Preparation for the Planetary Decadal Survey: The 2018 MEPAG Goals Document and Plans for 2019 Updates

Serina Diniega¹, Donald Banfield², Jeffrey Johnson³, Richard Zurek¹, and David Beaty¹

¹Jet Propulsion Laboratory ²Cornell University ³Applied Physics Laboratory

November 24, 2022

Abstract

Since 2001, the Mars Exploration Program Analysis Group (MEPAG) has maintained a document outlining community consensus priorities for scientific goals, objectives, and investigations for the robotic and human exploration of Mars [1]. This "Goals Document" is a living document that is revised regularly (~every few years) in light of new Mars science results. It is organized into a hierarchy of goals, objectives, and investigations. The four Goals are not prioritized and are organized around major areas of scientific knowledge: "Life", "Climate", "Geology", and "Preparation for Human Exploration". Don Banfield is the current MEPAG Goals Committee Chair, and he oversees 2-3 representatives per Goal [2]. The most recent round of revisions (2018) was prompted by discussion at the 6th International Mars Polar Science and Exploration Conference (held in 2016 in Reykjavik, Iceland [3]), which pointed out that current high-priority Polar Science and Present-Day Activity questions were not well represented in content or priorities within the 2015 Goals Document. Upon request from the MEPAG Executive and Goals Committees [2], specific areas of disconnect were highlighted by representatives of the Mars Polar Science community; these were evaluated by the Goals Committee who proposed changes at sub-objective and investigation levels within the Climate and Geology Goals. These proposed changes were open for comment by the larger Mars community for 6 weeks, and then finalized. The official MEPAG 2018 Goals Document will be presented at the meeting. Additionally, the presentation will describe plans for the next round of revisions, which are expected to primarily come out of the presentations and discussion at the 9th International Conference on Mars (to be held at Caltech, Pasadena, CA in July 2019 [4]), and which are expected to include reference to returned sample science. The 2019 MEPAG Goals Document will form an important input to the next Planetary Science Decadal Survey [5]. [1] https://mepag.jpl.nasa.gov/reports.cfm?expand=science [2] https://mepag.jpl.nasa.gov/about.cfm [3] https://www.hou.usra.edu/meetings/marspolar2016/ [4] https://www.hou.usra.edu/meetings/ninthmars2019/ [5] NASEM, 2017. CAPS: Getting Ready for the Next Planetary Science Decadal Survey. https://doi.org/10.17226/24843.

Serina Diniega¹, Don Banfield², Jeffrey R. Johnson³, Rich Zurek¹, David W. Beaty¹, MEPAG Goals Committee. ¹Mars Program Office, Jet Propulsion Laboratory, California Institute of Technology (serina.diniega@jpl.nasa.gov); ²Cornell University; ³Johns Hopkins University, Applied Physics Laboratory.

The MEPAG Goals Document

Mars Exploration Program Analysis Group (MEPAG)

Since 2001, the Mars Exploration Program Analysis Group (MEPAG) has maintained a document outlining community consensus priorities for scientific goals, objectives, and investigations for the robotic and human exploration of Mars [1]. This "Goals Document" is a living document that is revised regularly (~every few years) in light of new Mars science results, and it serves as a reference for science priority for Mars-related flight and research projects.

It is organized into a hierarchy of goals, objectives, and investigations (Figure 1, Table 1). The four Goals are not prioritized and are organized around major areas of scientific knowledge: "Life", "Climate", "Geology", and "Preparation for Human Exploration". Don Banfield (Cornell University) is the current MEPAG Goals Committee Chair, and he oversees 2-3 representatives per Goal (Table 1) [2].

Figure 1. An illustration of MEPAG's four Goals and tiered hierarchy. Although the Goals are not prioritized, within each goal the objectives, sub-objectives and investigations are in relative priority order. Additionally, supplementary materials discuss investigations and high-level science questions that cross-cut the Goals.

Objectives

Sub-Objectives

Investigations

The current MEPAG Goals Document, along with supplementary materials and past versions, can be downloaded from [1]. For questions about the Goals, please contact one of the MEPAG Goals Committee members or Mars Program Office staff.

Table 1. Goal Representatives during the 2018 Revision and planned 2					
Goal	Representative	Objectives and Sub-obje			
I: Determine if Mars ever supported life.	 Jennifer Stern (NASA Goddard Space Flight Center) Sarah Stewart Johnson (Georgetown University) 	 A. Determine if environment contain evidence of generative environment degree or nature of hall A2. Assess the potential of habitability, from the conditions that have his A3. Determine if biosign 			
II: Understand the processes & history of climate on Mars.	 Robin Wordsworth (Harvard University) David Brain (University of Colorado, Boulder) Paul Withers (Boston University) - 2018 	 A. Characterize the steenvironment, & the use of the steenvironment, & the use of the steenviron the process of the steenviron the process of the steenviron steenviron the process of the steenviron the process of the steenviron the process of the steenviron steenviron the process of the steenviron steenviron			
III: Understand the origin & evolution of Mars as a geological system.	 Aileen Yingst (Planetary Science Institute) Steve Ruff (Arizona State University) – 2018 Briony Horgan (Purdue University) – 2019 	 A. Document the geo that have created that A1. Identify & character A2. Determine the absol A3. Identify & character A4. Constrain the magnitude 			
IV: Prepare for human exploration.	 Jacob Bleacher (NASA Goddard Space Flight Center) Ryan Whitley (NASA Johnson Space Center) 	 A. Human mission to risk, & performance. A1. Aerocapture & aerok A2. Orbital particulate e <i>These Goal IV sub-object space limitations.</i>			

Preparation for the Planetary Decadal Survey: The 2018 MEPAG Goals Document and plans for 2019 updates

The 2018 Revisions

The most recent round of revisions (2018) was prompted by discussion at the 6th International Mars Polar Science and Exploration Conference (held in 2016 in Reykjavik, Iceland [3]), which pointed out that current high-priority Polar Science and Present-Day Activity questions were not well represented in content or priorities within the 2015 Goals Document. Upon request from the MEPAG Executive and Goals Committees [2], specific areas of disconnect were highlighted by representatives of the Mars Polar Science community; these were evaluated by the Goals Committee who proposed changes at sub-objective and investigation levels within the Climate and Geology Goals. These proposed changes were open for comment by the larger Mars community for 6 weeks, and then finalized. The official MEPAG 2018 Goals Document was posted on October 1, 2018 [1].

Goals I and IV were unchanged. The resultant changes to Goals II and III: • Included more explicit mention of ice (including frozen CO₂ and icy landforms) and dust. • Shifted/refineed some polar-focused investigations to better reflect present state of understanding

- and open questions.
- questions (i.e., new Sub-objective A3 in Goal III).

Figure 2. A simulated 3-D perspective view of the martian north polar scarp and dune fields, created from THEMIS data (Odyssey spacecraft) [4].

019 work, and listing of 2018 Goal/Objectives/Sub-objectives.

onments having high potential for prior habitability & preservation <u>bast</u> life.

ts that were habitable in the past, & characterize conditions & processes tha bitability therein.

of conditions & processes to have influenced preservation or degradation of e time of formation to the time of observation. Identify specific deposits & sul gh potential to have preserved individual or multiple types of biosignatures. natures of a prior ecosystem are present.

tate of the present climate of Mars' atmosphere & surrounding plasn underlying processes, under the current orbital configuration.

sses that control the present distributions of dust, water, & carbon dioxide in daily, seasonal & multi-annual timescales.

esses that control the dynamics & thermal structure of the upper atmosphere nvironment.

sses that control the chemical composition of the atmosphere & surrounding

esses by which volatiles & dust exchange between surface & atmospheric rese ologic record preserved in the crust & investigate the processes at record.

rize past & present geologic environments & processes relevant to the crust. lute & relative ages of geologic units & events through Martian history. rize processes that are actively shaping the present-day surface of Mars. itude, nature, timing & origin of past planet-wide climate change.

Mars orbit with acceptable cost,	B. Human mission to the Martian acceptable cost, risk, & performation
oraking investigations	B1. Atmospheric dynamics - EDL
nvironment	B2. Biohazard assessment
	B3. Identify special regions
ctives were left in short-hand due to	B4. ISRU tech demo
	B5. Identify landing-site hazards
	B6 Surface radiation & dust hazards

DO. Surface radiation & dust hazards

B7. Impact of dust on hardware

• More explicitly and comprehensively included focus on present-day changes and related science

The next round of revisions are expected to primarily come out of the presentations and discussion at the 9th International Conference on Mars (currently planned for July 2019 in Pasadena, CA [5]), and which are expected to include reference to returned sample science. Similar to the 2015 revision -- in the 2019 revision, all four Goals are going to be re-evaluated, as well as the overall structure and content of the Goals Document. Relative prioritization within each Goal will also be considered. Special attention will be paid to driving cross-cutting Mars science questions and how addressing those questions advances Planetary Science.

Revisions are planned to be completed in Fall-Winter 2019, with community review before finalizing in Spring 2020 - so that the update will be completed before the next Planetary Science Decadal Survey committee is underway (this Decadal Survey will span 2023-2032). The 2019 MEPAG Goals Document, along with updated Goals Documents from other portions of the Planetary Science Community, will form important community-generated inputs to the Planetary Science Decadal Survey process [6].

Figure 3. A 1.6cm wide/5.1cm deep drill hole by the Curiosity rover, into a target called "Duluth" [7]. The Mars 2020 rover will also drill into rocks, caching cores for later return to Earth [8].

References:

[1] https://mepag.jpl.nasa.gov/reports.cfm?expand=science. [2] https://mepag.jpl.nasa.gov/about.cfm

[3] https://www.hou.usra.edu/meetings/marspolar2016/

[4] https://www.nasa.gov/feature/jpl/nasa-radar-finds-ice-age-record-in-mars-polar-cap.

[5] https://www.hou.usra.edu/meetings/ninthmars2019/

https://doi.org/10.17226/24843.

[6] NASEM, 2017. Report Series: CAPS: Getting Ready for the Next Planetary Science Decadal Survey.

[7] https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA22325.

of biosi	ignatures	B. Determine if environments with high potential for current habitability & expression of biosignatures contain evidence of extant life.				
t may h	ave influenced t	ne B1. Identify environments that are pre nature or degree of habitability there	esently habitable, & char ein.	acterize conditions & processes that may influence the		
biosigna bsequer	atures & evidend nt geological	 B2. Assess the potential of specific corestant life. B3. Determine if biosignatures of an example. 	nditions & processes to a xtant ecosystem are pre	affect the expression and/or degradation of signatures of esent.		
ma	B. Characteriz	the history of Mars' climate in the	recent past, & the	C. Characterize Mars' <u>ancient</u> climate &		
the	B1. Determine l changed in the	v the chemical composition & mass of the atmosphere has ecent past.		C1. Determine how the chemical composition & mass of the atmosphere have evolved from the ancient past to		
&	B2. Determine	climate record of the recent past that is expressed in the pr		the present.		
geological, glaciological, & mineralogical features of the po- plasma B3. Determine the record of the climate of the recent past			polar regions.	C2. Find physical & chemical records of past climates & factors that affect climate		
geological & mineralogical features of low- & mid-latitud			des.	C3. Determine present escape rates of key species & constrain the processes that control them.		
B. Dete the Ma	ermine the str artian interior	ucture, composition, & dynamics of & how it has evolved.	C. Determine the ma moons.	nifestations of Mars' evolution as recorded by its		
B1. Identify & evaluate manifestations of crust-mantle interactions		C1. Constrain the planetesimal density & type within the Mars neighborhood during Mars formation, as implied by the origin of the Mars moons				
B2. Quantitatively constrain the age & processes of accretion, differentiation & thermal evolution of Mars.		C2. Determine the mat throughout Mars' histo	erial & impactor flux within the Mars neighborhood, ory, as recorded on the Mars moons.			
surfac nce.	<u>e</u> with C. H Pho	uman mission to the <u>surface of</u> bos or Deimos with acceptable cost,	D. Sustained human performance.	presence with acceptable cost, risk, &		
	C1.	, & performance. Phobos & Deimos science	DT. Extractable water r	esources		
	C2. I	Moon science		Scan this QR code to view the MEPAG webpage with links to the current MEPAG Goals Document.		

The Plan for 2019 Revisions

[8] https://mars.nasa.gov/mars2020/mission/rover/.

