Double-difference/slope tomography by a variational projection approach

Serge Sambolian ${ }^{1}$, Stéphane Operto ${ }^{1}$, Alessandra Ribodetti ${ }^{1}$, and Jean Virieux ${ }^{2}$
${ }^{1}$ Université Côte d'Azur, Geoazur - CNRS - IRD - OCA
${ }^{2}$ Université Grenoble Alpes - ISTerre

November 24, 2022

Abstract

Dense acquisition are more and more available in exploration and earthquake seismology. Tomographic approaches can now consider not only travel times but also the wavefront itself across the seismic network (Zhang and Thurber, 2003; Yuan et al., 2016). For dense controlled-source seismic experiments, double differences of travel times between receivers in a common-shot gather (resp between sources in a common-receiver gather) are estimated, namely the horizontal component of the slowness vector at source and receiver positions designed as slopes. These slopes associated with the two-way traveltimes are interpreted as a reflection/diffraction from a small reflector segment or diffractor are used in tomographic inversion (Lambaré, 2008; Tavakoli F. et al., 2017). Picking of locally-coherent events leads to dense volumetric dataset and hence higher-resolution tomographic results (Guillaume et al., 2008). The reflection setting introduces implicitly another class of unknowns which are scatterer positions. Resulting inverse problem is awkward due to the intrinsic coupling between velocities and scatterer positions. The first choice alternates positions and wavespeeds. The second performs the joint estimation of the two parameter classes. The third one relies on the projection of the scatterer positions subspace onto the wavespeed subspace leading to a reduced-space inversion. This reduced-space formulation can be implemented in the slope tomography using adjoint-state method. Two focusing equations, which depend on two observables among the three available ones (two-way traveltime and one slope in 2D), gives exact solutions of positions which are injected as constraints in the slope tomography (Chauris et al., 2002). These constraints explicitly enforce the positions in the velocity estimation problem, which reduces now to a mono-variate inverse problem by minimization of single-slope residuals, not yet used. 2D synthetic (see figure) and real data case studies show faster convergence toward more accurate minimizer achieved by this variable projection method compared to the alternated and joint strategies. This method, which can be extended to 3D configurations, draws also interesting perspective for the joint hypocenter-velocity inversion problem in earthquake seismology.

Double-difference/slope tomography by a variational projection approach ̂̂iou wall wh MEETING
 UNIVERSITE Grenoble
 UNVERSITE COTEDAZUR
 (Abstract S33D-3583)

${ }^{1}$ Univ. Grenoble Alpes - ISTerre, ${ }^{2}$ Univ. Côte d'Azur - Geoazur - CNRS - IRD - OCA / * 因 sambolian@geoazur unice

III - Towards a velocity-position consistent formulation

In the proposed parsimonious approach we aim to solve the following minimization problem
$\min _{\mathbf{m}} J(\mathbf{m})=\min _{\mathbf{m}} \sum_{s=1}^{N_{\mathrm{s}}} \sum_{r=1}^{N_{r}^{s}} \sum_{n_{s, r}=1}^{N_{\mathbf{n}}^{s, r}}\left\|\left(p_{s, n_{s, r}}(\mathbf{m})-p_{s, n_{s, r}}^{*}\right)\right\|^{2}$,
where $N_{s} / N_{s}^{r} / N_{n_{s, r}}$ denotes the number of shots, receivers and events for a source/receiver pair (s, r) The symbol $*$ denotes the observed data. The pre dicted slope $p_{s, n_{s, r}}(\mathbf{m})$ depends on the model pa rameters through a nonlinear forward problem oper ator \mathcal{F} which gathers the eikonal equation, the finitedifference approximation of slopes and the focusing equations 1 and 2 (figure below)
. An identified event in the data volume can be mapped in the image domain through a kinematic migration by means of the focusing equations Chauris et al., 2002).

- So what? We elaborate on this relationship and how it is implemented in the form of enforced physical constraints under AST's framework and its implications on the velocity-position coupling.

Figure 2: Focusing equations sketch superimposing a sensitivity kernel for a single scattering event.

We proceed under the reduced-space approach of the adjoint-state method (Plessix, 2006) for the gradient computation: $\mathcal{L}(\mathbf{m}, \mathbf{u}, \overline{\mathbf{u}})=J(\mathbf{u})-\langle\overline{\mathbf{u}}, \mathcal{F}(\mathbf{u}, \mathbf{m})\rangle$, where $\langle.,$.$\rangle denotes the inner product, \mathbf{u}$ gathers the state variables, $\overline{\mathbf{u}}$ the adjoint-state variables.

The projection of the scatterer position $\mathbf{x}_{n_{s, r}}$ out of the model space using the focusing equations implies a transmission of the positioning effect into the slope $p_{s, n_{s, r}}$ sensitivity with respect to m. The link is established while zeroing the derivative of the augmented functional with respect to $\mathbf{x}_{n_{s}, r}$
$\frac{\partial \mathcal{L}}{\partial \mathbf{x}_{n_{s, r}}}=\overline{\mathbf{u}}_{1} \frac{\partial T_{s, r, n_{s, r}}}{\partial \mathbf{x}_{n_{s, r}}}+\Delta p_{s, n_{s, r}} \frac{\partial p_{s, n_{s, r}}}{\partial \mathbf{x}_{n_{s}, r}}+\overline{\mathbf{u}}_{2} \frac{\partial p_{r, n}}{\partial \mathbf{x}_{n_{s, r}, r}}$.

Figure 3: Three terms of $\partial \mathcal{L} / \partial \mathbf{x}_{n_{s, r}}$ with related colors. Added magenta arrow is the sum of blue and red arrows.

Conclusion

We present a strategy to tackle the velocity-position coupling in the context of slope tomography. An induced consistency between the scatterers position and the background velocity field is achieved through a variational projection approach. We benchmark our method and validate it on a real data case. The results exhibit an improvement under this formulation with respect to a joint inversion.
A similar approach could be employed in other contexts like the hypocenter-velocity problem.

References

Chauris, H., Noble, M., Lambaré, G., and Podvin, P. (2002). Migration velocity analysis from locally coherent events in 2-D laterally heterogeneous media, Part 1: Theoretical aspects. Geophysics, 67(4):1202-1212. Lambaré, G. (2008). Stereotomography. Geophysics, 733(5):VE25-VE34.
Plessix, R. E. (2006). A review of the adjoint-state method for comp Plessix, R. E. (2006). A review of the adjoint-state method for computing
the gradient of a functional with geophysical applications. Geophysical the gradient of a functional with ge
Journal International, 167(2):495-503.
Takakoli F., B., Operto, S. Ribodetti, A. and Virieux J. (2017). Sip raphy based on eikonal solvers and the adioint-state method. Geophysical national, 209(3):1629-1647. This study was granted access to the high-performance computing facilities of the SIGAMM (Observatoire de le Cote d'Azur) and the HPC resources of
CINES/IDRIS/TGCC under the allocation 046091 made by GENCI. We thank CGG for providing the seismic dataset/models, picked dataset and for the migration. We also thank the SEISCOPE consortium (http:///seiscope2.osug, frr),
sponsored by AKERBP, CGG, CHEVRON, EQUINOR, EXXON-MOBIL, JGI,
Figure 8: Common Image Gathers (CIG)

