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Abstract

The paper presents experiments of driving a physics-based thermosphere model by assimilating electron density (Ne) and

temperature (Tn) data using the ensemble adjustment Kalman filter (EAKF) technique. This study not only helps to gauge

the accuracy of the assimilation, to explain the inherent model bias, and to understand the limitations of the framework, but

it also establishes EAKF as a viable technique to forecast the highly dynamical thermosphere using realistic data assimilation

scenarios. The results from the perfect model scenarios show that data assimilation changes and, more often than not, improves

the model state. Data from Swarm-A, Swarm-C, CHAMP, and GRACE-A are used to validate the resulting analysis states.

Independent validation results show that the Ne-guided thermosphere state does not outperform the model state without data

assimilation along the considered satellite orbits. This may be due to the limited number of bonafide Ne profiles available for

the thermosphere specification tasks in the experiments. More importantly, the results show that the Ne-guided thermosphere

state does not deteriorate much in performance during geomagnetic storm time. The results reveal a few challenges of using

Ne profiles in a hypothetical operational data assimilation exercise. In terms of estimating the mass density along the orbits of

both CHAMP and GRACE-A satellites, the experiment with assimilating Tn shows more promise over Ne. The results show

that the improvement gained in the overall forecasted thermosphere state is better during solar minimum compared to that of

solar maximum. These results also provide insights into the biases inherent in the physics-based model. The systematic biases

that the paper highlight could be an indication that the specification of plasma-neutral interactions in the model needs further

adjustments.
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Abstract
The paper presents experiments of driving a physics-based thermosphere model by assimilating
electron density (Ne) and temperature (Tn) data using the ensemble adjustment Kalman filter
(EAKF) technique. This study not only helps to gauge the accuracy of the assimilation, to
explain the inherent model bias, and to understand the limitations of the framework, but it also
establishes EAKF as a viable technique to forecast the highly dynamical thermosphere using
realistic data assimilation scenarios.

The results from the perfect model scenarios show that data assimilation changes and,
more often than not, improves the model state. Data from Swarm-A, Swarm-C, CHAMP, and
GRACE-A are used to validate the resulting analysis states. Independent validation results show
that the Ne-guided thermosphere state does not outperform the model state without data assim-
ilation along the considered satellite orbits. This may be due to the limited number of bonafide
Ne profiles available for the thermosphere specification tasks in the experiments. More im-
portantly, the results show that the Ne-guided thermosphere state does not deteriorate much
in performance during geomagnetic storm time. The results reveal a few challenges of using
Ne profiles in a hypothetical operational data assimilation exercise. In terms of estimating the
mass density along the orbits of both CHAMP and GRACE-A satellites, the experiment with
assimilating Tn shows more promise over Ne.

The results show that the improvement gained in the overall forecasted thermosphere state
is better during solar minimum compared to that of solar maximum. These results also provide
insights into the biases inherent in the physics-based model. The systematic biases that the
paper highlight could be an indication that the specification of plasma-neutral interactions in
the model needs further adjustments.
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1 Introduction

The economy of the space industry and the safety of space assets depend, arguably, on our abil-
ity to model and predict space weather and the variability of the space environment. The low
Earth orbit (LEO) region from about 160 to 2,000 km is where more than half of the operational
satellites are currently placed and also the most populated with debris objects (Klinkrad, 2017).
Therefore, the risk of satellite collisions is highest in LEO and the potential economic and so-
cial impact to the space domain is also the highest in this region (Holzinger and Jah, 2018;
National Research Council, 2009). One of the largest and persistent sources of uncertainty in
the satellite orbit determination and prediction solutions in LEO arise from the uncertainty in
atmospheric mass density estimates (Vallado and Finkleman, 2014). The uncertainty in mass
density estimates is linked to imperfections in modelling this highly dynamical space environ-
ment. An accurate forecast of the atmospheric mass density is critical to precise and robust
orbit predictions, as well as to assure, among others, the safety of space assets vital to many
technologies on Earth (e.g. Hejduk and Snow, 2018).

More studies on data-guided forecasting of the thermosphere are conducted during the
past decade than any other time. Yet the major thematic issues with forecasting the ther-
mosphere remain a scientific, computing and resource challenge. These challenges include,
for example, scientific—the problem of physics of the thermosphere-ionosphere system being
not fully understood; computing—the problem of developing computationally efficient, opera-
tionally viable, and high-accuracy output feedback (nowcast/forecast) assimilation algorithms;
and resource—the problem of scarcity of impactful measurements of the system. Some compli-
cations of building a model that includes all the relevant physics are due to the highly dynamical
nature of the thermosphere that is not only driven by external forces but also controlled signifi-
cantly by internal chemistry and dynamics (e.g. Bauer and Lammer, 2004).

Data-guided forecasting refers to the process of computing the best possible estimate of
the state of the system using data along with a numerical prediction of the model state. Lee
et al. (2012) and Matsuo et al. (2013) demonstrated early success in affecting the model state
in thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM; Dickinson
et al. (1981); Richmond et al. (1992)) through an ensemble Kalman filter-based (EnKF) data
assimilation technique (Evensen, 1994, see). The EnKF, compared to the traditional Kalman
filter (KF) allows one to bypass the restrictions and limitations that are usually associated with
a large complex nonlinear model such as TIE-GCM. The EnKF also affords significant compu-
tational efficiency for large geophysical models by representing model error covariance through
a sample covariance computed from a series (ensemble) of model runs. This is due to the fact
that the size of the model error covariance matrix in EnKF depends on the size of the ensemble
and not the size of the model dimensions (e.g. grid space, variables). Said differently, the model
error depends on the degree of ensemble spread. A number of other variants of KF-based as-
similation techniques and other inductive/deductive techniques, such as three-/four-dimensional
variational analysis and Optimal Interpolation exist (see Daley, 1993; Kalnay, 2002) but these
are not discussed here.

Recently, Mehta et al. (2018) proposed a reduced order model (ROM) data assimilation
framework for thermospheric mass density based on the proper orthogonal decomposition di-
mensionality reduction technique using TIE-GCM as the base model. Sutton (2018) proposed
several changes to the EnKF/TIE-GCM assimilation framework by adopting variational tech-
niques where the external drivers, F10.7 and K p, are estimated iteratively, and the model is
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iteratively run until data-model convergence is achieved with these newly estimated driver pa-
rameters. While the results in these studies show promise, the results also convey that ap-
plying these stochastic methods to the thermosphere is not necessarily simplistic. A standard
EnKF/TIE-GCM framework requires about 60 ensemble members (e.g. Matsuo et al., 2013)
to be processed in parallel (typically processed in multi-node supercomputers). The variational
methods have a disadvantage with the nontrivial requirements of computing tangent linear mod-
els and adjoint models for both the evolution (forward) and observation operators, and ROMs
usually require training with data that span over long periods (e.g. sunspot cycle).

The main goal of this work is to investigate the impact to the forecasted thermosphere state
through ensemble adjustment Kalman filter (EAKF; Anderson, 2001)-based assimilation of ob-
served electron density and empirically-derived temperature into TIE-GCM. Electron density
data are more globally abundant than other under-observed thermospheric parameters such as
winds and mass density (Matsuo et al., 2013) and hence they offer the most promising means
to test the effect of assimilation on the model forecasted state on a global scale. Investigat-
ing the potential and limitations of assimilating temperature to assist thermosphere forecasts is
useful given that the thermosphere is primarily driven by external heat and momentum sources
(e.g. Fuller-Rowell et al., 1996; Kodikara et al., 2018a; Volland, 1988). This work is presented
as an extension to Lee et al. (2012); Matsuo et al. (2013) and Hsu et al. (2014). A study of
the EAKF/TIE-GCM framework for the thermosphere not only helps to gauge the accuracy
of the assimilation, to explain the inherent model bias, and to understand the limitations of
the framework, but also establishes EAKF as a viable technique in the presence of realistic
data assimilation scenarios to forecast the highly dynamical thermosphere. Sparsity of data
and data uncertainty are two caveats which concern the interpretation of the assimilation re-
sults. Calibrating instrument error for real-time observations is not optimal in most cases and
even non-existent for some useful satellite observations such as temperature, electron density
and accelerometer-derived mass density. Therefore, accounting for observation uncertainty is a
challenging task. This study employs and justifies artificially inflated data uncertainty.

2 Data and Models
The EAKF-based assimilation algorithm described in Anderson (2001) and implemented in the
Data Assimilation Research Testbed-classic (DART; Anderson et al., 2009) is used to assimilate
the data into TIE-GCM. The specifics of the configuration and parameter settings in DART are
described in the next section.

TIE-GCM is a well-established, physics-based, self-consistent model of the thermosphere-
ionosphere system that uses a finite differencing technique to discretise the numerical solu-
tions for conservation of mass, energy and momentum (e.g. Maute, 2017; Qian et al., 2014).
Instead of the default TIE-GCM version 1.95 available in DART, the latest TIE-GCM ver-
sion 2.0 (released on 21 March 2016) with a model-time-step of 30 s has been integrated
into DART to perform the experiments presented here. The reader interested in more details
about the open-source TIE-GCM is referred to the website at <http://www.hao.ucar.edu/
modeling/tgcm/tiegcm2.0>.

In this study, the TIE-GCM outputs are recorded at a 5°×5° horizontal (latitude and longi-
tude) grid at 29 constant pressure surface layers that extend from approximately 97 to 600 km in
altitude (depending on solar activity). These isobaric pressure surface layers have a resolution
of half a scale-height (the scale-height in a hydrostatic atmosphere is the altitudinal difference
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as a result of change in air density and pressure by a factor of 1/e, where e is the Euler’s num-
ber ∼2.71828). In the model runs presented here, the EUVAC (extreme ultraviolet flux model
for aeronomic calculations) empirical solar proxy model (see Richards et al., 1994; Solomon
and Qian, 2005) is used to calculate the input from solar irradiance specified via the average of
daily F10.7 and its running 81-day centred mean F10.7. The high latitude mean-energy, energy
flux and electric potential are specified by the Heelis et al. (1982) ion convection model, and
the Roble and Ridley (1987) auroral particle precipitation scheme. The hemisphere power and
cross-polar-cap potential drop required to determine this high latitude energy and momentum
input are estimated using the K p index. In TIE-GCM the in-built wind dynamo calculates the
electric potential for low and middle latitudes (see Richmond et al., 1992; Richmond, 1995).
The tidal forcing from the lower atmosphere is specified at the lower boundary of TIE-GCM
through numerically derived migrating diurnal and semidiurnal tides using the Hagan et al.
(2001) global scale wave model (GSWM). In addition, day-of-year dependent perturbations
to the advective and diffusive transport are introduced using the eddy diffusion coefficient as
described in Qian et al. (2009).

The electron densities used in this work are from the joint USA-Taiwan Constellation Ob-
serving System for Meteorology, Ionosphere and Climate/Formosa Satellite 3 (COSMIC/FORMOSAT-
3; hereinafter COSMIC) mission. These COSMIC electron densities (hereinafter COSMIC-Ne)
are derived from radio occultation (RO) events across the COSMIC constellation. The number
of successful events is proportional to, among others, the number of GPS signal transmitters.
The derivation of electron density from COSMIC RO data is detailed in Tsai et al. (2001). The
errors in the retrieval method of COSMIC-Ne is widely discussed (e.g. Liu et al., 2009; Yue
et al., 2010) and many studies report a root-mean-square error (RMSE) between 10 and 20%
compared to ground measurements of electron density (e.g. Pedatella et al., 2015; Yue et al.,
2014).

The data assimilation results are validated with independent observations from four different
satellites: Swarm-A, Swarm-C, CHAllenging Minisatellite Payload (CHAMP), and Gravity Re-
covery and Climate Experiment (GRACE)-A. Swarm, launched in late 2013, consists of three
polar (angle of inclination: 87.4° [A and C]; 87.8° [B]) orbiting satellites with an orbital period
of approximately 94 minutes. The electron density from Swarm-A used here is the extended
L1b product of the Langmuir probe data from the EFI (electric field instrument). Lomidze et al.
(2018) reported that plasma frequency measured by Swarm is about 10% less compared to
ISR, ionosondes, and COSMIC data. The accelerometer-derived mass density ρ from Swarm-C
used here is the postprocessed Level2daily (SW_OPER_DNSCWND_2) product (Siemes et al.,
2016). The methods applied in Swarm-C data to isolate the drag-acceleration and derive the
mass density are described in Doornbos (2012). Kodikara et al. (2018b) provides a compari-
son between Swarm-C accelerometer-derived thermospheric mass density and multiple model
estimates including the TIE-GCM.

The ρ data from CHAMP and GRACE-A satellites that have been recalibrated by Mehta
et al. (2017) using physics-based drag coefficients are used here to validate the data assimila-
tion results. Mehta et al. (2017) report an average bias of 14–18% for CHAMP and 10–24%
for both GRACE-A and -B with respect to mass densities in both Sutton (2011) and Doorn-
bos (2012). The orbital periods of CHAMP and GRACE-A for the experiments considered
here are 91 and 94 minutes, respectively. This work also explores the impact of assimilating
temperature Tn along the CHAMP orbit (hereinafter CHAMP-Tn) on the global thermospheric
mass density state. The empirically-derived Tn data used here are from Mehta et al. (2017)’s
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above-mentioned recalibrated data set.

3 Ensemble Adjustment Kalman Filter Experiments
Briefly, the EAKF—similar to the EnKF described in Evensen (1994), is a Monte-Carlo ap-
proximation of the more traditional KF (Kalman, 1960; Anderson, 2001). It provides a rel-
atively easy mechanism to assimilate observations into TIE-GCM to estimate the impact of
the observations on the model state forward in time. Similar to the EnKF, EAKF uses sam-
ple statistics (means and covariances) from the prior ensemble of model states to calculate the
posterior probability distributions. The probability distribution prior to the assimilation of data
is referred to as the prior. The posterior is the probability distribution of the prior distribution
updated with observations. Unlike the EnKF, the EAKF does not add noise from a sample of
perturbed observations but applies the linear operator described in Anderson (2001) to update
the prior ensemble of model states that yield theoretically consistent means and covariances.

The following three experiments are presented here to analyse the ability of the EAKF
technique to guide TIE-GCM:

E1 Assimilate COSMIC-Ne during solar minimum (2008 March 4–11);

E2 Assimilate COSMIC-Ne during solar maximum (2014 June 2–10); and

E3 Assimilate CHAMP-Tn during solar minimum (2008 March 4–11).

Assimilation of data during each period starts at 1 UT and ends at 0 UT on the respective
days. The periods in 2008 and 2014 are selected to test the effectiveness of the assimilation
during solar minimum and solar maximum, respectively. The other criterion applied in se-
lecting these periods is that they are relatively quiet in geomagnetic activity with at least one
geomagnetic storm event.

Figure 1a (1b) presents the F10.7 solar flux, ap, K p, and Dst indices to illustrate the space
weather conditions during the period corresponding to E1 and E3 (E2). The geomagnetic ac-
tivity indicated by ap and Dst during the first few days of both assimilation periods is largely
quiet. Two relatively strong geomagnetic storms occur on 9 March 2008 and 8 June 2014.
While both of these events that lie in the ap range 65–90 nT share a daily average of approx-
imately 6 in the K p index, the storm on 9 March 2008 is stronger in terms of the Dst index,
which indicates that the two events are significantly different from each other. Dst is an index
that indicates the disturbance on the equatorial magnetospheric ring-current.The solar activity
during June 2014 is higher than that of March 2008 and increases from approximately 105 to
171 sfu. The geophysical indices F10.7 solar flux and K p (hereinafter GPI) shown in Figure 1
are used to drive the TIE-GCM to obtain the corresponding control state xc for E1, E2, and
E3. The two periods provide an opportunity to compare the model error growth in the EAKF at
vastly different solar activity levels but seemingly similar geomagnetic conditions with different
storm characteristics.

The EAKF state vector x for these experiments is selected in such a way to avoid/minimise
spurious strong correlations between observations and model variables (e.g. winds, tempera-
ture, and composition). In this EAKF/TIE-GCM framework, the observation operators in DART
compute the expected value of an observation given the model state. The size of the observation
vector in the above-mentioned experiments (typical in atmospheric data assimilation) is much
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Figure 1: Space weather conditions for (a) March 2008 (E1, E3) and (b) June 2014 (E2) demon-
strated via F10.7 solar flux, ap, and the Dst indices. The corresponding K p values are overlaid
on ap and marked in orange. Source: OMNI data available on omniweb.gsfc.nasa.gov.
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smaller than the size of the state vector. In a nutshell, spurious correlations occur as a result of
long spatial distances between observation and model variable—spatially remote observations,
and due to certain model variables being physically unrelated to the observation (Anderson,
2001).

Specific localisation methods are applied to combat this problem of spurious correlations.
The Gaspari and Cohn (1999) correlation function is used to constrain the spatial region of the
impact of the observation. In the experiments presented here, the correlation function shifts
the impact of the observation from a maximum at the observation location to zero at the cutoff

distance following an approximation of a Gaussian curve. Spurious correlations between ob-
servations and physically unrelated model variables may be generated from limitations of the
ensemble size, which is also much less than the size of the state vector (Anderson, 2001). A
subset of TIE-GCM prognostic variables/fields that are known to be strongly correlated with
mutual physical relationships is selected as the EAKF state vector to be updated in each assim-
ilation cycle and in turn affect the model forecast. Lee et al. (2012), Matsuo et al. (2013), Hsu
et al. (2014), and Chartier et al. (2016) presented results from different combinations of prog-
nostic variables in the state vector. Overall, they have demonstrated that inferring the dynamical
state of both ionosphere and thermosphere is improved by including thermosphere-ionosphere
coupling parameters such as electron density, temperature, winds and composition in the state
vector. The EAKF state vector x selected for this study is analogous to the superior-performing
state vector in Hsu et al. (2014).

The EAKF state vector x in the experiments mentioned above is composed of,

x = [ψTn;ψγO;ψγO+

;ψγO2;ψU ;ψV ;ψNe],

where Tn,O,O+,O2,U,V , and Ne represent temperature [K], atomic oxygen [γ], atomic oxygen
ion [γ], molecular oxygen [γ], zonal (east-west) wind [m·s−1], meridional (north-south) wind
[m·s−1], and electron number density [cm−3], respectively. ψ denotes the full vector of the
respective prognostic variable over the entire model space. Although the size of the assimilating
observation vector may change in size with time, the size of x is constant. The mass mixing
ratio γ of the major species is obtained with the assumption γN2 = 1−γO−γO2, thus affecting
also the γO/γN2 in x. At the upper boundary, γO and γO2 are considered to be in diffusive
equilibrium. At the lower boundary, the vertical gradient of O is taken to be zero and γO2 is
fixed at 0.22.

The thermosphere is driven by external heat and momentum sources, which are primarily
characterised in TIE-GCM by the GPIs. The model error growth in EAKF is represented by the
degree of spread among the ensemble of model states. If the GPIs are held constant then the
probability distribution represented by the ensemble has no means of characterising the effects
of driver uncertainty on the model error growth (Matsuo et al., 2013). Therefore, to aid the
characterisation of model error growth, the ensembles for all three experiments are generated
by perturbing the primary forcing parameter d for each ensemble member m, where

d(m) = [F(m)
10.7, F

(m)
10.7, K p(m)].

F10.7, F10.7 and K p for d are sampled from a normal distribution as follows:

d(m)
←↩ N

([
µF10.7 , µF10.7

, µK p
]
,
[
σ2

F10.7
, σ2

F10.7
, σ2

K p
])
,

with {K p | K p ≥ 1}. The mean µ values for F10.7, F10.7, and K p for the experiments in March
2008 are 68 sfu, 60 sfu, and 3, respectively. The corresponding µ values for the experiment in
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June 2014 are 140 sfu, 130 sfu, and 4. Their respective σ2 values give the variance of the per-
turbation for F10.7, F10.7, and K p. The σF10.7 , σF10.7

, and σK p for the experiments in March 2008
are 15 sfu, 15 sfu, and 2, respectively. And the corresponding σ values for the experiment in
June 2014 are 30 sfu, 30 sfu, and 2. The widths of these d distributions are thus specified con-
sidering the background GPIs shown in Figure 1. Each ensemble member is randomly assigned
a combination of forcing parameters that are kept fixed throughout the entire assimilation.

The specifics of the DART configuration and parameter settings used here are as follows:

1. The ensemble size is 60 for each experiment;

2. The model error covariance is localised using the Gaspari and Cohn (1999) correlation
function with a half-width of 0.2 radians horizontally;

3. The vertical localisation height is set equal to 200 km for E1 and E2, and 40 km for E3,
respectively;

4. The outlier threshold for observations is three standard deviations from the prior ensemble
mean;

5. The assimilation window is 3,600 s for E1 and E2, and 5,400 s for E3, respectively—
centred at current model-time;

6. Spatially-varying state space inflation is applied to the prior state before observations are
assimilated with initial inflation, inflation standard deviation, and inflation damping set
equal to 1.02, 0.6, and 0.9, respectively;

7. The minimum Ne is 1,000 cm−3;

8. The lower bound of the temperature is 100 K; and

9. The γO and γO2 have cutoff limits at zero and one.

A brief commentary on the above-mentioned parameter settings:
Matsuo et al. (2013) report no significant difference in the quality of the analysis state for

ensemble sizes above 60. However, their experiments are conducted with 90- to 100-member
ensembles. The half-width for the Gaspari and Cohn (1999) correlation function used in this
study is similar to Matsuo et al. (2013) and Hsu et al. (2014). Chartier et al. (2016) considering
the effect on total electron content over the continental USA showed no appreciable difference
between the use of localisation half-width radii 0.2, 0.5, and 1.0 radians under geomagnetically
quiet times. In order to smoothen the effect of the assimilation on the vertical profile of model
electron density, Matsuo et al. (2013) also used a vertical localisation height of 200 km for
the experiment with COSMIC-Ne. A smaller vertical localisation height is used for E3 as
the assimilating data are also essentially localised along the CHAMP orbit—unlike COSMIC-
Ne data, which have a larger 3D coverage than CHAMP-Tn. In other words, a large vertical
localisation height for E3 is prone to spurious correlations.

The COSMIC-Ne values less than zero and/or outside the above-mentioned outlier threshold
are removed from the experiments. Chartier et al. (2016) employed a similar threshold to
control the impact of observations. The total number of COSMIC-Ne profiles ingested into
the observational forward operator is 54501 and 61919 for E1 and E2, respectively. Similarly,
60479 CHAMP-Tn epochs are used in E3. The assimilation windows applied in this study is

8
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similar to Matsuo et al. (2013). A 90-min assimilation window is used for E3 to correspond
with the approximate orbital period of CHAMP. The above-mentioned spatially-varying state
space inflation values are thus specified on an ad-hoc basis following the recommendation in
DART documentation for large geophysical models. It is unnatural to have values below the
above-mentioned minimum Ne and minimum temperature in the altitude ranges considered in
the study. Lee et al. (2012) also employed similar parameter settings for Ne, γO, and γO2.

The success of the experiments is assessed using independent satellite data. In addition, the
effectiveness of the EAKF technique independent of model bias is assessed in a “perfect model”
scenario. The control state xc (truth) for the perfect model scenario for all three experiments
is a TIE-GCM run each driven by observed GPIs. All model runs including the ensemble
members are primed with a “spin-up” period of 15 days prior to the assimilation. The mean
of the updated/posterior ensemble is referred to as the analysis state xa and the mean of the
prior ensemble is referred to as the forecast state x f . In the results presented below, the DART
assimilation results are assessed using these analysis and forecast states.

In the perfect model scenario, as per Hsu et al. (2014), the ratio of RMSE between xa and
x f each with respect to xc is used to evaluate the impact to the model state with and without
data assimilation. The ratio of RMSE Rrmse is computed from,

Rrmse(ψ) =

√(
xa(ψ) − xc(ψ)

)2√(
x f (ψ) − xc(ψ)

)2
, (1)

where {Rrmse ∈ R : Rrmse ≥ 0} and ψ denotes the prognostic/diagnostic variable in TIE-GCM.

4 Results

4.1 Impact of Assimilating COSMIC-Ne Profiles
Figures 2 and 3 compare the Rrmse(Ne) at 300-km altitude for E1 and E2, respectively. The
two figures provide a digest of the impact of the assimilation towards the beginning of the
assimilation (4–5 March 2008; 2–3 June 2014) and the end of the assimilation (8–9 March
2008; 7–8 June 2014) over four different UTs. In Figures 2 and 3, the Rrmse(Ne) is scaled from 0
to 1, where 0 indicates that the analysis xa(Ne) is statistically indistinguishable from the control
state xc(Ne)—the “truth”. The non-scaled minimum and maximum of the Rrmse(Ne) spread
are similar between the two figures and the range of the spread is relatively small globally.
Therefore, a unified scaling highlights the areas where xa is impacted from the assimilation
across the different UTs better than the non-scaled Rrmse. The blue dots represent the locations
of the assimilated COSMIC-Ne profiles in the 100- to 500-km altitude range and within −2.5
and +0.5 hr of a given UT. The geographic latitude-longitude resolution of the two figures is
the same as the model grid resolution, which is 5°×5°.

In general, the impact of the assimilation is less in more areas in E2 than E1 as indicated
by the yellow areas in Figures 2 and 3. A relationship between the assimilated COSMIC-Ne
profiles (blue dots) and the Rrmse results is apparent in both figures. For example, the number of
assimilated observations in Figure 2a [3 UT] is less compared to that of in Figure 2a [21 UT]
where the assimilated state is also more improved globally (purple areas) than at 3 UT. The Rrmse

is larger in the high southern latitudes between 180°W and 0° longitude in Figure 2c [15 UT]
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Figure 2: (a–d) The geographic latitude-longitude distribution of the RMSE ratios of electron
density (Rrmse(Ne)) for E1 at 300-km altitude. The blue dots indicate the locations of assimilated
COSMIC-Ne profiles in the 100- to 500-km altitude range and within −2.5 and +0.5 hr of a
given UT. The Rrmse(Ne) are scaled from 0 to 1 where values close to 0 indicate that the analysis
state xa is closer to the “truth”.
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Figure 3: Same as Figure 2 except for E2.
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where there are also not many observations. On the contrary, in a few areas with clusters of
observations, a higher Rrmse is also present (e.g. below 45°S and between 90°E and 180°E in
Figure 2c [9 UT], and below 45°S and between 180°W and 90°W in Figure 2d [3 UT]).

The relationship between observation locations and Rrmse-improved areas is more distinct
in Figure 3 than in Figure 2. In Figure 3, the improved areas are mostly concentrated in the
Southern Hemisphere where the density of assimilated observations is higher compared to the
Northern Hemisphere. Interestingly, Figure 3d [21 UT] shows an improvement in the north-
ern latitudes (up to approximately 70°N) where more observations are present in the Northern
Hemisphere compared to the previous day. Overall, both Figures 2 and 3 show that assimilating
COSMIC-Ne has changed the model state and in more areas than not it has reduced the Rrmse.
The distinct areas where the relationship between the assimilated COSMIC-Ne profiles and the
Rrmse results is not clear or seems to be inverse highlights the complexity of the thermospheric
dynamics. In other words, the correlation between 3 hr of observations, and the evolving differ-
ences between the analysis and forecast states is intricate as the snapshots shown here may not
capture the impact of the assimilated observations in an accommodating time-scale.

Figures 4 and 5 present the Rrmse(ρ) at 300-km altitude for the experiments E1 and E2,
respectively. Similar to Figures 2 and 3, the results for Rrmse(ρ) also exhibit a correlation with
assimilated COSMIC-Ne profiles. The presence of purple patches in Figure 4 indicates that
the assimilation impact in Rrmse(ρ) is more localised compared to that of Rrmse(Ne) for E1 in
Figure 2. Two hours into the assimilation (Figure 4a [3 UT]), the improvement around the
equator is significantly poor even with some COSMIC-Ne profiles in the region. The situation
is improved in the next snapshot in Figure 4a [9 UT]. The analysis state is also degraded mainly
in the southern latitudes between the longitudes 0 and 180°W at 9 UT on 9 March 2008, which is
the storm day (see Figure 1a). In general, the Rrmse is higher in areas with less-to-no observations
in Figure 4.

In Figure 5a [21 UT], the longitudes to the west of 0° show more improvement than to
the east. More COSMIC-Ne profiles are also present in the longitudes to the west of 0° than
to the east. Figure 5d [21 UT] shows improved areas on the east mostly around observation
locations. The Rrmse in Figures 5c–5d compared to that of Figures 4c–4d indicates that the
impact of assimilating COSMIC-Ne on mass density during high solar activity with enhanced
geomagnetic activity (7, 8 June 2014) is rather marginal. The differences in panels c and d in
both Figures 4 and 5 could also be due to the relatively less number of assimilated observations
in the latter.

4.2 Validation of the Ne-Guided Thermosphere

In this section, the COSMIC-Ne assimilated analysis state from the two experiments E1 and
E2 is examined with multiple independent sets of data. Here the analysis state is the above-
mentioned mean of the updated/posterior ensemble xa and is labelled as “DART” in Figures 6–
9.

Figure 6 compares Ne measured aboard the Swarm-A satellite with TIE-GCM (aforemen-
tioned control state xc), and COSMIC-Ne-guided E2-xa (DART). Figure 6a [right] presents
the TIE-GCM/Swarm-A (blue) and DART/Swarm-A (orange) orbit-averaged Ne ratios. The
line breaks correspond to the data-loss periods. Figure 6a [left] shows the number of available
(circle) and assimilated (star) COSMIC-Ne profiles between the altitudes of 450 and 550 km.

In Figure 6a [right], DART mostly overestimates the orbit-averaged Ne compared to TIE-
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Figure 4: Same as Figure 2 except for Rrmse of mass density ρ in E1.
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Figure 5: Same as Figure 4 except for E2.
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Figure 6: (a-right) Ratio of Swarm-A orbit-averaged Ne with TIE-GCM (blue) and E2 analysis
mean xa (DART; orange). The dashed line represents the ideal ratio. (a-left) The number of
available/assimilated COSMIC-Ne data between 450- and 550-km altitudes. The RMSE of E2-
xa and TIE-GCM with respect to the in-situ Swarm-A Ne along the (b–c) descending and (d–e)
ascending orbits. (b, d) The blue stars indicate the locations of assimilated COSMIC-Ne in the
vicinity of Swarm-A.
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GCM for the first four days. While on average the number of assimilated observations is around
40 in Figure 6a [left], one can discern that the ratio of observations not assimilated during the
first four days is higher than that of the last four days. The drop in DART/Swarm-A ratio in
Figure 6a [right] seems to correspond with the drop in Dst from late 7 June to 8 June 2014 in
Figure 1b. In general, from 7 June 2014 onwards, DART performs better than TIE-GCM.

The panels b to d of Figure 6 present the RMSE with respect to the in-situ Swarm-A Ne
during this better-performing period (7–10 June 2014) with each orbit separated into descending
and ascending segments. The blue stars in panels b and d of Figure 6 indicate the location of the
assimilated COSMIC-Ne observations in the vicinity of the satellite. The observations along the
path of the satellite within ±10° longitudinally, ±10 min temporally, and ±50 km altitudinally
are considered to be in the vicinity of the satellite.

From the perspective of descending orbits in Figures 6b and 6c, DART performs signifi-
cantly better than TIE-GCM around the equator and low latitudes. The majority of the COSMIC-
Ne observations along the descending orbits are clustered across the equator and middle south-
ern latitudes in the second half of each day. TIE-GCM’s performance in the Southern Hemi-
sphere is also degraded from approximately 12 to 18 UT on 8 June 2014 but DART’s perfor-
mance seems to be unaffected. A geomagnetic storm with a K p of 6 occurred on 8 June. The
RMSE results presented in Figures 6d–6e show that the performance of the two models is com-
parable along the ascending orbits. In contrast to the pattern in Figure 6b, the observations in
Figure 6d are mostly spread across the Northern Hemisphere and are relatively small in num-
ber. TIE-GCM also performs significantly better around the low latitudes in the ascending orbits
compared to its performance in the region along the descending orbits. DART’s performance is
impressive given that it had no access to the exact GPIs that were available to TIE-GCM.

The three comparisons shown in Figures 7, 8, and 9 are analogous to Figure 6 but for the
accelerometer-derived mass densities from CHAMP, GRACE-A, and Swarm-C satellites, re-
spectively. In these figures, the natural logarithm of mass density ln(ρ) is used following, for
example, Bruinsma et al. (2018), Picone et al. (2002), and Sutton (2018). ρ is given in units
of g·cm−3. The label “DART” in Figures 7 and 8 correspond to xa from E1, and likewise xa

from E2 in Figure 9. The number of available/assimilated COSMIC-Ne profiles within ±50 km
of 300, 500, and 500 km altitudes are plotted in Figures 7, 8, and 9, respectively. The avail-
able versus assimilated statistics reveal that the ratio of discarded observations is significantly
lower during solar minimum (Figures 7a [left] and 8a [left]) compared to solar maximum (Fig-
ure 9a [left]).

The increase in DART/CHAMP ratio in Figure 7a [right] during 5 March 2008 correlates
with the increase in number of assimilated observations on the day. As the corresponding trend
in TIE-GCM/CHAMP ratio is also very similar, this may not be a strong indicator of COSMIC-
Ne-guided improvement but an enhancement of ρ in data. In Figure 7a [right], DART has
gradually matched the performance of TIE-GCM.

The ascending-descending decomposition along the CHAMP orbit provided in panels b to
e of Figure 7 display the areas where the EAKF-based assimilation has minimised the RMSE
of ln(ρ). While DART’s overall RMSE results are higher than that of TIE-GCM for the most
of 7–10 June 2014, it is clear that in most areas where observations are assimilated (blue stars),
the RMSE values have improved.

Figure 8 provides a validation of TIE-GCM and assimilation results against GRACE-A mass
densities near the model’s upper boundary. The model/data ratios corresponding to GRACE-A
in Figure 8a [right] are similar to the performance at CHAMP altitudes in Figure 7a [right].
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Figure 7: Same as Figure 6 except for accelerometer-derived mass density ρ from CHAMP.
Here RMSE ln(ρ) of 1.6 is approximately 4.2×10−15 g·cm−3 in RMSE ρ. DART is xa from E1.
The number of available/assimilated COSMIC-Ne data are between 250- and 350-km altitudes.
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Figure 8: Same as Figure 7 except for GRACE-A. Here RMSE ln(ρ) of 1.6 is approximately
2.5×10−16 g·cm−3 in RMSE ρ. The number of available/assimilated COSMIC-Ne data are be-
tween 450- and 550-km altitudes.
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Figure 9: Same as Figure 8 except for Swarm-C in 2014. Here RMSE ln(ρ) of 1.5 is approxi-
mately 6×10−16 g·cm−3 in RMSE ρ. DART is xa from E2.
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However, DART in Figure 8a performs poorer than DART in Figure 7a during 4 March 2008.
Interestingly, the number of assimilated observations on 4 March 2008 is less in Figure 8a [left]
than in Figure 7a [left].

The RMSE ln(ρ) for DART around the equator along the ascending orbits in Figure 8d
is significantly lower compared to that of the descending orbits in Figure 8b. Figures 8c and
8e reveal that compared to GRACE-A, TIE-GCM’s largest excursions are mostly along the
descending orbits. Both DART and TIE-GCM perform relatively poor along descending orbits
compared to the ascending orbits. These differences could be due to the systematic biases
(e.g. associated with satellite local solar time) inherent to the underlying TIE-GCM as well
as systematic biases between ascending and descending segments of the accelerometer-derived
mass densities. Data assimilation alone is perhaps not sufficient to mitigate the effects from
these biases.

Figure 9 provides a validation of the model with respect to Swarm-C mass densities during
solar maximum. The trends in model/data ratio of orbit-averaged ρ from both DART and TIE-
GCM during this period are similar to that of during the solar minimum. Unlike in Figure 8,
the RMSE separated into descending and ascending orbits in Figure 9 reveals that in general,
the performance along both portions of the orbit is similar—with some minor differences—for
both DART and TIE-GCM. The colour-scale in Figure 9 is culled at RMSE ln(ρ) of 1.5 (RMSE
ρ of about 6×10−16 g·cm−3) to avoid a few outliers from skewing the colour-scale. The outliers
are about 10 epochs along the Swarm-C orbit that produced an RMSE ln(ρ) of approximately
2.5 (RMSE ρ of about 8×10−16 g·cm−3).

4.3 Impact of Assimilating In-situ Temperature

Figure 10 compares the RMSE ratios of mass density Rrmse(ρ) (see Equation (1)) for E3 at
the average altitude of CHAMP (344 km). The figure shows the impact of the assimilation
of CHAMP-Tn data at 16 UT daily from 5 to 10 March 2008. In Figure 10, the Rrmse(ρ) is
scaled from 0 to 1, where 0 indicate that the analysis xa(ρ) is statistically indistinguishable
from the control state xc—the “truth”. The blue dots follow the latitude-longitude path of the
assimilated CHAMP-Tn data points within 90 min centred at 16 UT along the CHAMP orbit.
The geographic latitude-longitude resolution of the figure is 5°×5°.

Figure 10 shows that assimilation of in-situ CHAMP-Tn has reduced the Rrmse in the analysis
state of mass density mostly along the CHAMP track. In other words, the impact is local
unlike the global impact shown, for example, in Figure 4 from assimilating COSMIC-Ne. This
behaviour is due to the fact that the assimilated CHAMP-Tn data are spatially contained to the
orbit. The horizontal localisation used in both Figures 4 and 10 (E1 and E3) is the same.

Figure 11 compares the results from E3 to accelerometer-derived mass densities from CHAMP
and GRACE-A, and temperature data from CHAMP-Tn—the same data set assimilated in E3.
As described in Section 4.2, the model/data ratios presented here are also computed using the
natural logarithm of mass densities. The label “DART” in Figure 11 corresponds to xa from E3.
TIE-GCM in Figure 11 is the aforementioned control state xc driven with observed GPIs.

Figure 11a shows that DART/CHAMP ratio converges to the respective TIE-GCM ratio.
The TIE-GCM blue lines in Figures 7a and 11a are the same. Although the DART orange lines
in the two figures appear similar, the DART results corresponding to E3 (Figure 11a) slightly
outperform that of E1 during 9–10 March 2008 (Figure 7a [right]). Likewise, the DART in
Figure 11c outperforms the DART in Figure 8a [right]. The DART in Figure 11c shows that
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Figure 10: The Rrmse(ρ) for E3 at 344-km altitude. The blue dots indicate the latitude-longitude
path of assimilated CHAMP-Tn for each day within 90 min centred at 16 UT. The Rrmse(ρ) are
scaled from 0 to 1 where values close to 0 indicate that the analysis state xa is closer to the
“truth”.
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Figure 11: Ratio of orbit-averaged (a) CHAMP mass density ρ, (b) CHAMP-Tn temperature,
and (c) GRACE-A ρwith TIE-GCM (blue) and E3 analysis mean xa (DART; orange). CHAMP-
Tn is the data assimilated in E3 to obtain the xa state. The dashed line represents the ideal ratio.
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the continuous assimilation of the temperature data at CHAMP altitudes (mean orbital height of
344 km) is capable of influencing the mass density specification even at the GRACE-A altitudes
(mean orbital height of 477.5 km).

Figure 11b, similar to the comparison in Figure 6a [right], shows the impact of the assimila-
tion on the same type of thermospheric parameter as the assimilated type. DART in Figure 11b
demonstrates that EAKF makes large adjustments to the model temperature state during the first
four days and then gradually settle at near-CHAMP-Tn values. In other words, the ensemble
mean-state of temperature in E3 displays a significant daily variation until 8 March 2008 com-
pared to the last two days of the experiment. TIE-GCM in Figure 11b mostly underestimates
the orbit-averaged temperature—the lines above the ideal line at 1.00 indicates the brief periods
of overestimate. Daily variation of TIE-GCM is also relatively low on 10 March 2008.

5 Discussion
This section discusses the results presented above in Sections 4.1, 4.2, and 4.3.

Assimilation of COSMIC-Ne profiles decreases the Rrmse for Ne and ρ more significantly
and broadly during the solar minimum (E1) than the solar maximum (E2). The latitude-
longitude maps of the Rrmse for both E1 and E2 (Figures 2–5) reveal the differential model
bias during the two vastly different solar activity periods. Although the compared periods be-
long to two different seasons (March-equinox and June-solstice months), the model bias due
to the season in TIE-GCM is less compared to solar activity—F10.7 (e.g. Emmert et al., 2014).
Still, some seasonal bias may be present in these Rrmse maps. The results presented in Figures 4
and 5 show that the TIE-GCM performs better during the solar minimum than the solar maxi-
mum. Elvidge et al. (2016) also reported that the mass density forecast capability of TIE-GCM
is significantly better during the solar minimum than the solar maximum.

The Rrmse maps present further insights into model bias in the two experiments E1 and E2.
For example, the persistent quasi-terminator feature near 0° longitude in Figure 4 [3 UT] is
a clear indication of systematic bias. These quasi-terminator features are also present in Rrmse

maps for solar maximum—faintly in Figure 3 and slightly more enhanced in Figure 5. Typically
the ageostrophic/horizontal winds at these high altitudes also converge around the 0° longitude
(at 3 UT) region primarily as a result of ion drag (Hsu et al., 2016). Hsu et al. (2016), using TIE-
GCM, shows that the temperature troughs, which occur around the wind-convergent region, is
larger in amplitude during solar-maximum compared to the solar minimum. In TIE-GCM, the
ion drag force is mainly controlled by Ne (due to the ion-electron quasi-neutrality in the iono-
sphere). As the mass density is directly proportional to the temperature, it is hypothesised that
these features along the quasi-terminator region are more pronounced in the ρ state than in Ne
state itself due to the additional temperature variations introduced by the assimilated Ne. This
further emphasises the important role of ion-neutral coupling and criticality of correct specifica-
tion of plasma-neutral interactions in models as relatively small errors in temperature can lead
to relatively large errors in mass density (Hsu et al., 2016). Likewise, to mitigate these system-
atic biases, calculation of ion/viscous drag forces may also require some adjustment. Reporting
on assimilating Ne into TIE-GCM, Matsuo et al. (2013) also alluded to (but did not investigate)
the bias around thermospheric and ionospheric features with sharp spatial gradients such as the
day-night terminator. The increase in Rrmse along the quasi-terminator in Figure 4 [3 UT] is
perhaps one such example.

The assimilation window in E1 and E2 is 1 hr centred at the assimilation time—resulting in
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essentially assimilating data from the “future”. In order to demonstrate this effect, COSMIC-
Ne profiles 30 min into the future are also included in the data locations shown in Figures 2–5.
Moreover, considering the memory of the thermosphere of the adjusted state, COSMIC-Ne
profiles since 2.5 hr prior to the beginning of the assimilation window are also shown. Previous
similar studies (e.g. Lee et al., 2012; Hsu et al., 2014) showed that the adjustment to the Ne state
via data assimilation disappears shortly in the order of hours and the ionosphere has a tendency
to relax toward climatology in the model. Jee et al. (2007), using the thermosphere-ionosphere
nested grid model, showed that the time it takes for the ionosphere to recover from an altered Ne
state is about 2–3 hr, where recovery is measured by the interval of time for difference between
the original and altered states to decrease by a factor of e. Jee et al. (2007)’s results also show
that this recovery time is highly dependent on latitude and local time. The Rrmse results in the
above experiments also displayed specific regions where overlaid COSMIC-Ne profiles did not
seem to reduce the model error at certain times. In other words, in those regions in Figures 2–5,
the impact from the COSMIC-Ne profiles on the model state may have already disappeared at
the chosen snapshots.

Apart from assessing the impact of assimilating COSMIC-Ne profiles into TIE-GCM, this
study also measures the accuracy of the analysis state against independent satellite observations.
DART in Figure 6a [right] is slightly worse in estimating Ne along Swarm-A than TIE-GCM
at the start of the experiment but quickly matches up to TIE-GCM. More importantly, it does
not deteriorate much in performance during storm time—8 June 2014. TIE-GCM, on the other
hand, significantly departs from the ideal ratio during 6–8 June 2014. The time series also
shows that about half of the available COSMIC-Ne observations are discarded—this is due to
the outlier threshold setting. The observations that are not within three standard deviations with
the prior ensemble estimate are rejected. The EAKF is not expected to align the initial ensem-
ble with the attractor (estimate of the “true” state of the system generated from observations
in a given assimilation window) instantaneously. The EAKF is designed to gradually coerce
the initial ensemble to be consistent with the observations. In order to lower the observation
rejection ratio, the observation error variance could be increased—at the cost of observation
gain. In other words, the observation error tested in E1 and E2 could be increased from 15% to
a higher value to increase the number of assimilated observations. Although higher observation
error may lower the observation gain, the increase in the number of observations may improve
the overall result.

The comparison with independent satellite data also gives an indication about the limitations
of assimilating COSMIC-Ne profiles in an operational setting. While the number of profiles to
assimilate can be controlled in experiments with synthetic observations (e.g. Matsuo et al.,
2013; Hsu et al., 2014), the availability of bona-fide COSMIC-Ne profiles is dependent on
multiple factors such as the number of transmitters in view, quality of the receiving radio signals,
etc. As illustrated through isolating COSMIC-Ne profiles along the ascending and descending
orbits (see Figures 6–9), the number of observations that fall within the respective satellite’s
vicinity per orbit is sparse. This shows that in practice, for example, to predict mass density
along a given orbit, the current spatial and local time coverage of COSMIC-Ne profiles is rather
poor. Future missions to add more capabilities and satellites to the COSMIC constellation may
help improve this spatial and local time coverage. A COSMIC follow-on mission, FORMOSAT-
7/COSMIC-2 is expected to be operational in 2019 with six satellites orbiting the equator at an
inclination of 23° (e.g. Yue et al., 2014).

Figures 6c and 6e help precisely identify the segments of the orbit where TIE-GCM con-
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sistently registers larger errors. It is found that assimilation of COSMIC-Ne has improved the
model Ne state around the equator in the descending segments (Figure 6b) compared to that
of ascending segments (Figure 6d). This could be due to the availability of more COSMIC-
Ne profiles near the equator in Figure 6b as well as other systematic biases (e.g. associated
with satellite local solar time, and biases between ascending and descending segments of the
accelerometer-derived data).

The DART’s improvement in estimating ρ is gradual. The model/data ratio for orbit-averaged
ρ in panel a in Figures 7–9 does not seem to vary as much as the orbit-averaged Ne in Figure 6.
While DART’s overall RMSE results are larger than that of TIE-GCM for the most of 7–10
June 2014 in Figure 9, it is clear that in most areas where observations are assimilated (blue
stars), the RMSE values have improved. In general, DART shows some promise in improving
the specification of ρ via the assimilation of COSMIC-Ne.

The geometric heights in TIE-GCM is calculated using an empirical formulation relating
spatially varying gravity with temperature and composition (Qian et al., 2014). The model-data
comparisons presented here (e.g. Figures 6–9 and Figure 11) are produced by interpolating
DART and TIE-GCM along the satellite orbit contingent on the geometric heights mentioned
above. As the native vertical coordinate system in TIE-GCM is based on atmospheric pressure,
a similar height conversion is done when assimilating COSMIC-Ne profiles into the model as
COSMIC-Ne profiles do not include measured atmospheric pressure. These height uncertainties
are further accentuated at higher altitudes as the conversion to geometric height expands the
vertical resolution at higher altitudes between consecutive pressure layers. In other words,
near the lower boundary, pressure levels converted to geometric height have a resolution of
about 3 km, but pressure levels around 300-km altitude typically have a resolution greater than
30 km. The uncertainties introduced by this back-and-forth height conversions require further
investigation.

The results in Figure 10 bear some resemblance to the results in Figure 2 of Matsuo et al.
(2013), which shows the impact of assimilating mass density from CHAMP. In Figure 10, the
results from experiment E3 show that assimilation of in-situ CHAMP-Tn into TIE-GCM im-
proves the mass density specification mostly along the CHAMP satellite track. The overall
impact of the assimilation is more significant in the middle to high latitudes than in low lati-
tudes.

The spread of low Rrmse(ρ) in the middle to high latitudes in Figure 10 may have some con-
tribution from the fact that CHAMP’s dwelling time over the high latitudes is greater than that
of over the equator (hence more measurement epochs). This spread is also due to the fact that
the effective area in the polar regions is smaller compared to the equator—longitudes converg-
ing at the poles. The band across the equator in Figure 10e corresponds to the geomagnetic
storm on 9 March 2008 as illustrated in Figure 1a. It is unlikely that assimilated CHAMP-Tn
effected such change in mass density encompassing the equatorial region.

As mentioned above, CHAMP-Tn data are not bona-fide in-situ measurements but empir-
ically derived in the recalibration of CHAMP ρ data by Mehta et al. (2017). The results in
Figure 11 suggest that assimilating such along-orbit data from a particular satellite may prove
even more useful in forecasting applications involving the same satellite than assimilating sparse
global observations. Temperature is a critical parameter in the specification of mass density in
the thermosphere. Figure 11c shows that altering the temperature state in a limited region (e.g.
along the CHAMP orbit) has the potential to effect change even at a higher altitude.
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6 Summary and Conclusions
The paper presented two experiments of assimilating electron densities and one experiment of
assimilating temperature into TIE-GCM using the EAKF technique. A study of the EAKF/TIE-
GCM framework for the thermosphere not only helps to gauge the accuracy of the assimilation,
to explain the inherent model bias, and to understand the limitations of the framework, but it also
establishes EAKF as a viable technique in the presence of realistic data assimilation scenarios
to forecast the highly dynamical thermosphere.

The results from perfect model scenarios showed that model state is changed and, more often
than not, improved with data assimilation—reduced Rrmse ratios. The resulting analysis states
are validated against independent data from multiple satellites including Swarm-A, Swarm-C,
CHAMP, and GRACE-A. The validation results showed that the COSMIC-Ne-guided thermo-
sphere state does not outperform the GPI-guided TIE-GCM along the considered orbits. This
may be due to the limited number of bona-fide COSMIC-Ne profiles available for the thermo-
sphere specification tasks in the experiments.

The experiments E1 and E2 indicated that using COSMIC-Ne profiles in an operational
setting is challenging and that the area and local time coverages of the profiles are perhaps too
sparse to be used in, for example, the applications of orbit prediction. The CHAMP-Tn-guided
experiment showed more promise over COSMIC-Ne in terms of estimating mass density along
the orbits of both CHAMP and GRACE-A satellites.

The results in Figures 2–5 showed that the improvement gained in the overall forecasted
thermosphere state is better during solar minimum compared to that of solar maximum. These
results also provided insights into the biases inherent in TIE-GCM—particularly along ther-
mospheric features with sharp spatial gradients. The systematic biases that above results high-
lighted could be an indication that the specification of plasma-neutral interactions in TIE-GCM
needs further adjustments.

The experiments mainly focused on the assimilation accuracy during different solar activity
periods. More work needs to be done to identify and improve model bias due to external forcing.
Assimilation of other thermospheric data, for example, ground-based remote sensing measure-
ments of thermospheric neutral winds and temperature could also help unravel some of the
difficulties associated with forecasting thermospheric mass density. The new GOLD (Global-
scale Observations of the Limb and Disk) mission will also provide space-based measurements
of thermospheric composition and temperature data to conduct these assimilation experiments.
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