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Abstract

Access to accurate estimates of water withdrawal is requisite for urban planners as well as operators of critical infrastructure
systems to make optimal operational decisions and investment plans to ensure reliable and affordable provisioning of water.
Furthermore, identifying the key predictors of water withdrawal is important to regulators for promoting sustainable develop-
ment policies to reduce water use. In this paper, we developed a rigorously evaluated predictive model, using statistical learning
theory, to estimate state-level, per-capita water withdrawal as a function of various geographic, climatic and socio-economic
variables. We then harnessed the data-driven predictive model to identify the key factors associated with high water-usage
intensity among different sectors in the U.S. We analyzed the predictive accuracy of a range of parametric models (e.g., gener-
alized linear models) and non-parametric, flexible learning algorithms (e.g., generalized additive models, multivariate adaptive
regression splines and random forest). Our results identified irrigated farming, thermo-electric energy generation and urbaniza-
tion as the most water-intensive anthropogenic activities, on a per-capita basis. Among the climate factors, precipitation was
also found to be a key predictor of per-capita water withdrawal, with drier conditions associated with higher water withdrawals.
Results of the first-order sensitivity analysis indicated changes between +/-10% in the future water withdrawal across the U.S.,
in response to precipitation changes, by the end of the 21st Century under the business-as-usual scenario. Overall, our study
highlights the utility of leveraging statistical learning theory in developing data-driven models that can yield valuable insights

related to the water withdrawal patterns across expansive geographical areas.



~ o o »

e o BN
FEEHB BB DS
R 8

* ViR b

. Statistil:al inference of the nation wide water withdrawal patterns in the U_S .

- lIrrigated farming, thermoelectric energy generation and urbanization are the most
water—intensive anthropogenic activities

« Water withdrawal patterns across U . S . show varying sensitivity (betweeh O%)
to future changes in precipitation changes under the RCP8 . 5 scenario -
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Access to accurate estimates of water withdrawal is requisite for urban planners as well

as operators of critical infrastructure systems to make optimal operational decisions and
investment plans to ensure reliable and a ordable provisioning of water . Furthermore,
identifying the key predictors of water withdrawal is important to regulators for promot—

ing sustainable development policies to reduce water use - In this paper, we developed

a rigorously evaluated predictive model, using statistical learning theory, to estimate state—
level, per—capita water withdrawal as a function of various geographic, climatic and socio—
economic variables - We then harnessed the data—driven predictive model to identify the
key factors associated with high water—usage intensity among di erent sectors in the U _S._
We analyzed the predictive accuracy of a range of parametric models (e-g- , generalized
linear models) and non—parametric, exible learning algorithms (e -g-, generalized addi—
tive models, multivariate adaptive regression splines and random forest) - Our results iden—
ti ed irrigated farming, thermo—electric energy generation and urbanization as the most
water—intensive anthropogenic activities, on a per—capita basis - Among the climate fac—
tors, precipitation was also found to be a key predictor of per—capita water withdrawal,
with drier conditions associated with higher water withdrawals . Results of the rst—order
sensitivity analysis indicated changes betweent 1. O% in the future water withdrawal across
the U_S ., in response to precipitation changes, by the end of theC(éhury under the
business—as—usual scenario - Overall, our study highlights the utility of leveraging statis—
tical learning theory in developing data—driven models that can yield valuable insights
related to the water withdrawal patterns across expansive geographical areas -

IntegrateL water resource management has been receiving increasing attention glob—
ally (Giordano & Shah, 2014; Rahaman & Varis, 200O5) - Rapid growth in population, and
increased rates of economic development and urbanization have resulted in increased de—
mands for fresh water in energy, agriculture, industry, and the commercial and residen—
tial sectors, all of which have severely stressed water resources in many regions . Sustain—
able management of demand for water has been brought into the limelight in the United
States following several devastating, multi—year drought episodes in California and the
Midwest which led to adverse impacts on agricultural productivity and energy genera—
tion capacity, costing the U_S_ economy tens of billions of dollars . According to the U _S_
Environmental Protection Agency, 4O out of 50 states will expect water shortages in some
portion of their jurisdiction in the next 1O years, even under average conditions (EPA,
2017) .

Accurate estimates of short—, medium—, and long—term demand for water is valu—
able for urban planners, regulators and operators of critical infrastructure systems to en—
sure reliable and a ordable provisioning of many critical services including water . Op—
timal investments in the design, operation, modernization and expansion of water infras—
tructure systems are largely dependent on access to realistic and credible predictions and
projections of the spatio—temporal variability in demand for water Billings & Jones, 200%8) .
According to Hall, Postle, and Hooper (19%9), \the success of any water resource devel—
opment is critically dependent upon the reliability of the forecasts of future water de—
mands that are employed in its design (and management)" _

In this paper, we leverage statistical learning theory to: a) develop accurate pre—
dictive models for per—capita water use in various sectors in the U_S_ , b) identify the key
predictors of state—level, per—capita water withdrawal, ¢) understand the relationship be—
tween each of the key predictors and per—capita water use, and d) analyze the sensitiv—
ity of the water withdrawal patterns to changes in climate variability (e - - g, precipitation
changes) under changing climate conditions - Our predictive water withdrawal models
were developed using state—level, per—capita water withdrawal data over the past two decades



{ together with various geographic, climatic, and socio—economic factors { to identify the
key factors that are associated with high water—usage intensity among di erent sectors
inthe U_S._

We hypothesized that statistical models that assume ‘rigid * functional forms { such
as linearity and additivity (e - g- , multiple linear regression) { would not adequately cap—
ture the complex dependencies between state—level water withdrawals and socio—economic
and geoclimatic conditions; and that more robust statistical learning algorithms (e-g-,
ensemble—of—trees) , would be more e ective in predicting state—level, water withdrawals -
Moreover, given that the largest fraction of water—withdrawals occur in the agricultural
and thermoelectric generation sectors, we hypothesize irrigated farming and power gen—
eration to be the key predictors of state—level water withdrawals -

The structure of this paper is as follows - The review of the existing literature in
predicting water withdrawal is summarized in Section 2 - Data and methods are intro—
duced in sections 3 and 4, respectively. Results are summarized in Section 5, followed
by the concluding remarks in Section 6 -

A plethora of research studies have focused on analyzing, predicting and project—
ing water demand { with various di erent spatio—temporal scales and lead time—horizons
{ using a range of methods such as simulation, econometrics and statistical learning the—
ory. Donkor, Mazzuchi, Soyer, and Roberson (20 14) reviewed research articles on wa—
ter demand forecasting { published between 200 O and 201 O { to identify useful models
for water utility decision making - They concluded that arti cial neural networks were
more popular for short—term demand—forecasts, while econometrics, scenario—based and
simulation models were more likely to be used for making long—term strategic decisions -
They also highlighted the value in probabilistic forecasting to capture uncertainties as—
sociated with future demand - More recently, Sebri (20 16) surveyed the empirical liter—
ature on urban water forecasting using a meta—analytical approach . Their meta—regression
analysis concluded that model accuracy depended on the scale of analysis, the type of
approach used, model assumptions and sample size - Hamoda (193) examined the im—
pact of socio—economic factors on the residential water consumption in Kuwait - More specif—
ically, Hamoda (193) leveraged linear regression to characterize the impacts of income,
market value of land, rents of dwellings and household size on average per—capita water
consumption - They concluded that the hot climate of Kuwait together with its contin—
ually improving standards of living were the primary factors contributing to high wa—
ter consumption rates in the country -

In an another study by Lutz et al - (1.9%) leveraged a variation of the EPR1 (Elec—
tric Power Research Institute) model to study the patterns of residential hot water con—
sumption . Their study shed light on the impacts of e ciency standards for water heaters
and other market transformation policies . Jorgensen, Graymore, and O~ Toole (200%9) an—
alyzed the social factors in residential water—use and highlighted the importance of inter—
personal and institutional trust for implementation of e ective water conservation schemes _
Sovacool and Sovacool (2009) implemented a county—level analysis of the energy—water
nexus in the U_.S ., and concluded that twenty—two counties will likely face sever water
shortages, brought about primarily due to increased capacity expansion in thermoelec—
tric generation . Chandel, Pratson, and Jackson (20211)) leveraged a modi ed version of
the U .S . National Energy Modeling Systems (NEMS) together with thermoelectric water—
use factors from the EIA to investigate the impact of various climate change policy on
the energy mix - They found that all of the climate policy scenarios that were considered
in the study could lead to a reduction in fresh water withdrawal for power generation,
compared to the business as usual scenarios - Moreover, they found that water—use de—
creased as the policy ” s carbon price increased - Davies, Kyle, and Edmonds (2013) lever—
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aged GCAM { an integrated assessment modeling of energy, agriculture, and climate change
{ to assess the water intensity associated with electricity generation until 2095 . They
found that water use would likely decrease with capital stock turnover -

The majority of the empirical studies to date have focused primarily on either a
particular geographical location, or a given sector in the U_S . , and leveraged either lin—
ear models (the assumptions of which may not be supported by the empirical data) or
‘black—boxes” (e-.g-, arti cial neural network) to project demand . This paper will use state—
of—the—art statistical learning techniques to analyze water withdrawal data { available
from USGS over the past two decades for the entire U .S . { and develop an accurate and
interpretable predictive water withdrawal model as a function of socio—economic, geo—
graphic, climatic conditions .

It is noteworthy that, though not pursued in this study, there exist another fun—

damentally di erent approach to modeling water withdrawal, based on complex, mech—
anistic hydrologic models with integrated elements of human—water interfaces (e -g .-, Pokhrel,
Hanasaki, Wada, & Kim, 2016; Wada et al. , 2017) - Models in this category include, for
instance, PC(R—GLOBWB (Sutanudjaja et al. , 2018; Wada, Wisser, & Bierkens, 2014),
WaterGAP (Alcamo etal. , 2003; Fbrke etal- , 2013), and HO8 (Hanasaki et al. , 200¥%a,
2008b) - These models have varying ranges of processes accounting for the coupled hu—
man and natural systems . Despite the utility of these models in providing a mechanis—
tic understanding on the functioning of the system, they are inherently complex and dif—

cult to parameterize { partly owing to the limited availability of observational data—
sets - Di erent sorts of simpli cations and conceptualizations are therefore necessary to
model the complex interactions between human and natural systems (e-g-, Wada et al _,
2017) - Our proposed modeling paradigm { based on statistical learning theory { can be
complementary to hydrological modeling e orts . Our approach o ers key advantages of
a) being computationally e cient, and b) requiring a limited set of predictors to re—construct
the continuous space—time evolution of water withdrawal ; which can the be used to fur—
ther constrain the parameterization of more complex, mechanistic hydrologic models - In
summary, our approach can help identify the most water—intensive sectors across vari—
ous states, inform policy makers, regulators and researchers on the exiting U .S . water
use patterns and identify sectors and areas where e ciency and conservation mechanisms
could yield maximum return, in—terms of enhanced sustainability of our urban ecology -

Data were cllllcted from vaJious publicly available sources such as the Geological
Survey website (USGS, 2017), the Energy Information Administration (EIA, 2017), the
Bureau of Economic Analysis (BEA, 2017), the U_S_ Census Bureau (USGB, 2017), the
Climate Prediction Center (CPC) , the National Weather Service (NOAA, 2017), the U_S._
Department of Agriculture (USDA, 2007), the Coastal States Organization (€SO, 2017),
the U_.S . Environmental Protection Agency (EPA, 2017) and other sources (10WA, 2017) .
Below, we will provide a brief description of our response variable (i-e ., per—capita wa—
ter usage) and various socio—economic, hydro—climatic and geographic predictors that were
used in our analyses - It should be pointed out that since the water withdrawal data is
only available at ve—year increments, the predictors were processed to match the tem—
poral scale of our response variable -

State—level water \l/ithdrawal data ](in million gallons per day; \Lere selected as our
response variable, and were obtained from U .S . Geological Survey website (USGS) for
the period of 191 -201 0O . USGS water usage data are collected and compiled every ve
years for each of the 50 states, the District of Columbia, Puerto Rico, and the U_.S_ Vir—
gin Islands - The data source provides a breakdown of water usage in eight di erent sec—
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tors (depicted in FFig- 1) such as thermoelectric, irrigation, public supply, industry, aqua—
culture, domestic, livestock and mining - Thermoelectric and irrigation are the two dom—

inant sectors that account for almost two—third of the total water withdrawal across the

U_.S. We, however, note that there is a large regional variability in water withdrawal pat—
terns { the States in the east is more dominated by the thermoelectric and industrial wa—

ter sectors, while the irrigation is the main water usages in the central and western part

of the U .S _ To control for the varying sizes of states, we normalized the state—wide to—

tal water withdrawal data by the total population of each state - The distribution of state—

wise, normalized water withdrawal for years of 20062010 can be seen in Fig - 1 (bottom
panel) - States highlighted in shades of red represents high per—capita water usage , while
the states in blue represent low per—capita water usage - Fig - 1 (bottom panel) reveals that
Idaho has the highest per—capita water usage for the year 20062010 .

The distribution of the per—capita water withdrawal {in million gallons per day)
for the period 1991 —-201.0 is depicted in Fig- 2 . The distribution of per—capita water with—
drawal is right—skewed and has a heavy—tail distribution - In fact, it can be seen that the
power—law distribution provides a reasonable t to the tail of the data (red line in Fig_- 2a) -
Power—law distributions describe phenomena where large events are quite rare, but small
events are very frequent . Fig.- 2 suggests that a small fraction of the states inthe U_S .
tend to consume disproportionately large volumes of water per capita -

Gross Stale Prodch (GSPL data were collected from the U _ S . Bureau of Economic
Analysis for the years of 19120210 in current value . The GSP data in millions of USD)
were then converted to time value of 20 1O, using the GDP de ator . Household Median
Income (in USD) was collected from the Bureau of Labor Statistics - The value of income
data was converted to 2013 (P1-U—-RS (Consumer Price Index Research Series Using Cur—
rent Methods) USD .

The education level data obtained from the U _S_ Census Bureau contains the fol—
lowing four levels for each reported year: (a) percentage of population with less than high
school diploma, (b) percentage of population with high school diploma only, {c¢) percent—
age of population some college (1-3 years) , and (d) percentage of population with four
years of college or higher - We leveraged generalized additive models to impute the miss—
ing data and align the temporal scale of the education data with that of water withdrawal -

The premise for including this variable in the analysis is to test whether educational lev—
els are predictive of the public supply water withdrawal -

Datasets related to thermoelectric energy generation { e.g -, coal, petroleum, and
gas red plants, nuclear and geothermal technologies { in mega watt—hours were collected
from the Energy Information Administration (EIA) - Coal production, available from the
EIA, was used as a proxy for mining industry, since coal is the biggest pro t generat—
ing mining production in the U_.S_ The percentage of urban population data were col—
lected from the U .S . Census . Since the temporal scale of the urban population data were
decadal, the years did not match the years in the USGS water dataset. We therefore im—
puted the missing years of the percentage of urban population data a using generalized
additive model to match the years across the two datasets -

Time—series c]f dalasets related toHCooling] Degree Days ((DD) and Heating De—
gree Days (HDD) are based on variation in air temperature estimates which were made
available from Climate Prediction Center (CPC) and National Weather Service (NWS) .
Other hydro—climatic variables as predictor variables include Standardized Precipitation
Index (SP1), soil moisture, and annual precipitation data were provided by the National
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Centers for Environmental Information . The SP1 characterizes the inter/intra—annual vari—
ability of precipitation with positive values indicating wetter than normal conditions and

the negative values being indicative of drier than normal conditions (Hayes, Svoboda, Wall,
& Widhalm, 2010; Mckee, Doesken, & Kleist, 193) - Additionally, we used the upper
1 m simulated soil—water content {(mm) based on the CPC model based simualtions to
represent the near—surface wet and dry conditions (see Fan & van den Dool, 2004, for
more details) -

Coastal status was calculated for each state by creating dummy variables indicat—
ing whether the state is in the borders of (a) the Atlantic Ocean, (b) the Paci c Ocean,
(©) the Gulf of Mexico, and (d) the Great Lakes - The states in proximity of any of the

above—mentioned water—sheds, were coded as 1 ” , and otherwise as > O ” . The estimates of

the total irrigated farmland area were collected from the Census of Agriculture Farm and
Ranch Irrigation Survey (2008), conducted by the National Agricultural Statistics Ser—
vice (NASS) in the U _S_ Department of Agriculture (USDA) - The surveys are conducted
every ve years, starting from year 192 _ To align the time steps of the farm data with

that of water usage, we used data from 1992 to represent irrigated farmland size between
191 and 195, and 1997 data was used to represent the value between 19%{2000O - We
normalized the data by the total land size of each state to obtain the percentage of ir—

rigated farmland area per state . Prior to the analysis and the model set—up, all predic—

tor variables were aggregated spatially and temporally to match the state—wide, ve—yearly
available water withdrawal datasets -

A ~biplot” is a useful visualzatior:l too] for muItivariate}data_ One of the most com—
monly used types of a biplot is based on principle component analysis - A PCA—biplot
is a low—dimensional representation of multivariate data, using only the rst two prin—
ciple components . In a PCA—biplot, vector lengths approximate standard deviations, and
the cosines of their angles are proportional to the correlation between the variables - 1t
can be seen from Fig - 3 that over the years of 195{20 10, the state—level water usage did
not change signi cantly. For example, on the bottom left corner of the plot, we observe
that water usage of Arizona, Louisiana, Texas, and Florida are located close to each other
across the di erent years . The energy generation and cooling—degree—days ((DD) vec—
tors extended in the direction of Texas suggest that the state > s thermoelectric power gen—
eration and its hot climate can help explain the variance of water usage in Texas, as op—
posed to states of Colorado or North Dakota which lie close to the heating—degree—day
(HDD) vector - Moreover, the Fig - 3 reveals that while water usage in the densely pop—
ulated states of the Northeast can be explained by socio—economic factors such as income
and education and measures of urbanization, the water usage in the larger Midwestern
and Western states of North and South Dakota, Nebraska, lowa and New Mexico tend
to be dominated by farming and mining practices -

TI'L existing empirical literature in eld of water analysis has almost exclusively
focused on descriptive and explanatory statistical modeling, while predictive modeling
of water analysis has largely been under—explored - Unlike descriptive or explanatory mod—
eling which is concerned with best explaining the past variability in the data, predictive
modeling is concerned with predicting ‘new/unseen” data.- The expected prediction er—
ror C ) for a new observation can be summarized by the equation below [11]:
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The rst term represents the irreducible error which is the result of the inherent
stochasticity in any process - The second term (the bias) represents how closely the es—
timated function mimics the process of interest, and the third term (variance) arises due
to using (noisy) samples to estimate the response function - Descriptive and explanatory
statistical models often focus on reducing the bias of the estimate - However, predictive
modeling focuses on minimizing the bias and variancén - The central the—
sis in this paper is that, with the recent accelerated pace of large complex datasets be—
coming available, predictive modeling can be leveraged as a powerful tool to identify com—
plex and non—linear dependencies that can lead to generating new hypothesis and ad—
vance the scienti c discovery in the eld .

In the next section, we will present a brief discussion on supervised learning the —
ory and predictive modeling - We will then present a detailed discussion of the algorithm
that was used to develop the nal best predictive model of the state—level, water with—
drawal data -

Supervised IJarning thtjory WLS Ie\’%ragld Jo develop}accurate predictive models for
state—level water withdrawals, and identify their most important predictors of in the U_S.

The main objective of supervised learning is to approximate a process of interest (e.-g- ,
water withdrawals) as a function of various independent predictors (e - g -, geographic, cli—
matic and socio—economic factors) - Mathematically, the prediction process can be sum—
marized by = () + ; where the stochastic additive Gaussian noise represents

the dependence of y on factors other than that are not controllable - The goal of su—
pervised learning is to leverage the observed records and approximate the response ()
Ci-e. , water withdrawal) such that the loss functitmminimized over the entire do—

main of the input data space:

= O "O O (&)

where () is a possible weight function, and represents the Euclidean distance
(or other measures of distance) - The value of the equation above characterizes the
accuracy of the estimate over the entire domain (Hastie, Tibshirani, & Friedman, 200Y9) .

We trained our data with various parametric (e-g- , generalized linear models) and
non—parametric (e -g -, generalized additive models (GAM) , multivariate adaptive regres—
sion splines (MARS) and random forests (RF)) methods { description of which can be
found in the Appendix . Given that the ensemble tree—based algorithm (the method of
random forest) outperformed all other algorithms in terms of out—of—sample predictive
accuracy (see Section 5), we selected it as our nal best model . A brief description of
the random forest (RF) algorithm is provided below -

Random Forest is aninsemble decision tree—based method developed by Breiman
(2001), and can be mathematically represented as:
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where j is a single decision tree, trained on bootstrap samples from the original

data and represent a —dimensional vector of input data predictors (e-g -, the geographic,
climatic and socio—economic factors used in this analysis) - The subset of predictors for
building each decision tree is randomly selected, and best splits values are chosen such
that the sum of squared errors (or least absolute deviation) within each nodeithin

i iIs minimized - Each decision tree is developed by recursively splitting the data space
into terminal nodes, until each terminal node contains no more than a certain prede ned
minimum number of records - The average or mode value as for the case of classi ca—
tion) is then assigned to the terminal nodes - () estimates the response value, by ag—
gregating  such decision trees .

Regression trees are low in bias, particularly if they are grown su ciently deep, since
the tree structure follows the structure of the data well so that the estimated target mean
is close to the true mean (Hastie et al. , 2009) . They are, however, notoriously noisy, and
generally have high variance - They are unstable and not particularly robust to outliers,
and this makes the procedure non—ideal for datasets that contain many outliers . The is—
sue of high variance is solved by leveraging the ensemble methodology as a variance re—
duction technique . The ensemble—of—trees methods such as random forest are generally
very robust to outliers and o er strong predictive power . The estimation of prediction
error of random forest can be obtained by leveraging the out—of—bag (0O0B) data (i-e-,
the test data that was set aside during the development of each tree and not used in build—
ing that tree) to compute the mean square error as below:

== G- O

=

where*'i is the average OOB predictions data for the ™ observation (Liaw & Wiener,
2002) . Since the method of random forest is non—parametric, partial dependence plots
(PDPs) can be used to implement variable inference - PDPs calculate the marginal ef—
fects of a given predictor variables ; in a \ceteris paribus” condition (i.-e . , controlling
for all the other predictors) - Mathematically, the estimated PDP is given as (Hastie et
al., 2009):

X
OO= GG D O

i=

where “y is the approximation of the true function that generates ; is the size
of the response vector (i-e ., the size of the training datasgt)epresents all input vari—
ables except j - The estimated PDP of the predictor _; provides the average value of
the function “when jis xed and _; varies over its marginal distribution

Table 1 sumrJarizes]the performance of each of the models. The rst column sum—
marizes the goodness—of— t for each of the models - Multivariate adaptive regression splines
(MARS) and the method of random forest (RF) t the data substantially better com—
pared to multiple linear regression (MLR) and generalized additive ( GAM) model . The
second and third columns in Table 1 show the in—sample and out—of—sample root mean
squared errors for each of the models - Again, it can be observed that MARS and RF are
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competitive in terms of in—sample t, but RF signi cantly outperforms all other mod—
els, in terms of out—of—sample accuracy- In fact, the analysis of variance test on the pre—
diction errors of the di erent models revealed statistically signi cance di erences between
the mean errors, with a p—value 2x 1©._

Fig - 4 (top panel) visualizes the t of each of the prediction models . The predic—
tion model based on the random forest algorithm substantially outperforms all other mod—
els in terms of the goodness—of t. The model developed using the random forest algo—
rithm was therefore selected as the nal best model -

In order to further demonstrate the predictive capability of the model, we trained
the random forest algorithm with the data until the end of 20 O5 in order to predict wa—

ter withdrawals in an independent testing period of 20062010 - Table 2 summarizes model

t and predictive accuracy, and Fig- 4 (bottom panel) provides a graphical representa—
tion of the predicted and observed values of per—capita water withdrawals . Based on the
results summarized in the table and the plot, it can be inferred that R outperforms all

other models - In fact, RF is able to estimate the water usage above 5 million gal/day/person

accurately, even though there are less observation points - While MARS performs well
below 5 million gal/day/person (where there is more observations) it performs poorly
where the data is sparse -

These results con rms our hypothesis that simple linear—based models (e-g-, MLR)
and additive structures such as GAMs are not able to capture the complex relationships
in the data adequately . Moreover, the fact that RF outperformed MARS is not surpris—
ing - MARS can be seen as an extension of recursive partitioning algorithms such as tree—
based methods (Friedman, 191) which is very e ective at capturing high order inter—
actions and yielding low—bias estimates . However, the model is not as e ective in vari—
ance reduction and therefore has an inferior predictive power .

We leveraged a data—driven variable selection, based on an algorithm proposed by
Genuer, Poggi, and Tuleau—Malot (2010), to implement input variable reduction for the
RF model - The variable selection algorithm rst involved developing multiple forests and
ranking their input variables (based on their importance by calculating their contribu—
tion to out—of—sample predictive accuracy, and their standard deviations) - Variables at
the bottom of the list (in terms of importance) whose standard deviation was below the
minimum calculated threshold were removed - Multiple nested models were then devel—
oped in a step—wise forward strategy. The smallest subset of input data that yielded the
best predictive accuracy were retained for the nal model - The list of the nal key vari—
ables selected for each sector are shown in Fig- 5.

The importance plot shows the ranking of the variables in terms of their contri—
bution to the model ” s out—of—sample predictive performance, with the variable highest
on the y—axis contributing the most to model ” s performance . It can be observed that the
percentage of irrigated farmland is the most important predictor of state—level per—capita
water withdrawal , followed by total state—level precipitation, heating degree days (HDD),
urbanization, thermoelectric energy generation and state—area - This result is intuitive,
since irrigation and mining generally comprise a large share of water withdrawal in the
U.S.

In order to understand the association between the top most important predictors
and our response variable (per—capita water withdrawal) , partial dependence plots were
examined - Below, we will discuss the partial dependencies for each of the predictors, in
order of their importance ranking depicted in Fig- 5.
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The partial dependence between 1he percentage of irrigated farmland and per—capita
water withdrawal indicates a positive association, with larger irrigated farmlands being
associated with higher water withdrawal intensity . This is intuitive, as the U _S_ agricul—
tural sector accounts for a signi cant fraction of total water consumption . Some of the
states associated with the di erent percentiles of water withdrawal have been highlighted
in Fig. 6. As expected, states such as Nebraska and Arkansas lie at the extreme right
end of the graph due to their large irrigated agricultural lands - Nebraska is ranked rst
in the U .S _ in terms of total irrigated acres of land, and has seen rapid expansions of ir—
rigated farmlands in recent years - 1t is located on the Ogallala Aquifer which is among
the largest in the world, and makes heavy use of ground water for farming and irriga—
tion. In fact, most of the irrigation in Nebraska (and e ectively all of the more recent
expansion in irrigated farming) is pumped from the High Plains (aka Ogallala) Aquifer -
Arkansas, the number one producer of rice in the U_S_, also lies at the extreme right end
of the table, which is not surprising since rice is among the most water—intensive crops
(Johnson, Christopher, Anil, & NewkKirk, 2011) _ 1t is interesting to note the step—function
jump from the states such as Delaware to the state of California - This could suggest that
the crops grown in Delaware that are mostly corn, soybeans and wheat—based may be
less water intensive than the crops grown in CA (mainly nuts, and fruits) -

We hypothesized hiJer pr]ecipitatitln |LVL|S to be associated with decreased wa—
ter usage since precipitation a ects a variety of sectors such as thermoelectric power gen—
eration, irrigation, public supply, industry, aquaculture, domestic, and life stock . The
observed pattern in Fig - 6 is consistent with our initial hypothesis, indicating that wet—
ter regions use less water . However, the decreased water—use plateaus at the threshold
of 7OO mm of precipitation

Heating degree dayl (HDD) measure the di erence between average air temper—
ature and an arbitrarily chosen standard baseline temperature (typically 65F in the US)
to which the built environment would be heated on cold days - Annual HDD measures
the time—integrated variation over a year between the average daily temperature and the
baseline *comfort” temperature - Interestingly, there seems to be a subtle, positive asso—
ciation between heating degree days and water withdrawal, with a sudden jump past HDD
of 3OO0 which is mostly associated with the states located in the North—Central parts of
the U._.S ., such as North Dakota, Minnesota, Wyoming and Montana (Fig- 6) - This might
be attributable to the {non—coal) mining and industrial activities such as fracking in these
northern states . For instance, in 2005, Minnesota had the largest share of (sul de) mining—
related fresh water withdrawals in the U _S_ Wyoming and Montana also have an active
mining sector - Moreover, a signi cant amount of water is used in North Dakota in hy—
draulic fracturing for oil and gas - Unfortunately, data limitation as well as the diversity
and rapid shifts in these mining and fracking activities make it di cult to test these hy—
potheses -

The partial dependency plot for [he uernization e ects on water withdrawal pat—
terns across U - S. clearly shows that the more urbanized states tend to be less water—intensive
(Fig- 6) - Again, this is largely due to the fact that the domestic sector and public sup—
ply sector comprises a signi cantly smaller fraction of total water withdrawal as com—
pared to the farmland or energy generation sectors -



@ @ © ® N e & b B ™ A O ® & &

@ @ ® @& o ® ® & @ @&

e @ @& o o

® & & N &

@ @ 0 &

In this se]ct]or], We demonstlaL the utility of IeveraginL the pred]ctile lnodel, based
on the random forest algorithm, in assessing the sensitivity of changes in water withdrawal
patterns across U _S . in response to changing climate conditions . To this end, we used
the precipitation datasets from the ve (MIP5 Global Circulation Models (GCMs: HadGEM2—
ES, 1PSL—CM5A—LR, MIROC— ESM—CHEM, GFDL—ESM2 and NortSM1—M) , available
in a bias—corrected form by the Inter—Sectoral Impact Model Intercomparison Project C1S1—
MIP; Warszawski et al. , 2014, see also www . isimip - org for more details) - For this demon—
stration purpose, we aggregated the daily precipitation dataset to create state—wide, mean
annual estimates for the two time periods indicating the contemporary condition (1%5—
2010) and the future one (2070 -2085) , which are taken from the runs corresponding to
the RCP8 . 5 future pathways under the narration of a \business—as—usual" scenario . For
these periods, we run the established RF model to predict state—wide water withdrawal
using their respective precipitation data—sets while keeping other variables at nominal
values following a \ceteris paribus" condition . We estimate the ensemble mean of the
state—wise, projected changes in the water withdrawal rates based on the RF model out—
puts driven by ve GCM based precipitation data—sets -

We observed a clear north—south gradient in the relative changes of the water with—
drawal patterns across U .S . between future and contemporary period estimates (Fig.- 7) -
Our simulation results indicated increased water withdrawal rates in the southern States,
while the declined rates are expected in the Northern states { in response to future pre—
cipitation changes - The southern states such as Texas (TX) , Florida (FL), Louisiana (LA),
and Arizona (AZ) show a projected increase of more than 5% in their water withdrawal
rates relative to the contemporary condition . The changes in the future water withdrawal
rates across the majority of States is in—betweettr 1 O% with the driving precipitation
changes being projectedt 15% - Results of this analysis also indicate a varying level of
sensitivity in the projected water withdrawal rates to changes in precipitation estimates
(Fig- 7; bottom scatter plot) - For example, in states such as Texas (TX) and Arizona
(AZ), a small change in mean annual precipitation (around 2%) creates a relatively larger
change in water withdrawal (6—8%) . Notably, all of the above presented estimates cor—
responds to ensemble mean of the modeled water withdrawal (based on the RF model
run with ve GCMs outputs) ; analysis based on the individual model estimates revealed
a substantial uncertainty owing to the di erences in projected precipitation from di er—
ent GCMs -

In this Japer, we analyzed the predictive accuracy of various statistical methods
in predicting the state—level, per—capita water withdrawal across the entire U .S . The pre—
dictive model based on the method of random forest was selected as the best model, since
it out—performed all other statistical models in—terms of both goodness—of— t and out—of—
sample predictive accuracy -

Our results identi ed irrigated farming — especially in the states such as Nebraska
and Arkansas { and coal mining especially in states such as Wyoming, West Virginia
and Kentuky as the most water—intensive anthropogenic activities - Even though min—
ing withdrawals constitute a small fraction of the overall water use in the U_S_ , its share
has increased by 4O% since 2005 (Maupinetal. , 2014) .

The water intensity of thermoelectric generation was less than initially hypothe—
sized - According to the USGS, the reduced water withdrawals for thermoelectric power
generation over the years can be attributed to a reduction in coal consumption and in—
creased use of natural gas, as well as the newer power plants being equipped with more
water—e cient cooling technologies - The USGS also reports declined industrial water with—
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drawals due to higher e ciencies in industrial activities and an emerging emphasis on
water reuse and recycling in industrial processes (Maupin etal. , 2014) .

Climatic conditions such as precipitation and heating—degree days were also found
to be important predictors of per—capita water withdrawal - Drier conditions (i-e -, total
annual precipitation less than 60 OY) were intuitively found to be associated with higher
water withdrawals . However, counter—intuitively, we found colder conditions i-e ., HDD

3000 which is mostly observed in the North—Central parts of the U .S ., such as North

Dakota, Minnesota, Wyoming and Montana { to be associated with higher water use -
This higher water use might be attributed to hydraulic fracturing for oil and gas and other
mining activities beyond coal mining in these states - While the total, per—capita water
withdrawals are lower in more urbanized states, the water withdrawal in the public sup—
ply is positively associated with urbanization .

Using the developed predictive model, we were able to infer the rst—order sensi—
tivity of the projected changes in the water withdrawal to changing climate conditions
such as precipitation - Our analysis results revealed a distinct north—south gradient in the
projected changes of the water withdrawal pattern across U .S . (mostly betweehO%) ,
with the southern (northern) states showing projected increase (decrease) in future wa—
ter usages in response to the projected changes in mean annual precipitation by the end
of Century under the RCP8 .5 scenario - In a similar fashion, our data—driven modeling
framework allows for analyzing and documenting the sensitivity of future changes in wa—
ter withdrawal in response to other climatic (e -g- , HDD changes) and socioeconomic fac—
tors (e-g-, changes in farmland expansion, urbanization, energy generation) ; either in—
dividually considering one at a time) or in combination -
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Pie Chart of Water Withdrawal Breakdown for 2010
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Figure 4. Top: Scatter plot of observed versus estimated values of per-capita water with-
drawal (in million gallons per-day) using data of 1995-2010. Bottom: Scatter plot of observed
versus predicted values of per-capita water usage (in million gallons per-day) using data of 2006-
2010. In the latter case, the models were trained using data of 1995-2005, and the testing was
conducted in an independent period of 2006-2010

{17{
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RF Random Forest

SPI Standardized Prediction Index
U.S. United States

USD United States Dollar ($)

USGS United States Geological Survey
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