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Abstract

An improved understanding of the mechanisms and factors affecting glacial flow is crucial to better predict sea level rise. Glacial
ice often contains impurities such as the presence of small insoluble particles. Mixtures of ice and dust can be found in many
places throughout the world, specifically in areas of high latitude and altitude (Moore, 2014). This study aims to understand
the effect of entrained insoluble debris on processes of glacial motion. Glaciers move through a combination of internal ice
deformation and basal sliding. Internal ice deformation, the flow of individual ice grains, has been found to be grain-size
dependent in both field and laboratory studies (Goldsby and Kohlstedt, 2001). In an attempt to better understand ice grain
size, this study considers the effect of debris on grain growth. Samples of pure ice and ice with debris were fabricated with a
standard protocol and maintained at -5°C for controlled annealing. Microstructural characterization was preformed using a light
microscope to image the samples, and calculating the average grain sizes using a linear-intercept method. The ice with debris
was found to have smaller grain sizes, thought to be associated with grain-boundary pinning. Extrapolated values were used
with a flow law, projecting that ice with debris will have lower viscosity, thus flow faster. To address basal sliding, the other
form of glacial movement, we conducted a second phase of study. Basal sliding, the process of a glacier sliding over the bedrock,
is influenced by the presence of meltwater at the base of the glacier (Hoffman et al., 2011). Frictional heating, from ice-on-rock
friction, was studied as a factor affecting meltwater production. We conducted a simple 1D computer model using laboratory
friction measurements of ice with entrained debris (Zoet et al., 2013). We find that debris content and frictional heating are
directly proportional. Trials run at faster glacial velocities also show larger amounts of frictional heating. As frictional heating
may increase meltwater, glaciers with debris may slide faster over bedrock. Overall, by better understanding the motion of

debris-rich glaciers, we can focus our attention to areas around the world at risk, and better predict/prepare for sea level rise.
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