An assessment of the hydrological response of the Olivares River catchment during severe droughts and glacier retreat scenarios

Eduardo Muñoz Castro¹, Alvaro Ayala², Pablo Mendoza¹, and Ximena Vargas¹

¹University of Chile ²ETH Swiss Federal Institute of Technology Zurich

November 22, 2022

Abstract

In the semi-arid Andes Cordillera of central Chile (31–36°S), mountain glaciers are important reservoirs of freshwater, especially during droughts, contributing between 70 and 80% of the total runoff. In this work, we use the physically-oriented and spatiallydistributed TOPKAPI-ETH glacio-hydrological model to simulate the response of glaciers to severe droughts in the Olivares River catchment. The glacierized area of this catchment is equivalent to 26% of the total glacier area in the Maipo River basin, the main source of surface water for Santiago de Chile – where more than 40% of the population in the country lives. To this end, we force TOPKAPI-ETH with synthetic droughts under several scenarios of glacier retreat, defined by two climate scenarios: i) current climate, preserving the mean and standard deviation of precipitation and temperature observed during the period 1990-2009, and ii) considering the Paris Agreement and constraining the global temperature rise - relative to preindustrial levels – to 1.5°C, projected by a small number of climate models under the RCP2.6 long-term scenario. We also use outputs from regional climate model simulations generated by the Center for Climate and Resilience Research (CR2) to represent what would be an increase of mean temperature in our domain. To assess the hydrological response of glaciers, and the contribution to total runoff under these scenarios, we compare our results with those obtained for droughts observed in this region during 1967-1969 and 2010-2015, considered as the most important events to date in Chile. Ongoing efforts are oriented to quantify ice loss under current climatic conditions, elevation line altitude variations during the long-term simulation, variations in glacier area and volume, and basin response to future drought under glacier retreat scenarios. Preliminary results show that glacier relative contribution to runoff at the end of the summer season increases up to 25% during the reference droughts, but decreases about 40% to 75% in comparison to the reference period considering climate scenarios.

climatic forcings defined by Scenario A. (B) Glacier retreat under climatic forcings defined by Scenario B

- latter one ($\Delta T > 0$ and $\Delta P < 0$).

Summary and Future Work

- equilibrium point.
- validate model results.

Acknowledgments and Contact

- > AA and EM thank ETH-Global seed grant

over the reference drought period (2010-2015) and future scenarios of glacier retreat.

During the 2010-2015 drought, the relative summer runoff contribution from glaciers increased from 20 % to 50 % (Fig. 4).

 $\succ \sim 0.1 \text{ km}^3$ of ice was lost during the last drought (2.3% of initial volume).

Similar projections of mean annual runoff and snow melt contribution were obtained under scenarios A and B. However, ice melt increases 60% considering the

Fig. 7 shows a frontal retreat that results in 8.5% and 20% decreases in ice volume under Scenarios A and B, respectively (Fig. 6).

Monthly runoff, ice melt and snow melt decrease under future droughts in comparison to the reference drought (Fig. 8).

In the future, glaciers will keep sustaining minimum flow levels at the end of the summer, but they will release less water as their volumes decrease towards an

Future efforts will focus on improving the calibration of TOKAPI-ETH using a multi-objective approach, and incorporating Landsat-derived glacier descriptors to

 \succ PM received financial support from Fondecyt grant N^o 3170079. Contact: Eduardo Muñoz Castro (eduardo.munoz@ug.uchile.cl)