
P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
08
84
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Parallel Distributed Hydrology Soil Vegetation Model (DHSVM)

Using Global Arrays

William Perkins1,1, Zhuoran Duan1,1, Ning Sun1,1, Mark Wigmosta2,2, Marshall
Richmond1,1, Xiaodong Chen1,1, and L. Ruby Leung1,1

1Pacific Northwest National Laboratory
2University of Washington,Pacific Northwest National Laboratory

November 30, 2022

Abstract

The Distributed Hydrology Soil Vegetation Model (DHSVM) code was parallelized for distributed memory computers using the

Global Arrays (GA) programming model. To analyze parallel performance, DHSVM was used to simulate the hydrology in two

river basins of significant size located in the northwest continental United States and southwest Canada at 90˜m resolution: the

(1) Clearwater (25,000˜km) and (2) Columbia (668,000˜km) River basins. Meteorological forcing applied to both basins was

dynamically down-scaled from a regional reanalysis using the Weather Research and Forecasting (WRF) model and read into

DHSVM as 2D maps for each time step. Parallel code speedup was significant. Run times for 1-year simulations were reduced

by an order of magnitude for both test basins. A maximum parallel speedup of 105 was attained with 480 processors while

simulating the Columbia River basin. Speedup was limited by input-dominated tasks, particularly the input of meteorological

forcing data.

1

Parallel Distributed Hydrology Soil Vegetation Model
(DHSVM) Using Global Arrays

William A. Perkinsa,∗, Zhuoran Duana, Ning Suna, Mark S. Wigmostaa, Marshall C.
Richmonda, Xiaodong Chenb, L. Ruby Leungb

aHydrology Group, Pacific Northwest National Laboratory, Richland, WA, USA
bAtmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, WA, USA

Abstract

The Distributed Hydrology Soil Vegetation Model (DHSVM) code was parallelized for
distributed memory computers using the Global Arrays (GA) programming model. To
analyze parallel performance, DHSVM was used to simulate the hydrology in two river
basins of significant size located in the northwest continental United States and south-
west Canada at 90 m resolution: the (1) Clearwater (25,000 km2) and (2) Columbia
(668,000 km2) River basins. Meteorological forcing applied to both basins was dy-
namically down-scaled from a regional reanalysis using the Weather Research and
Forecasting (WRF) model and read into DHSVM as 2D maps for each time step.

Parallel code speedup was significant. Run times for 1-year simulations were re-
duced by an order of magnitude for both test basins. A maximum parallel speedup
of 105 was attained with 480 processors while simulating the Columbia River basin.
Speedup was limited by input-dominated tasks, particularly the input of meteorological
forcing data.

Keywords: watershed hydrology, distributed hydrology model, high-performance
computing, parallel computing, Columbia River basin, Clearwater River basin

Highlights

• The well established Distributed Hydrology Vegetation Soil Model (DHSVM)
was parallelized for distributed memory platforms.

• The Global Arrays (GA) partitioned global address space (PGAS) library for
distributed arrays was used for inter-process communication.

• Parallel DHSVM was used to simulate the hydrology of two large river basins,
with areas of 25,000 and 668,000 square kilometers, at a 90 meter resolution.

• Maximum parallel speed up of 105 was measured using 480 processors with the
Columbia River basin simulation.

∗Corresponding author. Pacific Northwest National Laboratory, P.O. Box 999 MSIN K9-36, Richland,
WA, USA, 99354. E-mail address: william.perkins@pnnl.gov

Preprint submitted to Environmental Modelling & Software July 30, 2019

Software Availability

Program Title: Parallel DHSVM
Description: Distributed Hydrology Vegetation Soil Model (DHSVM)
Platform: Linux, Mac OS X
Source Language: C, C++

Cost: Free
License: public domain
Availability: Source code available on Github (https://github.com/pnnl/DHSVM-PNNL),
“parallel” branch

1. Introduction

The Distributed Hydrology Vegetation Soil Model (DHSVM, Wigmosta et al.,
1994) is a spatially distributed, physics-based hydrology model that simulates the over-
land and subsurface hydrological processes influenced by climate, topography, soil,
and vegetation. DHSVM is composed of a two-layer canopy model, an energy-balance
two-layer snow model, a multi-layer soil model, and three-dimensional surface and
subsurface flow-routing models. These models allow for characterization of hydrolog-
ical processes including canopy and topographic shading, canopy interception, evapo-
transpiration, snow accumulation and melt, and water movement overland and through
the soil to streams and rivers. In an extensive review of 30 hydrological models (Beck-
ers et al., 2009), DHSVM was identified to be best suited for modeling mountain hy-
drology in forested environments.

Initially developed in the early 1990s (Wigmosta et al., 1994), DHSVM has been
applied extensively, particularly in forested, mountainous, snowfall-dominated regions,
to characterize the hydrologic regime and project potential changes with changing cli-
mate and landscape (Storck et al., 1998; Storck and Lettenmaier, 1999; Leung and
Wigmosta, 1999; Thyer et al., 2004; Cuo et al., 2009; Cristea et al., 2014; Livneh et al.,
2015; Cao et al., 2016; Sun et al., 2018). Subsequent adaptations have extended the ca-
pability of DHSVM to represent urban landscapes with impervious surfaces and runoff

detention (Cuo et al., 2008), glacio-hydrological dynamics (Naz et al., 2014; Frans
et al., 2015, 2018), river thermal dynamics (Sun et al., 2015; Cao et al., 2016), urban
water quality (Sun et al., 2016), and forest-snow interactions in canopy gaps (Sun et al.,
2018).

With the increasing availability of high-resolution satellite products, e.g., Light De-
tecting and Ranging and advances in high-performance computing systems and data
storage, there is evolving interest in exploring hydrologic fluxes and state variables at
progressively higher spatial resolutions for applications ranging from regional to global
scales (Lettenmaier et al., 2015). High-resolution, spatially distributed modeling capa-
bilities are particularly important for representing complex mountain hydrology that is
highly affected by heterogeneous terrain and strong climate gradients with elevation.
A spatially lumped modeling approach with sparsely distributed observation networks
can limit our ability to understand and predict the implications of changing climate
and landscape on available water for extreme runoff events, regional water supplies,

2

and associated reservoir operations for hydropower and other water allocations (Bales
et al., 2006).

While DHSVM has been under constant development since its inception, it has
always been a serial code. Its computational performance has been tied to the perfor-
mance of a single processor. Parallelization is a good strategy for helping meet these
and future simulations needs. A number of examples in the literature describe parallel
hydrological models. The majority (e.g., Hwang et al., 2014; Liu et al., 2014, 2016;
Adriance et al., 2019) seem to favor small shared memory platforms using OpenMP
(Dagum and Menon, 1998). A few (Vivoni et al., 2011; Kumar and Duffy, 2016) target
distributed memory systems using the Message Passing Interface (MPI; MPI Forum,
2018).

In this work, DHSVM was made into a parallel code while maintaining most of
its existing capability. The parallel code development was aimed at large distributed
memory clusters, but portability to smaller multiprocessor, shared memory systems,
such as desktops and laptops, was maintained. An alternate interprocess communica-
tion programming model, Global Arrays (GA, Nieplocha et al., 2006; Manojkumar
et al., 2012) was used. GA provides a partitioned global address space (PGAS) and
implements one-sided communication protocols.

To demonstrate its utility and scalability, the parallel DHSVM was used to simulate
runoff from two basins of significant size. This work is limited to demonstrating the
performance of parallel DHSVM.

2. Methods

2.1. Hydrologic Process Representation

The DHSVM domain is divided into an array of rectangular cells (Figure 1). Cell
size is determined by the resolution of the Digital Elevation Model (DEM) used. A
mask is used to denote which cells in the domain are active, typically encompassing
a watershed that drains to a single point. Within each cell, a water mass and energy
balance is maintained. Excess surface water is routed down slope overland; excess
drainage to the subsoil layer is routed downgradient to neighboring cells until reaching
the channel network.

As much as possible, DHSVM uses physically based representations to compute
the movement of water and energy through the domain. The details of DHSVM hy-
drologic process representation are presented elsewhere (e.g., Wigmosta et al., 1994;
Wigmosta and Lettenmaier, 1999; Wigmosta et al., 2002; Cuo et al., 2009; Naz et al.,
2014; Frans et al., 2018; Sun et al., 2018). Brief descriptions of some processes impor-
tant to code parallelization are presented here.

2.1.1. Cell Energy/Water Balance
A DHSVM cell consists of a set of soil layers, a set of snowpack layers (when

present) and a multi-level vegetation canopy. Meteorological forcing data are used to
drive the energy balances in the snowpack, resulting in melt and/or accumulation, and
in the vegetation canopy, resulting in evapotranspiration.

3

Figure 1: Schematic representation of water movement in the DHSVM domain. The DHSVM domain is di-
vided into rectangular cells in which water and energy balance is maintained. Excess surface and subsurface
water is routed to a channel network. LAI is leaf area index, FC stands for fractional cover of forest canopy,
and h is canopy height.

Movement of water in the cell’s soil layers is simulated. This includes infiltration
or exfiltration, evaporation from the soil surface, evapotranspiration from soil layers in
which vegetation has roots, vertical saturated and unsaturated water movement between
layers, and drainage to a subsurface soil layer.

All of these calculations take place within the cell, independent of its neighbors.
The results are volumes of water in each soil and snow layer and on the surface.

2.1.2. Surface and Subsurface Routing
The surface and subsurface volumes computed in the cell energy/water balance

are routed to neighboring cells. The DHSVM routing schemes are documented by
Wigmosta et al. (1994), Wigmosta and Lettenmaier (1999), and Wigmosta et al. (2002).
Both surface and subsurface routing work with a similar algorithm.

A gradient, based on the ground surface or water (table) surface, is used to deter-
mine the direction and magnitude of flow for each cell. In a cell, discharge to each
neighboring cell is computed and stored. Surface water flux from active cell i j to its
kth down slope neighbor is computed as

qoi jk
= wi jk vi jk yi j (1)

where wi jk is the flow width in the k direction, vi jk is the overland flow velocity, and yi j

is the overland flow depth. Subsurface flow from active cell i j to its kth downgradient
neighbor is computed as

qsi jk
= wi jkβi jk Ti j (z,D) (2)

where βi jk is the cell water table or land slope and Ti j (z,D) is the soil transmissivity,

4

computed as

Ti j (z,D) =
Ki j

fi j

(
e− fi jzi j − e− fi jDi j

)
where Ki j is the cell lateral saturated hydraulic conductivity, zi j is the depth to the water
table, fi j is a decay coefficient, and Di j is the cell soil thickness.

These fluxes are computed for every cell in the domain. Each cell accumulates the
inflow from its upgradient neighbors, discharges to adjacent down gradient cells, and
adjusts surface and subsurface volumes accordingly.

2.1.3. Stream Channel Network
DHSVM uses a stream channel network to route excess surface water and inter-

cepted subsurface flow to the watershed outlet. The stream channel network is repre-
sented by a cascade of linear reservoirs (Wigmosta et al., 2002).

After surface and subsurface routing is complete, computed stream channel inter-
ception of surface and subsurface flow is accumulated for each cell in which a stream
channel lies. The intercepted water volume is summed and used as lateral inflow for
each stream segment. The lateral inflow is then routed through the network.

The outflow rate of segment i at time t + 1 is given by

Ot+1
i =

(
It+1
i + Lt+1

i

)
−

(
S t+1

i − S t
i

) 1
∆t

(3)

where It
i is the inflow rate at time t to segment i from upstream segment(s), Lt

i is the
lateral inflow at time t into segment i, ∆t is the time step between t and t + 1, and S t

i is
the segment storage at time t, computed using

S t+1
i =

1
K

(
It+1
i + Lt+1

i

)
+ X

[
S t

i −
1
K

(
It+1
i + Lt+1

i

)]
(4)

in which

K =

√
S oR

2
3

nl

and

X = e−K∆t

where S o is the channel slope, n is Manning’s coefficient, l is the channel length, R is
the hydraulic radius, which is assumed to be a constant 75% of the bank height, and ∆t
is the time step.

2.2. Code Parallelization
The multiple instruction, multiple data (MIMD, Wilkinson and Allen, 1998) paral-

lel model was used. This approach targets large, distributed memory systems (i.e. clus-
ters), but the approach should work fine for smaller, shared memory systems (multi-
processor desktops and laptops) without modification. In the MIMD model, each pro-
cessor is assigned its own data to work on independently and some communication

5

layer is required to exchange data between processors when needed. In this case, each
DHSVM process is assigned a non-overlapping rectangular subset of the active cells in
domain.

The goal was to make DHSVM as fast as practical while retaining as much of
its existing behavior as possible. DHSVM is a relatively large and complicated code.
Resources were not available to design and code a parallel DHSVM from the ground
up. This in some ways limited the parallelization approach and results.

2.2.1. Interprocess Communication
Inter-process communication in DHSVM was implemented through the use of GA

(Nieplocha et al., 2006; Manojkumar et al., 2012). GA is a “partitioned global address
space library for distributed arrays”. GA provides a distributed, random access, multi-
dimensional array data structure. Such an array is consistent with the internal DHSVM
data structures, so most of the serial code structure could be retained. In addition,
nearly all of the required interprocess communication consists of floating point values,
which simplifies coding.

In general, DHSVM interprocess communication is all cell-based numeric values
(i.e., rectangular arrays). In a typical communication scenario, a GA structure is cre-
ated. Transfers of values are made from local memory to the GA (put) and from the
GA to local memory (get). Other operations are available, like “accumulate” where
values in local memory are summed into the GA.

GA can use several underlying communication protocols, depending on the under-
lying hardware. The most commonly used are based on MPI and can be used on almost
any platform that supports MPI. These range from large clusters to laptops—any shared
or distributed memory system for which MPI is available (Dinan et al., 2012). DHSVM
relies entirely on the GA application programming interface (API). There are no direct
calls to any other parallel communication interface.

2.2.2. Domain Decomposition
The most straightforward approach to parallelization was to distribute cell-based

calculations across processors. A divide and conquer strategy was implemented that
has some similarity to the strategy used by Hwang et al. (2014). Each process was
assigned a non-overlapping rectangular region of the original domain. As shown in
Figure 2, the region assigned to a process may be a collection of rows (STRIPEY) or a
collection of columns (STRIPEX).

An algorithm similar to Simeone’s (1986) is used to evenly distribute the active
cells among the processors. When splitting the domain by rows, for example, the
number of active cells in each row are summed and summed again into a cumulative
histogram. If the rows are to be divided into p groups, the cumulative histogram is
searched for the splits closest to 1/p, 2/p, . . . , p−1/p. A similar search of the columns’
active cell cumulative histogram is done to split the columns.

The decomposition described is used only for the cell-based calculations. The chan-
nel network is not divided among processes. Each process is assigned complete repre-
sentation of the domain’s entire channel network.

6

(a) (b)

Figure 2: DHSVM domain decomposition methods applied to a sample basin for 12 processors: splitting
the domain into (a) groups of rows (STRIPEY) or (b) columns (STRIPEX). The default method is chosen
depending on which global dimension is larger.

2.2.3. Input/Output Strategy
A distributed hydrology model like DHSVM requires considerable input data and

can produce simulation results of considerable size. The choice of how the data are
input and output can significantly affect parallel performance.

The input/output (I/O) strategy used here was relatively simple and largely em-
phasized maintaining existing behavior, such that the serial code structure was mostly
maintained. When I/O bottlenecks are identified in future applications, a more complex
strategy may be deployed.

All processes read the configuration file, so that, at startup, all processes have a
complete description of the simulation without further communication. Other text files,
like the stream network description, are also read by all processes. These files are
typically small in size, and the time to read them is usually inconsequential.

DHSVM requires several input data sets that vary cell by cell. These data sets
are input in the form of a two-dimensional (2D) raster map. In the parallel DHSVM,
2D map data are input through the root process (serially) then distributed via a global
array. At the time of this writing, parallel I/O was not used, but may be supported in
the future. For this work, DHSVM required considerable reworking of 2D data I/O to
be able to work efficiently over a wide range of computational resources.

Two 2D map resolutions are necessary. The first is at the resolution of the DHSVM
cell size and contain a single value for each cell. Data sets input at this resolution
include the DEM, soil type, and vegetation type. Maps of this resolution are partitioned
and distributed to processes according to the domain decomposition. The second map
resolution is much coarser and not necessarily aligned with DHSVM cell boundaries.
This was used for input of meteorological data fields. For data sets at this coarser
resolution, the entire 2D map is mirrored on all processes, i.e., all processes receive
an identical copy of the map. Mirroring the entire map in this way avoids a more
complicated decomposition that would require overlapping sub-domains.

Figure 3 shows a schematic of I/O for 2D maps that are partitioned as they are
distributed. A global array is created with a size to store values for the entire domain.
A single process opens and reads, serially, a 2D map for the entire domain into local

7

memory. This process then puts1 those data in the global array. All processes, including
the process reading the map data, then get that portion of the global array it has been
assigned. For this work, DHSVM required considerable reworking of 2D data I/O to
be able to work efficiently over a range of computational resources. At the time of
writing, parallel I/O was not used, but may be supported in the future.

Figure 4 shows a schematic of the input of maps that are mirrored across all pro-
cesses. The input process is nearly the same as in Figure 3 except that each compute
process gets the entire map and loads it into local memory.

In this work, meteorological data were supplied as a series of 2D maps of each
required fields (as discussed in more detail below). At the beginning of each time step,
the maps for that time step are read as described above.

All output, both 2D map data and text files, is through the root process. Writing
2D map data is the reverse of reading (Figure 3). Each process puts its local values in
the global array, the root process gets the entire set of values and writes them to a file.
Output other than 2D maps, (e.g., mass balance summary) requires a more traditional
MPI-like all-reduce operation (using the GA API though).

Full 2D Map

In

Local Memory

Local Parts of

2D Map

2D Map in Shared

Global Array

Root Process

p2

Put

(Get)

Get

(Put)

Read

(Write)

All Processes Compute

Processes

p1

Figure 3: Schematic depicting the reading (writing) of partitioned 2D map data and their distribution to
(from) compute processes. See text for further details.

2.2.4. Hydrologic Processes Adaptation
Figure 5 shows a simplified depiction of the parallel algorithm for a single simu-

lation time step. Each simulation time step starts with time-step initialization (TSI).
Several things are initialized at the beginning of a time step. Each process prepares the
cells it owns for the next time step. The most important part of TSI is the assignment
of meteorological data to individual cells. DHSVM has several available approaches
to make this assignment, but each of eight meteorological data fields were read as mir-

1Here “put” and “get” are operations defined by the GA API. Another operation, “accumulate”, is men-
tioned below.

8

Full 2D Map
In

Local Memory

2D Map in Shared
Global Array

Root Process

Put Get

Read

All Processes Compute
Processes

Full 2D Map
In

Local Memory

p1

p2

Figure 4: Schematic depicting the reading of mirrored 2D map data and their distribution to compute pro-
cesses. See text for further details.

rored 2D maps (Section 2.2.3). This is a significant amount of data that needs to be
read every time step.

Once cells are initialized, energy/water balance (EWB) calculations proceed. Each
process updates the hydrologic and thermal state of the snowpack, vegetation canopy,
and soil layers (Section 2.1.1) within the active cells assigned to it. The computations
for a single cell do not require any communication with its neighbors, so this part of
the simulation is most amenable to parallelization.

Unlike the EWB, subsurface and surface routing (SSR and SR) calculations (Sec-
tion 2.1.2) require interaction with neighboring cells, and that interaction needed to
extend between processors when neighboring cells were not owned by the same proces-
sor. Surface and subsurface routing have very similar algorithms, so the parallelization
of those processes is handled in a similar manner. Figure 6 depicts the inter-process
communication used for SSR and SR. The key issue with these processes is that a cell
assigned to one processor may drain to a cell on another processor. This is handled by
extending the calculated local domain by one cell. A temporary array is created on a
local processor to hold the results of SR or SSR routing (Equations (1) and (2), respec-
tively), as shown in Figure 6a. The array is sized to be one cell larger, in all (valid)
directions, than the domain assigned to the processor (shaded gray in Figure 6a). That
extra cell captures SSR or SR flux to the off-processor cell(s). As routing calculations
proceed, surface water is routed to a cell outside the processor’s domain, and the result
is stored on the edge of the array.

After all processes complete local SR and SSR calculations, a global array for the
entire domain is initialized to zero (Figure 6b). Each process accumulates the local
array of routing results into the global array. In this way, water routed outside of the
processors local domain is correctly captured and delivered to the neighboring domain.
A get operation (Figure 6c) returns complete SR or SSR routing results from the global
array to each processor’s local memory.

Part of the SR and SSR algorithms is to compute the lateral inflow (L in Equa-
tions (3) and (4)) into each channel segment. However, each processor only computes
lateral inflow contribution from the cells assigned it and it’s necessary to add contribu-
tions from multiple processes. Consequently, lateral inflow for each channel segment

9

is totaled from the contributions computed by all processes. An all-reduce summation,
typically an expensive operation, is used to sum lateral inflow over all processors. After
the all-reduce, all processes have an identical array of lateral inflow to all segments.

The simulation time step ends with channel routing (CR, Section 2.1.3). Equa-
tions (3) and (4) require that a segment can only be routed after all upstream segments
have been routed. Consequently, it was decided to keep CR a serial algorithm and that
all processes would carry out identical computations. All processes then perform CR
on the same network with the same inflow producing identical results. Only the root
process outputs CR results.

An alternate approach would be to have the root process alone do the CR calcula-
tions, then distribute the CR results back to the other processors with a broadcast. The
chosen approach avoids this second, possibly expensive, communication.

Other calculations are performed during a time step that are not depicted in Fig-
ure 5. The most important is a mass balance check. This requires each process to
accumulate the mass balance components of its cells, then an all-reduce operation is
used to sum the components over the domain.

2.3. Comparison to Serial DHSVM
Throughout the development of parallel DHSVM, it was periodically checked against

the serial code, which was considered correct. several smaller basins were used to en-
sure that the serial and parallel codes produced identical results.

One such case was Rainy Creek. Rainy Creek is a small tributary (44 km2) to the
Wenatchee River in western Washington, USA. The Rainy Creek data set used in this
comparison was that distributed as the DHSVM 3.0 tutorial2. Limited changes were
made to configuration file(s) to conform to the current DHSVM code, but spatial and
meteorologic data remained unchanged from the downloaded tutorial.

The basin was simulated for 18 months on an 8-core workstation running Linux.
Simulation output from serial DHSVM code (master branch, commit 59e3230) was
compared to that from the parallel code (parallel branch, commit e24b11c).

2.4. Case Studies
Two basins of different size were chosen to measure parallel DHSVM performance.

Minimal simulation results are presented here, because the focus of this work is parallel
performance. We emphasize, however, that these are real, detailed applications that
use real data and are undergoing calibration and validation at the time of writing. The
calibration, validation, and use of these cases will be documented in detail in future
publications.

The Columbia River basin is located in the northwest continental United States
and southern British Columbia, Canada (Figure 7) and it drains an area of 668,000 km2

(Table 1). DHSVM was configured to simulate the Columbia River basin at a resolution
of 90 m resulting in about 83 million active cells and 20,800 stream segments.

The Columbia River basin DEM (Figure 7) was derived from U.S. Geological Sur-
vey DEM (USGS, 2017) and Canada DEM (CDEM, NRC, 2015). Soil types were

2https://dhsvm.pnnl.gov/tutorials.stm

10

Step Initialization

Soil Water Movement

Snow Pack

Energy/Water Balarce

Evapotranspiration

Infltration

Subsurface Routing

Surface Routing

Read Met Field

Put Met Field

to GA

Get Met Field

from GA

Get Met Field

from GA

Get Met Field

from GA

Step Initialization Step Initialization

Soil Water Movement

Snow Pack

Energy/Water Balarce

Evapotranspiration

Infltration

Active Cells

Soil Water Movement

Snow Pack

Energy/Water Balarce

Evapotranspiration

Infltration

Met Fields

Subsurface Routing Subsurface Routing

Surface RoutingSurface Routing

Sum Lateral Infow Sum Lateral Infow Sum Lateral Infow

Stream Routing Stream Routing Stream Routing

Stream Flow Output

Process 0 (root) Process 1 Process n...

Barrier

Barrier

Barrier

All Reduce

GA Accumulate

GA Accumulate

GA Sync

Barrier

CR

EWB

TSI

SR

SSR

Figure 5: Simplified activity diagram for a single time step in parallel DHSVM. The dashed boxes indicate
specific tasks discussed in the text: time-step initialization (TSI), energy/water balance (EWB), subsurface
routing (SSR), surface routing (SR), and channel routing (CR).

11

Accumulate

Get

(a)

(b)

p0 p1

p0 p1

p0 p1

++

(c)

Global Array

Figure 6: Schematic depicting inter-process communication needed for surface and subsurface routing. See
text for discussion.

12

taken from Soil Survey Geographic Database (SSURGO, NRCS, 2019a), Digital Gen-
eral Soil Map of the United States (STATSGO2, NRCS, 2019b), and National Soil
Database (CanSIS, 2014). Vegetation land cover was derived from the National Land
Cover Data set (USGS, 2014) and Earth Observation for Sustainable Development of
Forests (EOSD, Wood et al., 2002). The Columbia River basin stream network (Fig-
ure 8) was generated using the Python-based DHSVM pre-processing module, which
calculates and extracts accumulated flow lines based on flow direction as derived from
the DEM.

The Columbia River basin was simulated in two ways. In addition to complete
simulation mode, DHSVM’s “snow-only” mode was also used. In snow-only mode,
DHSVM does not perform runoff-related computations, but instead concentrates on
snowpack accumulation and melt. This is useful in snow-dominated applications be-
cause it allows calibration and validation of the snowpack simulation at a significantly
lower computational cost.

The Clearwater River is an upland tributary in the Columbia River basin located
in northern Idaho, USA (Figure 7). The basin area is 25,000 km2, about 4% of the
Columbia River basin (Table 1), and it produces about 7.5% of the Columbia River
basin’s average annual discharge. The Clearwater River basin DHSVM application
was extracted as a subset of the Columbia River basin, so it has the same computational
resolution, 90 m, and uses the same source data. The Clearwater application consisted
of about 3 million active cells and 2,600 stream segments.

Table 1: Case study basin and DHSVM application statistics.

Drainage Annual DHSVM Region Active Stream
Basin Name Area Disch. Res. Rows x Cols Cells Segments

(km2) (m3/s) (m) (cells)
Columbia 668,000 5,850 90 14,599 x 12,654 83M 20,800
Clearwater 25,000 433 90 2,042 x 2,371 3M 2,600

2.4.1. Meteorological Forcing
In the case studies described above, meteorological forcings were generated using

the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008). The
Advanced Research WRF Version 3.8 was used in this study, and the model was con-
figured using physics options identical to those used by Gao et al. (2017). The historical
climate simulation covered the period of 1981–2015, and WRF was driven by the large-
scale circulations of the North American Regional Reanalysis (Mesinger et al., 2006)
at 32 km grid resolution. The details of this simulation are provided by Chen et al.
(2018). Meteorological forcings for DHSVM (precipitation, humidity, air temperature,
wind speed, shortwave and long wave radiation) were archived hourly and transformed
into the geographic projection used by DHSVM.

Within DHSVM, all data fields were assumed to be spatially constant over each
6 km cell with the exception of temperature and precipitation. Despite relatively
high-resolution WRF data, the 6 km grids were still insufficient to capture some of
the spatial variance of precipitation inside a WRF grid given the DHSVM resolution

13

Figure 7: Map of elevation data (m) used for the Columbia River basin, consisting of 83,000,000 90x90 m
cells. The Clearwater basin used the subset, 3,000,000 cells, outlined in black. Source: U.S. Geological
Survey (USGS, 2017) for the United States and National Resources Canada (NRC, 2015) for Canada

14

Figure 8: Columbia River basin stream network used in DHSVM, consisting of about 20,800 stream seg-
ments. The Clearwater basin used the 2,600 segments in the area outlined in black. The network was
generated using the DHSVM stream network preprocessing module.

15

of 90 m. Therefore, WRF precipitation was down-scaled by introducing a monthly ad-
justment ratio at each DHSVM grid cell based on the Parameter-elevation Regressions
on Independent Slopes Model (PRISM; PCG, 2004) precipitation data. Temperature
was lapsed over each 6 km cell based on the elevation at each DHSVM grid cell and the
elevation of the WRF cell. WRF to DHSVM down-scaling details will be documented
in future publications.

WRF model results were prepared for a region large enough to encompass the
entire Columbia River basin (220×191 6×6 km cells), using one file for each of the
6 variables containing maps for every hour of the simulation (1 year = 8760 hours).
From those results, a subset was also extracted that covered the Clearwater River basin
(32×37 6×6 km cells).

2.5. Parallel Performance

The two basins were simulated repeatedly for the 1982 water year with varying
numbers of processors and the execution time was recorded. The simulations were car-
ried out on the Pacific Northwest National Laboratory Institutional Computing (PIC)
Constance cluster. This cluster consists of 528 compute nodes each having 24 cores
(Intel Haswell E5-2670) and 64 GB of RAM. The nodes use FDR Infiniband connec-
tivity. DHSVM and GA were built with Intel version 15 compilers and Intel MPI im-
plementation. GA was built to use Infiniband connectivity directly (rather than MPI).
At the time of this writing, this was considered to be the fastest transport layer for GA
on systems using Infiniband interconnect.3 The main disk storage system PIC cluster
is a Lustre file system consisting of 42 Lustre object storage server (OSS) nodes with
one object storage target per OSS and a capacity of 3.5 petabytes.

Simulation times were used to compute parallel speedup, defined as

s =
Ts

TN
(5)

where Ts is the execution time for a given problem on a single processor and TN is
the execution time for the same problem on N processors. Also computed was parallel
efficiency,

e =
Ts

NTN
(6)

To provide key diagnostics, DHSVM was instrumented to report execution times
of important tasks (some of these tasks are described in detail in Section 2.2.4):

Startup (SU): The SU task is all activity prior to simulating the first time step. The
computational cost consists of memory allocation and initialization of the do-
main state. During this task, considerable input, including the DEM and re-
lated data and initial model state, is read and distributed among processors as
partitioned 2D maps (Section 2.2.3). Domain decomposition (Section 2.2.2) is
carried out during this task.

3Bruce Palmer, lead GA developer, personal communication.

16

Time-Step Initialization (TSI): The TSI task performs all necessary preparation for
a new time step, the most costly of which, in this case, was the reading and
distribution of meteorological data as mirrored 2D maps (Section 2.2.3).

Energy/Water Balance (EWB): EWB is the main computational task and was easily
parallelized. Little or no interprocess communication or I/O happens during this
task.

Subsurface Routing (SSR): The SSR task should be a mostly computational, where
cell subsurface fluxes (Equation (2)) are computed for the cells a processor owns.
The communication cost is the accumulation of a flux array over all processors.

Surface Routing (SR): As with SSR, SR computational cost is flux computation (Equa-
tion (1)) and communication cost is flux accumulation.

Channel Routing (CR): In the CR task, all processes perform identical routing cal-
culations on the entire network, which means that the routing has a fixed com-
putational cost regardless of the number of processors used. The main commu-
nication cost of this task is an all-reduce operation required to sum lateral inflow
to the channel network across all processors.

Output (OUT): This task includes all significant output, except stream flow. Minimal
output was specified for these simulations. Output of 2D maps was not specified.
Consequently, the major cost of this task was the computation and output of an
overall mass balance.

For the purposes of discussion, these tasks are grouped into primarily compu-
tational tasks (EWB, SSR, SR, CR) that are dominated by numerical computations.
Communication tasks (SU, TSI, OUT) are those dominated by I/O and/or interprocess
communication.

3. Results

3.1. Comparison to Serial DHSVM

Figure 9 visually compares Rainy Creek snow water equivalent depth and basin dis-
charge simulated the parallel DHSVM, using 4 processors, to the current serial version
of DHSVM. The parallel DHSVM simulation output was identical to that produced
by the serial code to 5 significant figures. DHSVM generates a summary mass bal-
ance at the end of a simulation. Mass balance components are summed each time step
over all active cells. At the end of the simulation, a mass balance error is computed.
Table 3.1 compares this mass balance summary for serial and parallel simulations of
Rainy Creek. Here too, the mass balance components were consistent to 5 significant
figures. DHSVM computations are all single precision, so the differences between the
simulations in Table 3.1 are easily explained by rounding and truncation errors.

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

01May
1992

01Jul
1992

01Sep
1992

01Nov
1992

01Jan
1993

01Mar
1993

01May
1993

01Jul
1993

01Sep
1993

01Nov
1993

B
as

in
-w

id
e

S
no

w
 W

at
er

 E
qu

iv
al

en
t,

m

Rainy Creek
Serial (master 59e3)

Parallel (parallel e24b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

01May
1992

01Jul
1992

01Sep
1992

01Nov
1992

01Jan
1993

01Mar
1993

01May
1993

01Jul
1993

01Sep
1993

01Nov
1993

D
is

ch
ar

ge
, m

3 /s

Rainy Creek
Serial (master 59e3230)

Parallel (parallel e24b11c)

Figure 9: Comparison of serial and parallel DHSVM (4-cores) simulation results for Rainy Creek: basin-
wide snow water equivalent (left) and basin outflow (right).

Table 2: DHSVM simulation final mass balances for 18-month simulations of Rainy Creek using serial
DHSVM and parallel DHSVM with 4 and 8 processors. All numbers are mm depth over the entire basin.

Parallel
Mass Balance Component Serial 4 cores 8 cores
Total Inflow 1917.402 1917.399 1917.398

Precipitation 1961.360 1961.357 1961.356
Snow Vapor Flux -43.958 -43.958 -43.958

Total Outflow 2618.373 2618.376 2618.376
Evapotranspiration 628.706 628.708 628.708
Channel Interception 1989.667 1989.667 1989.668

Storage Change -700.697 -701.010 -700.967
Initial Storage 997.251 997.451 997.415
Final Storage 296.553 296.441 296.448

Final Snow Water Equivalent 0.000 0.000 0.000
Final Soil Moisture 296.553 296.441 296.448
Final Surface 0.000 0.000 0.000
Final Road Surface 0.000 0.000 0.000

Mass Error 0.274 -0.033 0.012

18

3.2. Hydrologic Simulation
At the time of this writing, calibration and validation were under way for the

Columbia River basin, of which the Clearwater River basin is a significant part. That
will be documented in subsequent publications. The original serial DHSVM was not
able to simulate either of these cases, mainly because of the problem size, but also be-
cause of some alterations that were not back-ported to the serial code. For this work,
which focuses on computational performance, sufficient hydrological results are pre-
sented here to demonstrate that parallel DHSVM simulations show acceptable agree-
ment with observations.

The Columbia River and nearly all of its larger tributaries have some kind of reg-
ulation and/or irrigation withdrawals. Because DHSVM, at this time, cannot represent
this regulation, DHSVM is being calibrated and validated against estimates of no reg-
ulation, no irrigation (NRNI) streamflow for various locations in the Columbia River
basin (BPA, 2011).

Figure 10 compares preliminary simulated Columbia River daily average discharge
with NRNI at The Dalles for water years 1981 through 1985. The Dalles is significant
gage location on the Columbia River approximately 300 km from the mouth, often used
as representative of the basin. Figure 11 shows similar comparisons for discharges
from some significant tributaries. The Clearwater and Salmon Rivers are tributaries
to the Snake River. The Willamette River a large tributary that enters the Columbia
River below The Dalles. The Pend Oreille River enters the Columbia near the U.S.-
Canada border. All time series shown were extracted from the same simulation of the
entire Columbia Basin. These time series show that the Columbia basin simulation
has produced reasonable results at several locations, and much better matches can be
expected with calibration. Figure 12 shows simulated snow water equivalent (SWE)
depths over the entire Columbia River basin on April 1, 1982.

Figure 10: Preliminary comparison of no regulation, no irrigation adjusted streamflow (BPA, 2011, labeled
“NRNI Streamflow”) and simulated streamflow (labeled “WRF”) in the Columbia River at The Dalles.

19

Figure 11: Preliminary comparison of no regulation, no irrigation adjusted streamflow (BPA, 2011, labeled
“NRNI Streamflow”) and simulated streamflow (labeled “WRF”) from several significant tributaries to the
Columbia River.

3.3. Parallel Performance
With the Clearwater simulation, a maximum speedup of about 32 was attained us-

ing 128 processors (Figure 16), about 23,000 active cells per processor. One year’s
simulation time was reduced from almost 4 hours using a single processor to 8 min-
utes using 128 processors (Table 3). With one processor, run time was dominated by
computational tasks: EWB (70%), SR (7%), and SSR (13%) (Table 3, Figure 13).
Computational tasks took a similar fraction of run time until about 32 processors were
used. At this point, I/O tasks, specifically SU and TSI, started to take a larger fraction.
This is the point at which parallel efficiency dropped quickly (Figure 17). At maxi-
mum speedup (128 processors), run time was split with about 40% for computational
and 60% for I/O tasks.

The Columbia River basin simulations required a minimum of four nodes to run,
due to the large memory requirements of the application. The smallest number of cores
we could use was four. Run time for one processor was assumed to be four times that
of four processors, so that between one and four processors speedup assumed to be
ideal and parallel efficiency was assumed to be 1.0.

With the Columbia snow-only simulation, the maximum speedup was about 93
using 480 processors, at about 173,000 active cells per processor (Figure 16). The 1-
year simulation time was reduced from about 10 days using one processor (estimated)
to 2.5 hours using 480 processors. With four processors, the run time was dominated
by EWB (80%), and that task dominates until 120 processors are used (56%) when the
main I/O tasks (SU and TSI) begin to dominate. At maximum speedup, EWB takes
about 29% and SU and TSI take about 63% of the simulation time (Table 3, Figure 14).

20

Figure 12: Simulated snow water-equivalent (SWE) at 90 m resolution for the Columbia River basin.

21

Maximum speedup for the full Columbia simulation, which included the water
routing tasks, was about 105 also using 480 processors (Figure 16). The 1-year sim-
ulation time was reduced from about 19 days with one processor (estimated) to about
4 hours (Table 3) with 480 processors. With four processors, run time was domi-
nated by computational tasks (90%), with EWB dominating that (67%). At maximum
speedup (480 processors), the run time was split with about 60% for computational
and 40% for I/O tasks. This is the reverse of the split for the Clearwater at maximum
speedup. Note that CR took a much larger part of the simulation time for the Columbia
(21%) than for the Clearwater (5%).

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32 64 128 256

R
un

 T
im

e,
 m

in

Clearwater 1-year Simulation
Start Up (SU)

Time Step Initialization (TSI)
Energy/Water Balance (EWB)

Surface Routing (SR)
Suburface Routing (SSR)

Channel Routing (CR)
Output (OUT)

Total

 0
 20
 40
 60
 80

 100

 1 2 4 8 16 32 64 128 256

P
er

ce
nt

 R
un

 T
im

e

Processors

Figure 13: DHSVM timing results, including specific tasks, for a 1-year simulation of the Clearwater River
basin. See the text for descriptions of timed tasks.

4. Discussion

In this work, we modified DHSVM to run in parallel using GA for interprocess
communication targeting large, distributed memory systems. Simulation run times for
our test cases were reduced enough to make long-term (decades), high-spatial resolu-
tion simulations of significantly sized basins manageable. As expected, the run times
with low numbers of processes were dominated by the computational tasks, namely
EWB, SR, and SSR. IO-intensive tasks, namely SU and TSI, become dominant at
higher core counts, indicating more interprocess communication.

It was not straightforward to compare our results with those in the literature. Differ-
ent models use different methods that have different computational and communication
costs. Our speedup was on par with that measured by Vivoni et al. (2011) and not nearly
as good as that of Kumar and Duffy (2016), the only other examples we could find us-
ing a parallel, distributed hydrology model running on 100s of processors. A previous

22

Table 3: DHSVM run times for a 1-year simulation using varying numbers of processors. Timed tasks are
described in the text: startup (SU), time-step initialization (TSI), energy/water balance (EWB), subsurface
routing (SSR), surface routing (SR), channel routing (CR), and output (OUT). s and e are parallel scale up
(Equation (5)) and efficiency (Equation (6)), respectively.

Run
Time Percent Run Time per Task

NP (min) SU TSI EWB SR SSR CR OUT s e
Clearwater

1 228.5 0.1 3.6 67.9 7.1 13.7 2.2 5.4 1.0 1.00
2 132.8 0.1 3.4 68.0 7.0 13.7 2.7 5.2 1.7 0.86
4 63.4 0.2 4.7 68.4 6.3 12.4 2.8 5.1 3.6 0.90
8 32.5 0.3 6.1 66.2 6.9 11.2 3.8 5.4 7.0 0.88

16 18.7 0.8 8.4 60.0 7.7 12.0 5.1 6.0 12.2 0.76
32 12.1 3.0 11.9 49.2 8.3 13.3 6.7 7.7 18.9 0.59
64 8.6 13.8 19.0 34.7 6.9 11.3 7.4 6.8 26.5 0.41
96 8.3 23.4 24.9 24.7 5.4 8.7 7.4 5.4 27.4 0.29

128 8.0 24.3 32.4 19.6 4.7 7.1 7.5 4.6 28.5 0.22
160 9.2 33.2 33.6 14.4 3.5 5.2 6.7 3.5 24.9 0.16
192 11.5 42.7 33.3 9.7 2.6 3.6 5.6 2.5 19.9 0.10
256 13.9 43.2 39.6 6.3 1.7 2.4 5.0 1.7 16.4 0.06

Columbia, Snow-Only Mode
4 3498.9 0.1 10.7 81.3 0.0 0.0 0.0 8.0 4.0 1.00
8 2038.6 0.1 12.8 79.2 0.0 0.0 0.0 7.8 6.9 0.86

16 1173.1 0.3 16.7 75.3 0.0 0.0 0.0 7.8 11.9 0.75
32 707.3 0.3 20.3 71.5 0.0 0.0 0.0 7.9 19.8 0.62
64 436.1 2.5 24.2 64.3 0.0 0.0 0.0 9.0 32.1 0.50

120 281.9 4.4 28.8 56.4 0.0 0.0 0.0 10.5 49.6 0.41
240 169.2 3.1 38.0 48.7 0.0 0.0 0.0 10.2 82.7 0.34
480 150.3 12.8 50.4 28.5 0.0 0.0 0.0 8.3 93.1 0.19
720 165.5 14.5 60.4 17.7 0.0 0.0 0.0 7.4 84.6 0.12
960 187.5 13.7 66.2 12.4 0.0 0.0 0.0 7.7 74.6 0.08

Columbia
4 6713.3 0.0 5.6 66.5 7.0 13.0 3.5 4.5 4.0 1.00
8 3710.4 0.1 7.1 64.0 6.7 12.4 4.7 5.1 7.2 0.90

16 2136.7 0.1 9.1 58.2 7.4 12.9 6.6 5.8 12.6 0.79
32 1236.9 0.2 11.7 54.9 7.5 13.3 6.8 5.6 21.7 0.68
64 800.4 0.3 13.3 46.9 8.4 14.6 9.6 6.9 33.5 0.52

120 530.2 0.8 15.4 39.6 8.6 13.7 14.3 7.7 50.6 0.42
240 335.4 2.5 19.2 32.0 7.5 13.7 17.6 7.5 80.1 0.33
480 255.1 3.8 30.1 21.6 6.0 10.5 20.9 7.1 105.3 0.22
720 272.3 6.0 37.1 14.3 5.3 9.5 20.6 7.2 98.6 0.14
960 291.4 10.0 43.7 10.0 3.9 6.7 18.3 7.3 92.2 0.10

23

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 8 16 32 64 128 256 512 1024

R
un

 T
im

e,
 m

in

Columbia 1-year Simulation, Snow Only
Start Up (SU)

Time Step Initialization (TSI)
Energy/Water Balance (EWB)

Output (OUT)
Total

 0
 20
 40
 60
 80

 100

 4 8 16 32 64 128 256 512 1024

P
er

ce
nt

 R
un

 T
im

e

Processors

Figure 14: DHSVM simulation timing results, including specific tasks, for the Columbia River basin in
snow-only mode. See the text for descriptions of timed tasks.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 4 8 16 32 64 128 256 512

R
un

 T
im

e,
 m

in

Columbia 1-year Simulation
Start Up (SU)

Time Step Initialization (TSI)
Energy/Water Balance (EWB)

Surface Routing (SR)
Suburface Routing (SSR)

Channel Routing (CR)
Output (OUT)

Total

 0
 20
 40
 60
 80

 100

 4 8 16 32 64 128 256 512

P
er

ce
nt

 R
un

 T
im

e

Processors

Figure 15: DHSVM simulation timing results, including specific tasks, for the Columbia River basin in
normal simulation mode. See the text for descriptions of timed tasks.

24

Figure 16: Measured DHSVM parallel speedup.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 8 16 32 64 128 256 512 1024

P
ar

al
le

l E
ffi

ci
en

cy

Processors

Clearwater 1-year Simulation
Columbia 1-year Simulation, Snow Only

Columbia 1-year Simulation

Figure 17: Computed DHSVM parallel efficiency.

25

effort with DHSVM (Adriance et al., 2019) attained speed ups of 440% using compiler
optimization and OpenMP. The Kumar and Duffy application appears to be designed
and implemented as a parallel application, as opposed to our retrofit of DHSVM. Our
speedup was also comparable to some others (e.g., Liu et al., 2014, 2016) that used
10–20 processors, and had significantly smaller-sized problems.

Our approach is distinct from other approaches in two ways. The first is exclusive
reliance on the GA one-sided communication API. Other parallel distributed hydrology
models tend to use MPI on distributed memory platforms (e.g., Vivoni et al., 2011;
Kumar and Duffy, 2016) or OpenMP on shared memory systems (e.g., Li et al., 2010,
2011; Hwang et al., 2014; Liu et al., 2014, 2016). DHSVM has an advantage here, in
that it has a rectangular domain, which fits the data structure model of GA nicely. The
use of GA expands the range of computational platforms that can be brought to bear
on these hydrologic problems.

The second distinction is the straightforward domain decomposition technique.
DHSVM domain decomposition simply divides rows or columns of the rectangular
domain, unlike other approaches that divide the domain by drainage network (Apos-
tolopoulos and Georgakakos, 1997; Grbsch and David, 2001; Li et al., 2011; Liu et al.,
2016). The triangular cell networks used by Vivoni et al. (2011) and Kumar and Duffy
(2016) required more complicated algorithms to decompose the domain. Our approach
is simple and requires very little computational effort, but could perhaps be improved.
While not explicitly investigated here, load balancing likely plays a significant role in
DHSVM parallel performance and should be examined as part of further code improve-
ments.

DHSVM parallel efficiency falls off as more processors are used (Figure 17). De-
creasing efficiency is due to the parts of the simulation that are serial and require the
same amount of time regardless of the number of processes involved. Parallel effi-
ciency indicates the relative benefit of adding more processors to the calculation. As
more processors are added, the fixed-time tasks take a larger proportion of the sim-
ulation time, which reduces the relative benefit of the additional processors. In this
case, the most prominent culprits (as shown in Figure 15) are TSI (input) and CR. In
order to get better efficiency, those parts of simulation need to either more efficient (i.e.
take less time), or be parallelized in some way. Some improvements to these are being
considered, as discussed below.

The parallel performance also indicates that running DHSVM at the point of max-
imum speedup may not be ideal. Run time needs to be balanced with the availability
and cost of computational resources. For example, the Columbia simulation had a
maximum speedup with 480 processors with a simulation time of about 4 hours. If the
same simulation is run with 120 processors, it would take 8 hours. While the run time
would be doubled, the computational cost would only be one quarter. Additionally, a
set of 480 processors is most likely less available than 120, which may lead to longer
job queue times. It may also be more efficient to simulate a case like the Columbia
River basin in several large subbasins, particularly for calibration and validation. Once
calibrated, the parameters could be used in a “production” simulation of the entire
Columbia Basin.

In this initial parallel version of DHSVM, we emphasized maintenance of current
capabilities and avoiding large structural changes to the code. Parallel performance

26

may have been limited by the emphasis on limiting code changes. This is particularly
true with the input of 2D maps.

5. Future Work

The authors are generally pleased with the performance improvements attained
with this work. DHSVM’s parallel performance was good enough to tackle the task
at hand, namely the entire Columbia River basin. However, a larger application at this
ultra-fine 90 m resolution still may be challenging at this time.

The timings clearly indicate that the way meteorological forcing was read and ap-
plied was the largest single obstacle to higher parallel performance. Several ideas may
be investigated to reduce this load, but they would probably require significant struc-
tural changes to the current DHSVM code. Reading the meteorological data in larger
blocks, a day or month at a time, say, rather than one time step at a time, may re-
duce input time. Reading 2D map data in parallel, instead of through the root process
(Section 2.2.3), may also be a solution.

Stream routing took a significant part of the total run time for the Columbia sim-
ulation. The choice to keep this a serial process, executed by all processes, may be
acceptable for smaller basins, and was acceptable for the cases here, but may become
a barrier with larger applications. Parallel methods to perform channel routing will be
investigated in future work.

We have used a straightforward and relatively simple domain decomposition scheme
here. A more extensive investigation of domain decomposition would likely yield fur-
ther performance improvements. We have assumed that the simulation of each “active”
cell has an equivalent computational cost. This is not strictly true. Cells with snow
definitely have a higher computational cost than cells without snow. Such an investi-
gation would require some detailed analysis of run times and how snow increases the
computational cost of an active cell.

Acknowledgments

The study was primarily funded by the U.S. Department of Energy (DOE) Office
of Energy Efficiency and Renewable Energy, Water Power Technologies Office. The
material is also based upon work funded by the Strategic Environmental Research and
Development Program under contract RC-2546 and the DOE Office of Science Biolog-
ical and Environmental Research as part of the Regional and Global Climate Modeling
and Multi-Sector Energy and Environmental Dynamics programs. The WRF simu-
lations described here were performed using the facilities of the Pacific Northwest
National Laboratory (PNNL) institutional computing center (PIC) and the National
Energy Research Supercomputing Center, which is supported by the DOE Office of
Science under contract DE-AC02-05CH11231. DHSVM simulations described here
were also performed using PNNL PIC facilities. PNNL is operated by Battelle for the
DOE under contract DE-AC06-76RLO-1830.

DHSVM is maintained jointly by the Hydrology Group at PNNL and the Civil
Engineering Department at the University of Washington. More information can be

27

found at http://dhsvmdev.pnl.gov/. DHSVM source code can be obtained from
its Github repository (https://github.com/pnnl/DHSVM-PNNL). The code used
for this work is in the “parallel” branch.

References

Adriance, A., Pantoja, M., Lupo, C., 2019. Acceleration of Hydrology Simulations
Using DHSVM for Multi-thousand Runs and Uncertainty Assessment, in: Meneses,
E., Castro, H., Barrios Hernndez, C.J., Ramos-Pollan, R. (Eds.), High Performance
Computing, Springer International Publishing. pp. 179–193.

Apostolopoulos, T.K., Georgakakos, K.P., 1997. Parallel computation for streamflow
prediction with distributed hydrologic models. Journal of Hydrology 197, 1–24.
doi:10.1016/S0022-1694(96)03281-7.

Bales, R.C., Molotch, N.P., Painter, T.H., Dettinger, M.D., Rice, R., Dozier, J., 2006.
Mountain hydrology of the western United States. Water Resources Research 42.
doi:10.1029/2005WR004387.

Beckers, J., Smerdon, B., Wilson, M., others, 2009. Review of hydrologic models for
forest management and climate change applications in British Columbia and Alberta.
Forrex series .

Bonneville Power Administration (BPA), 2011. 2010 Level Modified Streamflow
1928-2008. Technical Report DOE/BP-4352. Bonneville Power Administration.
Portland, OR, USA.

Canadian Soil Information Service (CanSIS), 2017. National soil database (NSDB).
Available online. URL: http://sis.agr.gc.ca/cansis/nsdb/index.html.
Last accessed: 2019-01-31.

Cao, Q., Sun, N., Yearsley, J., Nijssen, B., Lettenmaier, D.P., 2016. Climate and land
cover effects on the temperature of Puget Sound streams. Hydrological Processes
30, 2286–2304. doi:10.1002/hyp.10784.

Chen, X., Leung, L.R., Gao, Y., Liu, Y., Wigmosta, M., Richmond, M., 2018. Pre-
dictability of extreme precipitation in western U.S. watersheds based on atmospheric
river occurrence, intensity, and duration. Geophysical Research Letters 45, 11,693–
11,701. doi:10.1029/2018GL079831.

Cristea, N.C., Lundquist, J.D., Loheide, S.P., Lowry, C.S., Moore, C.E., 2014. Mod-
elling how vegetation cover affects climate change impacts on streamflow timing
and magnitude in the snowmelt-dominated upper Tuolumne Basin, Sierra Nevada.
Hydrological Processes 28, 3896–3918. doi:10.1002/hyp.9909.

Cuo, L., Lettenmaier, D.P., Alberti, M., Richey, J.E., 2009. Effects of a century of land
cover and climate change on the hydrology of the Puget Sound basin. Hydrological
Processes 23, 907–933. doi:10.1002/hyp.7228.

28

Cuo, L., Lettenmaier, D.P., Mattheussen, B.V., Storck, P., Wiley, M., 2008. Hydro-
logic prediction for urban watersheds with the Distributed HydrologySoilVegetation
Model. Hydrological Processes 22, 4205–4213. doi:10.1002/hyp.7023.

Dagum, L., Menon, R., 1998. OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Comput. Sci. Eng. 5, 46–55. doi:10.1109/99.660313.

Dinan, J., Balaji, P., Hammond, J.R., Krishnamoorthy, S., Tipparaju, V., 2012. Support-
ing the global arrays PGAS model using MPI one-sided communication, in: 2012
IEEE 26th International Parallel and Distributed Processing Symposium, IEEE,
Shanghai, China. pp. 739–750. doi:10.1109/IPDPS.2012.72.

Frans, C., Istanbulluoglu, E., Lettenmaier, D.P., Fountain, A.G., Riedel, J., 2018.
Glacier Recession and the Response of Summer Streamflow in the Pacific North-
west United States, 19602099. Water Resources Research 54, 6202–6225. doi:10.
1029/2017WR021764.

Frans, C., Istanbulluoglu, E., Lettenmaier, D.P., Naz, B.S., Clarke, G.K.C., Condom,
T., Burns, P., Nolin, A.W., 2015. Predicting glacio-hydrologic change in the head-
waters of the Zongo River, Cordillera Real, Bolivia. Water Resources Research 51,
9029–9052. doi:10.1002/2014WR016728.

Gao, Y., Leung, R.L., Zhao, C., Hagos, S., 2017. Sensitivity of U.S. summer pre-
cipitation to model resolution and convective parameterizations across gray zone
resolutions. Journal of Geophysical Research: Atmospheres 122, 2714–2733.
doi:10.1002/2016JD025896.

Grbsch, M., David, O., 2001. How to divide a catchment to conquer its parallel pro-
cessing. An efficient algorithm for the partitioning of water catchments. Mathemat-
ical and Computational Modelling 33, 723–731. doi:10.1016/S0895-7177(00)
00275-2.

Hwang, H.T., Park, Y.J., Sudicky, E.A., Forsyth, P.A., 2014. A parallel computa-
tional framework to solve flow and transport in integrated surfacesubsurface hydro-
logic systems. Environmental Modelling & Software 61, 39–58. doi:10.1016/j.
envsoft.2014.06.024.

Kumar, M., Duffy, C.J., 2016. Exploring the role of domain partitioning on efficiency
of parallel distributed hydrologic model simulations. Journal of Hydrogeology &
Hydrologic Engineering 2015. doi:10.4172/2325-9647.1000119.

Lettenmaier, D.P., Alsdorf, D., Dozier, J., Huffman, G.J., Pan, M., Wood, E.F., 2015.
Inroads of remote sensing into hydrologic science during the WRR era. Water Re-
sources Research 51, 7309–7342. doi:10.1002/2015WR017616.

Leung, L.R., Wigmosta, M.S., 1999. Potential climate change impacts on mountain
watersheds in the Pacific Northwest. Journal of the American Water Resources As-
sociation 35, 1463–1471. doi:10.1111/j.1752-1688.1999.tb04230.x.

29

Li, T., Wang, G., Chen, J., 2010. A modified binary tree codification of drainage
networks to support complex hydrological models. Computers & Geosciences 36,
1427–1435. doi:10.1016/j.cageo.2010.04.009.

Li, T., Wang, G., Chen, J., Wang, H., 2011. Dynamic parallelization of hydrological
model simulations. Environmental Modelling & Software 26, 1736–1746. doi:10.
1016/j.envsoft.2011.07.015.

Liu, J., Zhu, A.X., Liu, Y., Zhu, T., Qin, C.Z., 2014. A layered approach to parallel
computing for spatially distributed hydrological modeling. Environmental Mod-
elling & Software 51, 221–227. doi:10.1016/j.envsoft.2013.10.005.

Liu, J., Zhu, A.X., Qin, C.Z., Wu, H., Jiang, J., 2016. A two-level parallelization
method for distributed hydrological models. Environmental Modelling & Software
80, 175–184. doi:10.1016/j.envsoft.2016.02.032.

Livneh, B., Deems, J.S., Buma, B., Barsugli, J.J., Schneider, D., Molotch, N.P., Wolter,
K., Wessman, C.A., 2015. Catchment response to bark beetle outbreak and dust-
on-snow in the Colorado Rocky Mountains. Journal of Hydrology 523, 196–210.
doi:10.1016/j.jhydrol.2015.01.039.

Manojkumar, K., Palmer, B., Vishnu, A., Krishnamoorthy, S., Daily, J., Chavarria, D.,
2012. The Global Arrays User Manual. Technical Report PNNL-13130. Pacific
Northwest National Laboratory. Richland, WA.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C., Ebisuzaki, W., Jović,
D., Woollen, J., Rogers, E., Berbery, E.H., Ek, M.B., Fan, Y., Grumbine, R., Higgins,
W., Li, H., Lin, Y., Manikin, G., Parrish, D., Shi, W., 2006. North American Regional
Reanalysis. Bulletin of the American Meteorological Society 87, 343–360. doi:10.
1175/BAMS-87-3-343.

MPI Forum, 2018. Message Passing Interface (MPI) Forum Home Page.
http://www.mpi-forum.org/ (Sept. 2018).

Natural Resources Canada (NRC), 2015. Canadian digital elevation model (CDEM).
Government of Canada. Available online. URL: https://open.canada.

ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333. Last ac-
cessed: 2019-01-31.

Natural Resources Conservation Service (NRCS), 2019a. Soil survey geographic
(SSURGO) database. U.S. Department of Agriculture. Available online. URL:
https://sdmdataaccess.sc.egov.usda.gov. Last accessed 2019-01-27.

Natural Resources Conservation Service (NRCS), 2019b. U.S. general soil map
(STATSGO2). U.S. Department of Agriculture. Available online. URL: https:
//sdmdataaccess.sc.egov.usda.gov. Last accessed 2019-01-27.

Naz, B.S., Frans, C.D., Clarke, G.K.C., Burns, P., Lettenmaier, D.P., 2014. Model-
ing the effect of glacier recession on streamflow response using a coupled glacio-
hydrological model. Hydrology and Earth System Sciences 18, 787–802. doi:10.
5194/hess-18-787-2014.

30

Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Aprà, E., 2006.
Advances, applications and performance of the global arrays shared memory pro-
gramming toolkit. The International Journal of High Performance Computing Ap-
plications 20, 203–231. doi:10.1177/1094342006064503.

PRISM Climate Group (PCG), 2004. Parameter-elevation regressions on independent
slopes model. Oregon State University. Available online. URL: http://prism.
oregonstate.edu. created 2004-02-04.

Simeone, B., 1986. An asymptotically exact polynomial algorithm for equipar-
tition problems. Discrete Applied Mathematics 14, 283–293. doi:10.1016/
0166-218X(86)90032-6.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G.,
Huang, X.Y., Wang, W., Powers, J.G., 2008. A Description of the Advanced Re-
search WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. National Cen-
ter for Atmospheric Research (NCAR). doi:10.5065/D68S4MVH.

Storck, P., Bowling, L., Wetherbee, P., Lettenmaier, D., 1998. Application of a GIS-
based distributed hydrology model for prediction of forest harvest effects on peak
stream flow in the Pacific Northwest. Hydrological Processes 12, 889–904. doi:10.
1002/(SICI)1099-1085(199805)12:6<889::AID-HYP661>3.0.CO;2-P.

Storck, P., Lettenmaier, D.P., 1999. Predicting the effect of a forest canopy on ground
snow accumulation and ablation in maritime climates, in: Proceedings of 67th West-
ern Snow Conference, Colo. State Univ. Fort Collins. pp. 1–12.

Sun, N., Wigmosta, M., Zhou, T., Lundquist, J., DickersonLange, S., Cristea, N., 2018.
Evaluating the functionality and streamflow impacts of explicitly modelling forest-
snow interactions and canopy gaps in a distributed hydrologic model. Hydrological
Processes 32, 2128–2140. doi:10.1002/hyp.13150.

Sun, N., Yearsley, J., Baptiste, M., Cao, Q., Lettenmaier, D.P., Nijssen, B., 2016. A
spatially distributed model for assessment of the effects of changing land use and
climate on urban stream quality. Hydrological Processes 30, 4779–4798.

Sun, N., Yearsley, J., Voisin, N., Lettenmaier, D.P., 2015. A spatially distributed model
for the assessment of land use impacts on stream temperature in small urban water-
sheds. Hydrological Processes 29, 2331–2345.

Thyer, M., Beckers, J., Spittlehouse, D., Alila, Y., Winkler, R., 2004. Diagnosing a
distributed hydrologic model for two high-elevation forested catchments based on
detailed stand- and basin-scale data. Water Resources Research 40. doi:10.1029/
2003WR002414.

U.S. Geological Survey (USGS), 2014. NLCD 2011 land cover (2011 edition, amended
2014) - national geospatial data asset (NGDA) land use land cover. URL: https://
www.sciencebase.gov/catalog/item/4f70a43ce4b058caae3f8db3. Last ac-
cessed: 2019-01-31.

31

U.S. Geological Survey (USGS), 2017. 1 arc-second digital elevation mod-
els (DEMs) - USGS national map 3DEP downloadable data collection.
Available online. URL: https://www.sciencebase.gov/catalog/item/

4f70aa71e4b058caae3f8de1. Last accessed: 2019-01-31.

Vivoni, E.R., Mascaro, G., Mniszewski, S., Fasel, P., Springer, E.P., Ivanov, V.Y., Bras,
R.L., 2011. Real-world hydrologic assessment of a fully-distributed hydrological
model in a parallel computing environment. Journal of Hydrology 409, 483–496.
doi:10.1016/j.jhydrol.2011.08.053.

Wigmosta, M.S., Lettenmaier, D.P., 1999. A comparison of simplified methods for
routing topographically driven subsurface flow. Water Resources Research 35, 255–
264. doi:10.1029/1998WR900017.

Wigmosta, M.S., Storck, P., Lettenmaier, D.P., 2002. The distributed hydrology soil
vegetation model, in: Mathematical Models of Small Watershed Hydrology and Ap-
plications. Water Resource Publications, Littleton, CO, pp. 7–42.

Wigmosta, M.S., Vail, L.W., Lettenmaier, D.P., 1994. A distributed hydrology-
vegetation model for complex terrain. Water Resources Research 30, 1665–1679.
doi:10.1029/94WR00436.

Wilkinson, B., Allen, M., 1998. Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers. Prentice Hall.

Wood, J.E., Gillis, M.D., Goodenough, D.G., Hall, R.J., Leckie, D.G., Luther, J.E.,
Wulder, M.A., 2002. Earth observation for sustainable development of forests
(EOSD): Project overview, in: IEEE International Geoscience and Remote Sensing
Symposium, pp. 1299–1302 vol.3. doi:10.1109/IGARSS.2002.1026097.

32

