b1ω(0)

)2
, A0 = 3.7584, A2 = 2.2014. (S.30)

The Exner equation yields,

ω(0) =
A0

i−A2b1
. (S.31)

We compare the theoretical value of ω, given above, and the rescaled numerical results, ωnum = ω

FLk sin θ
in Figure S6.

(a) Comparison for the real part, ωr. (b) Comparison for the imaginary part, ωi.

Figure S6: Analytical and re-scaled numerical solutions for the long wavelength acceleration regime.

6


