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Abstract

Accurate kinematic models are fundamental to enhance our knowledge of the seismic cycle as well as to improve surface ground
motion prediction. However, the solution of the ill-posed kinematic inverse problem is non-unique (e.g., Cohee & Beroza,
1994; Wald & Heaton, 1994; Cotton & Campillo, 1995 and Minson et al., 2013) and, according to current acquisition systems
surrounding active faults, this problem is highly underdetermined, in spite of its rather simple formulation as a linear inverse
problem. Non-linear formulations of the problem, based on model reduction strategies, alleviate the underdetermination of the
problem. However, non-linear formulations imply drastic assumptions on the rupture history and they complicate the use of
linear algebra tools to assess the uncertainties of results. Regardless of the assumed inverse formulation, the incorporation of
physical constrains and prior information into the inverse problem is necessary to provide more robust and plausible solutions.
In this work (Sanchez-Reyes et al. 2018), we present a new hierarchical linear time domain kinematic source inversion method
able to assimilate data traces through evolutive time windows. This progressive approach, both on the data and model spaces,
does require mild assumptions based on prior knowledge or preconditioning strategies on the slip rate local gradient estimations.
Contrary to similar approaches (Fan et al., 2014), this strategy benefits from the sparsity and causality of the seismic rupture
while still ensuring the positivity of the solution. While standard regularization terms are used for stabilizing the inversion,
strategies based on parameter reduction leading to a non-linear relationship between the source history and the observed
seismograms are avoided. Rise time, rupture velocity and other attributes can be extracted later on from the slip-rate inversion
we perform. . Satisfactory results are obtained on synthetic benchmarks proposed by the Source Inversion Validation project
(Mai et al. 2016) and for the 2016 M$_w$7.0 Kumamoto mainshock. Our specific formulation combined with simple prior
information, as well as numerical results obtained so far, yields interesting perspectives for a quasi-real-time implementation

and to ease the uncertainty quantification of such ill-conditioned problem.
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Thanks AGU and authors for sharing your
presentations with visually impaired attendees

It is hard to follow the meeting when you can
not see what is going on the screen!
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Motivation: time-space ambiguity

Linear evolutive kinematic source inversion JGR: Solid Earth 10.1029/2017JB015388 3



Outline

Motivation

Motivation: time-space ambiguity

Linear evolutive kinematic source inversion JGR: Solid Earth 10.1029/2017JB015388 3



Motivatio he time-space ambiguity

Imagine two different rupture histories (A and B)!
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Imagine two different rupture histories (A and B)!
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Imagine two different rupture histories (A and B)! Different final slip
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Methodology description (2016 M,, 7.0 Kumamoto earthquake)
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Model parametrization: Linear or Non-linear?

Non-linear

4. 3-4 Unknowns

] j#mplnude

rise time

Few parameters per node:

® starting time e duration

e max amp e angle
Advantage:

Explicit physical parametrization
Disadvantage:

Strong assumptions impacting results
With drawbacks when assessing uncer-
tainties

Linear evolutive kinematic source inversion

Linear

For each

Time

Search for time-space history (3D)

Disadvantage:
Large number of unknowns
(tens of thousands)

Advantage:
Good for uncertainty assessment
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Ingredients of this linear time domain formulation

1" 1. Linear forward modeling:

G * m
N, ~—

seismograms wave propagator ~ rupture model

(=

Linear relation
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Ingredients of this linear time domain formulation

1" 1. Linear forward modeling:

G * m
N, ~—

seismograms wave propagator ~ rupture model

(=

Linear relation

I 2. L2 Norm misfit function:

Very important

Model misfit
C(m) = Data misfit + based on prior info

and rupture physics
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Ingredients of this linear time domain formulation

1" 1. Linear forward modeling:

G * m
N, ~—

seismograms wave propagator ~ rupture model

(=

Linear relation

I 2. L2 Norm misfit function:

Very important

Model misfit
C(m) = Data misfit + based on prior info

and rupture physics

03" 3. Newton equation using data gradient & model gradient: v = Yors +

—model

{~

Hessian Gradient
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Ingredients of this linear time domain formulati

on

1" 1. Linear forward modeling:
d = G m
~— NV, ~—~—
seismograms wave propagator jrupture model
Linear relation
" 2. L2 Norm misfit function:
Very ilmportant
Model fmisfit
C(m) = Data misfit + based on|prior info
and ruptdre physics
= ' ' i ient: v =~ A
3. Newton equation using data gradient & mo}iel gradient: Yors T Vool
same kernel!
H Am=— ~ — Yoot = G x  Data residuals
~—~— ~— —~—
Hessian Gradient wave propagator

Linear evolutive kinematic source inversion
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Data assimilation and ti space model expansion

Along dip (km)

Time (s) Along strike (km)

Assumptions: Benefits:

® Previous calibration of data and ® Rough prediction of wave packets to

model time-space windows. comel!
® Requires a synthetic rupture for the e Only residuals need to be explained!
calibration. e Residuals map mostly into the new

® Pre-computed Green functions. allowed rupture zone.
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Data assimilation and ti space model expansion
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Time windowing pre-calibration is required

Given a source/receiver geometry it is possible to define our data time windows and

time-space model growth using a simple synthetic rupture.
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Time windowing pre-calibration is required
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Time windowing pre-calibration is required

Given a source/receiver geometry it is possible to define our data time windows and

time-space model growth using a simple synthetic rupture.

0-4 seconds rupture

ocity (m/s)

Vel

Along dip (km)

Propose a synthetic rupture and
its complete (time) recordings.

Establish an incomplete state of
the synthetic rupture history.

Estimate the corresponding
incomplete seismograms.

Determine the upper limit of the
data time window for that given
state of the rupture.

Repeate these steps for the next
rupture state.

T

1.
Cumulative slip (m)

Linear evolutive kinematic source inversion
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Model regularization and data gradient preconditioning €

Rupture physics are not yet included!

C(m) = Data misfit‘%
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Model regularization and data gradient preconditioning

Model regularization and gradient preconditioning ARE REQUIRED.

Data driven model preconditioning:  Model regularization:
o Depth preconditioning to e Upper and lower bounds of
mitigate surface acquisition rupture velocity.
footprint.

e Expected zones of minimum slip
e Gradient smoothing to enforce (fault edges).

spatial coherence. e Min and Max slip rate bounds.

e Other prior information (rake

angle).
Very very important
Model misfit
C(m) = Data misfit + based on prior info

and rupture physics
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Model regularization and data gradient preconditioning

Preconditioning and regularization can also evolve during the inversion!

Inversion results from previous data windows can be used to enhance our prior infor-
mation.

This strategy helps to reduce the footprint of the regularization from the final results.
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2016 M, 7.0 Kumamoto earthquake

Standard Inversion Strategy (SIS): (Traditional approach)

e The full recordings are inverted.
e During the inversion, NO EVOLUTION of:
— The prior model (reconstructed from Asano and lwata (2016))
(other prior model or information can be injected)
— and its weigthing (defined based on physics and after several tests).

Ingredients for the SIS
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2016 M, 7.0 Kumamoto earthquake

Progressive Inversion Strategy (PIS): (New approach)
inspired by Kikuchi and Kanamori (1982)

e Progressively increasing data time windows are inverted.

e The prior model and its weigthing EVOLVE during the inversion.
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w 7.0 Kumamoto eart

Progressive Inversion Strategy (PIS): (New approach)
inspired by Kikuchi and Kanamori (1982)

e Progressively increasing data time windows are inverted.

e The prior model and its weigthing EVOLVE during the inversion.
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2016 M, 7.0 Kumamoto eart

Progressive Inversion Strategy (PIS): (New approach)
inspired by Kikuchi and Kanamori (1982)

e Progressively increasing data time windows are inverted.
e The prior model and its weigthing EVOLVE during the inversion.
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Such changes in the regularization help to reduce its footprint in our results.
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Standard full-time inversion (SIS) VS Progressive Inversion (PIS)

V 57 Recordings inverted O 33 Recordings predicted
Inverted Predicted
- E-W — Observed
fffff PIS-KUMA

A h - SIS-KUMA

0.36 KMMO013
T T T T
0 20 40 60 0 20 40 60

)

Time (s) Time (s)

Linear evolutive kinematic source inversion JGR: Solid Earth 10.1029/2017JB015388

14



Standard full-time inversion (SIS) VS Progressive Inversion (PIS)
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Standard full-time inversion (SIS) VS Progressive Inversion (PIS)

V 57 Recordings inverted O 33 Recordings predicted

Inverted Predicted
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PIS predicts better



Standard full-time inversion (SIS) VS Progressive Inversion (PIS)

V 57 Recordings inverted O 33 Recordings predicted

Inverted Predicted
E-W

KMMH14 0.36 KMMO013
0 20 40 60 0 20 40 ., 60
Time (s) Time (s) :
1
© o d) 2 '

. 2 e 3

Seo Gifal slip (m) '
With the sam-e misfit, SIS-and PIS predicts better
PIS lead to different solutions!
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Conclusions and perspectives
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Results and perspectives e

Some important conclusions:

1 Preserving the linearity of the forward problem:
physics are enforced through model preconditioning/regularization rather than
applying model-reduction strategies.
1= Progressive inversion strategy reduces space/time leakage by honoring causality
= Uncertainty quantification easier with linear forward problem.
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Perspectives

For assessing uncertainties:

e Hamiltonian MCMC (HMCMC): Possible, efficient and attractive.
e Sequential MCMC: Possible and able to handle data-assimilation.
e Reverse Jump HMCMC (RJHMCMC): Possible and very attractive.

How certain are our results?
Hamiltonian MCMC (HMCMC) According to the data, what is the

best mesh to use?

AN

SN

Model parameter 2

Along dip (km)

Along strike (km)

Model parameter 1
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Key Points:

« An alternative linear inverse
formulation for kinematic source
reconstruction is presented

+ Such formulation can invert
progressively growing data time
windows while spanning the
modelspace

« Promising advantages of this method
are found, thanks to the preservation

of causality and sparsity
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Thanks for listening!

Immigrants are not "bad hombres” !!
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PIS Workflow: How it works?

2016 Kumamoto
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